高等数学定积分复习题

合集下载

高等数学 第五章 定积分 习题课

高等数学 第五章  定积分 习题课

x
x
∴ ∵

Q( x ) ≡ c , Q ( 0) = 0 ,
Q( x ) ≡ 0 . 证毕 .
d x f (t)(x −t)dt 0 d x∫ = f (x) (x − x) =0?
13
例 6 . 设 f ( x ) 在 [ a , b ] 上连续且 f ( x ) > 0 ,
F ( x ) = ∫ f ( t ) dt + ∫
(1) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 ∫ f ( x ) dx = 0 ,
a
b
则在 [ a , b ] 上 f ( x ) ≡ 0 .
( 2) . 若在 [ a , b ] 上 , f ( x ) ≥ 0 , 且 f ( x ) ≡ 0 , /
则 ∫ f ( x ) dx > 0 .
由于 f ( x ) 连续 ,
2h
h
对于 ε = h , ∃δ > 0 , 当 x − c < δ 时 ,
f ( x ) − f (c ) < ε
b
c −δ
a
b
(
c
)
f (c ) − ε < f ( x ) < f (c ) + ε 成立 ,
即 h < f ( x ) < 3h .
∫a f ( x ) dx = ∫a
∫a f = ∫a f + ∫c f ∫a
b b c b b b
b
5 . 在[a , b]上
f ( x) ≥ 0 f ( x) ≤ 0
⇒ ⇒
f ( x ) ≥ g( x ) ⇒
∫a f ≥ 0 b ∫a f ≤ 0 b b ∫a f ≥ ∫a g

高等数学第五章定积分及其应用

高等数学第五章定积分及其应用

⾼等数学第五章定积分及其应⽤第五章定积分及其应⽤第⼀节定积分概念1、内容分布图⽰★曲边梯形★曲边梯形的⾯积★变速直线运动的路程★变⼒沿直线所作功★定积分的定义★定积分存在定理★定积分的⼏何意义★定积分的物理意义★例1 ★定积分的近似计算★例2★内容⼩结★课堂练习★习题5-1 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1利⽤定积分的定义计算积分01dx x 2?.讲解注意:例2的近似值.⽤矩形法和梯形法计算积分-102dx ex讲解注意:第⼆节定积分的性质1、内容分布图⽰★性质1-4★性质5及其推论★例1★性质6★例2★例3★性质7★例4★函数的平均值★例5★内容⼩结★课堂练习★习题5-2★返回2、讲解注意:例1⽐较积分值dx e x ?-2和dx x ?-2的⼤⼩.讲解注意:例2估计积分dx xπ+03sin 31的值.讲解注意:例3估计积分dx xxππ/2/4sin 的值.讲解注意:例4设)(x f 可导1)(lim =+∞→x f x 求且,,dt t f tt x x x ?++∞→2)(3sin lim .讲解注意:例5计算纯电阻电路中正弦交流电t I i m ωsin =在⼀个周期上的()功率的平均值简称平均功率.讲解注意:第三节微积分基本公式1、内容分布图⽰★引例★积分上限函数★积分上限函数的导数★例1-2★例3★例4★例5★例6★例7-8 ★例9★例10★例11★例12★例13★例14★内容⼩结★课堂练习★习题5-3★返回2、讲解注意:3、重点难点:4、例题选讲:例1?x tdt dxd 02cos 求[].讲解注意:例2dt e dxdx t ?321求[].讲解注意:例3.)()((3);)()((2);)((1).,)(00sin cos )(?-===x x x x t f dt t x f x F dt t xf x F dt e x F x f 试求以下各函数的导数是连续函数设讲解注意:例4求.1cos 02x dte x t x ?-→讲解注意:设)(x f 在),(+∞-∞内连续0)(>x f .证明函数且,??=xxdtt f dtt t x F 00)()()(在),0(+∞内为单调增加函数.f 例5讲解注意:例6],1[)ln 21()(1上的最⼤值与最⼩在求函数e dt t t x I x ?+=.值讲解注意:例7求.dx x ?12讲解注意:例8求.1dxx ?--12讲解注意:例9设求??≤<≤≤=215102)(x x x x f ?2讲解注意:例10.|12|10-dx x 计算讲解注意:.cos 1/3/22?--ππdx x 计算例11讲解注意:例12求.},max{222?-dx x x讲解注意:例13计算由曲线x y sin =在,0π之间及x .轴所围成的图形的⾯积x =x =A讲解注意:例14?,./5.,362了多少距离问从开始刹车到停车刹车汽车以等加速度到某处需要减速停车速度⾏驶汽车以每⼩时s m a km -=汽车驶过设讲解注意:第四节换元法积分法和分部积分法1、内容分布图⽰★定积分换元积分法★例1★例2★例3★例4★定积分的分部积分法★内容⼩结★课堂练习★习题5-4★返回★例5★例6★例7★例16★例17★例182、讲解注意:3、重点难点:4、例题选讲:例1计算.sin cos /25?πxdx x讲解注意:例2?a0dx 计算.0a >)(-2x 2a讲解注意:例3计算.sin sin 053?π-dx x x讲解注意:例4计算定积分dx x x ++412.2?讲解注意:例5当)(x f 在],[a a -上连续,,,)(x f 为偶函数当当有(1)(2)则 ??-=aaadx x f dx x f 0)(2)()(x f 为奇函数有?-=aa dx x f 0)(.;讲解注意:例6.--+dx e x x x 计算讲解注意:例7计算.11cos 21122?--++dx x xx x讲解注意:例8若)(x f 在]1,0[上连续证明,(1)?=00)(cos )(sin dx x f dx x f ;(2)πππ=)(sin 2)(sin dx x f dx x xf ,由此计算?π+02cos 1sin dx x x x ./2π/2π讲解注意:例9计算.arcsin 0?xdx 1/2讲解注意:例10计算.2cos 10+x xdx/4π讲解注意:例11计算.sin 0?xdx /2π2x讲解注意:例12.1dx e x 计算1/2讲解注意:例13.1)1ln(102++dx x x 求定积分讲解注意:例14-22ln e e dx x x求.讲解注意:例15.,612ln 2x e dt xt 求已知?=-π讲解注意:例16).(,)(13)()(1022x f dx x f x x x f x f 求满⾜⽅程已知? --=讲解注意:例17证明定积分公式xdx I n n n 0--?-??--?-=n n n n n n n n n n ,3254231,22143231π为正偶数.为⼤于1的正奇数./2π/2π??讲解注意:例18?π05.2cos dx x 求讲解注意:第五节定积分的⼏何应⽤1、内容分布图⽰★平⾯图形的⾯积A ★例1 ★例2 ★平⾯图形的⾯积B ★例3 ★例4 ★平⾯图形的⾯积C ★例5 ★平⾯图形的⾯积D★例6 ★例7 ★例8 旋转体★圆锥★圆柱★旋转体★旋转体的体积★例9 ★例 10 ★例 11 ★平⾏截⾯⾯积为已知的⽴体的体积★例 12 ★例 13 ★内容⼩结★课堂练习★习题5-5 ★返回2、讲解注意:3、重点难点:4、例题选讲:例1]1,1[]1,0[2之间的⾯积.和轴上⽅在下⽅与分别求曲线-∈∈=x x x x y讲解注意:例2],1[ln 之间的⾯积.轴上⽅在下⽅与求e x x y =讲解注意:例3.1,1,03所围图形⾯积与直线求=-===x x y x y讲解注意:例44,0,042所围图形⾯积.和直线求由曲线===-=x x y x y讲解注意:例5.2所围成平⾯图形的⾯积与求由抛物线x y x y ==讲解注意:例642,2,所围成图形的⾯积.求由三条直线=-=+=y x y x x y422围成图形的⾯积与求+-==x y x y讲解注意:例8.0cos sin 之间所围图与在和求由曲线π====x x x y x y 形的⾯积讲解注意:例9r 圆锥体的直线、h x =及x 轴围直线连接坐标原点O 及点),(r h P 成⼀个直⾓三⾓形.x 轴旋转构成⼀个底半径为计算圆锥体的体积.h ,将它绕⾼为,的讲解注意:例10.12222y x V V y x by a x 和积轴旋转所得的旋转体体轴和分别绕求椭圆=+讲解注意:例112,22轴旋转⽽成的旋转体的体积.轴和所围成的图形分别绕求由曲线y x x y x y -==讲解注意:例12⼀平⾯经过半径为R 的圆柱体的底圆中⼼计算这平⾯截圆柱体所得⽴体的体积.并与底⾯交成,,⾓讲解注意:例13.的正劈锥体的体积的圆为底、求以半径为h R ⾼位平⾏且等于底圆直径的线段为顶、讲解注意:第六节积分在经济分析中的应⽤1、内容分布图⽰★由边际函数求原经济函数★需求函数★例1★总成本函数★例2★总收⼊函数★例3★利润函数★例4由边际函数求最优问题★例5★例6其它经济应⽤★例7⼴告策略★消费者剩余★例8★国民收⼊分配★例9★返回2、讲解注意:3、重点难点:4、例题选讲:例1),80,(80,4) (,==-='q pp qp格的函数关系.时即该商品的最⼤需求量为且边际需求的函数已知对某商品的需求量是价格求需求量与价讲解注意:例2, 90,2)(0.2 ==ceqCq 求总成本函数.固定成本的函数若⼀企业⽣产某产品的边际成本是产量讲解注意:例310,40),/(2100)(个单位时单位时的总收⼊及平均收⼊求⽣产单位元单位时的边际收⼊为已知⽣产某产品-='q q R q 并求再增加⽣产所增加的总收⼊.讲解注意:例45,10,413)(,225)(0==-='-='q c q q C q q R 时的⽑利和纯利.求当固定成本为边际成本已知某产品的边际收⼊讲解注意:例5吨产品时的边际成本为某企业⽣产q )/30501)(吨元q q C +='(?,900试求产量为多少时平均成本最低元且固定成本为讲解注意:例6q q q C q q R ,1(3)?(2);54(1)),/(/44)(),/(9)(+='-='求总成本函数和利润函数.万元已知固定成本为当产量为多少时利润最⼤万台时利润的变化量万台增加到试求当产量由其中产量万台万元成本函数为万台万元假设某产品的边际收⼊函数为以万台为单位.边际讲解注意:例70.02,10%,,100000,130000)(,.10%,1000000t e t 则决如果新增销售额产⽣的利润超过⼴告投资的美元的⼴告活动对于超过按惯例⾏⼀次类似的总成本为以⽉为单位下式的增长曲线⼴告宣传期间⽉销售额的变化率近似服从如根据公司以往的经验平均利润是销售额的美元某出⼝公司每⽉销售额是美元的⼴告活动.试问该公司按惯例是否应该做此⼴告.1000000公司现在需要决定是否举定做⼴告讲解注意:8例.2,318)(-=CS q q D 并已知需求量为如果需求曲线为个单位试求消费者剩余,表⽰某国某年国民收⼊在国民之间分配的劳伦茨曲线可近似地由讲解注意:第七节⼴义积分1、内容分布图⽰★⽆穷限的⼴义积分★⽆穷限的⼴义积分⼏何解释★例1★例2★例3★例4★例5★例6★⽆界函数的⼴义积分例7★例8★例9★例10★例11★例12★例13★内容⼩结★课堂练习★习题5-7★返回★2、讲解注意:3、重点难点:4、例题选讲:例1?∞+-0.dx e x 计算⽆穷积分讲解注意:例2.sin 0的收敛性判断⽆穷积分∞+xdx讲解注意:例312?∞+∞-+x dx计算⼴义积分讲解注意:例4计算⼴义积分.1sin 12∞+dx x x 2/π讲解注意:例5计算⼴义积分∞+-pt dt e 且0>p 时收敛p 是常数,(). t 0讲解注意:例6证明⼴义积分∞+11dxx p当1>p 时收敛当1≤p 时发散.,讲解注意:例7计算⼴义积分).0(022>-?a x a dxa讲解注意:例8证明⼴义积分11dx x q当1""讲解注意:例9计算⼴义积分.ln 21x dx讲解注意:例10计算⼴义积分.30dx1=x 瑕点)1(2/3-x .讲解注意:例11计算⼴义积分?∞+03+x x dx1().讲解注意:例12.)1(arcsin 10-dx x x x计算⼴义积分讲解注意:例13.11105?∞+++x x x dx 计算⼴义积分讲解注意:。

