第二章_PCM编码详解
pcm编码解码课程设计
pcm编码解码课程设计一、课程目标知识目标:1. 让学生理解PCM编码的基本概念、原理和分类;2. 掌握PCM编码和解码的步骤,了解其在数字音频处理中的应用;3. 了解不同采样频率、位深度对PCM音频质量的影响。
技能目标:1. 培养学生运用PCM编码原理解决实际问题的能力;2. 学会使用相关软件或编程语言进行PCM音频的编码和解码;3. 能够分析不同PCM参数对音频质量的影响,并进行优化。
情感态度价值观目标:1. 激发学生对数字音频处理的兴趣,培养其探索精神;2. 培养学生团队合作意识,学会在团队中分享和交流;3. 引导学生关注科技发展,了解数字化技术在实际应用中的价值。
课程性质:本课程为信息技术或电子学科相关课程,结合学生所在年级,注重理论联系实际,提高学生的动手能力和创新能力。
学生特点:学生具备一定的计算机和电子学科基础知识,对新鲜事物充满好奇心,具备一定的动手操作能力和问题解决能力。
教学要求:通过本课程的学习,要求学生掌握PCM编码解码的基本知识和技能,能够将所学知识应用于实际生活中,提高学生的数字化素养。
在教学过程中,注重理论与实践相结合,充分调动学生的积极性,培养其创新精神和团队合作能力。
课程目标分解为具体学习成果,以便于后续教学设计和评估。
二、教学内容1. PCM编码基本概念:介绍PCM的定义、作用及其在数字音频领域的地位;教材章节:第一章 数字音频基础2. PCM编码原理:讲解线性脉冲编码调制(PCM)的原理、步骤及关键参数;教材章节:第二章 PCM编码原理3. PCM编码分类:介绍不同类型的PCM编码方式,如标准PCM、差分PCM 等;教材章节:第二章 PCM编码原理4. 采样频率与位深度:分析采样频率、位深度对PCM音频质量的影响;教材章节:第三章 采样与量化5. PCM编码与解码实现:讲解如何使用软件或编程语言实现PCM音频的编码和解码;教材章节:第四章 PCM编码与解码实现6. 应用实例:分析PCM编码在实际应用中的案例,如数字录音、音频传输等;教材章节:第五章 数字音频应用实例7. PCM音频质量优化:探讨如何通过调整PCM参数提高音频质量;教材章节:第六章 音频质量优化教学内容安排与进度:第1课时:PCM基本概念、作用及其在数字音频领域的地位;第2课时:PCM编码原理、步骤及关键参数;第3课时:PCM编码分类、采样频率与位深度;第4课时:PCM编码与解码实现;第5课时:应用实例及PCM音频质量优化。
数字通信原理3-PCM
折叠码(FBC) b1 b2 b3 b4
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
格雷码(RBC) b1 b2 b3 b4
12
1 Fs (w ) Ts
n
F (w nw
s
)
13
2.3.2 低通型信号抽样
14
2.3.2 低通型信号抽样
低通信号的抽样定理 一个频带限制在 f M 以下的连续信号 m(t ) ,可以唯
1 一的用间隔 T 2 fM
秒的抽样序列来确定。
( T =1/2fM是抽样的最大间隔,被称为奈奎斯特间隔。)
0
t
图2.3 连续信号抽样示意图
8
2.3 抽样的概念及分类
2、抽样的分类
低通型信号抽样
带通型信号抽样
F(w) F(w)
P19
0
w
w
0
w0
w
w
9
2.3.2 低通型信号抽样
f (t ) F (w )
sT (t )
sT (w )
sT t
n
t nT
T 2T 3T
f s (t )
45
PCM 编码~二进制码型的选定
样值脉 冲极性
电平序号
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
自然码(NBC) b1 b2 b3 b4
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
第二章 PCM编码详解
表3-02 多次复用的数据传输率
PCM在通信中的应用 PCM在通信中的应用
• • • • • PCM信号复用的复杂程度,通常用“ (group) 表示 PCM信号复用的复杂程度,通常用“群(group)”表示 信号复用的复杂程度 一次群(基群) 30路 24路),北美叫做T1远距离数字通信线 北美叫做T1远距离数字通信线, 一次群(基群)的30路(或24路),北美叫做T1远距离数字通信线, 在欧洲叫做E1远距离数字通信线和E1等级。 E1远距离数字通信线和E1等级 在欧洲叫做E1远距离数字通信线和E1等级。 二次群的120 120路 96路 二次群的120路(或96路) 三次群的480 480路 384路 三次群的480路(或384路)
