人教版七年级数学上册《乘方》

合集下载

人教版七年级上册数学精品教学课件 第1课时 乘方2

人教版七年级上册数学精品教学课件 第1课时 乘方2
解:用带符号键 (-)的计算器.
( (-) 9 ∧ = 531 441.
显示:(-9)∧6
( (-) 7 ∧ = -16807.
显示:(-7)∧5 所以96 531441, 75 16807.
练一练
用计算器计算:
(8)6 ; (-6)7 ; 124 ; 6.35.
262 144
279 936 20 736 9 924.36543
一般地,n个相同因数a相乘,即:
a×a ×… ×a ×a
n个
记作:an,读作a的n次方.
知识要点
求n个相同因数a的积的运算叫做乘方.
即:an= a×a ×… ×a ×a
n个
知识要点
底数
(任意有理数)
an
an也读作a的n次幂 .
指数 幂
a的平方
a a 记作 a2 读作 a的二次方
a的2次幂
a的立方
解:(1)第①行数是-3,(-3)2 ,(-3)3, (-3)4,···.
(2)对比①②两行中位置对应的数,将会发 现第②行数是第①行相应的数加3,即
-3+3,(-3)2+3 ,(-3)3+3,(-3)4 +3,···.
对比①③两行中位置对应的数,将会发 现第③行数是第①行对应的数的2倍再加1, 即
例3:计算:
23 3 42 2 32 2
解:原式 8 3 16 2 9 2 8 3 18 4.5
8 54 4.5 57.5
例3 计算:
(1)
4
4 5
3 4
1 2
3
;
(2)33 5 5 24
11
4
2 3
3
.

:
(1)
1 1 1 1 1 1 ···+ 1 1 1 2 2 3 3 4 999 1000

乘方(第1课时 乘方的概念及计算)课件(共34张PPT) 七年级数学上册(人教版2024)

乘方(第1课时 乘方的概念及计算)课件(共34张PPT) 七年级数学上册(人教版2024)
(2) − 中-10 叫做什么数?8 叫做什么数? − 是正数
还是负数?
解:(1)-7是底数;8是指数
(2)-10是底数,8是指数, − 是正数
课本练习
2.计算:
(1) −
;(2)

(7) −
(8)

解:(1)1;(2)-1

(3)512;(4)-125



解: 根据题意得,第1次截去后剩下的绳子长为128× 米,第2
次截去后剩下的绳子长为128×
去后剩下的绳子长为128×




米……依此类推,第7次截

=128×

=1(米).
分层练习-巩固
14. x 是有理数,下列各式中成立的是( C
)
A. (- x )2=- x2
B. (- x )3= x3
.

②已知(-3)3=-27,那么(-30)3= -27 000
(-0.3)3= -0.027
.



.

(2)观察上述计算结果,我们可以看出:
①当底数的小数点向左(右)每移动一位,平方数的小
数点向左(右)移动
两 位.
②当底数的小数点向左(右)每移动一位,立方数的小
数点向左(右)移动
三 位.
19. 【新视角·规律探究题】(1)比较下列各组中两个数的大小:(填“>”“=”
并让他自己提要求,发明者指着棋盘对国王说:“那就在棋盘的第一格中放入
一粒麦粒,第二格中放入二粒麦粒,第三格中放入四粒麦粒,第四格中放入八
粒麦粒……按这样的规律放满64格.”
国王反对说:“不、不、这么一点麦子算不上什么奖赏.”但发明者坚持如此.

人教版七年级数学上册1.有理数的乘方课件

人教版七年级数学上册1.有理数的乘方课件

(-4)2与-42 互为相反数
3 5
2
表示
3 5
的平方
32 表示32 再除以5. 5
例3 计算
(1)(-3)2 (- 2) 3
(2)-23×(-32)
(3)64÷(-2)5
(4)(-4)3÷(-1)200+2×(-3)4
解:(1)(-3)2 (- 2)= 9 (- 2) 6;
3
3
(2)-23×(-32)=-8×(-9)=72;
为___5_×__5__平方厘米;
一正方体的棱长为5cm, 则它的体积为
__5_×__5_×__5___立方厘米.
5
5
相同因数的乘法如何简化?
5×5记作:
52
5×5×5 记作: 53
5×5×5×5×5×5记作: 56 如果是任意多个相同的有理数相乘,我们如何去 简化表示呢?
一般地,n个相同的因数a相乘,记作an,读作“a
a 幂
n 指数
2.乘方的符号法则: 底数 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)零的正整数次幂都是零
3.注意:
an与 an 二者的区分及相互关系;
b n 与 bn 的区分. a a
的n次幂(或a的n次方)”,即
a×a×……×a = an
n个 这种求n个相同因数的积的运算叫做乘方,乘方
的结果叫做幂.

