拉普拉斯变换 习题集

合集下载

拉普拉斯变换题库

拉普拉斯变换题库

拉普拉斯变换题库(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--六.拉普拉斯变换㈠选择㈡填空1.)(2)(t t f δ=的拉普拉斯变换是_______________2.)1()(-=t u t f 的拉普拉斯变换是_________________.3.)2()(-=t u t f 的拉普拉斯变换是_________________.4.t e t t f 22)(+=的拉普拉斯变换是_______________.5.)(5)(2t e t f t δ+=的拉普拉斯变换是_______________6.)2()(2-=t u e t f t 的拉普拉斯变换是________________.7.k e t t f kt n ()(=为实数)的拉普拉斯变换是__________________.8.t e t f t 3sin )(2-=的拉普拉斯变换是__________________.9.t e t f 2)(-=的拉普拉斯变换是_________________.10.t e t f 2)(=的拉普拉斯变换是__________________。

11.t t f =)(的拉普拉斯变换是________________12.t te t f -=)(的拉普拉斯变换是____________________.13.t t f 2cos )(=的拉普拉斯变换是_____________.14.at t f sin )(=的拉普拉斯变换是_________________.15.t t t f cos sin )(=的拉普拉斯变换是___________________.16. ()()sin f t u t t =的拉普拉斯变换是________________.17. ()sin(2)f t t =-的拉普拉斯变换是________________.18.t t f 2cos )(=的拉普拉斯变换是________________.19.t t f 2sin )(=的拉普拉斯变换是_______________.20.t e t f t sin )(-=的拉普拉斯变换是_________________.21.t e t f t cos )(=的拉普拉斯变换是______________.22.t e t t f 2)1()(-=的拉普拉斯变换是________________.23.t t t f cos 32sin 5)(-=的拉普拉斯变换是_________________.24.)(3sin 2)(t u t t f -=的拉普拉斯变换是_______________.25.)(3)(t t t f δ+=的拉普拉斯变换是___________________.26.t te t f -=1)(的拉普拉斯变换是__________________.27.)53()(-=t u t f 的拉普拉斯变换是_______________. 28.tt t f sin )(=的拉普拉斯变换是__________________. 29.t e t t f )()(δ=的拉普拉斯变换是_____________.30.t t t f sin )(=的拉普拉斯变换是______________. 31.932)(2++=s s s F 的拉普拉斯逆变换是___________________. 32.2)(+=s s s F 的拉普拉斯逆变换是_______________. 33.ss F 1)(=的拉普拉斯逆变换是_________________. 34.11)(-=s s F 的拉普拉斯逆变换是_________________. 35.11)(+=s s F 的拉普拉斯逆变换是___________________. 36.21)(ss F =的拉普拉斯逆变换是________________. 37.11)(2+=s s F 的拉普拉斯逆变换是________________. 38.2)1(1)(+=s s F 的拉普拉斯逆变换是________________. 39.11)(2-=s s F 的拉普拉斯逆变换是_________________. 40.se s F s2)(-=的拉普拉斯逆变换是____________________. 41.31)(ss F =的拉普拉斯逆变换是________________.42.91)(2+=s s F 的拉普拉斯逆变换是______________ 43.4)(2+=s s s F 的拉普拉斯逆变换是_______________. 44.41)(2+-=s s s F 的拉普拉斯逆变换是____________. 45.41)(2--=s s s F 的拉普拉斯逆变换是________________. 46.42)(s s F =的拉普拉斯逆变换是_______________. 47.51)(+=s s F 的拉普拉斯逆变换是______________. 48.2)(-=s s s F 的拉普拉斯逆变换是_______________. 49.)3)(1(2)(-+-=s s s s F 的拉普拉斯逆变换是________________. 50.432)(2++=s s s F 的拉普拉斯逆变换是__________________. 51.61)(2-++=s s s s F 的拉普拉斯逆变换是____________________. 52.61)(2--+=s s s s F 的拉普拉斯逆变换是________________. 53.161)(4-=s s F 的拉普拉斯逆变换是____________________. 54.23)(se s F s-=的拉普拉斯逆变换是__________________. 55.)1(1)(22+=s s s F 的拉普拉斯逆变换是__________________. 56.)2)(1(3)(+-=s s s s F 的拉普拉斯逆变换是_________________ 57.651)(2++-=s s s s F 的拉普拉斯逆变换是__________________。

第二章_Laplace变换(答案)

第二章_Laplace变换(答案)

积分变换练习题 第二章 Laplace 变换________系_______专业 班级 姓名______ ____学号_______§1 Laplace 变换的概念 §2 Laplace 变换的性质一、选择题1.设()(1)t f t e u t -=-,则[()]f t =L [ ](A )(1)1s e s --- (B )(1)1s e s -++ (C )1s e s -- (D )1se s -+11[(1)][()];1[(1)](1)ss t s u t e u t se e u t s e --+⎛⎫-== ⎪ ⎪ ⎪-= ⎪+⎝⎭由延迟性质可得,再由位移性质可得,L L L2.设2sinh ()tf t t =,则[()]f t =L [ ] (A )1ln 1s s -+ (B )1ln 1s s +- (C )12ln 1s s -+ (D )12ln 1s s +-见课本P84二、填空题1.设2()(2)f t t u t =-,则[]()f t =L。

22''222321[(2)][()];1442[(1)]ss s s u t e u t se s s t u t se s e -⎛⎫-== ⎪ ⎪++ ⎪⎛⎫-== ⎪ ⎪⎝⎭⎝⎭由延迟性质可得,再由象函数的微分性质P83(2.7)可得,L L L 2.设2()t f t t e =,则[]()f t =L。