数字语音编码标准标准方法比特率质量时间应用g711pcm64441972pstnansi1015lpc1024271976保密通信g721adpcm32411984pstngsm欧洲蜂窝通信rpecelp13361991ansi1016celp48321991g728低延时cdcelp1640199254北美tdmavselp35199296北美cdmaqcelp18341993日本蜂窝通信vselp68331993g729acsacelp421995ip电话g7231h323h324acelp633981995ip电话半速率gsm欧洲蜂窝通信amr56341995新的低速率ansi标准melp24331996数字语音的应用demand语音合成tts文本分析与理解文本prosodycontrolspeechgeneration合成语音一串语音基元语音基元库texttophonemeconversion发音标注发音规则库prosodygeneration韵律控制参数韵律规则库查找拼写错误对不规范或无法发音的字符进行过滤
2-2第二章 PCM、数字交换及程控交换机组成
在保证小信号时的量化间隔相同的条件下, 7位非线 性编码与11位线性编码等效。
A律13折编码
8位码的安排
第1位码C1的数值“1”或“0”分别表示信号的正、负极性, 称为极性码。 第2至第4位码C2C3C4为段落码,代表8个段落的起点电平。 第5至第8位码C5C6C7 C8为段内码,这4位码的16种可能状态 用来分别代表每一段落内的16个均匀划分的量化级。
A律13折编码
注意:
•在13折线编码方法中,虽然各段内的16个量化级(将PAM信号的幅 度变化范围划分为若干个小间隔,每个小间隔叫做一量化级)是均匀 的,但因段落长度不等,故不同段落间的量化级是非均匀的。 •第一、二段最短,只有归一化的1/128,再将它等分16小段,每一 小段长度为1/2048,这是它最小的量化级间隔,它仅有输入信号归一 化值得1/2048,记为 ,代表一个量化单位;第八段最长,每一小段 归一化长度为1/32 ,包含64个最小量化间隔,记为64个量化单位。
1、数字交换-PCM -编码
A律13折线段落码编码方法
1、数字交换-PCM -编码
2、时分多路复用
同一信号的相邻两个样值 间都有一定的时间间隔, 在这个时间间隔中插入其 他路样值,就能以时间分 割的方式实现多路复用。 概念: 时分多路复用就是在一条 每个话路在一帧中所占用的 同一话路抽样两次的时间 信道的传输时间内,将若 时间称为时隙。用TS(Time 间隔或所有话路抽样一次 干离散信号的脉冲序列, Slot)表示。 的时间称为帧长。 经过分组、压缩、循环排 序,成为时间上互不重叠 的多路信号一并传输的方 式。
量化分类:
(1)均匀量化 (2)非均匀量化
1、数字交换-PCM -均匀量化
1、数字交换-PCM -均匀量化
最新PCM编码详解PPT课件
表3-02 多次复用的数据传输率
PCM在通信中的应用
• PCM信号复用的复杂程度,通常用“群(group)”表示 • 一次群(基群)的30路(或24路),北美叫做T1远距离数字通信线, • 在欧洲叫做E1远距离数字通信线和E1等级。 • 二次群的120路(或96路) • 三次群的480路(或384路)
差分脉码调制(DPCM)
DPCM不对每一样值都进行量化,而是预测下一样值, 并量化实际值和预测值之间的差。
DPCM是基本的编码方法之一,在大量的压缩算法中被 采用,比如JPEG的DC分量就是采用DPCM编码的。
举例说明DPCM编码原理: 设DPCM系统预测器的预测值为前一个样值,假设输入信
号已经量化,差值不再进行量化。若系统的输入为{0 1 2 1 1 2 3 3 4 4 …},则预测值为{0 0 1 2 1 1 2 3 3 4 …}, 差值为{0 1 1 –1 0 1 1 0 1 0 …},差值的范围比输入样 值的范围有所减小,可以用较少的位数进行编码。
PCM在通信中的应用
PCM在通信中的应用
• 24路制的重要参数如下: 1. 每秒钟传送8000帧,每帧125 m s。 2. 12帧组成1复帧(用于同步)。 3. 每帧由24个时间片(信道)和1位同步位组成。 4. 每个信道每次传送8位代码,1帧有24 × 8 +1=193位(位)。 5. 数据传输率R=8000×193=1544 kb/s。 6. 每一个话路的数据传输率=8000×8=64 kb/s。 • 30路制的重要参数如下: 1. 每秒钟传送8000帧,每帧125 m s。 2. 16帧组成1复帧(用于同步)。 3. 每帧由32个时间片(信道)组成。 4. 每个信道每次传送8位代码。 5. 数据传输率:R=8000×32×8=2048 kb/s。 6. 每一个话路的数据传输率=8000×8=64 kb/s。
数字通信原理第二章 PCM
19
抽样示意图
m (t)
M ( )
t (a ) T (t)
t
(c ) m s(t)
- H O H (b )
T ( )
2
T
(d )
M s( )
t (e )
H O H
2
T
(f )
20
证明
设:被抽样的信号是m(t),它的频谱表达式是 M(ω),频带限制在(0,fH)内。理想的抽样 就是用单位冲击脉冲序列与被抽样的信号相 乘,即
图 连续信号抽样示意图
8
抽样定义
所谓抽样是把时间上连续的模拟信号变成一系列 时间上离散的样值序列的过程:
图 抽样的输入与输出
满足:抽样信号可以无失真地恢复出原始 信号
图2-2 抽样器及抽样波形示意
图 相乘器抽样模型 图 开关函数
思考
关于抽样需要解决两个问题: 由抽样信号完全恢复出原始的模拟 信号,对 fs (t)和抽样频率有什么限制 条件? 如何从抽样信号中还原出原始信号?