a n 指数 因数的个数
底数 因数 (1次方可省略不写,2次方又叫平方,3次方又叫立方).
填一填
温馨提示:幂的底数 是分数或负数时,底 数应该添上括号!
(1)(-5)2的底数是_-__5__,指数是__2___,(-5)2表示2个 _-__5__相乘,读作__-__5_的2次方,也读作-5的_平__方__.

人教七年级数学上册《乘方》课件

人教七年级数学上册《乘方》课件
1.5 有理数的乘方
1.5.1 乘方
学前温故 新课早知
1.正方形的边长为 a,其面积为 a·a ;棱长为 a 的正方体的体
积是 a·a·a
.
2.几个不为 0 的数相乘,积的符号由 负因数的个数 确定,当负因
数有 奇数 个时,积为 负 ;当负因数有 偶数 个时,积为 正 ;
积的绝对值等于各个因数绝对值的积.
2
3
4
5
6
3.-95 表示( )
A.5 个-9 相乘 B.9 个-5 相乘
C.5 个 9 相乘的相反数
D.5 个 9 相乘
关闭
C
答答案案
4.
-
2 3
5
的底数为
1
2
3
4
5
6
,指数为
.
-2 5
3
关闭
答答案案
5.计算:(1)-13-[1-(1-0.5×43)];
(2)(-2)2-(-1)3×
1 2
-
1 3
独运(算1()2.-在2)3-注÷42意-+23运32×算×(顺-492序)2的+同(-时6),还÷要- 灵13 活2运. 用各种运算律,以简化运算.
关闭
=-8÷49 × 49=-8×94 × 49=-8;
(2)-42+3×(-2)2+(-6)÷
-
1 3
2
=-16+3×4+(-6)÷19 =-16+12-54=-58.
32 010
关闭
解析 答案
1
2
3
4
5
6
1.一个数的平方等于 16,则这个数是( )
A.+4

人教版数学七年级上册《乘方》教案

人教版数学七年级上册《乘方》教案
3.增强数学建模意识:将乘方应用于解决实际问题,让学生体会数学建模的过程,提高运用数学知识解决实际问题的能力。
4.发展数学运算技能:通过乘方的计算练习,提高学生的运算速度和准确性,培养良好的数学运算习惯。
5.激发数学探究兴趣:引导学生主动探索乘方的性质和规律,培养学生对数学学习的兴趣和探究精神。
三、教学难点与重点
3.重点难点解析:在讲授过程中,我会特别强调乘方的定义和性质这两个重点。对于难点部分,如负整数乘方的运算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用正方体模型来演示乘方的计算方法。
举例:重点讲解2的3次方,即2^3,表示3个2相乘,让学生通过具体实例理解乘方的定义。
2.教学难点
(1)乘方的概念抽象:对于七年级学生来说,乘方的概念较为抽象,需要通过具体实例和图示帮助学生理解。
(2)乘方性质的推导:乘方的性质如交换律、结合律等需数乘方的运算:负整数乘方的概念和运算规则对于学生来说是个难点,需要通过具体讲解和练习突破。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)针对负整数乘方的难点,可以举例解释负整数乘方的实际意义,如温度下降的例子,让学生理解负整数乘方的运算规则。

