平行四边形的性质 (3)
平行四边形对角相等吗性质是什么
平行四边形对角相等吗性质是什么
还不清楚平行四边形对角是不是相等的小伙伴,赶紧来瞧瞧吧!下面由小编为你精心准备了“平行四边形对角相等吗性质是什么”,本文仅供参考,持续关注本站将可以持续获取更多的资讯!
平行四边形对角相等吗
平行四边形对角是相等的。
平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。
平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
所以平行四边形的对角相等。
平行四边形的性质
两组对边平行且相等;两组对角大小相等;相邻的两个角互补;对角线互相平分;对于平面上任何一点,都存在一条能将平行四边形平分为两个面积相等图形、并穿过该点的线;四边边长的平方和等于两条对角线的平方和。
拓展阅读:平行四边形的面积公式
平行四边形面积=底×高。
在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形。
平行四边形一般用图形名称加四个顶点依次命名。
在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
平行四边形的判定
1、对边分别平行的四边形是平行四边形;
2、对边分别相等的四边形是平行四边形;
3、对角分别相等的四边形是平行四边形;
4、角线互相平分的四边形是平行四边形;
5、对边平行且相等的四边形是平行四边形。
平行四边形知识点整理笔记
平行四边形知识点整理笔记
平行四边形是初中数学中一个重要的概念,它具有平行、矩形、菱形、正方形等特殊形态。
下面是一份关于平行四边形知识点的整理笔记:
1. 平行四边形的定义:在同一平面内,不相交的两条直线叫做平行线,它们所组成的四边形叫做平行四边形。
2. 平行四边形的性质:
(1) 对边平行且相等;
(2) 对角线互相平分;
(3) 对角线相等且互相垂直;
(4) 对边平行且相等的梯形是平行四边形。
3. 平行四边形的判定:
(1) 两组对边分别平行的四边形是平行四边形;
(2) 对角线相等的平行四边形是平行四边形;
(3) 对边平行且相等的梯形是平行四边形。
4. 平行四边形的应用:
(1) 矩形、菱形、正方形都是特殊的平行四边形,它们具有平行、矩形、菱形、正方形等特殊形态;
(2) 梯形是平行四边形的一种特殊形态,它在某些情况下可以转化为平行四边形;
(3) 在平面几何中,平行四边形的面积可以通过底和高来计算,也可以借助平行四边形的性质和判定来求解。
综上所述,平行四边形是初中数学中一个重要的概念,它具有平行、矩形、菱形、正方形等特殊形态,其在平面几何、代数、概率统计等领域都有广泛的应用。
在解题时,可以利用其性质和判定来求解,也可以将其转化为熟悉的图形来进行计算和分析。
《平行四边形的性质》四边形PPT课件3
探究新知
两组对边分别平行的四边形叫做平行四边形.
表示:如图,在四边形ABCD中,AB//DC,AD//BC, 那么四边形ABCD是平行四边形.
几何语言:
A
D 因为 AB∥CD, AD∥BC
所以四边形ABCD是平行四边形
B
C
因为四边形ABCD是平行四边形
所以 AB∥CD, AD∥BC
探究新知
A B
D C
记作: ABCD 读作:平行四边形ABCD
注意:平行四边形中对边是指无公共点的边,对角是 指不相邻的角,邻边是指有公共端点的边,邻角是指 有一条公共边的两个角.而三角形对边是指一个角的 对边,对角是指一条边的对角.
探究新知
A
D
B
C
平行四边形相对的边称为对边, 相对的角称为对角.
b
长就是a、b之间的距离.
B
随堂检测
1.如图,在 ABCD中,
A
D
A:基础知识:
B
C
若∠A=130°,则∠B=_5_0_°___ 、∠C=_1_3_0_°__ 、∠D=__5_0_°__.
B:变式训练: (1)若∠A+ ∠C= 200°,则∠A=__1_0_0_°_ 、∠B=__8_0_°__; (2)若∠A:∠B= 5:4,则∠C=__1_0_0_°_ 、∠D=___8_0_°_.
∠BAC=_8_0_°_.