(1)00''231[](Re()1);112[]1(1)t t st s t te e e dt e dt s s t e s s +∞+∞---⎛⎫===> ⎪- ⎪ ⎪⎛⎫== ⎪ ⎪--⎝⎭⎝⎭⎰⎰再由象函数的微分性质P83(2.7)可得,L L 三、解答题1.求下列函数的Laplace 变换:(1)302()12404t f t t t ≤<⎧⎪=-≤<⎨⎪≥⎩242242422402[()]()3(1)33334ststst st st s s s s s f t f t e dt e dt e dte e e e e e e s s s s s s s+∞----------==+--+=+=-++-=-⎰⎰⎰L(2)3,2()cos ,2t f t t t ππ⎧<⎪⎪=⎨⎪>⎪⎩20222222()22202222[()]()3cos 3333,cos cos()sin 2133[()].1stst st sst stst s s sts ssf t f t e dt e dt te dtee e dt ss se te dt ed ee d s e ef t s s sπππππππτππττππππττττ+∞+∞--------=+∞+∞+∞-+-----==+==-+-=+=-=-+=--++⎰⎰⎰⎰⎰⎰⎰,从而L L(3)()sin2tf t = 222002[()]sin 2sin .241t st s t f t e dt e d s ττττ=+∞+∞--===+⎰⎰L(4)()cos ()sin ()f t t t t u t δ=⋅-⋅200[()][cos ()sin ()]cos ()sin ()1cos sin 1.1st stst stst t f t t t t u t e dtt t e dt t u t e dttete dt s δδ-+∞-+∞+∞--+∞--==⋅-⋅=⋅-⋅=-=-+⎰⎰⎰⎰L2.求以2b 为周期的函数1,0()1,2t bf t b t b<≤⎧=⎨-<≤⎩的Laplace 变换。

信号与系统第4章答案

信号与系统第4章答案

第4章拉普拉斯变换与连续系统复频域分析4.6本章习题全解4.1 求下列函数的拉普拉斯变换(注意:为变量,其它参数为常量)。

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18) ()(19)(20)(21)(22)(23)(24)4.2 已知,求下列信号的拉普拉斯变换。

(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)所以4.3 已知信号的拉普拉斯变换如下,求其逆变换的初值和终值。

(1)(2)(3)(4)解(1)初值:终值:(2)初值:终值:(3)初值:终值:(4)初值:终值:4.4 求题图4.4所示信号的单边拉普拉斯变换。

题图4.4解(1)所以根据微分性质所以注:该小题也可根据定义求解,可查看(5)小题(2)根据定义(3)根据(1)小题的结果再根据时移性质所以根据微分性质得(4)根据定义注:也可根据分部积分直接求取(5)根据单边拉氏变换的定义,本小题与(1)小题的结果一致。

(6)根据单边拉氏变换的定义,在是,对比(3)小题,可得4.5 已知为因果信号,,求下列信号的拉普拉斯变换。

(1)(2)(3)(4)解:(1)根据尺度性质再根据s域平移性质(2)根据尺度性质根据s域微分性质根据时移性质(3)根据尺度性质再根据s域平移性质(4)根据时移性质再根据尺度性质本小题也可先尺度变化得到,再时移单位,得到结果4.6 求下列函数的拉普拉斯逆变换。

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)解:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14){} =(15){} =(16){}=(17){}=(18){}=(19){}=(20){}=(21){}=(22){}=(23) {}=(24) ()=4.7 求如题图4.7所示的单边周期信号的拉普拉斯变换。

第四章拉普拉斯变换

第四章拉普拉斯变换

第四章拉普拉斯变换第一题选择题1.系统函数H( s)与激励信号X( s)之间B。

A、是反比关系;B、无关系; C 、线性关系;D、不确定。

2.如果一连续时间系统的系统函数H(s) 只有一对在复平面左半平面的共轭极点,则它的h(t) 应是 B。

A、指数增长信号 B 、指数衰减振荡信号 C 、常数 D 、等幅振荡信号3.一个因果稳定的连续系统,其H(s)的全部极点须分布在复平面的A。

A、左半平面B、右半平面C、虚轴上D、虚轴或左半平面4.如果一连续时间系统的系统函数H(s) 只有一个在左半实轴上的极点,则它的h(t)应是B。

A、指数增长信号B、指数衰减振荡信号C、常数 D 、等幅振荡信号5.一个因果稳定的连续系统,其H( s) 的全部极点须分布在复平面的A。

A 左半平面B右半平面C虚轴上D虚轴或左半平面6.若某连续时间系统的系统函数H(s)只有一对在复平面虚轴上的一阶共轭极点,则它的h(t)是 D 。

A 指数增长信号B指数衰减信号C常数D等幅振荡信号7.如果一连续时间系统的系统函数H(s) 只有一对在虚轴上的共轭极点,则它的h(t)应是DA、指数增长信号 B 、指数衰减振荡信号C、常数 D 、等幅振荡信号8.如果系统函数 H(s) 有一个极点在复平面的右半平面,则可知该系统B 。

A 稳定B 不稳定C 临界稳定D 无法判断稳定性9.系统函数 H( s) 是由 D决定的。

A 激励信号E(s) B响应信号R(s) C激励信号E(s) 和响应信号R(s) D系统。

10.若连续时间系统的系统函数H(s) 只有在左半实轴上的单极点,则它的h(t)应是B。

A 指数增长信号B指数衰减信号C常数D等幅振荡信号11、系统函数H(s)与激励信号X(s)之间BA、是反比关系; B 、无关系; C 、线性关系;D、不确定。

12.关于系统函数 H(s) 的说法,错误的是C。

A 是冲激响应 h(t)的拉氏变换 B决定冲激响应 h(t) 的模式 C 与激励成反比 D 决定自由响应模式13.若某连续时间系统的系统函数H(s) 只有一个在原点的极点,则它的h(t) 应是 C 。