ms(t)m(t)T(t)
这里的抽样脉冲序列是一个周期性冲击序列, 它可以表示为
T(t) (t nTS)
21
由于δT(t)是周期性函数,其频谱δT(ω) 必然是 离散的:
2
δT(ω)= Ts δ(ω-nωs),
ωs=2πfs= 2π/Ts
根据冲击函数性质和频率卷积定理:
M s()21 M ()T()
抽样:按抽样定理把时间上连续的模拟信号转换成时间上离散 的抽样信号。 量化:把幅度上仍连续的抽样信号进行幅度离散,即指定M 个规定的电平,把抽样值用最接近的电平表示。 编码:用二进制码组表示量化后的M个样值脉冲。
编码器送出来的是串行二进制码,是典型的数字信号,经变换调制
PCM(脉冲编码调制)介绍及PCM编码的原理 毕业论文---PCM量化13折线
PCM(脉冲编码调制)介绍及PCM编码的原理摘要在数字通信信道中传输的信号是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。
另外,还可以存储,时间标度变换,复杂计算处理等。
而模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。
这里重点讨论模拟信号数字化的基本方法——脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。
本文讲述了PCM(脉冲编码调制)的简单介绍,以及PCM编码的原理,并分别对PCM的各个过程,如基带抽样、带通抽样、13折线量化、PCM编码以及PCM 译码进行了详细的论述,并对各过程在MATLAB7.0上进行仿真,通过仿真结果,对语音信号的均匀量化以及非均匀量化进行比较,我们得出非均匀量化教均匀量化更加有优势。
关键词:脉冲编码调制抽样非均匀量化编码译码AbstractIn the digital communication channel signal is digital signal transmission, digital transmission with the microelectronics and computer technology, its advantages become increasingly evident, the advantage of strong anti-interference, distortion, transmission characteristics of stable, long-distance relay is not the accumulation of noise Can also be effective encoding, decoding and security codes to improve the effectiveness of communications systems, reliability and confidentiality.Digitized analog signal range of source coding is, of course, also include the source code and / serial conversion, encryption and data compression. This focus on the simulation of the basic methods of digital signals - pulse code modulation, while the analog signal the digital process (to get digital signals) generally three steps: sampling, quantization and coding.This paper describes the PCM (pulse code modulation) in a brief introduction, and the PCM coding theory, and were all on the PCM process, such as baseband sampling, bandpass sampling, 13 line quantization, PCM encoding and decoding PCM a detailed Are discussed and the process is simulated on MATLAB7.0, the simulation results, the uniformity of the speech signal quantification and comparison of non-uniform quantization, we have come to teach non-uniform quantization advantage of more than uniform quantizationKeywords:Pulse Code Modulation Sampling Non-uniform quantization Coding Decoding目录1 前言 (1)2 PCM原理 (2)2.1 引言 (2)2.2 抽样(Sampling) (3)2.2.1. 低通模拟信号的抽样定理 (3)2.2.2 抽样定理 (4)2.2.3. 带通模拟信号的抽样定理 (7)2.3 量化(Quantizing) (8)2.3.1 量化原理 (8)2.3.2均匀量化 (10)2.3.3 非均匀量化 (11)2.4 编码(Coding) (18)2.5 译码 (24)2.6 PCM处理过程的其他步骤 (26)2.7 PCM系统中噪声的影响 (27)3 算例分析 (29)3.1 无噪声干扰时PCM编码 (30)3.2 噪声干扰下的PCM编码 (36)结论 (42)致谢 (43)参考文献 (44)附录 (45)1 前言数字通信系统中信道中传输的是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。