高等数学第05章 定积分及其应用习题详解

高等数学第05章 定积分及其应用习题详解
x

0

x 1 sin tdt 0dt 1 , 2

b a
f ( x)dx 在 几 何 上 表 示 由 曲 线 y f ( x) , 直 线
x a, x b 及 x 轴所围成平面图形的面积. 若 x a, b时,f ( x) 0, 则 b f ( x)dx 在几何 a
上表示由曲线 y f ( x) ,直线 x a, x b 及 x 轴所围平面图形面积的负值. (1)由下图(1)所示, 1 xdx ( A1 ) A1 0 .
n
2
i
i 1
n
2
1 1 1 1 1 n(n 1)(2n 1) = (1 )(2 ) 3 n 6 6 n n 1 1 2 当 0时 (即 n 时 ) ,由定积分的定义得: x d x = . 0 3
= 5. 利用定积分的估值公式,估计定积分
4 3

1 1
(4 x 4 2 x 3 5) dx 的值.
上任取一点 i 作乘积 f ( i ) xi 的和式:
n
f ( i ) xi c ( xi xi1 ) c(b a) ,
i 1 i 1
n
n
记 max{xi } , 则
1i n

b a
cdx lim f ( i ) xi lim c(b a) c(b a) .

x
0
(t 1)dt ,求 y 的极小值
解: 当 y x 1 0 ,得驻点 x 1 , y '' 1 0. x 1 为极小值点, 极小值 y (1)
( x 1)dx - 2