拉普拉斯变换

拉普拉斯变换

第八章 拉普拉斯变换一、 判断题1.Laplace 变换本质是傅立叶变换。

( ) 2.任意函数的拉普拉斯变换都存在。

( )3. )3sin(π-t 和)3()3sin(ππ--t u t 的拉普拉斯变换结果相同。

4.可以通过计算1+s s 在1-=s 处留数得到1+s s的拉普拉斯逆变换。

( ) 5.可以通过计算st s e s e 1+ 在1-=s 处留数得到1+s e s的拉普拉斯逆变换。

( ) 6.用拉普拉斯变换求微分方程时可直接求出满足初始条件的解。

( )二、 选择题(2)=-)]4[cos(πt L ( )(A )11222++s s (B )11222+-s s (C )s e s s 421122π-++ (D )s e s s 421122π-+- (3) =⎰-]d sin [03ttt t eL ( )(A )1)3(112+-s s (B )1)3(112++s s (C )1)3(112++-s s (D )1)3(112+--s s (4) =⎰-]d sin [L 03tt t t e t( )(A )1)3(101231222+-++-s s s s (B )1)3(101231222+-++s s s s )()]([),()()1(0=-=t f t t t f L 则设δπ2)()()(1)(00D eC e B A st st -(C )1)3(101231222++++-s s s s (D )1)3(101231222++++s s s s (5) 函数1)1(22++s s 的拉普拉斯逆变换为( ) (A )t e t t cos 2)(--δ (B )t t t sin 2cos 2)(--δ (C )t e t t sin 2)(--δ (D)ite i 21- (6) 函数s e s s-+1的拉普拉斯逆变换为( ) (A )t e t ---)1(δ (B )t e t u t ----)1()1(δ(C ))1()1(---t u e t (D ))1()1()1()1(------t u e t u t t δ (7)积分⎰+∞-02cos tdt te t 的值为( )(A ) 0 (B)253 (C) 253- (D) 254 (8) 积分⎰⎰+∞-0]cos [dt e d e t ττττ的值为( )(A ) 0 (B) 1 (C) 1- (D) 不存在 (9) a t <时)()(t f a t u *-的值为( )(A ) 0 (B) 1 (C) 1- (D) 不存在三、 填空题 (1)设L ),()]([s F t f = ,0>a 则L =-)]([atf eat(2)L =--)]1([2te u t(3)L =+-]cos [)(t e t βα (4)L =--)]2()2[sin(t u t(5)L=+--][151se s(6)L=--])(1[31a s s (7)L=++-])1(1[ln 21s s s(8)=⎰∞+dt ttsin (9)=*-)()(t f a t δ 四、 计算下列函数的拉普拉斯变换.(1)⎪⎩⎪⎨⎧><≤-<≤=4,042,100,3)(t t t t f (2)282cos 32sin )(2+--=-te t t t f(3)at t t f cos )(= (4))2(sin )(-⋅=t u t t f (5)dt tte tt ⎰-02cos 五、 计算下列函数的拉普拉斯逆变换。

求下列函数的拉普拉斯变换

求下列函数的拉普拉斯变换

(b)
8.18
设题图
8.18
所示
RLC
网络的短路导纳矩阵为 Y
=
Y11 Y21
Y12
Y22
,定义网络函数
H (s)
=
U 2 (s) U1(s)

试求 H (s) 和 Y 中元素的关系。
I1(s) U1(s)
I2 (s) R U2(s)
L
u1
C
R u2
题图 8.18 解:根据题意列方程:
I1 (s) = Y11U1 (s) + Y12U2 (s)

U2 (s)
=
US (s) s2 + 3s +1
H (s) = 1 s2 + 3s +1
H ( jω) =
1
=
1
( jω)2 + 3 jω +1 (1− ω2 ) + 3 jω
H ( jω) =
1
(1− ω 2 )2 + 9ω 2
arg H ( jω) = − arctan 3ω 1− ω2
8.22 题图 8.22 所示为 LC 滤波器,其中 C1 = 1.73F ,C2 = C3 = 0.27F ,L = 1Η ,R = 1Ω ,试求: (1) 网络函数 H (s) = U2 (s) I1(s) ; (2) 绘出 H ( jω) − ω 和 H ( jω) − ω 的图形。
(3) f (t ) = 3 + 4e−2t − 6e−3t ;
(4) f (t) = 3δ (t) + 4e−2t − e−3t
8.3
已知二端口网络 N
的单位阶跃响应象函数为
1 s2 + 2

拉普拉斯逆变换习题

拉普拉斯逆变换习题

拉普拉斯逆变换习题拉普拉斯变换是数学和信号处理中常见的技术。

它有利于解决特定的数学问题,特别是在处理复杂的函数和图形时更加有效。

在这里,将要探讨的是拉普拉斯逆变换的科学和技术,以及与其有关的习题。

首先,让我们来看看拉普拉斯变换是什么意思。

它指将函数从时间域转换到频率域,以获得更直观的分析结果。

这就是拉普拉斯变换的概念,也就是说,它是一种计算时域函数的频率响应的方法。

它于1826年由拉普拉斯在他的文章中首次被提出,并成为一种重要的代数技术,为数学和物理的研究不断提供新的分析工具。

拉普拉斯变换的优点是,它可以用来解决许多复杂的数学问题,可以让我们轻松地解决无限维函数的微分方程,可以用来计算单变量函数的傅里叶级数,并且可以用来处理多变量函数的变换和解决积分方程。