随堂检测
2.如图,△ABC是等腰三角形,P是底边BC上一动点, 且PE//AB,PF//AC.求证:PE+PF=AB.
证明:因为PE//AB,PF//AC, 所以四边形AEPF为平行四边形, ∠C=∠FPB. 所以PE=AF. 因为△ABC是等腰三角形, 所以∠B=∠C.所以∠B=∠FPB. 所以PF=BF.所以PE+PF=AF+BF=AB.
平行四边形的性质与判定
平行四边形的性质与判定一、平行四边形的性质1.对边平行且相等:平行四边形的对边分别平行且相等。
2.对角相等:平行四边形的对角线互相平分,且对角线交点将平行四边形分为两个相等的三角形,这两个三角形的角相等。
3.对角线互相平分:平行四边形的对角线互相平分,即平行四边形的对角线交点是对角线中点的两倍。
4.相邻角互补:平行四边形的相邻角互补,即它们的和为180度。
5.对边角相等:平行四边形的对边角相等,即平行四边形的对边上的角相等。
6.对角线所在的平行线间的距离相等:平行四边形的对角线所在的平行线间的距离相等。
二、平行四边形的判定1.两组对边分别平行的四边形是平行四边形。
2.两组对边分别相等的四边形是平行四边形。
3.一组对边平行且相等的四边形是平行四边形。
4.对角线互相平分的四边形是平行四边形。
5.相邻角互补的四边形是平行四边形。
6.对边角相等的四边形是平行四边形。
7.对角线所在的平行线间的距离相等的四边形是平行四边形。
8.矩形:矩形是四个角都是直角的平行四边形。
9.菱形:菱形是四条边都相等的平行四边形。
10.正方形:正方形是四个角都是直角且四条边都相等的平行四边形。
四、平行四边形的应用1.计算平行四边形的面积:平行四边形的面积可以通过底边长乘以高得到。
2.证明平行四边形的性质:利用平行四边形的性质证明四边形的形状或关系。
3.解决实际问题:应用平行四边形的性质解决生活中的实际问题,如设计图形、计算面积等。
知识点:__________习题及方法:1.习题:已知ABCD是平行四边形,AB=6cm,AD=4cm,求BC和CD 的长度。
答案:BC和CD的长度分别为6cm和4cm。
解题思路:根据平行四边形的性质,对边相等,所以BC=AD=4cm,CD=AB=6cm。
2.习题:在平行四边形ABCD中,∠B=60°,求∠D的度数。
答案:∠D的度数为120°。
解题思路:根据平行四边形的性质,相邻角互补,所以∠D=180°-∠B=120°。
四边形对角线有什么性质
四边形对角线有什么性质
---------------------------------------------------------------------- 平行四边形两条对角线互相平分;矩形两条对角线相等且互相平分;正方形两条对角线相等且互相垂直平分,每条对角线平分一组对角;菱形两条对角线互相垂直平分,并且每一条对角线平分一组对角;等腰梯形两条对角线相等。
1、平行四边形性质:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
2、平行四边形判定:
(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
初中数学 平行四边形有哪些特点和性质
初中数学平行四边形有哪些特点和性质平行四边形是一个四边形,具有一些特点和性质,下面将详细介绍平行四边形的特点和性质。
1. 对边平行性质:平行四边形的对边是平行的。
具体来说,平行四边形的相对边是平行的。
例如,如果ABCD是一个平行四边形,那么AB || CD,AD || BC。
2. 对角线性质:平行四边形的对角线彼此平分,即对角线互相垂直且长度相等。
具体来说,平行四边形的两条对角线相等且互相垂直。
例如,如果ABCD是一个平行四边形,那么AC = BD,且AC ⊥ BD。
3. 同位角性质:平行四边形的同位角是相等的。
具体来说,平行四边形的同位角是指位于相同边的两个内角或外角。
如果ABCD是一个平行四边形,那么⊥A = ⊥C,⊥B = ⊥D。
4. 交替内角性质:平行四边形的交替内角是相等的。
具体来说,平行四边形的交替内角是指位于不同边的两个内角。
如果ABCD是一个平行四边形,那么⊥A = ⊥C,⊥B = ⊥D。
5. 互补性质:平行四边形的内角和为180°。
具体来说,平行四边形的两个对角线相交处的内角和为180°。
如果ABCD是一个平行四边形,那么⊥A + ⊥B + ⊥C + ⊥D = 180°。
6. 对边长度性质:平行四边形的对边长度相等。
具体来说,平行四边形的相对边长度相等。
如果ABCD是一个平行四边形,那么AB = CD,AD = BC。
7. 长方形和菱形的特殊情况:长方形是具有相等对边且内角为90°的平行四边形。
菱形是具有相等对边且内角为60°或120°的平行四边形。
8. 面积性质:平行四边形的面积可以通过底边长度和高的乘积来计算。
具体来说,平行四边形的面积等于底边长度乘以相应的高。
例如,如果ABCD是一个平行四边形,底边为AB,高为h,则平行四边形的面积为S = AB * h。
9. 平行四边形的性质可以用来解决几何问题和证明。
通过运用平行四边形的特点和性质,我们可以证明一些关于角度、长度、面积和比例的性质。