高等数学定积分应用习题答案

高等数学定积分应用习题答案

第六章定积分的应用习题6-2(A) 1.求以下函数与x轴所围部分的面积:(1)y x26x8,[0,3](2)y2x x2,[0,3]2.求以下各图中暗影部分的面积:1.图6-13.求由以下各曲线围成的图形的面积:(1) y e x,y e x与 x1;(2)y lnx与x0,y lna,y lnb(ba0);(3)y2x x2与y x,y0;(4)y22x,y2(x1);(5)y24(1x)与y2x,y0;(6)y x2与y x,y2x;(7)y2sinx,y sin2x(0x);(8)y x2,x2y2(两部分都要计算);2814.求由曲线y ln x与直线y0,x e1,x e所围成的图形的面积。

5.求抛物线y x24x3及其在点(0,3)和(3,0)处的切线所围成的图形的面积。

6.求抛物线y22px及其在点(p,p)处的法线所围成的图形的面积。

27.求曲线x y a与两坐标轴所围成的图形的面积。

x2y21所围图形的面积。

8.求椭圆2b2a9.求由摆线x a(t sint),ya(1cost)的一拱(0t2)与横轴所围图形的面积。

10.求位于曲线y e x下方与由该曲线过原点的切线的左方及x轴之间的图形的面积。

11.求由以下各方程表示的曲线围成的图形的面积:(1)2asin(a0);(2)2a(2cos)(a0);(3)22cos2(双纽线);12.把抛物线y24ax及直线x x(x00)所围成的图形绕x轴旋转,计算所得旋转抛物体的体积。

13.由y x3,x2,y0所围成的图形,分别绕x轴及y轴旋转,计算所得两个旋转体的体积。

14.求以下已知曲线所围成的图形,按指定的轴旋转所产生的旋转体的体积:(1)y achx0,x a,y0,绕x轴;与xa(2)y sinx与y2x,绕x轴;(3)y sin x与y cosx(0x),绕x轴;2(4)y lnx,与x2,y0绕y轴;(5)y2x x2与y x,y0绕y轴;(6)(x5)2y216,绕y轴;15.求由抛物线y24(1x)及其在(0,2)处的切线和x轴所围的图形绕x轴旋转产生的旋转体的体积。

《高等数学一》复习题及答案

《高等数学一》复习题及答案

《高等数学〔一〕》一、选择题1、极限lim(x x x )的结果是〔C 〕x2〔A 〕0〔B 〕〔C 〕31〔D 〕不存在22、方程x 3x 1 0在区间(0,1)内〔 B〕〔A 〕无实根〔B 〕有唯一实根〔C 〕有两个实根〔D 〕有三个实根3、f (x )是连续函数, 则f (x )dx 是f (x )的〔 C〕〔A 〕一个原函数;(B) 一个导函数;(C) 全体原函数;(D) 全体导函数;4、由曲线y sin x (0 x )和直线y 0所围的面积是〔C 〕〔A 〕1/2(B)1(C)2(D)5、微分方程y x 满足初始条件y |x 0 2的特解是( D)〔A 〕x〔B 〕3211 x 3〔C 〕x 32〔D 〕x 32336、以下变量中,是无穷小量的为〔A 〕(A)ln x (x 1)(B)ln 7、极限lim(x sin x 01x 2(x 0 )(C) cos x (x 0)(D) 2(x 2)xx 411sin x )的结果是〔 C〕x x〔A 〕0〔B 〕1〔C 〕 1〔D 〕不存在8、函数y e arctan x 在区间 1,1上〔A〕〔A 〕单调增加〔B 〕单调减小〔C 〕无最大值〔D 〕无最小值9、不定积分xxx21dx =〔 D〕22(A)arctan x C (B)ln(x 1) C (C)11arctan x C (D)ln(x 2 1) C 22x10、由曲线y e (0 x 1)和直线y 0所围的面积是〔A〕〔A 〕e 1(B)1(C) 2(D)e11、微分方程dyxy 的通解为〔B〕dx〔A 〕y Ce〔B 〕y Ce2x12x 2Cxx 〔C 〕y e〔D 〕y Ce2212、以下函数中哪一个是微分方程y 3x 0的解( D )〔A 〕yx 〔B 〕y x 〔C 〕y 3x 〔D 〕yx 13、函数y sin x cos x 1是〔C〕(A) 奇函数;(B) 偶函数;(C)非奇非偶函数;(D)既是奇函数又是偶函数. 14、当x 0时,以下是无穷小量的是〔B 〕〔A 〕e x 12323(B)ln(x 1)(C) sin(x 1)(D)x 115、当x 时,以下函数中有极限的是〔A〕〔A 〕x 11cos x (B) (C)(D)arctan xx 21ex 316、方程x px 1 0(p 0)的实根个数是〔B 〕〔A 〕零个〔B 〕一个〔C 〕二个〔D 〕三个11 x 2) dx 〔B 〕11〔A 〕〔B 〕 C 〔C 〕arctan x〔D 〕arctan x c 221 x 1 x17、(18、定积分baf (x )dx 是〔C〕〔A 〕一个函数族〔B 〕f (x )的的一个原函数〔C 〕一个常数〔D 〕一个非负常数19、函数y ln x 〔A 〕奇函数x 2 1是〔A〕〔C 〕非奇非偶函数〔D 〕既是奇函数又是偶函数〔B 〕偶函数20、设函数f x 在区间 0,1 上连续,在开区间 0,1 内可导,且f x 0,则( B ) (A)f 0 0(B)f 1 f 0 (C)f 1 0(D)f 1 f 021、设曲线y21 ex2则以下选项成立的是〔C 〕,(A) 没有渐近线(B)仅有铅直渐近线(C) 既有水平渐近线又有铅直渐近线(D) 仅有水平渐近线22、(cos x sin x )dx ( D )〔A 〕sin x cos x C〔B 〕sin x cos x C〔C 〕sin x cos x C〔D 〕sin x cos x Cn ( 1)n}的极限为〔A 〕23、数列{n〔A 〕1(B) 1(C) 0(D) 不存在24、以下命题中正确的选项是〔B 〕〔A 〕有界量和无穷大量的乘积仍为无穷大量〔B 〕有界量和无穷小量的乘积仍为无穷小量〔C 〕两无穷大量的和仍为无穷大量〔D 〕两无穷大量的差为零25、假设f (x ) g (x ),则以下式子肯定成立的有〔C 〕(A)f (x ) g (x )(B)df (x ) dg (x )(C)(df (x )) (dg (x ))(D)f (x )g (x ) 126、以下曲线有斜渐近线的是( C )(A)y x sin x (B)y x sin x(C)y x sin 二、填空题1、lim 2112(D)y x sinxx1 cos x 12x 0x22x2、假设f (x ) e3、 2,则f '(0) 211(x 3cos x 5x 1)dx 2t 4、e t dxe x C5、微分方程y y 0满足初始条件y |x 0 2的特解为y 2e xx 2 40 6、lim x 2x 3x 2 x 237、极限lim x 2x 2 448、设yx sin x 1,则f () 1 29、11(x cos x 1)dx 2 10、31 x 2dx3arctan x C2211、微分方程ydy xdx 的通解为y x C12、115x 4dx 2x sin 2x1x2213、lim x 14、设y cos x ,则dy2x sin x dx 15、设y x cos x 3,则f ( ) -1 16、不定积分e x de x12xe C 21 2xe C217、微分方程y e2x的通解为y x 18、微分方程ln y x 的通解是y e C19、lim (1 )=e 3xx 2x620、设函数y x x ,则yx x (ln x 1)112n 21、lim (2 2 2)的值是n n 2n nx (x 1)(x 2)1 22、lim 3x 2x x 3223、设函数y x x ,则dyx x (ln x 1)dx2x 23x 124、lim x 0x 425、假设f (x ) e 2x14sin 6,则f '(0)226、a 2 a(1 sin 5x )dx2(a 为任意实数).xe x dx __________.27、设y ln(e 1),则微分dy ______xe 1x 328、(cos x )d x22 1 x 22三、解答题1、〔此题总分值9分〕求函数y解:由题意可得,x 1 62 x 的定义域。