此外,拉普拉斯变换也可以用来画出函数的离散图,便于比较函数的幅值和相位响应,而无需做实际的绘图。

然而,使用拉普拉斯变换势必遇到一些挑战。

由于其特性,拉普拉斯变换往往是比一般傅里叶变换更复杂的,而且往往需要熟练的数学技能来完成各种计算,因此这需要更多的时间去理解和编程。

因此,在使用拉普拉斯变换时,需要仔细考虑实际应用中面临的挑战,以期达到最佳结果。

由于拉普拉斯变换的概念复杂和应用范围广泛,数学家和工程师正在不断提出拉普拉斯逆变换的习题,以更好地理解其理论和实际应用。

下面就是一些典型的拉普拉斯逆变换习题:(1)对某些仅具有实部的函数,求出其调和频率分量。

(2)计算单变量函数的拉普拉斯变换,并求出其傅里叶级数表达式。

(3)计算多变量函数的拉普拉斯变换,并求出其傅里叶级数表达式。

(4)求函数的反拉普拉斯变换,并画出函数的离散图。

(5)对某些仅具有实部的函数,求出其实部和虚部的频率响应。

(6)计算某些函数的拉普拉斯变换,求出其波形及其数学表达式。

(7)用拉普拉斯变换求解积分方程,并比较其结果与其他常规方法的结果。

上述习题都是典型的拉普拉斯变换问题,可以通过系统地学习和练习来加深理解。

信号与系统 第四章习题 王老师经典解法(青岛大学)小白发布

信号与系统 第四章习题 王老师经典解法(青岛大学)小白发布

3
E1(s)

1 s
-2 -1
(a)
1 s
2

Y 1( s )
E2(s)
−2 t
Vo ( s ) ; E ( s)
U (t ) ,求零状态响应 vo (t ) ;
(3)若 e(t ) = 10 cos(5t ) ,求正弦稳态响应 voss (t ) 。
0.25F + e(t) -
2:1
1F
2:1
2F +
C1
C2
C3
R
vo(t
-
题图 4-17-1
4-18 题图 4-18-1 所示电路 (1)若初始无储能,信号源为 is (t ) ,为求 i1 (t ) (零状态响应) ,列写转移函数 H ( s ) ,并给 出对应于 is (t ) = 10 cos(2t )U (t ) 的零状态响应 i1 (t ) ; (2)若初始状态以 i1 (0) , v 2 (0) 表示(都不等于零) ,但
is(t
)
1Ω + 1F
-
1H
i1(t
is (t ) = 0 ,求 i1 (t ) (零输入响应) 。
v 2( t )

题图 4-18-1
4-19 求题图 4-19 中电路的电压传输函数,如果要求响应中不出现 强迫响应分量,激励函数应有怎样的模式?
C
R1
+ +
-)
e(t R2
vo(t)
-
题图 4-19
4-11 用拉氏变换分析法,求下列系统的响应。
d 2 r (t ) dr (t ) (1) +3 + 2r (t ) = 0 , r (0 − ) = 1 , r ' (0 − ) = 2 2 dt dt

积分变换_(Laplace)课件与习题

积分变换_(Laplace)课件与习题
5
§1 Laplace变换的概念
设指数衰减函数
(t
)
0, e
t
,
t0
( 0).
t0
考虑 f t t ,,有 f t u t =f t t 0.
若存在 0,使 lim et f t =0,则 + et f t dt .
t
-
那麽 f t u t et的傅氏积分总是存在的。
F [ f (t)u(t)et ] f (t)u(t)ete jtdt
L[ f (t)] F s f (t)estdt 0
f (t)称为F (s)的Laplace逆变换,记为f (t) L1[F (s)]. F (s)称为象函数,f (t)称为象原函数.
8
例1
求单位阶跃函数
u(t)
0 1
t 0 的拉氏变换. t 0
根据拉氏变换的定义, 有
L[u(t)] estd t 0

smL
t m
1 s
m!
L
t m
1 s m1
m!
(Re(s) 0).
26
练习: 求 f (t) cost 的Laplace变换.
解 因为
参见上节例3, 与这里方法不同
f (0) 1, f (0) 0, f (t) 2cost,
根据 微分性质 和线性性质
[2 cost] s2 [cost] sf (0) f (0),
对正整数n, 有
L[f
2
(n)
[(ct )o]sstn]F(
s2
s)
[scnos1
t] s,
f (0)
f (n1)(0).
所以
特[c别os地,t] 当sf2

奥本海姆《信号与系统》(第2版)(下册)课后习题-拉普拉斯变换(圣才出品)

奥本海姆《信号与系统》(第2版)(下册)课后习题-拉普拉斯变换(圣才出品)

第9章拉普拉斯变换习题9.1 对下列每个积分,给出保证积分收敛的实参数σ的值:解:(a)因可见,要使积分收敛,当t→∞时,需满足5+σ>0,即σ>-5,此时积分为。

(b)此题中的被积函数与(a)相同,只是积分区间不同。

利用(a)中的积分过程可见,要使积分收敛,当t→∞时,需满足5+σ<0,即σ<-5。

σ<-5即为实数σ的取值范围。

(c)与(b)相似。

由于积分是在一个有限的区间[-5,5]上进行的,所以无论σ取何实值,积分均收敛,即实数盯的取值范围为-∞<1<∞。

(d)与(b)相似。

要使积分收敛,当t→∞时,应有5+σ>0,即t>-5;且当t→-∞时,又应有5+σ<0,即σ<-5。

综合以上分析可知,无论σ取何值,该积分都不收敛。

(e)此积分可化为以上第一个积分要收敛,需满足σ>-5。

对于第二个积分,由于可见要使其收敛,需满足σ<5。

综上所述,当-5<σ<5时,积分收敛。

(f)此积分可化为由(e)中分析可知,当实数σ<5时,积分收敛。

9.2 考虑信号x(t)=e-5t u(t-1)其拉普拉斯变换记为X(s),(a)利用式(9.3)求X(s),并给出它的收敛域。

(b)确定有限数A和t0,以使g(t)=Ae-5t u(-t-t0)的拉普拉斯变换G(s)与X (s)有相同的代数式。

对应于G(s)的收敛域是什么?解:(a)由拉普拉斯变换的定义得(b)由拉普拉斯变换的定义得要使G(s)收敛,当t→∞时,需满足,即,此时对比G(s)与X(s)的代数表达式可发现,要使两者相同,应有A=-1,t0=-1,G (s)的ROC为9.3 考虑信号x(t)=e-5t u(t)+e-βt u(t)其拉普拉斯变换记为X(s)。

若X(s)的收敛域是Re{s}>-3,应在β的实部和虚部上施加什么限制?解:利用常用信号的拉普拉斯变换对可直接写出这里的β可为复数,也可为实数。

若β为复数,那么只有它的实部对X(s)的ROC有影响。

X(s)的ROC为Re{S}大于-5和Re{-β}中的大者。

第14 章 Laplace 变换 1. 求下列函数的拉氏变换 (1) (2) 解 (1

第14 章 Laplace 变换 1. 求下列函数的拉氏变换 (1) (2) 解 (1

第14 章 Laplace 变换1. 求下列函数的拉氏变换 (1)1cos wtw- (2)chwt 解 (1){}{}220sin 1cos sin ()tL wt wt wL Lwzdz w p p p w -⎧⎫===⎨⎬+⎩⎭⎰(2){}{}22111122wt wt pL chwt L e e p w p w p w-⎧⎫=+=+=⎨⎬-+-⎩⎭ 2.求下列函数的逆拉氏变换 (1)2845p p p +++; (2)222()p p a + 其中a >0。