初中数学 平行四边形有哪些全等性质
初中数学平行四边形有哪些全等性质平行四边形是一种特殊的四边形,具有一些全等性质。
以下是关于平行四边形全等性质的详细解释:1. 边边边(SSS)全等性质:如果两个平行四边形的对应边分别相等,则这两个平行四边形全等。
也就是说,如果平行四边形ABCD的边长等于平行四边形EFGH的边长,即AB = EF,BC = FG,CD = GH,DA = HE,那么平行四边形ABCD和平行四边形EFGH全等。
如果已知两个平行四边形的对应边长相等,那么它们满足SSS全等性质,可以判断它们全等。
2. 边角边(SAS)全等性质:如果两个平行四边形的一对对边和夹角分别相等,则这两个平行四边形全等。
也就是说,如果平行四边形ABCD的边长AB = EF,AD = EH,且∠BAD = ∠FEH,那么平行四边形ABCD和平行四边形EFGH全等。
如果已知两个平行四边形的一对对边和夹角相等,那么它们满足SAS全等性质,可以判断它们全等。
3. 对角全等性质:如果两个平行四边形的对角线互相相等,则这两个平行四边形全等。
也就是说,如果平行四边形ABCD的对角线AC = EG,BD = FH,那么平行四边形ABCD和平行四边形EFGH全等。
如果已知两个平行四边形的对角线相等,那么它们满足对角全等性质,可以判断它们全等。
根据上述全等性质,我们可以根据给定的条件来逐一比较平行四边形的对应边长、夹角和对角线长度是否满足全等性质。
如果这些条件都满足,就可以断定这两个平行四边形全等。
需要注意的是,判断两个平行四边形全等时,要确保给定的条件准确无误,并且提供了足够的信息。
有时候可能需要使用多个全等性质来判断全等关系。
同时,绘制图形可以帮助我们更好地理解和比较平行四边形的各个部分。
总结起来,我们可以根据平行四边形的边长、夹角和对角线长度来判断两个平行四边形是否全等。
根据边边边全等性质、边角边全等性质和对角全等性质,我们可以逐一比较平行四边形的对应边长、夹角和对角线长度是否相等,从而判断两个平行四边形是否全等。
平行四边形的性质与应用
平行四边形的性质与应用平行四边形是初中数学中一个重要的图形,它的性质和应用广泛存在于我们的日常生活和各个领域中。
在本文中,我将为大家介绍平行四边形的性质以及它在实际问题中的应用。
一、平行四边形的性质1. 对角线性质:平行四边形的两条对角线互相等长且互相平分。
例如,ABCD是一个平行四边形,AC和BD为其对角线。
根据这个性质,我们可以得出AC=BD,并且AC和BD的中点重合。
2. 对边性质:平行四边形的对边互相平行且互相等长。
例如,ABCD是一个平行四边形,AB和CD为其对边。
根据这个性质,我们可以得出AB∥CD,并且AB=CD。
3. 内角性质:平行四边形的内角互补,即相邻内角的和为180度。
例如,ABCD是一个平行四边形,∠A和∠B为其相邻内角。
根据这个性质,我们可以得出∠A+∠B=180°。
二、平行四边形的应用1. 建筑工程中的应用:平行四边形的性质可以应用于建筑工程中的图纸设计和测量。
例如,设计师需要在图纸上绘制平行四边形来代表建筑物的某些部分,以便在施工过程中进行准确的测量和定位。
2. 航空航天中的应用:平行四边形的对角线性质可用于飞行器的悬挂系统设计。
通过合理设计平行四边形的对角线长度,可以实现飞行器的平衡和稳定。
3. 地理测量中的应用:平行四边形的对边性质可以应用于地理测量中的方位角计算。
通过测量平行四边形的对边长度,可以计算出两个地点之间的方位角,进而确定方向和位置。
4. 商业应用:平行四边形的内角性质可以应用于商业中的价格优惠策略。
例如,某商家可以将原价和打折价构成平行四边形,通过计算相邻内角的和来确定打折力度,从而吸引顾客。
5. 几何推理中的应用:平行四边形的性质在几何推理中有着广泛的应用。
通过利用平行四边形的性质,我们可以推导出其他图形的性质,进一步解决各种几何问题。
总结:通过对平行四边形的性质和应用的介绍,我们可以看到平行四边形在数学中的重要性和实际应用中的广泛性。
第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)
第03讲平行四边形的性质和判定【题型1 根据平行四边形的性质求边长】【题型2根据平行四边形的性质求角度】【题型3根据平行四边形的性质求周长】【题型4 平行四边形的判定】【题型5 平行四边形的判定与全三角形综合】【题型6 平行四边形的性质与判定综合】考点1:平行四边形的性质1.边的性质:两组对边分别平行且相等,如下图:AD∥BC,AD=BC,AB∥CD,AB=CD;2.角的性质:两组对角分别相等,如图:∠A=∠C,∠B=∠D3.对角线的性质:对角线互相平分。