5-5 定积分综合题举例 北京航空航天大学高等数学期末模考复习

5-5 定积分综合题举例 北京航空航天大学高等数学期末模考复习

a f ( x)dx
b
f ( x)dx)
0
0
a
a
a f ( x)dx a
b
f ( x)dx
0
a
a a f ( x)dx a(b a) f ( ) ( (a,b)) 0
b
a f ( x)dx [a (b a)]
a
f ( x)dx
0
0
a
a f ( x)dx (b a)
0
0
F ( x) af ( x)
a
f (t )dt
a
a
f ( x)dt f (t )dt
0
0
0
a
[
f
( x)
f (t)]dt.
F ( x) 0, x [a, b].
0
法3
令F( x)
x
0
f
(t )dt ,
x
F'(x)
x
0
(
f
(x) x2
f
(t ))dt
0
法4
a
b f ( x)dx a(
a
f ( x)dx
0
0
a a f ( x)dx (b a)af ( ) ( (0, a)) 0
例7 设 f ( x), g( x) 在[a, b]上连续, 且满足
x f (t)dt x g(t)dt, x [a, b),
a
a
b f (t)dt
b
g(t )dt ,
x)dx
b a
xdG( x)
xG( x)
b a
b
G( x)dx
a
b
bG(b) G( x)dx a

2020-2021-2高等数学期末复习资料

2020-2021-2高等数学期末复习资料

注:(1)发散级数加括号后可能收敛也可能发散。
(2)收敛级数去括号后可能收敛可能发散。
(3)发散级数去括号后仍然发散。
2.
p
级数
n1
1 np

p
1时收敛;
p
1 时发散)
3.
比较判别准则的极限形式:设 un
n1
和 vn
n1
是正项级数,且 lim un v n
n
l ,则
①若 l 为正数( 0 l ),则级数 un 和 vn 敛散性相同;
x3
1 et2 dt
(6)lim x0
cos x
x2
x ln(1 t)dt
(7) lim 0 x0
x2
(8) lim x0
tan x2
0
sin 2tdt
x
x (1 cos t)dt
(10) lim 0 x0
x3
考点 2.求定积分(第一类换元积分法)
2x
t sin tdt
(9) lim x0
0
ln(1 x3)
考点 2.求幂级数的收敛域及和函数
知识点回顾:
1.幂级数 un x 收敛域的求解方法: n1
第一步:令 lim un1 u n
n
1或 lim n n
un
1 ,可求出 x (a,b)
第二步:端点处敛散性另行判定后,就可以确定收敛域,其中收敛半径为 R b a 。 2
2.(1)求和函数前,必须先求收敛域,即和函数的定义域。
x
S(x)
,先积分再求导。
练习题:
1. 求下列幂级数的收敛域
xn
(1)
n1 n!
(2) nxn1 n1