说明pcm编译码原理
说明pcm编译码原理PCM编码原理PCM编码是数字音频中最基本的编码方式之一,它将模拟信号转换为数字信号。
PCM是脉冲编码调制(Pulse Code Modulation)的缩写,它通过对模拟信号进行采样和量化来实现数字化。
采样过程采样是将连续的模拟信号转换为离散的数字信号的过程。
在PCM编码中,采样率是一个重要的参数,它表示每秒钟采集多少个样本。
通常,CD音质使用44.1kHz的采样率,而高清音质可以达到192kHz。
量化过程量化是将连续的模拟信号转换为离散的数字信号的过程。
在PCM编码中,量化等级表示每个样本可以表示多少个数字量化级别。
通常,CD 音质使用16位量化级别,而高清音质可以达到24位。
编码过程在PCM编码中,每个采样值被转换为一个二进制数,并存储在计算机内存或磁盘上。
例如,在CD音质下,每个采样值使用16位二进制数表示。
解码过程解码是将数字信号转换回模拟信号的过程。
在PCM编码中,解码器读取存储在计算机内存或磁盘上的数字信号,并将其转换为模拟信号。
解码器使用与编码器相同的采样率和量化级别来还原原始信号。
优缺点PCM编码具有以下优点:1. 简单易懂:PCM编码是最基本的数字音频编码方式之一,易于理解和实现。
2. 无损压缩:由于PCM编码不进行任何压缩,因此可以保证音频数据的完整性和质量。
3. 适用范围广泛:PCM编码可以适用于各种不同类型的音频数据,包括语音、音乐等。
但是,PCM编码也存在以下缺点:1. 数据量大:由于PCM编码不进行任何压缩,因此需要大量的存储空间来存储音频数据。
2. 编解码速度慢:由于需要对每个采样值进行编解码,因此处理速度比较慢。
3. 难以应对高质量需求:随着高清音质需求的增加,16位量化级别已经无法满足高质量音频需求。
因此,需要使用更高位数的量化级别来提高音频质量。
PCM编码和解码ppt课件
y Q(x) Qxk x xk1 yk ,
k 1, 2, 3, , L
5
PCM编码中抽样、量化及编码的原理
2、量化
这里 xk 称为分层电平或判决阈值。通常
称 k xk1 xk 为量化间隔。
x
模拟入
量化器
y
量化值
图2 模拟信号的量化
6
模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的 主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。 因此,当信号 较小时,则信号量化噪声功率比也就很小,这样,对于 弱信号时的量化信噪比就难以达到给定的要求。通常,把满足信噪比要 求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态 范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀 量化。
0001
0000
14
二、设计与仿真
1、PCM编码器模型
设计一个13折线近似的PCM编码器模型,能够对取值在[-1,1] 内的归一化信号样值进行编码。测试模型和仿真结果如图所示。
图4 13折线近似的PCM编码器测试模型和仿真结果
15
二、设计与仿真
图5 13折线近似的PCM编码器测试模型和仿真结果
16
17
二、设计与仿真
2、PCM解码器模型
测试模型和仿真结果如图所示,其中PCM编码子系统就是图中 虚线所围部分。PCM解码器中首先分离并行数据中的最高位(极性 码)和7位数据,然后将 7bit数据转换为整数值,再进行归一化、 扩张后与双极性的极性码相乘得出解码值。可以将该模型中虚线所 围部分封装为一个PCM解码子系统备用。
4
PCM编码中抽样、量化及编码的原理
2、量化
从数学上来看,量化就是把一个连续幅 度值的无限数集合映射成一个离散幅度值的 有限数集合。如图2所示,量化器Q输出L个 量化值 ,k=1,2,3,…,L。 常称为重建 电平或量化电平。当量化器输入信号幅度 落 在 与 之间时,量化器输出电平为 。这个量 化过程可以表达为:
pcm编码规则
pcm编码规则
PCM编码规则是指基于脉冲编码调制技术实现的数字音频信号编码规范。
PCM编码的原理是将模拟音频信号通过抽样、量化和编码等步骤转换为数字信号,以便于数字化音频信号的存储、传输和处理。
PCM编码规则包括采样率、量化位数、编码方式等参数,不同的参数选择会对编码后的音频信号质量和数据量产生影响。
一般来说,采样率越高、量化位数越大、编码方式越复杂,编码后的音频信号质量越高,但数据量也会相应增大。
PCM编码规则在音频技术领域中广泛应用,是数字音频信号处理的基础。
- 1 -。
2.3脉冲编码调制(PCM)
比较器
保持电路
重庆大学通信工程学院
比较器
数字通信原理
比较器是编码器的核心。作用是通过比较 样值电流I S和标准电流IW,对输入信号抽 样值实现非线性量化和编码。
每比较一次输出一位二进代码 当IS>IW时,出“l”码; 当IS>IW时,出“0”码。 对一个输入信号的抽样值需要进行7 次比较。
8位码的安排
重庆大学通信工程学院
8位码的安排
数字通信原理
极性码 C1
段落码 C2 C3 C4
段内码 C5 C6 C7C8
第1 位码C1的数值“1”或“0”分别表示信号的 正、负极性,称为极性码。 第2 至第4 位码C2C3C4为段落码,代表8 个段落 的起点电平。段落码与各段的关系 第5 至第8 位码C5C6C7C8为段内码,这4 位码的 16 种可能状态用来分别代表每一段落内的16 个 均匀划分的量化级。
比较器
保持电路
重庆大学通信工程学院