如图:AO=CO,BO=DO【题型1 根据平行四边形的性质求边长】【典例1】(2023秋•龙口市期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.16B.18C.20D.22【答案】C【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OB=OD,OA=OC=AC=6,∵AB⊥AC,由勾股定理得:OB===10,∴BD=2OB=20.故选:C.【变1-1】(2023春•历下区校级期中)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于( )A.1B.1.5C.2D.3【答案】C【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=8,AD=BC=6.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=6,∴EC=CD﹣ED=8﹣6=2.故选:C.【变式1-2】(2022秋•牟平区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD 于点E,∠BCD的平分线交AD于点F,若AB=4,AD=5,则EF的长度( )A.1B.2C.3D.4【答案】C【解答】解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=4,AD=BC=5,∴2AB﹣BC=AE+FD﹣BC=EF=3.故选:C.【变式1-3】(2022秋•安化县期末)如图,F是平行四边形ABCD对角线BE上的点,若BF:FD=1:3,AD=12,则EC的长为( )A.6B.7C.8D.9【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∵BF:FD=1:3,∴EB:AD=BF:FD,∴EB:12=1:3,∴EB=4,∴EC=BC﹣EB=12﹣4=8.故选:C.【题型2根据平行四边形的性质求角度】【典例2】(2023春•环翠区期末)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.60°C.65°D.75°【答案】D【解答】解:延长EH交AB于N,∵△EFH是等腰直角三角形,∴∠FHE=45°,∴∠NHB=∠FHE=45°,∵∠1=30°,∴∠HNB=180°﹣∠1﹣∠NHB=105°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2+∠HNB=180°,∴∠2=75°,故选:D.【变式2-1】(2023秋•二道区校级期末)如图,在▭ABCD中,∠A+∠C=80°,则∠D=( )A.80°B.40°C.70°D.140°【答案】D【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠A+∠D=180°,∵∠A+∠C=80°,∴∠A=∠C=40°,∴∠D=180°﹣∠A=140°,故选:D.【变式2-2】(2023春•北安市校级期中)如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°【答案】B【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°﹣∠BED=25°,∴∠A=180°﹣∠ABE﹣∠AEB=130°.故选:B.【变式2-3】(2023•巴东县模拟)四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC交AD于点E,DF∥BE交BC于点F,则∠CDF的度数为( )A.55°B.50°C.40°D.35°【答案】D【解答】解:∵∠ABC=70°,BE平分∠ABC,∴∠CBE=∠ABC=35°,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,AD∥BC,∴∠AEB=∠CBE=35°,∵DF∥BE,∴∠EDF=∠AEB=35°,∴∠CDF=∠ADC﹣∠EDF=70°﹣35°=35°,故选:D.【题型3根据平行四边形的性质求周长】【典例3】(2023春•光明区校级期中)如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为( )cm.A.11B.18C.20D.22【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD与BC平行,AD=BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BA=BE=4,∵BC=BE+EC=4+3=7=AD,∴平行四边形ABCD的周长为2×(7+4)=22(cm),故选:D.【变式3-1】(2023春•东港区校级期中)在平行四边形ABCD中,∠A的角平分线把边BC 分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【答案】B【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【变式3-2】(2023春•沙坪坝区期中)如图,在▱ABCD中,对角线AC、BD交于点O,周长为18,过点O作OE⊥AC交AD于点E,连结CE,则△CDE的周长为( )A.18B.9C.6D.3【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD周长为18,∴AD+CD=9,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+AE+DE=AD+CD=9.