专升本高等数学(二)-定积分计算方法及其应用

专升本高等数学(二)-定积分计算方法及其应用

专升本高等数学(二)-定积分计算方法及其应用(总分:97.00,做题时间:90分钟)一、{{B}}填空题{{/B}}(总题数:6,分数:13.00).(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] [*]为奇函数..(分数:2.00)填空项1:__________________ (正确答案:2)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:0)解析:[解析] 令[*],先证明[*].再用定积分区间可加性合并得 [*].(分数:3.00)填空项1:__________________ (正确答案:π)解析:[解析] [*].(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]6. 1.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:[解析] [*]二、{{B}}解答题{{/B}}(总题数:6,分数:84.00)对比计算.(分数:36.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(设[*]=t,则x=t2,dx=2tdt.[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(6). 2.00)__________________________________________________________________________________________ 正确答案:(方法一凑微分法. [*] 方法二换元法,用方程思想构造等式.设[*],则dx=-dt. [*] 所以 [*])解析:(7)..(分数:2.00)__________________________________________________________________________________________ 正确答案:(令lnx=t,则x=e t,dx=e t dt.当x=1时,t=0;当x=e时,t=1.[*])解析:(8).求曲线x=acos3t,y=asin3t所围成的平面图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(星形线(见下图)是关于x和y对称的.[*] 参数t从0变到[*]正好是它在第一象限部分,所以 [*])解析:(9).[-2,2]上的定积分.(分数:2.00)__________________________________________________________________________________________ 正确答案:(在有限个点上改变被积函数的函数值,不会影响积分值.也就是说,在闭区间上有有限个第一类间断点时,还能用牛顿—莱布尼兹公式计算定积分. [*])解析:(10).设f(x)=3x2,求f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(设[*],则f(x)=3x2-A,两边积分得[*]故[*].)解析:(11).已知f(π)=-2,求f(0).(分数:2.00)正确答案:(因[*] 移项得[*][f(x)+f"(x)]sinxdx=f(0)-2=6,故f(0)=8.)解析:(12).设f(0)=1,f(2)=3,f'(2)=5.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设2x=f,则[*]当x=0时,t=0;当x=1时,t=2.[*] 因为f(0)=1,f(2)=3,f'(2)=5,所以[*]xf"(2x)dx=2.)解析:(13).试分析k,a,b 2.00)__________________________________________________________________________________________ 正确答案:([*] 所以当[*],a=0,b=8时,有[*].)解析:(14).设f(x)=e-t2dt f(x)dx.(分数:2.00)__________________________________________________________________________________________ 正确答案:(分部积分得 [*])解析:(15).求k 2.00)__________________________________________________________________________________________ 正确答案:(因为 [*] 所以 [*] 令[*],解得[*].)解析:(16).当a为何值时,抛物线y=x2与三条直线x=a,x=a+1,y=0所围成的图形面积最小,求将此图形绕x 轴旋转一周所得到的几何体的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(设所围面积为S(a).[*]S'(a)=(a+1)2-a2=2a+1令[*]S"(a)=2>0,所以[*]为最小的面积[*])解析:(17).设f(x) 2.00)__________________________________________________________________________________________ 正确答案:(令[*],dx=-dt. [*])解析:(18).直线x=1把圆x2+y2=4分成左、右两部分,求右面部分绕y轴旋转一周所得的旋转体体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(直线x=1与圆x2+y2=4的交点是[*],右部分绕y轴旋转一周所得几何体的体积为[*])解析:计算下列定积分.(分数:10.00)2.00)正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5).设,求 2.00)__________________________________________________________________________________________ 正确答案:([*])解析:计算下列定积分.(分数:10.00)2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:(由于公式sin2x=[*](1-cos2x),所以[*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(5). 2.00)__________________________________________________________________________________________ 正确答案:(证明设[*],则dx=-dt,当x=0时,[*];当[*]时,t=0. [*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(3).设函数f(x)在区间[a,b]上连续,,求 2.00)__________________________________________________________________________________________ 正确答案:(设t=a+b-x,则dt=-dx,当x=a时,t=b;当x=b时,t=a.于是, [*] 而[*],所以 [*]) 解析:(4). 2.00)__________________________________________________________________________________________ 正确答案:(设1-x=t,则x=1-t,dx=-dt.当x=0时,t=1;当x=1时,t=0.于是 [*])解析:(5).f(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:([*] 故 [*])解析:(6).设f(x)为连续函数,,且φ'(x)并讨论φ'(x)在x=0处的连续性.(分数:2.00)__________________________________________________________________________________________ 正确答案:(f(0)=φ(0)=0,令y=xt,[*]两边对x求导得φ'(x)=[*] 由导数定义,有 [*] 故φ'(x)在x=0处连续.)解析:(7).证明:若f(x)在[-a,a] 2.00)__________________________________________________________________________________________ 正确答案:(因为f(x)在[-a,a]上连续,则[*] 对于[*],令设x=-t,则dx=-dt.当x=-a时,t=a;当x=0时,t=0.于是, [*] 从而 [*])解析:(8).当k?又为何值时发散?(分数:2.00)__________________________________________________________________________________________ 正确答案:(当k≠1时 [*] 当k=1时,[*].所以广义积分[*]当k>1时收敛,当k≤1时发散.)解析:(9).求曲线y=2lnx,过曲线上点(e,2)处的切线及y=0所围成的图形的面积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(因为[*],过点(e,2)切线斜率为[*],切线方程为[*].即[*] 切线经过原点(0,0),曲线y=2lnx(即[*])经过点(1,0)和(e,2)所围成图形面积为 [*])解析:设平面图形是由曲线y=x2和x=y2围成,试求该图形:(分数:6.00)(1).绕x轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕x轴旋转一周而形成的立体图形的体积[*])解析:(2).绕y轴旋转一周而形成的立体图形的体积.(分数:2.00)__________________________________________________________________________________________ 正确答案:(绕y轴旋转一周而形成的立体图形的体积[*])解析:(3).设函数f(x)=x2,求f(x)在区间[0,2]上的最大值与最小值.(分数:2.00)__________________________________________________________________________________________ 正确答案:(由于定积分[*]是一确定的实数,设[*].对f(x)的等式两边积分有 [*] 于是 [*] 由上式解得[*].令f'(x)=2x=0得驻点x=0.当x∈(0,2)时,恒有f'(x)>0,表明f(x)在区间(0,2)内严格增加,所以f(0)=[*]是函数f(x)在[0,2]的最小值,[*]是函数f(x)在[0,2]的最大值.)解析:设某产品的边际成本函数为C'(q)=4+0.25q(万元/吨),边际收入为R'(q)=80-q(万元/吨),其中q为产量.(分数:4.00)(1).求产量由10吨增加到50吨时,总成本和总收入各增加多少?(分数:2.00)__________________________________________________________________________________________ 正确答案:([*])解析:(2).设固定成本为10万元,求总成本函数和总收入函数.(分数:2.00)__________________________________________________________________________________________ 正确答案:([*]由于固定成本为10万元,所以总成本函数为C(q)=4q+[*]q2+10又由于[*],故当q=0时无收入,即R(0)=0=C.所以总收入函数为R(q)=80q-[*]q2)解析:。

江苏专转本高等数学 定积分 例题加习题

江苏专转本高等数学 定积分 例题加习题

- 106 -第四章 定积分本章主要知识点● 定积分计算● 特殊类函数的定积分计算 ● 变限积分● 定积分有关的证明题 ● 广义积分敛散性 ● 定积分应用(1)面积 (2)旋转体体积一、定积分计算定积分计算主要依据牛顿—莱伯尼兹公式:设⎰+=C x F dx x f )()(,则()()()()bb a af x dx F b F a F x =-=⎰。

其主要计算方法与不定积分的计算方法是类似的,也有三个主要方法,但需要指出的是对于第Ⅱ类直接交换法,注意积分限的变化:()111()()()()()(())x t bb aa t x f x dx f t t dt ϕϕϕϕϕϕ---=='=⎰⎰。

例4.1.111)edx x ⎰解:原式=e11)ln d x ⎰=32125((ln )ln )|33ex x +=例4.2.30dx ⎰ 解:原式t x t x =+-==11222 1121t tdt t -+⎰=32 121t t dt t -+⎰=322125()|33t t -= 例4.3.⎰22sin πxdx x- 107 -解:原式=⎰-22cos 21πx xd =⎰+-2022cos 21|2cos 21ππxdx x x =20|2sin 414ππx +=4π 二、特殊类函数的定积分计算1.含绝对值函数利用函数的可拆分性质,插入使绝对值为0的点,去掉绝对值,直接积分即可。

例4.4.⎰--21|1|dx x解:原式=121 1(1)(1)x dx x dx --+-⎰⎰=212|)2(2x x -+=)121(02--+=25例4.5.⎰--++22|)1||1(|dx x x解:原式=112211(|1||1|)(|1||1|)(|1||1|)x x dx x x dx x x dx ---++-+++-+++-⎰⎰⎰=112211(11)(11)(11)x x dx x x dx x x dx ------++++-+++-⎰⎰⎰=112211222xdx dx xdx ----++⎰⎰⎰=212122|4|x x ++---=)14(4)41(-++--=102.分段函数积分例4.6.⎩⎨⎧≤+>=0,10,)(2x x x x x f ,求⎰-11)(dx x f解:原式=⎰⎰-+0110)()(dx x f dx x f =⎰⎰-++01102)1(dx x dx x =103012|31|)2(x x x ++- =31)121(+--=65- 108 -例4.7.⎩⎨⎧≤>+=1,1,12)(x x x x x f ,求⎰-+12)1(dx x f解:原式11221(1)()u x f x dx f u du =+--=+==⎰⎰1211()()f u du f u du -+⎰⎰1222111(21)0()udu u du u u -=++=++⎰⎰624=-=3.奇函数积分如果 ()f x 为定义在[],a a -的奇函数,则()0aaf x dx -≡⎰,这是一个很重要考点。

高等数学第五章习题课1定积分

高等数学第五章习题课1定积分

第 五 章 定 级 分

原式 lim
2e
x2
0 e
2 x2
x t2
dt
x
e
0
lim
2 e dt e
x2
x t2
x
lim
2e
x2
2
x 2 xe x
1 lim 0 x x
- 17 -
习题课(一)
3 解
第 五 章 定 级 分
tf ( x t )dt lim 0 ,
1 i 1 2 lim sin sinxdx n 0 n n i 1
n
-2-

习题课(一)
第 五 章 定 级 分
i 1 n i 1 lim sin lim sin n n n n 1 n n n i 1 i 1 1 2 sinxdx 0 2 原式 1 n1 n 2 n nn 3 lim n n n n
1 2 F ( x )dx 0
存在一点 , 使得 F ( ) 0, 即 f ( ) f ( )

