基于单片机的数控电流源的设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京邮电大学实验开放项目
项目名称:基于单片机的数控电流源设计
学院:光电工程学院
导师:张胜
姓名:石晓娜、梅阳阳、丁嘉毅、赵敏、朱振东
二零一四年二月
基于单片机的数控电流源的设计
摘要
恒流源,是一种能够向负载提供恒定电流的电源。恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数。并且在差动放大电路、脉冲产生电路中得到了广泛应用。
本文设计了一种基于单片机控制的数控直流恒流源。该恒流源以STC-89C52为控制核心,采用了高共模抑制比低温漂的运算放大器LM324和自制达林顿管构成恒流源的主体,完成了单片机对输出电流的实时检测和实时控制。人机接口采用4×4键盘及LCD数码管显示器,控制界面直观、简洁,具有良好的人机交互性能。在软件设计上采用增量式PWM控制算法,即数字控制器的输出只是控制量的增量。
该系统已基本达到预期的设计目标,具有功能强、性能可靠、体积小、电路简单的特点,可以应用于需要高稳定度的小功率恒流源的领域。
关键词:恒流源、PWM控制算法、数字控制、单片机控制
引言
随着电子技术的发展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能,价格,发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件越优越,那么设备的寿命更长。基于此,人们对数控恒定电流器件的需求越来越迫切。
众所周知,许多科学实验都离不开电源,并且在这些实验中经常会对通电时间、电压高低、电流大小以及动态指标有着特殊的要求,然而目前实验所用的直流电源大多输出精度和稳定性不高;在测量上,传统的电源一般采用指针式或数码管来显示电压或电流,搭配电位器来调整所要的电压及电流输出值。使用上若要调整精确的电压或者电流输出,须搭配精确的显示仪表监测,又因电位器的阻值特性非线性,在调整时,需要花费一定的时间,况且还要当心漂移,使用起来非常不方便。因此,如果直流电源不仅具有良好的输出质量而且还具有多功能以及一定的智能化,以精确的微机控制取代不精确的人为操作,在实验开始之前就对一些参数进行预设,这将会给各个领域中的实验研究带来不同程度的便捷与高效。
当今社会,数控恒压技术已经很成熟,但是恒流方面特别是数控恒流的技术才刚刚起步有待发展,高性能的数控恒流器件的开发和应用存在巨大的发展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要高稳定度小功率恒流源的领域。
1设计方案的选择
1.1电路综合设计流程
图1.1.1数控电流源电路设计流程图
1.2总体设计方案
经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,控制模块(包括A/D、D/A转换)恒流源模块,键盘模块,显示模块。以下就各电路模块给出设计方案。
1.2.1 控制部分方案
方案一:采用FPGA作为系统的控制模块。FPGA可以实现复杂的逻辑功能,规模大,稳定性强,易于调试和进行功能扩展。FPGA采用并行输入输出方式,处理速度高,适合作为大规模实时系统的核心。但由于FPGA集成度高,成本偏高,且由于其引脚较多,加大了硬件设计和实物制作的难度。
方案二:采用单片机作为控制模块核心。单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活、可以通过ISP方式将程序快速下载到芯片,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。
基于以上分析,选择方案二,利用STC89C52单片机将电流步进值或设定值通过换算由D/A 转换(此处我们利用PWM脉宽调制实现D/A转换功能),驱动恒流源电路实现电流输出。输出电
流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。
1.2.2 恒流源模块设计方案
方案一:由三端可调式集成稳压器构成的恒流源。
其典型恒流源电路图如图1.2.1所示。一旦稳压器选定,则U0 是定值。若R固定不变,则I0不变,因此可获得恒流输出。若改变R值,可使输出 I0改变。因此将R设为数控电位器,则输出电流可以以某个步长进行改变。此电路结构简单,调试方便,价格便宜,但是精密的大功率数控电位器难购买。
图1.2.1 三端集成稳压器构成的恒流源框图
方案二:由数控稳压器构成的恒流源
方案一是在U0不变的情况下,通过改变R的数值获得输出电流的变化。如果固定R不变,若能改变U0的数值,同样也可以构成恒流源,也就是说将上图中的三端可调式集成稳压源改为数控电压源,其工作原理和上图类似。此方案原理清楚,若赛前培训过数控电压源的设计的话,知识、器件有储备,方案容易实现。但是,由1.2.2图可知,数控稳压源的地是浮地,与系统不共地线,对于系统而言,地线不便处理。
图1.2.2 数控电压源构成的恒流源框图
方案三:采用集成运放的线性恒流源
该恒流源输出的电流与负载无关, 通过使用两块构成比较放大环节,功率管构成调整环节,利用晶体管平坦的输出特性和深度的负反馈电路可以得到稳定的恒流输出和高输出阻抗,实现了电压—电流转换。其原理框图如图1.2.3所示。
图1.2.3 集成运放构成的恒流源框图
综合考虑,采用方案三,使用低噪音、通用运放LM324和2个8550等构成一个恒流源电路。
1.2.3 显示模块设计方案
方案一:使用LED数码管显示。数码管采用BCD编码显示数字,对外界环境要求低,易于维护。但根据题目要求,如果需要同时显示给定值和测量值,需显示的内容较多,要使用多个数码管动态显示,使电路变得复杂,加大了编程工作量。
方案二:使用LCD显示。LCD具有轻薄短小,可视面积大,方便的显示汉字数字,分辨率高,抗干扰能力强,功耗小,且设计简单等特点。
综上所述,选择方案二。采用12864汉字图形点阵液晶显示模块同时显示电流给定值和实测值。
1.2.4 键盘模块设计方案
方案一:采用独立式按键电路,每个按键单独占有一根I/O接口线,每个I/O口的工作状态互不影响,此类键盘采用端口直接扫描方式。缺点为当按键较多时占用单片机的I/O 口数目较多。
方案二:采用标准4X4键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O口数目,而且可以做到直接输入电流值而不必步进。
题目要求可进行电流给定值的设置和步进调整,需要的按键比较多。综合考虑两种方案及题目要求,采用方案二,方便进行扩展。
1.2.5 电压源模块设计方案
系统需要多个电源,单片机、A/D、使用+5V稳压电源,运放需要±12V稳压电源,同时题目要求最高输出电流为260mA,电源需为系统提供足够大的稳定电流。
综上所述,采用三端稳压集成7805、7812分别得+5V和±12V的稳定电压,78H系列稳压器输出电流可以达到5A,能为系统提供足够大的稳定电流。利用该方法实现的电源电路简单,工作稳定可靠。
1.3 系统组成
经过方案比较与论证,最终确定系统的组成框图如图所示