人教版七年级数学上册课件《乘方》

人教版七年级数学上册课件《乘方》

2 10
!议一议
3 2 与 (-3)2 结果相等吗?
-32 读作 32 的相反数,而(-3)2 读作-3的 平方
所以
(-3)2 =9
2
-3
=-9
思考:说说下列各数的意义,它们一样吗?
(2)4和 24;
( 2)4的意义是 2的4次方; 即4个 2相乘;
24的意义是2的4次方的相反数。
解:(1)原式= 2 (27) (12) 15 541215 27
例3 计算:
(2)(2)3 (3) [(4)2 2] (3)2 (2)
解: (2)原式= 8 (3)(16 2) 9 (2)
8 (3)18 (4.5) 854 4.5 57.5
第一章 有理数
1.5.1 乘方(2)
乘方的意义
这种求n个相同因数a的积的运算叫做乘方,
乘方的结果叫做幂,a叫做底数,n叫做指数,
an读作a的n次幂(或a的n次方)。
a×a×……×a = a n
n个

a n 指数
因数的个数
底数 因数
(1次方可省略不写,2次方又叫平方,3次方又叫立方。)
在不会引起误解的情况下,乘号也 可以用“·”表示。例如: (-3)×(-3)×(-3) ×(-3) 可写成 (-3)·(-3)·(-3)·(-3)
(3)(1)8=1(4)(1)2008 =1
(5)(1)7=-1(6)(1)2007 =-1
(1) 1的任何次幂都为 1。
(2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
抢答练习: 计算
102 100 103 1000; 104 10000

人教版七年级数学上册《有理数的乘方(第1课时)》示范教学课件

人教版七年级数学上册《有理数的乘方(第1课时)》示范教学课件
0.1×2×2×2=0.8(毫米);
0.1×2×2×…×2
=107 374 182.4(毫米)
=107 374.182 4(米)
共30个2相乘
>8 848.86(米).
因此,连续对折30次后,纸的厚度能超过珠穆朗玛峰.
由此我们又学习了一种新的运算——乘方.
这种是相同因数的乘法,为了简便,我们把30个2相乘记作230,读作“2的30次方”.




根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数.显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.
乘方运算的两种方法:(1)将乘方转化成乘法,再根据乘法法则计算;(2)先根据乘方运算的符号法则判断幂的符号,再计算幂的绝对值.
例3 用计算器计算(-8)5和(-3)6.
解:(1)(-3)×(-3)×(-3)×(-3)=(-3)4,底数是-3,指数是4.
(2) .
看因数,找底数,定指数.要找底数和指数就要先去找“相同的因数”,相同的因数是哪个数,底数就是哪个数;有几个相同的因数,指数就是几.
例2 计算:
0.1×2×2×…×2(毫米)
共30个2相乘
我们知道,边长为2 cm的正方形的面积是2×2=4(cm2);棱长为2 cm的正方体的体积是2×2×2=8(cm3).
2×2,2×2×2都是相同因数的乘法.
为了简便,我们将它们分别记作22,23.22读作“2的平方”(或“2的二次方”),23读作“2的立方”(或“2的三次方”).
将除法化成乘法
确定积
求出结果
“先乘除,后加减”
的符号
珠穆朗玛峰是世界的最高峰,它的海拔高度是8 848.86米.把一张足够大的、厚度为0.1毫米的纸连续对折30次,它的厚度能超过珠穆朗玛峰吗?

人教版七年级数学上册乘方精品课件PPT

人教版七年级数学上册乘方精品课件PPT

人教版七年级数学 上册 1.5.1乘方 第1课时课件
感谢观看,欢迎指导! 1、在困境 中 时 刻 把 握 好 的 机 遇 的 才 能 。 我 在 想 , 假 如 这 个 打 算 是 我 往 履 行 那 结 果 必 定 失 败 , 由 于 我 在 作 决 策 以 前 会 把 患 上 失 的 因 素 斟 酌 患 上 太 多 。 2、人物作 为 支 撑 影 片 的 基 本 骨 架 , 在 影 片 中 发 挥 着 不 可 替 代 的 作 用 , 也 是 影 片 的 灵 魂 , 阿 甘 是 影 片 中 的 主 人 公 , 是 支 撑 起 整 个 故 事 的 重 要 人 物 , 也 是 给 人 最 大 启 示 的 人 物 。 3、在生命 的 每 一 个 阶 段 , 阿 甘 的 心 中 只 有 一 个 目 标 在 指 引 着 他 , 他 也 只 为 此 而 踏 实 地 、 不 懈 地 、 坚 定 地 奋 斗 , 直 到 这 一 目 标 的 完 成 , 又 或 是 新 的 目 标 的 出 现 。 4、让学生 有 个 整 体 感 知 的 过 程 。 虽 然 这 节 课 只 教 学 做 好 事 的 部 分 , 但 是 在 研 读 之 前 我 让 学 生 找 出 风 娃 娃 做 的 事 情 , 进 行 板 书 , 区 分 好 事 和 坏 事 , 这 样 让 学 生 能 了 解 课 文 大 概 的 资 料 。 5、人们都 期 望 自 我 的 生 活 中 能 够 多 一 些 快 乐 和 顺 利 , 少 一 些 痛 苦 和 挫 折 。 可 是 命 运 却 似 乎 总 给 人 以 更 多 的 失 落 、 痛 苦 和 挫 折 。 我 就 经 历 过 许 多 大 大 小 小 的 挫 折 。 6、我就经 历 过 许 多 大 大 小 小 的 挫 折 。 大 海 因 为 有 了 狂 风 的 袭 击 , 才 显 示 出 了 它 顽 强 的 生 命 力 , 它 把 狂 风 化 成 了 朵 朵 浪 花 , 给 人 们 带 来 美 丽 ;