-9-
习题课(一)
第 五 章 定 级 分
设在 [0,1] 上 f ( x ) 0, 证明: 1 1 2 0 f ( x )dx f ( 3 ) 证 由于 y f ( x ) 在区间 [0,1] 是上凸的, 所以曲线 1 1 y f ( x ) 在过 ( , f ( )) 处的切线下方,即 3 3 1 1 1 f ( x ) f ( ) f ( )( x ) 3 3 3 1 1 2 1 2 f ( x ) f ( ) f ( )( x ) 3 3 3

高等数学(定积分的应用)习题及解答

高等数学(定积分的应用)习题及解答

练习6-2练习6-2练习6-3总习题六高等数学(文专)练习题A一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

下列函数是奇函数的是().(A)1y x=+;(B)e e2x xy-+=;(C)e e2x xy--=;(D)2y x x=+.2.ln(2)y x=-的定义域为().(A)(,2)-∞;(B)(2,)+∞;(C )(,2)(2,)-∞+∞; (D )(,)-∞+∞.3.设2()sin f x x x =+,则2f π⎛⎫= ⎪⎝⎭( ).(A )24π; (B )214π+; (C )214π-; (D )424πππ⎛⎫+⎪⎝⎭. 4.3d (e )d xx x+=( ). (A )3e 1x +; (B )33e 1x +; (C )31e 13x +; (D )3211e 32x x +.5.ln d xx x=⎰( ). (A )ln |ln |x ; (B )ln ln ||x c + (C )21(ln )2x(D )21(ln )2x c +.6.10(1)d x x +=⎰( ). (A )2;(B )1;(C )32; (D )12. 7.设)(x f 在点x a =处可导,那么=--+→h h a f h a f h )2()(lim( ).A . )(3a f 'B . )(2a f 'C . )(a f 'D .)(31a f '8. 函数2x e y -=的图形的水平渐近线方程为( ) A .1=yB .1=xC .0=yD .0=x9.cos()x dx +=⎰5( )A. 155cos()x c ++ B.55sin()x c ++ C.55cos()x c ++ D. sin()x c ++5 二、填空题 10.xxx 23sin lim0→ ___________.11.x x e y x sin ln 2-+=则='y . 12.dx x ⎰--3329 =.13.曲线y =在1x =处的切线方程为 _______________.14.已知某商品的成本函数为221020)(q q q C +-= (万元),则20=q 时的边际成本为___________.15.若函数⎪⎩⎪⎨⎧=≠--=2,2,242x a x x x y 在2=x 处连续,则=a ______.16.x x f sin )(=在[]π,0上满足罗尔中值定理的条件, 当ξ= 时,0)(='ξf . 三、计算题 17.求)32(13lim23--+-→x x x x x .18.求由方程423=+y x 所确定的隐函数y=y(x)的dxdy . 19.求极限1lim(13)xx x →-.20.求极限201cos lim2x xx →-.21.设)0()1(>+++=a ax x a y aax,求.dy 22.计算⎰+edx xx1ln 2 23.求dx xex ⎰-22四、综合题24.求函数212x xy +=的极值与拐点.25.证明:当1x >时,22(1)ln (1)x x x ->-。

高等数学 积分 (5.5.1)--定积分的计算

高等数学 积分 (5.5.1)--定积分的计算

一个重要的结论
a a
f (x)dx

2
a 0
0, f (x)dx ,
f (x)为奇函数 f (x)为偶函数
例 求下列积分

(1)
I
2

2
(a
cos
x

b
sin
x)
2
dx
(2) I
2
dx
2 1 cos x
习题 5
30 ( 1 )( 3 )( 5 ) ( 6)
0
0
从几何上考虑,这两个公式都是自然的
例 试求积分
0
1
xsinx cos2
x
dx
能否利用 对称性?
习题 5 31 ( 3 )-( 7 ) (10) 37(1) 38* 想一想作怎样的变换?
■ 分部积分法 ( 定积分 )
u, v C[a,b]
b a
uvdx

uv
b a

b uvdx
a
b a
udv

uv
b a

b vdu
a
例 计算下列定积分
(1)
e1 e1 1
ln(
x

1)
dx

(2) 2 sinn xdx 0
2 sin n xdx
0
2 0
cosn
xdx
(n(nn!n1!!)1!!!)!!2,,
n为奇数 n为偶数
a
0
例 试求积分
2 0
sin 4
sin 4 x x cos4
x
dx


2 f (sin x)dx 2 f (cos x)dx

高等数学-第五章-定积分

高等数学-第五章-定积分

则有
ab
c
c
b
c
a f (x)dx a f (x)dx b f (x)dx
b
c
c
a f (x)dx a f (x)dx b f (x)dx
c
b
a f (x)dx c f (x)dx
6. 若在 [a , b] 上

a<b
n
证: f (i ) xi 0
i1
b
n
a
f
( x) d
x
lim
d (x)
dx a
f (t) d t
f
[ ( x)] ( x)
d
dx
( x) (x)
f
(t) d t
d dx
a
f (t) d t
(x)
( x)
a
f
(t) d t
f [(x)](x) f [ (x)] (x)
例1. 求
0
0
解: 原式 洛 lim ecos2 x ( sin x) 1
x
ba n
,
xi a i x (i 0,1, ,n)
记 f (xi ) yi (i 0,1, ,n)
1. 左矩形公式
O a xi1xi
bx
ab f (x)dx y0x y1x yn1x
2. 右矩形公式
ba n
(
y0
y1
yn1)
ab f (x)dx y1x y2x ynx
)