解 (1)111222821645(2)1(2)1p p L L L p p p p ---⎧⎫⎧⎫⎧⎫++=+⎨⎬⎨⎬⎨⎬++++++⎩⎭⎩⎭⎩⎭22cos 6sin tt et e t --=+(2)1222sin ()2pt at L p a a -⎧⎫=⎨⎬+⎩⎭3. 设11()sin f t wt w=,2()f t chwt =,其中w ≠0,求12()()f t f t *。

解法1 由于{}{}{}1212L f f L f L f *=⋅ {}12211()sin L f t L wt w p w⎧⎫==⎨⎬+⎩⎭ {}{}222()pL f t L chwt p w ==-所以 {}1222221pL f f p w p w*=⋅+- 2222222()2()p pw p w w p w =--+2211cos 22L chwt L wt w w ⎧⎫⎧⎫=-⎨⎬⎨⎬⎩⎭⎩⎭2211cos 22L chwt wt w w ⎧⎫=-⎨⎬⎩⎭1221(cos )2f f chwt wt w *=- 解法2 由卷积定义求1201()()sin ()tf t f t w chw t d wτττ*=-⎰()()01sin 2w t w t te e w d w ττττ---+=⎰ ()()0011sin sin 22t t w t w t e w d e w d w w ττττττ---=+⎰⎰ 22221111sin cos sin 4444wt wt wt e wt w w w w =--++-2211cos 44wtt e w w -+ 2211cos 222wt wt e e wt w w -+=-21(cos )2chwt wt w =- 4.求解'1(0)0x x x +=⎧⎨=⎩解 对方程施行Laplace 变换,并注意初始条件:x(0)=0,我们有 [][][]'1L x L x L +=[][]1pL x L x p+=[]11111(1)1(1)L x p p p p p p ==-=-++--[]11111(1)tx L L x L e p p ---⎡⎤==-=-⎢⎥--⎣⎦5. 求解2'3(0)2tx x e x -⎧-=-⎨=⎩解 对方程两边施以Laplace 变换,并注意初始条件x(0)=0,则有[][]2'3tL x L x L e -⎡⎤-=-⎣⎦[][]3(0)2pL x x L x p ---=+ []311(1)(2)21L x p p p p -==--++-11211()()21t tx t L x L e e p p ---⎡⎤==-=-⎢⎥+-⎣⎦6. 求解01"(0),'(0)tx x e x x x x ⎧+=⎨==⎩解 对方程两边施以Laplace 变换得[][]"tL x L x L e ⎡⎤+=⎣⎦[][]20111p L x px x L x p --+=- 解得 []0122221111121212111x p x p L x p p p p p =--++-++++ 所以 101222211111()21212111x p x p x t L p p p p p -⎡⎤=--++⎢⎥-++++⎣⎦01111()cos ()sin 222t e x t x t =+-+- 7. 求解01"(0),'(0)tx x e x x x x ⎧-=⎨==⎩解 对方程两边施以Laplace 变换得 [][]"t L x L x L e ⎡⎤-=⎣⎦[][]201'(0)1p L x p xx L x p ---=- []201111p L x px x p ⎡⎤-=++⎣⎦- 解得 []2111()2(1)4(1)4(1)L x t p p p =-+--+ 012211x p x p p ++-- []101111()(())244t t t x t L L x t te e e x cht x sht --==-+++8. 求解"'2"'4(0)1,'(0)2,"(0)2x x x x x x --=⎧⎨===-⎩解 对方程两边施行Laplace 变换,并注三个初始条件,则有[][][][]"'2"'4L x L x L x L -+=[][]322(0)'()"(0)2(0)'(0)p x p x px x x p L x px x ⎡⎤------+⎣⎦[]4(0)L x x p-=[][][]3224222241p L x p p p L x p pL x p--+-+++-=[]224(1)5p p L x p p-=+- 解得 []222254()(1)(1)(1)p L x t p p p p p =-+--- 23421p p p =+-- 所以 []1()()342tx t L L x t t e -==+-9. 求解21"'2(0)'(0)"(0)0t x x t e x x x ⎧+=⎪⎨⎪===⎩ 解 对方程两边施以Laplace 变换并利用初始条件有 [][]21"'2tL x L x L t e ⎡⎤+=⎢⎥⎣⎦[][]3221(0)'(0)"(0)(1)p L x p x px x L x p ---+=-解得 []331()(1)(1)L x t p p =-+- 当331231,,ii p p e p e ππ-=-==是一阶极点,p=1是三阶极点,由留数计算公式:22331111Re ()lim 2(1)(1)ptpt p p d s F p e e dp p p →=⎡⎤⎡⎤=⎢⎥⎣⎦!+-⎣⎦2133448t t tt e te e =-+31311(1)Re ()|(1)24ptptt p p e p s F p e e p -=-=--⎡⎤==-⎣⎦+3332(1)Re ()|3i i pt ptp e p e e p s F p e p ππ==-⎡⎤==⎣⎦3Re ()iptp es F p e π-=⎡⎤=⎣⎦所以221331()44824t t t t t x t t e te e e -=-+--21cos 32te10. 求解3''21'4'30(0)(0)0x y x x y y x y ++=⎧⎪++=⎨⎪==⎩解 对方程组两边施行Laplace 变换,并设[][](),(),X L x t Y L y t ==得 1(32)(43)0p X pY p pX p Y ⎧++=⎪⎨⎪++=⎩解得 221111111765(116)5(1)431133(11176)25(1)10(116)Y p p p p p X p p p p p p --⎧==+⎪++++⎪⎨+⎪==--⎪++++⎩所以 [][]61116111113()251011()55t t t tx t L X e e y t L Y e e ------⎧==--⎪⎪⎨⎪==-+⎪⎩11. 求解0sin ()sin()()ta t G t t z G z dz =--⎰,a 为常数。