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。

教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。

二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。

但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。

三. 教学目标1.了解乘方的概念,理解乘方的意义。

2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.乘方的概念。

2.有理数的乘方规则。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.小组合作学习的小组划分和任务分配。

七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。

2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。

3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。

教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。

4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。

5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。

教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。

6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。

人教版数学七年级上册1.5《乘方》知识点解读

人教版数学七年级上册1.5《乘方》知识点解读

《乘方》知识点解读同学们,一张普通白纸的厚度只有0.01厘米,但是当你把这一张普通的白纸连续对折30次后,你知道有多厚吗?它的厚度竟然超过珠穆朗玛峰!你相信吗?通过对有理数乘方的学习,我们就会知道其中的奥妙了。

知识点一:有理数乘方的意义一般地,n 个相同的因数a 相乘,即n a a a ⋅⋅⋅个,记作a n ,读作a 的n 次方.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在a n 中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作a 的n 次幂。

知识点二:如何进行乘方运算1.乘方和加、减、乘、除一样,也是一种运算,是乘法运算的特殊情况。

a n 就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;2.幂的符号法则:负数的奇次幂是负的,负数的偶次幂是正的,即(-a )2n =a 2n ,(-a )2n +1=-a 2n +1(n 是正整数),a 2n ≥0,即任何有理数的偶次幂是非负数;正数的任何次幂是正的; 0的任何次幂都是0;3.一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写。

4.有理数的混合运算时,应注意的运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1 计算:(1)(-3)4;(2)(-8)3;(3)(-13)4 分析:根据乘方的意义可直接用乘法来求出各乘方的值。

解:(1)(-3)4=(-3) (-3) (-3) (-3)=81.(2)(-8)3=(-8) (-8) (-8)=-512.(3)(-13)4=(-13)(-13)(-13)(-13)=181. 说明:这里应特别注意“-”号问题,计算时也可以先根据符号法则确定其结果的符号,然后直接计算正数的乘方。

例2 计算(-0.125)12×813的值.分析:直接计算(-0.125)12与813有一定的难度,但观察发现0.125×8=1,于是提醒我们利用乘方的意义和乘法的运算律就能比较容易地求值了。

新人教版七年级数学(上)——有理数的乘方

新人教版七年级数学(上)——有理数的乘方

第一部分:知识精讲知识点一、乘方的有关概念(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示________.n an a a a a a =⨯⨯⨯⨯个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了. 如:(32-)2=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数.2.知识点二、a n 与-a n 的区别.(1)a n 表示___________,底数是 ,指数是 ,读作:___________. (2)-a n 表示___________,底数是 ,指数是 ,读作:___________. 如:(-2)3底数是 ,指数是 ,读作___________,表示___________.有理数的乘方(-2)3=(-2)×(-2)×(-2)=.-23底数是,指数是,读作___________.-23=-(2×2×2)=.注:(-2)3与-23的结果虽然都是-8,但表示的含义并不同.知识点三、乘方运算的符号规律.(1)正数的任何次幂都是数.(2)负数的奇次幂是数.(3)负数的偶次幂是数.(4)0的奇数次幂,偶次幂都是.所以,任何数的偶次幂都是或.知识点四、有理数混合运算法则①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.注意:加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。