π 2 0
2
dx
π
2 f (x) dx
0
π
2 1dx
0

1
π
2 0

高等数学第六版(同济版)第六章复习资料

高等数学第六版(同济版)第六章复习资料

第六章定积分的应用引入:前面学习了定积分的理论,这一章要应用这些理论来分析和解决一些实际问题中出现的量.用定积分计算这些量,必须把它们表示成定积分,先介绍将所求量表示成定积分的方法——元素法第一节定积分的元素法我们先用定积分的引例——曲边梯形的面积,引出元素以及元素法的概念:一、元素及元素法 1.元素:由连续曲线与直线以及轴所围成的曲边梯形的面积为:.(由微分知识得) 为面积元素或面积微元,记为 2.元素法:用元素法将所求量表示成定积分的方法,称为元素法. 由此可知,曲边梯形的面积是将面积微元累加得到的下面我们通过曲边梯形的面积来总结出实际问题中所求的量能用定积分表示的条件:二、用元素法将所求量能表示成定积分的条件:(设所求量为) 1.量与变量的所在区间有关; 2.量对于区间具有可加性;3.量的部分量有近似值,即. 三、用元素法将所求量能表示成定积分的步骤: 1.由实际情况选一变量如为积分变量,确定该其变化区间.2.分为个小区间,取其中一个小区间,计算其上的部分量,的所求量的一个元素 3.以为被积表达式,在注:元素的几何形状常取为:条,带,段,环,扇,片,壳等内容小结:本节介绍了元素法以及用元素法将所求量表示成定积分的方法与步骤第二节定积分在几何上的应用一、平面图形的面积 1.直角坐标情形:曲线与直线及轴所围成的曲边梯形面积为,因为面积元素为 2.参数方程情形:若曲线的参数方程为,且满足 (1). , (2). 在或上具有连续导数,且连续,则由曲线所围成的曲边图形的面积为:3.极坐标情形:设曲线的极坐标方程为,且在上连续,则由曲线与射线以及所围成图形的面积为 . 由于当在上变动时,极径来计算. 推导:①.取极角为积分变量,②.在上任取一小区间,其上的曲边扇形面积的近似值:③. . 为被积表达式,在上作定积分,得曲边扇形的面积公式:例1. 计算两条抛物线在第一象限所围所围图形的面积 2y解:首先确定图形的范围,由得交点、,y取为积分变量,由于面积元素,所以所求面积为 . 注: . 例2. 计算抛物线与直线所围图形的面积解:由得交点、,若取为积分变量,则有 . 若取为积分变量,则有 . 例3. 求椭圆所围图形的面积解:由于椭圆关于两个坐标轴对称,设椭圆在第一象限所围成的面积为,则所求面积为设,当时,,当时,,且,于是 . 例4.计算阿基米德螺线对应从变到所围图形面积. 解:由题可知,积分变量,于是所求面积为例5.计算心形线所围图形的面积解:心形线所围成的图形关于极轴对称,设极轴上半部分图形的面积为,则心形线所围成的图形面积为.取极角为积分变量,,于是 . 二、体积 1.旋转体的体积: (1).旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体,该直线称为旋转轴注:圆柱体、圆台、球体等都是旋转体,它们都可以看做是由连续曲线与直线以及轴围成的曲边梯形绕轴旋转一周所围成的立体 (2).旋转体的体积:①.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:推导:取为积分变量,,在上任取一小区间轴旋转而成的薄层的体积近似等于以为底面半径、以为高的扁圆柱体的体积,即体积元素为,以为被积表达式,在上作定积分即得所求旋转体的体积:②.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:例6.连接坐标原点及点的直线、直线及轴围成一个直角三角形,将它绕轴旋转构成一个底半径为、高为的圆锥体,求其体积解:过及的直线方程为: . 取为积分变量,,则所求旋转体的体积为例7.计算由椭圆所围成的图形绕轴旋转而成的旋转体的体积解:该旋转椭球体可看做是由半椭圆与轴所围成的绕轴旋转而成的立体,半椭圆方程为: . 取为积分变量,,则所求立体体积为例8.计算由摆线,相应于的一拱,直线所围成的图形分别绕轴、轴旋转而成的旋转体的体积解:记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则. 2.平行截面面积为已知的立体的体积:设一非旋转体的立体介于过点、且垂直于轴的两个平面之间,该立体过轴上的点且垂直于轴的截面面积为,则该立体的体积为:推导:若为连续函数且已知,取为积分变量,,在,其上的薄层的体积近似等于底面积为、高为的扁圆柱体的体积,积元素:,以为被积表达式,在上作定积分,得所求立体的体积公式:例9.一平面经过半径为的圆柱体的底圆的中心,并与底面交成角,计算着平面截圆柱体所得立体的体积解:取该平面与圆柱体的底面的交线为轴,底面上过圆中心且垂直于轴的直线为轴,则底面圆方程为:,该立体中过轴上的点且垂直于轴的截面是一个直角三角形,两直角边分别为和即和,从而截面面积为,于是所求体积为例4.求以半径为的圆为底、以平行且等于底圆直径的线段为顶、高为的正劈锥体的体积解:取底面圆所在的平面为平面,圆心为原点,并使轴与正劈锥体的顶平行,底面圆方程为:,过轴上的点作垂直于轴的平面截正劈锥体得等腰三角形,截面面积为,于是,所求正劈锥体的体积为三、平面曲线的弧长引入:我们知道,用刘徽的割圆术可以定义圆的周长,即利用圆的内接正多边形的周长当边数无限增加时的极限来确定,现在将刘徽的割圆术加以推广,来定义平面曲线的弧长,从而应用定积分来计算平面曲线的弧长. 1.平面曲线弧长的相关概念 (1).平面曲线弧长:若在曲线弧上任取分点,,依次连接相邻分点得到该曲线弧的一内接折线,记限增加且每一个小弧段都缩向一点,即时,折线的长的极限存在,则称此极限值为曲线弧的弧长,并称该曲线弧是可求长的,记作 (2).光滑曲线:若曲线上每一点处都存在切线,且切线随切点的移动而连续转动,则称该曲线为光滑曲线 (3).定理:光滑曲线可求长. 2.光滑曲线弧长的计算 (1).直角坐标情形:设曲线弧的直角坐标方程为,,若在上具有一阶连续函数,则曲线弧长为推导:取为积分变量,曲线上的相应于上任意小区间上的一段弧的长度近似等于曲线在点处切线上相应的一段的长度,又切线上相应小段的长度为,从而有弧长元素,以为被积表达式,在上作定积分,得弧长公式:(2).参数方程情形:设曲线弧的参数方程为,,若及在具有连续导数,则曲线弧长为推导:取参数为积分变量,曲线上相应于上任意小区间上的一段弧的长度的近似值即为弧长元素,以为被积表达式,在上作定积分,得弧长公式: (3).参数方程情形:设曲线弧的极坐标方程为,,若在上具有连续导数,则曲线弧长为:推导:由直角坐标与极坐标的关系得:,,即为曲线的以极角。

5-2定积分的性质 北京航空航天大学高等数学期末模考复习

5-2定积分的性质 北京航空航天大学高等数学期末模考复习

为曲边的曲边梯形的面积
等于同一底边而高为 f ( )
o a b x 的一个矩形的面积。
例 4 设 f ( x)可导,且 lim f ( x) 1, x
求 lim x2 t sin 3 f (t )dt .
x x
t
解 由积分中值定理知有 [ x, x 2],
使
x2 t sin x
3 t
f
(t )dt
42
4
2
4
2 4
sin x
xdx
22
4
,
m
f
() 2
2
,
1
2
2 4
sin x
xdx
2. 2
性质7(定积分中值定理)
如果函数 f ( x)在闭区间[a, b]上连续,
则在积分区间[a, b]上至少存在一个点 ,
使
b a
f
(
x
)dx
f ( )(b a).
(a b)
积分中值公式
dx x
1dx, 03
4
0
3
1 sin3
dx x
3
.
例 3
估计积分
2 4
sin xdx的值. x

f ( x) sin x , x
x
[
,
]
42
f ( x)
x cos x sin x x2
cos
x(
x x2
tan
x
)
0,
f ( x)在[ , ]上单调下降,
M f () 2 2,
则 ( x0 , x0 ) (a, b), 使得f ( x) 0 对所有x ( x0 , x0 )都成立.