故选:B.【变式3-3】(2023秋•南关区校级期末)如图,在▱ABCD中,AD=10,对角线AC与BD 相交于点O,AC+BD=24,则△BOC的周长为 22 .【答案】22.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=24,∴OC+BO=12,∴△BOC的周长=OC+OB+BC=12+10=22.故答案为:22考点2:平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形2.与角有关的判定:两组对角分别相等的四边形是平行四边形3.与对角线有关的判定:对角线互相平分的四边形是平行四边形【题型4 平行四边形的判定】【典例4】(2023秋•朝阳区校级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC【答案】B【解答】解:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B、AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C、AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D、AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;故选:B.【变式4-1】(2022秋•泰山区期末)下列条件中,能判定四边形是平行四边形的是( )A.一组对边相等,另一组对边平行B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角互补,另一组对角相等【答案】C【解答】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形B、一组对边平行,一组对角互补,也有可能是等腰梯形C、一组对角相等,一组邻角互补可得到两组对角分别相等,所以是平行四边形D、一组对角互补,另一组对角相等,可能是含两个直角的一般四边形.故选:C.【变式4-2】(2023春•台山市校级期中)在四边形ABCD中,AB∥DC,要使四边形ABCD 成为平行四边形,还需添加的条件是( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠D=180°D.∠A+∠B=180°【答案】D【解答】解:选项A,B中的两对角是对角关系,不能推出AD∥BC,选项C只能推出AB∥DC,选项D中两角是同旁内角,∵∠A+∠B=180°,∴AD∥BC,又∵AB∥DC,∴四边形ABCD为平行四边形,故选:D.【变式4-3】(2023•中牟县校级开学)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②④D.②③【答案】C【解答】解:∵只有②④两块碎玻璃的角的两边互相平行,且中间部分相连,角的两边的延长线的交点就是平行四边形的另两个顶点,∴带②④两块碎玻璃,就可以确定原来平行四边形玻璃的大小,能在商店配到一块与原来相同的平行四边形玻璃,故选:C.【题型5 平行四边形的判定与全三角形综合】【典例5】(2022秋•周村区期末)已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.【答案】(1)见解析过程;(2)见解析过程.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA);(2)∵△ABF≌△CDE,∴AF=CE,BF=DE,∴AE=CF,∴四边形AECF是平行四边形.【变式5-1】(2023春•惠城区期末)如图,在▱ABCD中,点E,F在对角线BD上,且BE =DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.【变式5-2】(2023春•鱼台县期中)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】见试题解答内容【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°.∵在△ADE与△CBF中,∴△ADE≌△CBF(AAS),∴AE=CF.(2)∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°.∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.【变式5-3】(2023•新疆模拟)如图,在▱ABCD中,点E,F在对角线BD上,且BF=DE.证明:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【题型6 平行四边形的性质与判定综合】【典例6】(2023春•温州月考)如图,在▱ABCD中,点E在AB上,点F在CD上,且AE =CF.