第二部分:例题精讲例1.计算:(1) ()32-; (2) ()42-; (3) ()52-例2.把下列各式写成乘方运算的形式,并指出底数,指数各是多少? ①(-2.3)×(-2.3)×(-2.3)×(-2.3) ②(-14)×(-14)×(-14)×(-14)③ x ·x ·x ·……·x(1999个)④(-6)×(-6)×(-6)⑤ 23 ×23 ×23 ×23例3、把5)21( 写成几个相同因数相乘的形式。

人教版七年级数学上册1.乘方——有理数的乘方运算

人教版七年级数学上册1.乘方——有理数的乘方运算
计算器显示的结果为1.44. (3)按键顺序为 ( (-) 1 7 ) ^ 7 = ,
计算器显示的结果为-410 338 673. (4)按键顺序为 2 3 × 6 ÷ 5 = ,
计算器显示的结果为27.6.
总结
知3-讲
用计算器计算时,要弄清计算器的每个按键 的作用,结合有理数运算的顺序,进行计算.
A.1
B.-1
C.2 016
D.-2 016
知2-练
4 下列等式成立的是( B )
A.(-3)2=-32
B.-23=(-2)3
C.23=(-2)3
D.32=-32
5 计算: (1)(-4)3;
(2) (-2)4;
(3) (- 2 )3.
3
(1)-64;(2)16;(3) 8 .
27
知识点 3 利用计算器计算有理数的乘方
第一章 有理数
1.5 有理数的乘方
第1课时 乘方——有理数 的乘方运算
1 课堂讲授 有理数的乘方的意义
有理数的乘方运算
利用计算器计算有理数的乘方
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
复习回顾 1.如图,边长为a厘米的正方形的面积为_a_×__a_平方厘米. 2.如图,一正方体的棱长为a厘米, 则它的体积 为
(1)-(-3)3;
(2)
3 42 ;(3)源自2 33 ;
(4)
1
2 3
2
.
解:(1)-(-3)3=-(-33)=33=3×3×3=27.
(2)
3 4
2
3 4
3 4
9 16
.
(3)
2 3
3
2 3

人教版七年级上册数学1.有理数的乘方课件

人教版七年级上册数学1.有理数的乘方课件

第2次撕: 4 =2×2 记作22
读作“2的四次方”
第3次撕: 8 =4×2 =2×2×2 记作23
第4次撕: 16 =8×2 =2×2×2×2 记作24
同样的,像:
(-3)× (-3)×(-3) ×(-3) ×(-3)
5个-3
记作(-3)5 读作-3的五次方
(-
1 2
)
× (-
1 2
)
×
(-
1 2
a的n次方;当 an 看作一个结果时,也可以读作 a
的 n次幂.
底数
an
指数

an的意义: an= a·a·…·a n个a
举例说明
在94中,底数是( 9),指数是(4). 读作: 9的4次方 或 9的4次幂 。 意义: 4个9相乘 ,即: 94=9×9×9×9 。
特别地,一个数可以看作这个数本身的一 次方。例如,5就是51 。指数1通常省略不 写。
=0
(3) 04
(2)原式 =0×0×0
=0 (3)原式 =0×0×0×0
=0
0的任何正整数次幂都是0.
归纳:
根据有理数的乘法法则不难得出: 负数的奇次幂是负数, 负数的偶次幂是正数; 正数的任何次幂都是正数, 0的任何正整数次幂都是0.
口答,直接说出下列各式中,幂的符号。
(1)(-3)3 负 (2)(-3)4 正 (3)105 正 (4)(-10)4 正 (5)(-5)2 正
2 2、3×
2× 3
2× 3
2 ( 2 )4 3=____3___
(-1)4 与-14 一样吗?
三、把下列乘方写成乘法的情势:
1. 0.=93 0.9;0.9 0.9
2. 9=4

人教版七年级数学上册1.5.1 乘方课件(共27张PPT)

人教版七年级数学上册1.5.1 乘方课件(共27张PPT)
=-2×27+12+15 =-27
223 3 (4)2 2 32 2
=-8-3×18+9÷2
=57.5
1.5.1 第2课时 有理数的混合运算
随堂练习
(1)(1)10 2 (2)3 4
(2)(5)3