极性判决
数字通信原理
极性判决电路用来确定信号的极性。
输入PAM 信号样值为正时,出“l”码;
样值为负时,出“0”码;
将该信号经过全波整流变为单极性信号。
重庆大学通信工程学院
逐次比较编码器
数字通信原理
实现A律13 折线压扩特性的逐次比较型编 码器由整流器、极性判决、保持电路、比 较器及本地译码电路等组成。
重庆大学通信工程学院
逐次比较编码器
数字通信原理
实现A律13 折线压扩特性的逐次比较型编 码器由整流器、极性判决、保持电路、比 较器及本地译码电路等组成。
极性判决 本地译码电路
比较器
保持电路
重庆大学通信工程学院
本地译码器
pcm量化编码原理
pcm量化编码原理
PCM量化编码原理
PCM量化编码是数字化声音处理的重要技术之一,也称为Pulse Code Modulation,是将模拟信号量化的一种编码方式。
Pulse Code Modulation的工作原理是:将模拟信号进行采样,然后用有限的离散值对采样值进行编码,形成数字信号。
Pulse Code Modulation量化编码的工作原理是先采样,再量化,然后编码。
通常会先采用一种叫做等间距量化的量化方法,即用一根细的水平线把信号的振幅空间分成多个相等的等间隔部分,然后对这些等间隔的部分进行量化编码,使同样的部分都编码为相同的数值,不同的部分编码为不同的数值。
接下来,Pulse Code Modulation会采用一种叫做可变字长编码的编码方法,将量化之后的数值编码成一种只有几个比特位的二进制编码,以比特位为单位传输。
另外,Pulse Code Modulation还有利用变长编码减少音频文件的大小的方法,即利用变长编码把数据流中常见的数值编码为比较短的二进制码,减少文件的大小。
总的来说,Pulse Code Modulation是一种以离散值作为参数的数字信号处理技术,既可以采用等间隔量化编码,也可以采用可变字长编码方式。
它不仅可以有效的减少音频文件的大小,而且可以降低信号处理的复杂度。
- 1 -。
PCM编码详解
均匀量化
采用相等的量化间隔对采样得到的信号作量化,那么这种量化称 为均匀量化。均匀量化就是采用相同的“等分尺”来度量采样得 到的幅度,也称为线性量化 量化后的样本值Y和原始值X的差E=Y-X称为量化误差或量化噪声
非均匀量化
非线性量化:对输入信号进行量化时,大的输入信号 采用大的量化间隔,小的输入信号采用小的量化间隔。 这样就可以在满足精度要求的情况下用较少的位数来 表示。声音数据还原时,采用相同的规则。 在非线性量化中,采样输入信号幅度和量化输出数据 之间定义了两种对应关系,一种称为µ 律压扩 (companding)算法,另一种称为A律压扩算法。 采样频率为8 kHz,样本精度为13位、14位或者16位 的输入信号,使用µ 律压扩编码或者使用A律压扩编 码,经过PCM编码器之后每个样本的精度为8位,输出 的数据率为64 kb/s。这就是CCITT推荐的G.711标准。
预测参数的最佳化依赖于信源的统计特性,要得到 最佳的预测参数是一件繁琐的工作。 而采用固定的预测参数 固定的预测参数往往又得不到好的性能。为 固定的预测参数 了既能使性能较佳,又不致于有太大的工作量,可 以将上述两种方法折衷考虑,采用自适应预测
数字网络等级 美国 kb/s话路数 64 kb/s话路数 总传输率(Mb/s) 总传输率(Mb/s) 数字网络等级 欧洲 kb/s话路数 64 kb/s话路数 总传输率(Mb/s) 总传输率(Mb/s) 日本 kb/s话路数 64 kb/s话路数 总传输率(Mb/s) 总传输率(Mb/s) T1/E1 24 1.544 1 30 2.048 24 1.544 T2/E2 96 6.512 2 120 8.448 96 6.312 T3/E3 672 44.736 3 480 34.368 480 32.064 T4/E4 4.32 274.176 4 1920 139.264 1440 97.728 5 7680 5600 T5/E5
PCM编码
1、PCM编码PCM 脉冲编码调制是Pulse Code Modulation的缩写。
前面的文字我们提到了PCM大致的工作流程,我们不需要关心PCM最终编码采用的是什么计算方式,我们只需要知道PCM编码的音频流的优点和缺点就可以了。
PCM编码的最大的优点就是音质好,最大的缺点就是体积大。
我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。
2、WAVE这是一种古老的音频文件格式,由微软开发。
WAV是一种文件格式,符合PIFF Resource Interchange File Format规范。
所有的WAV都有一个文件头,这个文件头音频流的编码参数。
WAV对音频流的编码没有硬性规定,除了PCM之外,还有几乎所有支持ACM规范的编码都可以为WAV的音频流进行编码。
很多朋友没有这个概念,我们拿AVI做个示范,因为AVI和WAV在文件结构上是非常相似的,不过AVI多了一个视频流而已。
我们接触到的AVI有很多种,因此我们经常需要安装一些Decode才能观看一些AVI,我们接触到比较多的DivX就是一种视频编码,AVI可以采用DivX编码来压缩视频流,当然也可以使用其他的编码压缩。
同样,WAV也可以使用多种音频编码来压缩其音频流,不过我们常见的都是音频流被PCM编码处理的WAV,但这不表示WAV只能使用PCM编码,MP3编码同样也可以运用在WAV中,和AVI一样,只要安装好了相应的Decode,就可以欣赏这些WAV了。
在Windows平台下,基于PCM编码的WAV是被支持得最好的音频格式,所有音频软件都能完美支持,由于本身可以达到较高的音质的要求,因此,WAV 也是音乐编辑创作的首选格式,适合保存音乐素材。