(1)求证:四边形DEBF是平行四边形;(2)若DE为∠ADC的角平分线,且AD=6,EB=4,求▱ABCD的周长.【答案】(1)见解析;(2)32.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DF∥BE,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形;(2)解:∵DE为∠ADC的角平分线,∴∠ADE=∠CDE,∵CD∥AB,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=6,∵BE=4,∴AB=AE+BE=10,∴▱ABCD的周长=2(AD+AB)=2(6+10)=32.【变式6-1】(2023春•成都期末)如图,在▱ABCD中,点E,F在对角线AC上,且AF=CE,连接BE,DE,BF,DF.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=80°,AB=AF,DC=DF,求∠EBF的度数.【答案】(1)证明过程见解答;(2)30°.【解答】(1)证明:在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴BF=DE,∠DEF=∠BFA,∴ED∥BF,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF是平行四边形,∴BE=DF,∵AB=DC=DF,∴AB=BE,∴∠BEA=∠BAC=80°,∴∠ABE=180°﹣2×80°=20°,∵AB=AF,∴∠ABF=∠AFB=(180°﹣80°)=50°,∴∠EBF=∠ABF﹣∠ABE=50°﹣20°=30°.【变式6-2】(2023秋•锦江区校级期末)如图,点E、F是平行四边形ABCD对角线AC上两点,BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AC=8,BC=6,∠ACB=30°,求平行四边形ABCD的面积.【答案】(1)证明见解答过程;(2)24.【解答】(1)证明:平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD,又∵BE∥DF,∴∠BEC=∠DFA,在△BEC和△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF,又BE∥DF,∴四边形BEDF是平行四边形;(2)解:过A点作AG⊥BC,交CB的延长线于G,在Rt△AGC中,AC=8,∠ACB=30°,∴AG=4,∵BC=6,∴平行四边形ABCD的面积=BC•AG=4×6=24.【变式6-3】(2023春•和县校级期末)如图,BD是四边形ABCD的对角线,∠ADB=∠CBD,AD=BC,过点A作AE∥BD交C的延长于E.(1)求证:四边形ABDE是平行四边形;(2)过点E作EF⊥BC交BC的延长线于点F,连接DF,若,求DF的长.【答案】(1)见解析;(2)2.【解答】(1)证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠ADE=∠BCD.∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CE,AB=CD,∵AE∥BD,∴∠EAD=∠BDA,∴∠EAD=∠DBC,在△EAD和△DBC中,,∴△EAD≌△DBC(ASA),∴DE=CD,∵AB=DE.∴四边形ABDE是平行四边形;(2)∵DE=CD=AB,∴FD是CE的中线,∵EF⊥BC,∴DF=CE==2.考点3:三角形的中位线三角形中位线:在△ABC 中,D,E 分别是A C,AC 的中点,连接DE.像DE 这样,连接三角形_两边中点的线段叫做三角形的中位线.B中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。
平行四边形中的角度关系
平行四边形中的角度关系平行四边形是一种特殊的四边形,它具有特定的性质和角度关系。
本文将介绍平行四边形的性质,并详细讨论平行四边形中各个角度之间的关系。
一、平行四边形的定义及性质平行四边形是指具有两对对边分别平行的四边形。
它具有以下性质:1. 对边性质:平行四边形的对边是平行的,即AB∥CD, AD∥BC。
2. 对角性质:平行四边形的对角线互相分割成两对相等的线段,即AC=BD,AD=BC。
3. 同位角性质:平行四边形内、外的同位角互为对应角,相等。
二、在平行四边形中,各个角度之间存在着特定的关系:1. 对顶角关系:平行四边形的对顶角是相等的,即∠A=∠C,∠B=∠D。
2. 内角关系:平行四边形的内角和为180度,即∠A+∠B+∠C+∠D=180°。
3. 同位角关系:平行四边形内、外的同位角互为对应角,相等。
例如,∠A与∠C’为同位角,∠B与∠D’为同位角,它们相等。
4. 互补角关系:平行四边形内的相邻内角互为补角,即∠A+∠B=180°,∠B+∠C=180°,∠C+∠D=180°,∠D+∠A=180°。