拉氏变换习题集1 (1)(1)

拉氏变换习题集1 (1)(1)

R1
s
sR2
s
r2
(0
)
2
R2
s
0
解得 R1 s 2 3s 1 s 1 1 3s 3 R2 s 1 3s 1 s 1 1 3s 3
因此
r1
t
2 3
et
1 3
e3t
u
t
r2
t
1 3
et
1 3
e3t
u
t
拉普拉斯变换应用
12.已知
r"(t) 5r' (t) 6r(t) 2e' (t) 8e(t),(t) etu(t),r(0 ) 3,r '(0 ) 2
F(s)
s2
s 2s
2
(s
1
s j)(s
1
j)
s
k1 1
j
s
k2 1
j
k1
lim (s
s1 j
1
j)F(s)
lim
s1 j
s
s 1
j
1 2
j
k2
lim (s 1
s1 j
j)F (s)
lim
s1 j
s s 1
j
1 2
j
查表可求得原函数为
f (t) 1 j e(1 j)t 1 j e(1 j)t et (cost sin t)
L
t
t0 u t
t0
1 s2
e st0
因此
F
s
1 s2
1 2 es e2s
1 s2
1 es
2
ROC:整个s平面
ROC: Res 0
f t
1
o

拉普拉斯逆变换习题

拉普拉斯逆变换习题

拉普拉斯逆变换习题填空题:1. t t f 2cos )(=的拉普拉斯变换是________________。

2. t t f 2sin )(=的拉普拉斯变换是_______________。

3. t e t f t sin )(-=的拉普拉斯变换是_________________。

4. t e t f t cos )(=的拉普拉斯变换是______________。

5. t e t t f 2)1()(-=的拉普拉斯变换是________________。

6. t t t f cos 32sin 5)(-=的拉普拉斯变换是_________________。

7. )(3sin 2)(t u t t f -=的拉普拉斯变换是_______________。

8. )(3)(t t t f δ+=的拉普拉斯变换是___________________。

9. t te t f -=1)(的拉普拉斯变换是__________________。

10.t e t f 2)(-=的拉普拉斯变换是_________________。

11.t e t f 2)(=的拉普拉斯变换是__________________。

12.t t f =)(的拉普拉斯变换是________________ 13.t te t f -=)(的拉普拉斯变换是____________________。

14.t t f 2cos )(=的拉普拉斯变换是_____________。

15.at t f sin )(=的拉普拉斯变换是_________________。

16.t t t f cos sin )(=的拉普拉斯变换是___________________。

17.)(2)(t t f δ=的拉普拉斯变换是_______________ 18.)1()(-=t u t f 的拉普拉斯变换是_________________。

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)

何子述信号与系统习题解答第5章拉普拉斯变换(2012新)何子述老师2012年最新高等教育出版社出版《信号与系统习题解答》发布,对考研同学帮助极大!第5章拉普拉斯变换习题解答一、基本概念与基本运算习题题5.1 解:当f t u t 时,0能使信号g t 的傅里叶变换存在。

当f t u t 时,0能使信号g t 的傅里叶变换存在。

当f t 1时,找不到一个实数使信号g t f t e t绝对可积。

题5.2 解:(a)由拉普拉斯变换的定义式F(s) e 2tu t 1 e1j tdte 2te te j tdt1 s 2e, 2s 2(b)由拉普拉斯变换的定义式j ttδt12δt1eut1edt利用积分的分配律及单位冲激信号的筛选性,可得F s es 2e s ete te j tdt- 1e1 se 2e , 11 sss(c)由拉普拉斯变换的定义式F s e 2tsin 3t u t e-j tdte2tej3t e j3t t j teedt2j239, 2157何子述老师2012年最新高等教育出版社出版《信号与系统习题解答》发布,对考研同学帮助极大!(d)由拉普拉斯变换的定义式F sf t ej tdtete te j tdt 20e 2te te j t 2dts 12s 2e2 11 es 1 s 2,(e)由拉普拉斯变换的定义式e 2t j tedt不存在使上式积分收敛,故信号f(t) e 2t的拉普拉斯变换不存在。

(f)由拉普拉斯变换的定义式F s2δ j tt δ t 2 e dt2 s2 se 2s,题5.3 解:(a)有拉普拉斯变换对e 2tu t L 1s 2, 2 e 4tu t L1s 4, 4由拉普拉斯变换的线性,信号f t 的拉普拉斯变换为f t L11s 2s 4, 4 2 零极点图如图J5.3.1所示。

(b)有拉普拉斯变换对e2tsin 5t u t Ls 2 225, 2δ t L1,由拉普拉斯变换的线性,信号f t 的拉普拉斯变换为f t L15s s2 4s 34s 2 s 2 2225s2 4s 29 s 2 j5s 2 j5,1582何子述老师2012年最新高等教育出版社出版《信号与系统习题解答》发布,对考研同学帮助极大!零极点图如图J5.3.2所示。

第十五章 拉普拉斯变换典型习题解答与提示.

第十五章 拉普拉斯变换典型习题解答与提示.

第十五章 拉普拉斯变换典型习题解答与提示习 题 15-11.(1)提示:2()f t t =, £20[()]()ptpt f t f t edt t e dt +∞+∞--==⎰⎰,求广义积分后可得£32[()]f t p =,(0)p >; (2)提示:4()tf t e -=,£40[()]()pt t pt f t f t e dt e e dt +∞+∞---==⎰⎰,£1[()](4)4f t p p =>-+; (3)因302()12404t f t t t ≤<⎧⎪=-≤<⎨⎪≥⎩,则£242[()]()3(1)ptptpt f t f t edt edt e dt +∞---==+-⎰⎰⎰24024,(0)31,(0)pt pt p e e p p p --=⎧⎪=⎨-+≠⎪⎩4234,(0)4,(0)p pe e p pp --⎧+-≠⎪=⎨⎪=⎩; (4)因()tf t te -=, 则£2(1)(1)0001[()]()1ptp tp t f t f t edt tedt td e p +∞+∞--+-+⎛⎫===- ⎪+⎝⎭⎰⎰⎰ (1)(1)0111p t p t te e dt p p +∞+∞-+-+=-+++⎰ (1)21(1)(1)p tep p +∞-+=->-+21(1)(1)p p =>-+。