3


1 2
4
这就是今天我们研究的课题:
有理数的乘方
1.5.1 第1课时 乘方的意义
求n个相同因数的积的运算,叫做乘方.

a n 指数 因数的个数
底数 因数
乘方的结果叫做幂,相同的因数叫做底 数,相同的因数的个数叫做指数.一般地,在
an中,a取任意有理数,n取正整数.
1.5.1 第1课时 乘方的意义
注意:
乘方是一种运算,幂是乘方运算的结果. an看作是a的n次方的结果时,也可读作a的n 次幂.一个数可以看作是它本身的一次方.
合作探究 (1)第①行数按什么规律排列?
1n 2n
(2)第②③行数与第①行数分别有什么关系? 第行数等于第行相应的数+2 第行数等于第行相应的数÷2
(3)取每行数的第10个数,计算这三个数的和.
210 210 2 210 2 2562
2 5
5
,读作“-
2 5
的五次方”.
1.5.1 第1课时 乘方的意义
思考
a·a·a·a·a·a可以记作什么?读作什么?
记作a6,读作“a的六次方”.
aaa
n个
a(n为正整数)记作什么,
读作什么?
记作an,读作“a的n次方”.
1.5.1 第1课时 乘方的意义
对于an中的a,不仅可以取正数,还可以 取0和负数,也就是说a可以取任意有理数,

七年级数学人教版(上册)【知识讲解】第1课时乘方

七年级数学人教版(上册)【知识讲解】第1课时乘方

13.计算: 1
(1)(-12)4. 3
解:原式=(-2)4 81
=16.
3 (2)-(-4)3×(-2)4.
27 解:原式=64×16
27 =4.
14.已知|a-1|与(b+1)2 互为相反数,求 a2 019+b2 020+(a+b)2 021 的值.
解:由题意,得|a-1|+(b+1)2=0, 因为|a-1|≥0,(b+1)2≥0, 所以|a-1|=0,(b+1)2=0,则 a-1=0,b+1=0. 解得 a=1,b=-1.所以 a+b=1+(-1)=0. 所以 a2 019+b2 020+(a+b)2 021=12 019+(-1)2 020+02 021=2.
11 (2)除方也可以转化为乘方的形式,如 2④=2÷2÷2÷2=2×2×2
11 × 2 = ( 2 )2. 试 将 下 列 运 算 结 果 直 接 写 成 乘 方 的 形 式 : ( - 3) ④

(13)2
1 ;(2)⑩= 28 ;a
)= (1a)n-2

1 (3)计算:22×(-3)④÷(-2)③-(-3)②.
第一章 有理数 1.5 有理数的乘方
1.5.1 乘方
第1课时 乘方
知识点 1 有理数乘方的意义
1.32 可表示为( C )
A.3×2
B.2×2×2
C.3×3
D.3+3
2.对于-34,下列叙述正确的是( C ) A.读作-3 的 4 次幂 B.底数是-3,指数是 4 C.表示 4 个 3 相乘的积的相反数 D.表示 4 个-3 相乘的积
1 解:原式=22×(-3)2÷(-2)-[(-3)÷(-3)] =4×9×(-2)-1 =-72-1 =-73.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算名称
加法 减法 乘法 除法 乘方
运算结果
和 差 积 商 幂
45
与54
哪一个大?那么
1 4
6


1 3
3

呢?
45 4 4 4 4 4 1024;
54 5 5 5 5 625; 45>54.

1 4
6


1 4

(-3)4,···.
(2)对比①②两行中位置对应的数,将会发现第②行 数是第①行相应的数加3,即
-3+3,(-3)2+3 ,(-3)3+3,(-3)4+ 3,···.
对比①③两行中位置对应的数,将会发现第③行数是 第①行对应的数的2倍再加1,即 -3×2+1,(-3)2×2+1 , (-3)3×2+1,(-3)4×2+1,···.
(1)2.5 2.5 2.5 2.5 2.5,
(2)


1 3




1 3




1 3




1 3

,
(3)a a a(1000).
(1)

2.5
5;(2)