高等数学 第七章 定积分应用与广义积分 7-2(1)平面图形的面积

高等数学 第七章 定积分应用与广义积分 7-2(1)平面图形的面积

x
A = 2( A + A ) 1 2
= 2[∫ 1 3 (1 + cosθ )2dθ 0 2
π
2
π
A2
o
yθ =
π
3
A1
x
1 (3acosθ )2dθ ] +∫ π 2 =∫ 9 2 3 (1+ 2cosθ + cos2 )dθ + θ θ π (1+ cos 2 )dθ 0 2 3
π
o x x +d x a x
= 4ab∫ 2 sin2 t dt
0
π
= 4ab ⋅ 1⋅ π = π ab 2 2
当 a = b 时得圆面积公式
一般地 , 当曲边梯形的曲边 ( f ( x) ≥ 0, x ∈[a,b]) 由参数方程 给出时, 给出时
y = f (x)
则曲边梯形面积为
3. 极坐标情形 及 求由曲线 围成的曲边扇形的面积 .
第七章 七
第二节 定积分的几何应用
一、 平面图形的面积
1. 直角坐标情形 2. 参数方程情形 3. 极坐标情形
1. 直角坐标情形 (1) 面积元素
d A = f ( x)d x
曲边梯形的面积
A = ∫ f ( x)d x
a
b
(2) 面积元素
d A = [ f ( x) − g( x)]d x
曲边梯形的面积 A = [ f ( x) − g( x)]d x ∫
0 3 2 3 2 3
说明:注意各积分区间上被积函数的形式. 说明:注意各积分区间上被积函数的形式.
例3 计 由 线y2 = 2x和 线y = x − 4所 成 算 曲 直 围
图 的 积 的 形 面 .

高等数学定积分测试题

高等数学定积分测试题

13、 设f ( x )连续,x > 0,且

x2
1
f (t ) d t = x 2 (1 + x ),则f (2) = (
( B) . 2 2 + 12 ( D). 12 − 2 2
) 。
( A). 4 (C ). 1+ 3 2 2
14、函数 f(x)在[a,b]上有界是定积分 (A) 充分必要条件 (C) 必要但非充分条件
x − 2 dx ;
2.

e
1
ln x dx ; x
x
0
3.
∫ lim
x→0
2t cos t dt

1 − cos x
x
∫ 4. lim
x →∞
0
(arctan t )2 dt
x2 + 1

5.

1
−1
x dx ; 5 − 4x
五、证明题 1.设 f ′′( x) 在 [ a, b] 上连续,证明:
7、
( B)1 ( D) 2


0
−1
3x + 1 d x = (
5 ( A). 6 3 (C ). − 2
8、 若f ( x) = ⎨
( B). − 3 ( D). 2 则∫ f ( x) d x = (
−1 2
5 6
⎧ x,x ≥ 0 ⎩e ,x < 0
x

( A). 3 − e −1 (C ). 3 − e
( A).有界 (C ).有定义
12、 设f ( x)为连续函数,且F ( x) =
( B).连续 ( D).仅有有限个间断点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 求
dx e x ⎰-2ln 01。

5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。

dt t dt t t dx e x )111(21211021
0222ln 0⎰⎰⎰+-=+=- 22)1arctan 1(2)arctan (210π-
=-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。

.解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积
31)3132()(1
0323210=-=-=⎰x x dx x x S 3. 求反常积分
⎰+∞-+222x x dx 。

解:dx x x x x dx x x dx b b b b )2111(lim 3
12lim 222222+--=-+=-+⎰⎰⎰+∞→+∞→+∞ 4ln 3
1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b
b 5、 4. 设⎩⎨⎧≤<≤≤-+=20,02,13)(32x x x x x f ,求⎰-22)(dx x f 解:原式=⎰⎰-+0
22
0)()(dx x f dx x f ---------5分 =14 ----------5分
6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。

解:两曲线交点为(-1,1)(3,9)-------2分
面积⎰--+=3122)32(dx x x S π
---------5分 =17
256 7.
计算定积分2

π
-⎰
8. 设()f x 在区间[,]a b 上连续,且()1b
a f x dx =⎰,求()
b a
f a b x dx +-⎰。

答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b
a f a
b x dx +-⎰=()a b f u du -⎰ =()1b a
f x dx =⎰。

9. 求dt te t ⎰-10
32 解:31103210321031032
323)](23[323212222------=-===⎰⎰⎰e e t d e dt e dt te t t t t 10. 计算由曲线)0(sin π≤≤=x x
y 与直线0=y 所围成的平面图形绕x 轴旋转所产生的旋
转体的体积. 解: 2)2sin 21(2)2cos 1(21sin 20002πππππππ=-=-==⎰⎰x x dx x xdx V 11. 求由曲线x y =
和y=x 所围部分的面积及其绕x 轴旋转所得立体图形的体积。

(8分) 解:S=⎰=-=-10236
101)2132()(x x dx x x ; ——(3.5分) V=6
01|3101|213210210πππππ=⋅-⋅=-⎰⎰x x dx x xdx 12. 已知⎰∞
+-∞→=+a x x x dx xe a x x )(lim ,求a (8分)
解:左边=a a a a a
x x x x e a x a
x a a x a ---+-∞→∞→=+-⋅+-=+-)11(])1[(lim )1(lim ——(5分) 右边=a x a a x x ae a
e ae dx e a xe ---∞+--=∞+-=+∞+-⎰2|| 12=∴a 既2
1=a 13. 求由抛物线y=-42+x
和其过点(-2,0),(2,0)处的切线所围成的图形面积。

(10分) 解:x y 2'-= ——(1分)
4',4'22-==∴=-=x x y y ———(2分)
8402+=-∴x y )的切线方程为:,过点( ——(1分) 8402+-=∴x y )的切线方程为:,过点( ——(1分) 它们的交点由⎩⎨⎧+-=+=8484x y x y 得⎩⎨⎧==8
0y x ——(1分) 故面积3
16)]4()84[()]4()84[(202022=+--+-++--+=⎰⎰-dx x x dx x x S ——(4分 14. 计算由曲线
x y e y x -==1,与直线1=x 所围成图形的面积. 解:曲线x y e y x -==1,与直线1=x 所围成图形的面积:
dx x e S x ⎰+-=1
0)1((3分)=)21(2x x e x +
-|01(4分)=2
3-e (5分) 15. 计算由曲线x y e y x -==1,2与直线1=x 所围成图形的面积. 解:曲线x y e y x -==1,2与直线1=x 所围成图形的面积:
dx x e S x ⎰+-=1
2)1((3分)=)2121(22x x e x +-|01(4分)=1212-e (5分) 16. dx x x
⎰-1
023 解:令x t 23-=(1分),则)3(212t x -=(2分),tdt dx -=(3分), dx x x ⎰-1023=⎰-13
42)3(21dt t t (4分)=5233-(5分) 17. dx x x
⎰-1
01 解:令x t
-=1(1分),则)1(2t x -=(2分),tdt dx 2-=(3分), dx x x ⎰-101=⎰-1
042)22(dt t t (4分)=15
4(5分) 18. ⎰-1
1
)(dx x f 其中⎩⎨⎧<≥=0sin 0)(x x x x x f =⎰⎰-+01
10sin xdx xdx (3分)=
01102cos 21--x x (6分)=2
11cos - 19. 求⎰--+11
22)4(dx x x
84)424(11
1
12==-+=⎰⎰--dx dx x x
20.。

相关文档
最新文档