因此,基于PCM编码的WAV被作为了一种中介的格式,常常使用在其他编码的相互转换之中,例如MP3转换成WMA。
2、MP3编码MP3作为目前最为普及的音频压缩格式,为大家所大量接受,各种与MP3相关的软件产品层出不穷,而且更多的硬件产品也开始支持MP3,我们能够买到的VCD/DVD播放机都很多都能够支持MP3,还有更多的便携的MP3播放器等等,虽然几大音乐商极其反感这种开放的格式,但也无法阻止这种音频压缩的格式的生存与流传。
PCM编码详解解析
表3-02 多次复用的数据传输率
PCM在通信中的应用
• • • • • PCM信号复用的复杂程度,通常用“群(group)”表示 一次群(基群)的30路(或24路),北美叫做T1远距离数字通信线, 在欧洲叫做E1远距离数字通信线和E1等级。 二次群的120路(或96路) 三次群的480路(或384路)
m 律压扩和A律压扩
m 律压扩: 北美和日本等地区 13位PCM编码转换城8位。 A律压扩 欧洲和中国大陆等地区, 14位PCM编码转换城8位 输出信号均为64Kb/s
PCM在通信中的应用
提高线路利用率通常用下面两种方法 频分多路复用 :把传输信道的频带分成好几个窄带,每个窄 带传送一路信号。例如,一个信道的频带为1400 Hz,把这个 信道分成4个子信道(subchannels):820~990 Hz, 1230~ 1400 Hz, 1640~1810 Hz和2050~2220 Hz,相邻子信道间相 距240 Hz,用于确保子信道之间不相互干扰。每对用户仅占 用其中的一个子信道。这是模拟载波通信的主要手段。 时分多路复用:把传输信道按时间来分割,为每个用户指定一 个时间间隔,每个间隔里传输信号的一部分,这样就可以使 许多用户同时使用一条传输线路。这是数字通信的主要手段。 例如,话音信号的采样频率f=8000 Hz,它的采样周期=125 m s,这个时间称为1帧(frame)。在这个时间里可容纳的话路 数有两种规格:24路制和30路制。
数字网络等级 美国 64 kb/s话路数 总传输率(Mb/s) 数字网络等级 欧洲 64 kb/s话路数 T1/E1 24 1.544 1 30 T2/E2 96 6.512 2 120 T3/E3 672 44.736 3 480 T4/E4 4.32 274.176 4 1920 5 7680 T5/E5
PCM编码原理
3.3.2 PCM 编码原理在PCM 中,对模拟信号进行抽样、量化,将量化的信号电平值转化为对应的二进制码组的过程称为编码,其逆过程称为译码或解码。
在PCM 中使用的是折叠二进制码。
(1)折叠二进制码从理论上看,任何一个可逆的二进制码组均可用于PCM 。
目前最常见的二进制码组有三类:二进制自然码(NBC )、折叠二进制码组(FBC )、格雷二进制码(RBC )。
表3-1列出三种码的编码规律。
由表3-1可见,如果把16个量化级分成两部分:0~7的8个量化级对于于负极性样值,8~15的8个量化级对应于正极性样值。
自然二进制码就是一般的十进制正整数的二进制表示。
如电平序号13用自然码表示就是b )1101(202213023=+++= (3.3-3)其中下标b 表示是二进制数。
在折叠码中,左边第一位表示正负号(信号极性),第二位开始至最后一位表示信号幅度。
第一位用1表示正,用0表示负。
绝对值相同的折叠码,其码组除第一位外都相同,并且相对于零电平(第7电平和第8电平之间)呈对称折叠关系,因此这种码组形象地称为折叠码。
格雷码的特点是任何相邻电平的码组,只有一位码发生变化。
表3-错误!未定义书签。
二进制码型在信道传输中有误码时,各种码组在解码时产生的后果是不同的。
如果第一位码b发生变化,自然码解码1后,引起的幅度误差是信号最大幅度的一半,这样会使恢复出的模拟电话信号出现明显的误码噪声,在小信号时这种噪声尤为突出。
而折叠码在传输中出现误码时,对小信号的影响要小得多,对大信号的影响较大。
比如误码发生在小信号,把1000误码为0000,对于自然码误差为8个量化级(8与0),对于折叠码误差仅有1个量化级(8与7)。
对于大信号,如1101误码为0101,对于自然码误差为8个量化级(13与5),对于折叠码为11个量化级(13与2)。
由于语音信号中小信号出现的概率大,所以从统计的观点看,折叠码产生的均方误差功率小。
另外,折叠码编码电路简单,其第一位表示极性,可由极性判决电路决定,在编码位数相同时,折叠码等效于少编一位码。
简述pcm编码的过程
简述pcm编码的过程PCM编码是一种数字信号处理技术,它将模拟信号转换为数字信号,以便于数字信号在计算机及其它数字设备中进行处理和传输。
PCM (Pulse Code Modulation)即脉冲编码调制,是一种将模拟信号进行采样、量化、编码等步骤,转换成数字信号的过程。
下面将在以下三个部分对PCM编码的过程进行介绍。
一、采样采样是指在一定时间段内,对模拟输入信号作一定时间间隔的取样,并对取样信号进行定时。
采样率是指单位时间内取样数的频度,标准的音频取样率通常是44.1kHz或48kHz,如果采样率太低,则会使高频信号失真。
例如,当一个音频数据每秒钟被录制为44.1K的采样率时,其每秒将被拆分为44100个相等时间片段,并将在每个时间片段内量化为16位深度的数字信号。
因此,采样是将模拟输入信号转化为数字信号的第一步。
在数字信号处理和传输过程中,采样是极为重要的一步。
二、量化量化是指将采样得到的连续的模拟信号,划分为一组有限的离散的信号级别,通常用二进制码表示。
量化方法主要分为线性量化和非线性量化。
线性量化是指在单位信号范围内等距离地采样,并将每个信号样本映射到离散级别之一。
非线性量化则是将信号样本根据其信号强度映射到不同的离散信号级别。
量化可以理解为按照一定的规律对模拟信号进行数字化,将模拟信号的无限制振幅范围转换为有限的数字数据集。