2.(1)£231[()](263)(0)f t p p p p=+->; (2)£2262[()](0)41pf t p p p =->++; (3)因()1tf t te =+,则£[()]f t =£(1)+£()tte1(1)[p=+-£()]t e ' (微分性) 222111(1)(1)(1)p p p p p p p -+=+=>--; (4)因3()sin 4tf t e t =,又因£24(sin 4)()16t F p p ==+,则由位移性知£24[()](3)(3)(3)16f t F p p p =-=>-+; (5)方法一 因22()tf t t e-=,又£232[]()(0)t F p p p ==>,则由位移性知 £32[()](2)(2)(2)f t F p p p =+=>-+; 方法二 因£21(),(2)2tep p -=>-+,则由微分性知 £2312[()](1)(2)2(2)f t p p p ''⎛⎫=-=>- ⎪++⎝⎭; (6)因21()sin (1cos 2)2f t t t ==-,则£1[()][2f t =£(1)-£22112(cos 2)](0)24(4)p t p p p p p ⎛⎫=-=> ⎪++⎝⎭; (7)因1()sin 2cos 2sin 42f t t t t ==, 则£1[()]2f t =£22142(sin 4)(0)21616t p p p =⨯=>++;(8)因()sin()sin cos cos sin f t t t t ωϕωϕωϕ=+=+, 则£[()]cos f t ϕ=£(sin )sin t ωϕ+£2222cos sin (cos )p t p p ωϕϕωωω=+++22cos sin (0)p p p ωϕϕω+=>+; (9)因11()(21)222f t t t t μμμ⎡⎤⎛⎫⎛⎫=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 则由延滞性知£121[()](0)p f t ep p-=>; (10)因3()sin 2tf t tet -=,又£22(sin 2)(0)4t p p =>+, 则由位移性知£322(sin 2)(3)(3)4t e t p p -=>-++,故再由微分性知 £22224(3)[()](3)(3)4[(3)4]p f t p p p '⎡⎤+=-=>-⎢⎥++++⎣⎦; (11)因4()cos 24tf t et π-⎛⎫=+ ⎪⎝⎭,又因£cos 242t π⎡⎤⎛⎫+= ⎪⎢⎥⎝⎭⎣⎦£222(cos 2sin 2)244p t t p p ⎫-=-⎪++⎝⎭2224p p -=+,则由位移性知£22[()](4)2(4)4p f t p p +=⨯>-++。

第五章 拉普拉氏变换

第五章 拉普拉氏变换

第五章 拉普拉氏变换习题参考答案5.1 求下列信号的单边拉普拉斯变换,并注明收敛域。

(1)(1)u t + (2)22(e e )()t t u t -+ (3)(1)()t u t - (4)(1e )()t t u t -+ 解:(1)1(1):Re[]0S u t e ROC S S+↔> (2)2211(e e)():Re[]222ttu t ROC S S S -+↔+>-+(3)()()()()22R 1111 :e[]0St u t tu t u t ROC S S S S↔--=--=> (4)()()()()2111R 1(1) :e[]tt teu t u t te u t S S ROC S --+=+↔+-+>5.2求下列函数的单边拉普拉斯变换。

(1)0sin (1)(1)t U t ω-- (2)212e ett---+(3)2()e t t δ-- (4)3sin 2cos t t + (5)2e tt -(6)e sin(2)t t -解:(1)[]0022sin (1)(1)st U t e S ωωω---↔+ (2)()()()212112e e12t tSS S ---+↔-+++ (3)12()e21tt S δ--↔-+ (4)22232323sin 2cos 111S St t S S S ++↔+=+++ (5)221e(2)tt S -↔+(6)22e sin(2)(2)4tt S -↔++ 5.3 利用常用函数(如(),e (),sin()(),cos()()at u t u t t u t t u t ββ-等)的象函数及拉普拉斯变换的性质,求下列函数的拉普拉斯变换。

(1)[]e ()(2)t u t u t --- (2)[]sin()()sin (1)(1)t u t t u t ππ--- (3)(42)t δ- (4)sin(2)(2)44t u t ππ-- (5)0sin()tx dx π⎰ (6)22sin()()d t u t dtπ (7)22e ()t t u t - (8)e cos()()t t t u t αβ- 解:(1)[]222211e ()(2)(1e )111s ts e u t u t S S S -------↔-=-+++ (2)[]()()2221sin()()sin (1)(1)111SSt u t t u t e e SS ππππππ-----↔-=-+⎛⎫+ ⎪⎝⎭(3)121(42)4S t e δ--↔(4)822sin(2)(2)444S t u t e S πππ---↔+ (5)()2222111sin()tS x dx S S S S ππππππ↔-+=++⎰(6)2223322222222sin()()d t S S u t S dt S S S ππππππππππ--↔-==-+++ (7)2232e ()(2)tt u t S -↔+(8)()()2222222()ecos()()(())tS dS S t t u t dsS αααβαββαβ-++++-↔-=++ 5.4一个冲激响应为()h t 的因果LTI 系统具有下列特性:(1)t -∞<<+∞时,系统的输出为21()()e 6ty t =。