5. 完全角关系:平行四边形的对角和为360度,即∠A+∠B+∠C+∠D=360°。
三、平行四边形的角度示意图为了更好地理解平行四边形中的角度关系,我们可以绘制一个示意图,如下所示:A _________ B/ \/ \D ____________C在这个示意图中,我们可以清楚地看到平行四边形的各个角度和线段之间的关系。
四、平行四边形角度关系的应用平行四边形的角度关系在几何学中有着广泛的应用。
通过理解平行四边形角度的特性,我们可以解决一系列与平行四边形相关的问题。
1. 利用对顶角关系求解角度:当已知平行四边形的一个角度时,我们可以利用对顶角关系求解其他角度的大小。
2. 利用内角和为180度解决问题:当已知平行四边形的一个内角度时,我们可以利用内角和为180度的性质解决与此角度相关的问题。
平行四边形及其性质(篇三)
平行四边形及其性质教学建议1.知识结构2.重点和难点分析重点:本节的重点是平行四边形的概念和性质。
虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学。
平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键。
尤其是平行四边形性质定理2的推论,推论的应用有两个条件:一个是夹在两条平行线间;一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调。
难点:本节的难点是平行四边形性质定理的灵活应用。
为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化。
3.教法建议(1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性。
自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维。
(2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结。
平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行。
平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。
(3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化。
第一课时一、素质教育目标(一)知识教学点1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.2.掌握平行四边形的性质定理1、2.3.并能运用这些知识进行有关的证明或计算.(二)能力训练点1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.(三)德育渗透点通过要求学生书写规范,培养学生科学严谨的学风.(四)美育渗透点通过学习,渗透几何方法美和几何语言美及图形内在美和结构美二、学法引导阅读、思考、讲解、分析、转化三、重点·难点·疑点及解决办法1.教学重点:平行四边形性质定理的应用2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.四、课时安排2课时五、教具学具准备教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具六、师生互动活动设计教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习第一课时七、教学步骤【复习提问】1.什么叫做四边形?什么叫四边形的一组对边? 2.四边形的两组对边在位置上有几种可能?(教师随着学生回答画出图1)图1【引入新课】在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).【讲解新课】1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.2.平行四边形的表示:平行四边形用符号“ ”表示,如图1就是平行四边形,记作“ ”.图13.平行四边形的性质讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.平行四边形性质定理1:平行四边形的对角相等.平行四边形性质定理2:平行四边形对边相等.(教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)图2如图3,,.所以四边形是平行四边形,所以.由此得到推论:夹在两条平行线间的平行线段相等.图3要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出.图44.平行线间的距离从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.图5注意:(1)两相交直线无距离可言.(2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.