在PCM编码的过程中,量化的精度决定了数字信号的储存和重构的精度,可以通过增加量化级别和减少量化噪声来获得更好的精度。
在量化过程中出现的最大误差称为量化误差,若量化误差很大则会严重影响数字信号的质量,甚至会产生非常明显的噪音。
如果要尽可能的减少量化误差,只要考虑增加采样深度/位深(同时增加文件大小)或者增加采样速率(同时增大硬件资源要求)即可。
三、编码编码是将量化之后的数字信号转换成电脉冲序列的过程,通常称之为编码规则。
PCM的编码格式分为直接编码和压缩编码两种形式,直接编码利用二进制位的数目等于数字级别的数目,来将数字信号转化为二进制码,此方法简单易行,但计算量大;压缩编码则是通过不同的算法映射为较短的二进制码,以减小数据量,降低数据传输所需的带宽。
2.3脉冲编码调制(PCM)
x
y f x
Nq
V
x
12
V V
p x ห้องสมุดไป่ตู้ dx
2 2
y p x dx 2V V p x dx 2 V 3N 2 0 f ' x 2 12 f ' x
0 x V A V x V A
重庆大学通信工程学院
原理框图
数字通信原理
f t
PAM
A/D变换 压缩 量化
s
抽样
f kT
f t
编码
f kT
s
信道
干扰n t
低通滤波
f kTs
译码 扩张
编码后的PCM码组经信道传输。
重庆大学通信工程学院
原理框图
数字通信原理
f t
y
x Ax kx1 1 ln A
x
1 之后的曲线 A
A律压缩特性 表达式 小信号范围内需 较大正压扩效益
均匀量化
重庆大学通信工程学院
分段量化
数字通信原理
早期的A律和μ律压扩特性用非线性模拟电 路获得,电路复杂,精度和稳定度差。 数字压扩技术:利用数字电路形成许多折 线来逼近对数压扩特性。 一种是采用13折线近似A律压缩特性,另一 种是采用15折线近似μ律压缩特性
1 ln A
A2
2
2
0
1 2V 2 x e dx 3N 2 2 x
重庆大学通信工程学院
信号的压缩与扩张
数字通信原理
压扩特性:多采用对数压缩特性。如下图所示
输出
40 30 20 10 0 B2
输入
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声音数字化有两个步骤:第一步是采样,就是每隔一 段时间间隔读一次声音的幅度;第二步是量化,就是 把采样得到的声音信号幅度转换成数字值。但那时并 没有涉及如何进行量化。量化有好几种方法,但可归 纳成两类:一类称为均匀量化,另一类称为非均匀量 化。采用的量化方法不同,量化后的数据量也就不同。 因此,可以说量化也是一种压缩数据的方法。
m 律压扩和A律压扩
m 律压扩: 北美和日本等地区 13位PCM编码转换城8位。 A律压扩 欧洲和中国大陆等地区, 14位PCM编码转换城8位 输出信号均为64Kb/s
PCM在通信中的应用
提高线路利用率通常用下面两种方法 频分多路复用 :把传输信道的频带分成好几个窄带,每个窄 带传送一路信号。例如,一个信道的频带为1400 Hz,把这个 信道分成4个子信道(subchannels):820~990 Hz, 1230~ 1400 Hz, 1640~1810 Hz和2050~2220 Hz,相邻子信道间相 距240 Hz,用于确保子信道之间不相互干扰。每对用户仅占 用其中的一个子信道。这是模拟载波通信的主要手段。 时分多路复用:把传输信道按时间来分割,为每个用户指定一 个时间间隔,每个间隔里传输信号的一部分,这样就可以使 许多用户同时使用一条传输线路。这是数字通信的主要手段。 例如,话音信号的采样频率f=8000 Hz,它的采样周期=125 m s,这个时间称为1帧(frame)。在这个时间里可容纳的话路 数有两种规格:24路制和30路制。
PCM 与音频编码
第3章 话音编码
重点:
脉冲编码调制(PCM) 增量调制与自适应增量调制 自适应差分脉冲编码调制(ADPCM) 非均匀量化 增量调制 子带编码
难点:
波形声音的数据压缩
波形声音的码率 = 取样频率 × 量化位数 × 声道数
全频带声音的压缩编码:
第1代压缩编码:PCM编码 第2代压缩编码:感知声音编码
表3-02 多次复用的数据传输率
PCM在通信中的应用
• • • • • PCM信号复用的复杂程度,通常用“群(group)”表示 一次群(基群)的30路(或24路),北美叫做T1远距离数字通信线, 在欧洲叫做E1远距离数字通信线和E1等级。 二次群的120路(或96路) 三次群的480路(或384路)
均匀量化
采用相等的量化间隔对采样得到的信号作量化,那么这种量化称 为均匀量化。均匀量化就是采用相同的“等分尺”来度量采样得 到的幅度,也称为线性量化 量化后的样本值Y和原始值X的差E=Y-X称为量化误差或量化噪声
非均匀量化
非线性量化:对输入信号进行量化时,大的输入信号 采用大的量化间隔,小的输入信号采用小的量化间隔。 这样就可以在满足精度要求的情况下用较少的位数来 表示。声音数据还原时,采用相同的规则。 在非线性量化中,采样输入信号幅度和量化输出数据 之间定义了两种对应关系,一种称为m 律压扩 (companding)算法,另一种称为A律压扩算法。 采样频率为8 kHz,样本精度为13位、14位或者16位 的输入信号,使用m 律压扩编码或者使用A律压扩编 码,经过PCM编码器之后每个样本的精度为8位,输出 的数据率为64 kb/s。这就是CCITT推荐的G.711标准。
增量调制(DM)
在输入信号变化快的区域,斜率过载是关心的焦点,而在输入信号变化 慢的区域,关心的焦点是粒状噪声。为了尽可能避免出现斜率过载,就 要加大量化阶Δ ,但这样做又会加大粒状噪声;相反,如果要减小粒状 噪声,就要减小量化阶Δ ,这又会使斜率过载更加严重。这就促进了对 自适应增量调制(adaptive delta modulation,ADM)的研究