1 3
4
;(3)a1000
.
(2)底数分别为:- 2.5,- 1,a. (3)指数分别为:5,4,2 1000.
存在+、×和乘方的运算.根据前面学
过的有理数的加减乘除混合运算法则,我们
应该“先乘除,后加减”来计算这个子.那
么乘方的运算顺序我们又是怎么规定的呢?
知识要点
有理数的混合运算应注意的运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按 小括号、中括号、大括号依次进行.
为多少?
a·a·a
a
a
···
···

···
胞 分
···
裂 示
···
意 图
···
2
···
2×2
···
2×2×2
1个细胞30分钟后分裂成2个, 经过5小时,这种细胞由1个能分裂 成多少个?
2×2×·······×2×2
10个2
6×6 记作62,读作6的平方(或二次方). 6×6×6 记作63,读作6的立方(或三次方). a·a 记作a2,读作a的平方(或二次方).
_____ _43_×___43 _×_ _43____,结果为__6_4___.
a的底数,指数各是多少?
a的底数是a,指数是1.
一个数可以看作 这个数本身的一次方.
0的任何次幂等于零; 1的任何次幂等于1.
计算 :
(1)(-5)3 ;-125 (2)(-1)4;1
(3)每行数中的第20个数的和是: (-3)9+[(-3)9+3] + [(-3)9×2+1] =-19 683+(-19683+3) +(-19683) ×2+1
=-19 683-19 680-39 366+1 =-78 728.
随堂练习
1.把下列各式写成乘方运算的形式,并 指出底数,指数各是多少?
例1:计算:
23 3 42 2 32 2
解:原式 8 3 16 2 9 2 8 3 18 4.5
8 54 4.5 57.5
例2:观察下面三行数:
(3)
1 2
2



1 4
(4)(-3)5;-243
(5)43 ; 64
(6)34 . 81
观察各题的结果,你能发现什么规律?
正数的任何次幂是正数;
负数的奇次幂是负数,
负数的偶次幂是正数.
口算下列各题:
(1)(-1)5=___-__1____, (2)(-1)8=_____1____, (3)12000= _____1_______, (4)02005=______0_______, (5)(-10)4=_1_0__0_0_0___, (6)(-5)3=___-__1_2_5___.
教学重难点
重点
有理数乘方的意义.
难点
幂、底数、指数的概念及其表示,理解有 理数乘法运算与乘方间的联 系,处理好负数的乘方运算.
(1)边长为6的正方形的面积记为: 6×6
(2)棱长为6的正方体的体积可记为: 6×6×6
6
66
若正方形的边长为a,则面积是多少? a·a
若正方体的棱长为a,则正方体的体积
-3,9,-27,81,-243,729,…;① 0,12,-24,84,-240,733,…;② 10,-17,55,-181,487,-1557,…;③
(1)第①行数按什么规律排列? (2)第② ③行数与第①行数分别有什 么关系? (3)取每行数的第9个数, 计算这三个数的和.
解:(1)第①行数是-3,(-3)2 ,(-3)3,
1 4

1 4

1 4

1 4

1 4

1; 4096

1 3
3

1 3

1 3


1 3

1. 27

1 4
6
<

1 3
3
.
一个大于1的正数作底数,指 数越大,乘方的结果越大;
而一个小于1的正数作底数, 指数越大,乘方的结果就越小 .
3+52×(-7)这个式子中,存在哪 几种计算?这道题按什么顺序计算?
练一练
(1) 34 读做_3_的__4_次__幂___,其中底数是 _3__,指数是_4__,表示为_3_×__3_×__3_×__3_,结果 为__8_1__. 数是(__2_ 43)__, 指43 数3 读是做__3_____43__的,_三_表_次_示方__为__,其中底
27
(任意有理数)
an
an也读作a的n次幂 .
指数 幂
a的平方
a a 记作 a2 读作 a的二次方
a的2次幂
a的立方
a a a 记作 a3 读作 a的三次方
a的3次幂
a a a a 记作 a4 读作
a的四次方 a的4次幂
a a a 记作 an读作
n个
a的n次方 a的n次幂
a·a·a 记作a3,读作a的立方(或三次方). 2×2×… ×2×2 记作210,读作2的10次方.
10个
知识要点
一般地,n个相同因数a相乘,即:
a×a ×… ×a ×a
n个 记作:an,读作a的n次方.
求n个相同因数a的积的运算叫做乘方. 即:an= a×a ×… ×a ×a
n个
知识要点
底数
相关文档
最新文档