拉普拉斯逆变换

拉普拉斯逆变换

21拉氏逆变换1、用留数方法求下列函数)(s F 的拉氏逆变换: (1) abs b a s ss F ++-=)()(2; 【解】 由于b s a s ==,是sts F e )(的一级极点, 且有ba a a sb a s s a s F atst st-==+-=e )(2e ],e )(Res[;ba b b s b a s s b s F btst st--==+-=e )(2e ],e )(Res[,故有)]([)(1s F t f -=L],e )(Res[],e )(Res[b s F a s F st st +=ab b a a b b b a a btat bt at --=---=e e e e . …………………………………………………………………………………………………………… (2) )9)(4()(22++=s s ss F ; 【解】 由于i s i s 3,2±=±=是sts F e )(的一级极点, 由Heaviside 展开式, 有)]([)(1s F t f -=Lis s s s i s s s s stst 2264e 2264e 33-=++=+=i s ss s i s s s s stst 3264e 3264e 33-=++=++)3cos 2(cos 51t t -=. ……………………………………………………………………………………………………………(3) 22)1(12)(+-+=s s s s s F ; 【解】 由于0=s 是st s F e )(的一级极点, 1-=s 是sts F e )(的二级极点, 且有1)1(12lim ]0,e )(Res[220-=+-+=→s s s s s s F s st; t t s st t s s s s s s F ---→+='⎥⎦⎤⎢⎣⎡+-++=-e 2e 2)1(12)1(lim 1],e )(Res[2221, 故有)]([)(1s F t f -=L1e 2e 2-+=--t t t . (4)22)4(1)(s s s F -=.【解】 由于2±=s 是sts F e )(的一级极点, 0=s 是sts F e )(的二级极点, 且有16e )4(e )2(lim ]2,e )(Res[2222tst s sts s s s F =--=→; 16e )4(e )2(lim ]2,e )(Res[2222tst s sts s s s F --→-=-+=-; 4)4(e lim ]0,e )(Res[2220ts s s s F sts st -='⎥⎦⎤⎢⎣⎡-=→, 故有)]([)(1s F t f -=L42sh 81tt -=.……………………………………………………………………………………………………………2、利用拉氏变换的性质求下列函数的拉氏逆变换: (1) 221)(a s s F -=;【解】 因为⎪⎭⎫⎝⎛+--=-=a s a s a a s s F 11211)(22, 所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--==--a s a s a s F t f 1121)]([)(11LL⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡-=--a s a a s a 1211211 1 L L ()at at a--=e e 21. ……………………………………………………………………………………………………………(2) 22e 1)(ss F s-+=; 【解】 由于sss s F 222e 11)(-+=, 且有2e 1 ,]1[22121-=⎥⎦⎤⎢⎣⎡=---t s t ss L L, 所以22)]([)(1-==-t s F t f L .……………………………………………………………………………………………………………(3) 222e )(as s s F s+=-; 【解】 由于at as scos ][221=+-L,故利用延迟性质, 有)2(cos )]([)(1-==-t a s F t f L.……………………………………………………………………………………………………………(4) 221ln )(ss s F -=. 【解】 由于)1(21ln )(222-='⎪⎪⎭⎫ ⎝⎛-='s s s s s F , 故有2e e )]([1-+='--t t s F L.根据微分性质, 有=-)(t tf 2e e )]([1-+='--t t s F L,因此, 有tt t s F t f tt ----==e e 2)]([)(1L. ……………………………………………………………………………………………………………。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 求下列函数的拉式变换。

(1) t t cos 2sin +
(2)
()t e t 2sin - (3)
()[]t e t βα--cos 1 (4)
()t e t 732--δ (5)
()t Ω2cos (6)
()()t e t ωαcos +- (7) ()t
t αsin 2. 求下列函数的拉式变换,注意阶跃函数的跳变时间。

(1)
()()()t u e t f t 2--= (2)
()()()12sin -⋅=t u t t f (3) ()()()()[]211----=t u u u t t f
3. 求下列函数的拉普拉斯逆变换。

(1) ()
512+s s (2) ()()
243+++s s s (3) 11
12++s (4)
()RCs s RCs +-11 (5) ()()()
2133+++s s s (6)
22K s A + (7) ()(
)[]22βα+++s a s s (8) ()
142+-s s e s
(9) ⎪⎭
⎫ ⎝⎛+9ln s s 4. 分别求下列函数的逆变换的初值和终值。

(1) ()()()
526+++s s s (2)
()()()2132+++s s s 5. 如图1所示电路,0=t 以前,开关S 闭合,已进入稳定状态;0=t 时,开关打开,求
()t v r 并讨论R 对波形的影响。

6. 电路如图2所示,0=t 以前开关位于”“1,电路以进入稳定状态,0=t 时开关从”
“1倒向”
“2,求电流()t i 的表示式。

7. 电路如图3所示,0=t 以前电路原件无储能,0=t 时开关闭合,求电压()t v 2的表示
式和波形。

8. 激励信号()t e 波形如图()a 4所示电路如图()b 4所示,起始时刻L 中无储能,求()t v 2得
表示式和波形。

9. 电路如图5所示,注意图中()t Kv 2是受控源,试求
(1) 系统函数()()()
s V s V s H 13=; (2) 若2=K ,求冲激响应。

10. 将连续信号()t f 以时间间隔T 进行冲激抽样得到
()()()()()∑∞
=-==0
,n T T s nT t t t t f t f δδδ,求:
(1) 抽样信号的拉氏变换()[]t f s L
; (2) 若()()t u e t f t α-=,求()[]t f s L 。

11. 在图6所示网络中,Ω===10,1.0,2R F C H L 。

(1) 写出电压转移函数()()()
s E s V s H 2=; (2) 画出s 平面零、极点分布;
(3) 求冲激响应、阶跃响应。

12. 如图7所示电路,
(1) 若初始无储能,信号源为()t i ,为求()t i 1(零状态响应),列出转移函数()s H ;
(2) 若初始状态以()01i ,()02v 表示(都不等于0),但()0=t i (开路),求()t i 1(零
输入响应)。

13. 已知网络函数的零、极点分布如图8所示,此外()5=∞H ,写出网络函数表示式()s H 。

14. 已知网络函数()s H 的极点位于3-=s 处,零点在α-=s ,且()1=∞H 。

此网络的阶
跃响应中,包含一项为t e K 31-。

若α从0变到5,讨论相应的1K 如何随之改变。

15. 如图9反馈系统,回答下列各问:
(1) 写出()()()s V s V s H 12=
; (2) K 满足什么条件时系统稳定?
(3) 在临界稳定条件下,求系统冲激响应()t h 。

16. 已知信号表示式为
()()()t u e t u e t f t t αα-+-=
式中0>α,试求()t f 的双边拉氏变换,给出收敛域。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档