混合编码(Hybrid compression) Examples : CELP 4.8kb/s——16kb/s
脉冲编码调制(PCM)
PCM编码框图
―防失真滤波器”是一个低通滤波器,用来滤除声音频带以外的信 号; “波形编码器”可暂时理解为“采样器”; “量化器”可理解为“量化阶大小(step-size)‖生成器或者称为 “量化间隔”生成器。
数字语音的压缩编码:
波形编码 参数编码(模型编码) 混合编码
语音压缩编码的3类方法
波形编码 (Perception model-based compression) benefits : generic 语音质量 drawbacks : highest compression rates are difficult to 优 achieve >16kb/s 混合编码 Examples :良 PCM, ADPCM, Subband 波形编码
自适应差分脉冲编码调制
差分脉冲编码调制的思想:根据过去的样本去估算(estimate)下一 个样本信号的幅度大小,这个值称为预测值,然后对实际信号值与 预测值之差进行量化编码,从而就减少了表示每个样本信号的位数。 它与脉冲编码调制(PCM)不同的是,PCM是直接对采样信号进行量化 编码,而DPCM是对实际信号值与预测值之差进行量化编码,存储或 者传送的是差值而不是幅度绝对值,这就降低了传送或存储的数据 量。此外,它还能适应大范围变化的输入信号。 自适应差分脉冲编码调制(ADPCM) ADPCM(adaptive difference pulse code modulation)综合了 APCM的自适应特性和DPCM系统的差分特性,是一种性能比较好的波 形编码。它的核心想法是:①利用自适应的思想改变量化阶的大小, 即使用小的量化阶(step-size)去编码小的差值,使用大的量化阶 去编码大的差值,②使用过去的样本值估算下一个输入样本的预测 值,使实际样本值和预测值之间的差值总是最小。它的编码简化框 图如下图所示。
数字网络等级 美国 64 kb/s话路数 总传输率(Mb/s) 数字网络等级 欧洲 64 kb/s话路数 T1/E1 24 1.544 1 30 T2/E2 96 6.512 2 120 T3/E3 672 44.736 3 480 T4/E4 4.32 274.176 4 1920 5 7680 T5/E5
G.722 SB-ADPCM编译码器
窄带和宽带音频信道频率特性
全频带声音的第1代编码技术
全频带声音指的是10 Hz~20,000 Hz范围里的 所有可听声音.也叫做宽带声音或高保真(highfidelity)声音; 第1代全频带数字声音(CD,DAT)的编码采 用PCM编码:
ADPCM编译码器
G.721推荐标准,这个标准叫做32 kb/s自适应差分脉冲编码调制。 在此基础上还制定了G.721的扩充推荐标准,即G.723 ,使用该 标准的编码器的数据率可降低到40 kb/s和24 kb/s。
G.722 SB-ADPCM编译码器
G.722推荐标准,叫做“数据率为64 kb/s的7 kHz声音信号编 码——这个标准把话音信号的质量由电话质量提高到AM无线电广 播质量,而其数据传输率仍保持为64 kb/s。 子带编码(subband coding,SBC)的基本思想是:使用一组带通 滤波器(band-pass filter,BPF)把输入音频信号的频带分成若 干个连续的频段,每个频段称为子带。对每个子带中的音频信号 采用单独的编码方案去编码。在信道上传送时,将每个子带的代 码复合起来。在接收端译码时,将每个子带的代码单独译码,然 后把它们组合起来,还原成原来的音频信号。子带编码的编码/ 译码器,可以采用ADPCM,APCM,PCM等。 等带宽的子带 不等带宽的子带
PCM在通信中的应用
PCM在通信中的应用
• 1. 2. 3. 4. 5. 6. • 1. 2. 3. 4. 5. 6. 24路制的重要参数如下: 每秒钟传送8000帧,每帧125 m s。 12帧组成1复帧(用于同步)。 每帧由24个时间片(信道)和1位同步位组成。 每个信道每次传送8位代码,1帧有24 × 8 +1=193位(位)。 数据传输率R=8000×193=1544 kb/s。 每一个话路的数据传输率=8000×8=64 kb/s。 30路制的重要参数如下: 每秒钟传送8000帧,每帧125 m s。 16帧组成1复帧(用于同步)。 每帧由32个时间片(信道)组成。 每个信道每次传送8位代码。 数据传输率:R=8000×32×8=2048 kb/s。 每一个话路的数据传输率=8000×8=64 kb/s。
采样频率:44.1 kHz 或 48 kHz 量化精度:16位 声道数目:1或2 码率:705.6/768 (kb/s) 或 1.41/1.54 (Mb/s)
自适应增量调制(ADM)
基本方法:在检测到斜率过载时开始增大量化阶Δ ,而在输入信 号的斜率减小时降低量化阶Δ 。 例如,宋(Song)在1971描述的自适应增量调制技术中提出:假定 增量调制器的输出为1和0,每当输出不变时量化阶增大50%,使预 测器的输出跟上输入信号;每当输出值改变时,量化阶减小50%, 使粒状噪声减到最小,这种自适应方法使斜率过载和粒状噪声同 时减到最小。 又如,使用较多的另一种自适应增量调制器是由格林弗基斯 (Greefkes)1970提出的,称为连续可变斜率增量调制 (continuously variable slope delta modulation,CVSD)。它 的基本方法是:如果连续可变斜率增量调制器(continuously variable slope delta modulator,CVSD)的输出连续出现三个相 同的值,量化阶就加上一个大的增量,反之,就加一个小的增量。
总传输率(Mb/s)
日本 64 kb/s话路数 总传输率(Mb/s)