例1 已知:如图1,,.求证:(1);;.(2)△ 的顶点分别是△ 各边的中点(证法略),课堂提问(投影打出).图1①平行四边形两邻边的比为2:5,周长为28cm,则四条边长分别为___________.②在中,若,则,.【总结、扩展】1.小结本堂所讲的主要内容有(1)平行四边形的概念,要理解这个概念的实质.(2)平行四边形的部分性质.①关于边的:对边平行;对边相等.②关于角的:对角相等;邻角互补.(3)“两平行线的距离”是一定值,不随垂线段的位置改变,即两平行线间的距离处处相等.2.思考:如图.已知:平面,,求证:.八、布置作业教材P141.2 (1)、(2)、(3) P142中 3(1)九、板书设计十、随堂练习教材P.133中1、2、3补充1.在中(1)若,则度,度,度;(2)若,则度,度;(3)若,则度,度.2.中,周长为,△ 的周长比△ 周长多则,. 3.中,的平分线分为长是和的两线段则的周长是___________cm.。
初三四边形所有知识点总结
初三四边形所有知识点总结四边形是初中数学中重要的几何图形,在初三阶段,学生需要掌握四边形的定义、性质、分类、面积计算等知识点。
本文将对初三四边形的所有知识点进行总结,希望对学生的学习有所帮助。
一、四边形的定义和性质1. 四边形的定义四边形是一个有四条边的几何图形,它是由四个顶点和四条边组成的。
2. 四边形的性质(1)四边形的内角和四边形的内角和是360°。
即:A+B+C+D = 360°(2)四边形的对角线四边形有两条对角线,分别连接相对的顶点。
对角线的交点称为对角线的交点。
对角线的长度可以通过勾股定理求得。
(3)四边形的对边四边形的相对边称为对边。
二、四边形的分类根据四边形的特征和性质,可以将四边形分为以下几类:1. 平行四边形2. 矩形3. 菱形4. 正方形5. 梯形6. 平行四边形7. 不规则四边形三、平行四边形的性质1. 平行四边形的定义平行四边形是有两对边平行的四边形,即两对对边是平行的四边形。
2. 平行四边形的性质(1)对角线平行四边形的对角线相交于90°的角,并且两条对角线相等。
(2)对边及角平行四边形的对边相等,对角相等。
(3)周长和面积平行四边形的周长可以通过对边和对角线求得。
平行四边形的面积可以通过底和高求得。
四、矩形的性质1. 矩形的定义矩形是有四条边且所有内角都是直角的四边形。
2. 矩形的性质(1)四边相等矩形的四条边相等。
(2)对角线相等矩形的两条对角线相等。
(3)对边平行矩形的对边是平行的。
(4)周长和面积矩形的周长可以通过长和宽求得。
矩形的面积可以通过长和宽求得。
五、菱形的性质1. 菱形的定义菱形是有四条边且两两相等的四边形。
2. 菱形的性质(1)对角线相等菱形的两条对角线相等。
(2)相邻角相等菱形的两个相邻角是相等的。
(3)周长和面积菱形的周长可以通过边长求得。
菱形的面积可以通过对角线求得。
六、正方形的性质1. 正方形的定义正方形是有四条边,相等且所有内角都是直角的四边形。
平行四边形的概念
平行四边形的概念平行四边形是指四边形的对边两两平行的特殊四边形。
在几何学中,平行四边形是一个重要的概念,具有许多有趣的性质和应用。
本文将介绍平行四边形的定义、性质和一些典型的应用场景。
一、平行四边形的定义和性质平行四边形的定义是:四边形的对边两两平行。
也就是说,如果一个四边形的两对对边是平行的,则该四边形为平行四边形。
对于一个平行四边形ABCD来说,我们可以得出以下性质:1. 对角线互相平分:平行四边形的对角线互相平分。
也就是说,对角线AC平分对角线BD,对角线BD平分对角线AC。
2. 对角线相等:平行四边形的对角线相等。
也就是说,对角线AC和对角线BD的长度相等。
3. 同位角相等:对于一条直线被平行线所切割而成的平行四边形来说,同位角是相等的。
同位角指的是位于两条平行线之间的内角,它们的度数相等。
4. 对边平行:平行四边形的对边是平行的。
也就是说,边AB平行于边CD,边AD平行于边BC。
5. 邻边互补:平行四边形的邻边是互补的。
也就是说,边AB与边BC的内角互补,边BC与边CD的内角互补,边CD与边DA的内角互补,边DA与边AB的内角互补。
二、平行四边形的应用平行四边形不仅在几何学中具有重要地位,还有许多实际的应用场景。
以下是一些典型的应用:1. 建筑和工程:在建筑和工程中,平行四边形的概念被广泛应用。
例如,设计一个房间的地板,可以采用平行四边形的形状,以便利用平行四边形的性质进行有效的材料利用和施工安排。
2. 平行四边形公式的应用:平行四边形的性质可以用于解决各种几何问题。
例如,可以利用平行四边形的性质计算其中一个角的度数,或者计算其中一个边的长度。
3. 数学证明:在数学证明中,平行四边形经常被用作基础构建。
通过利用平行四边形的性质,可以推导出其它几何形状的性质,或者证明一些几何定理。
4. 图形设计和艺术:平行四边形的形状和性质在图形设计和艺术中也常常被使用。
例如,平行四边形的规则形状和对称性可以用来构建美观的图案和设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的性质(第1课时)课题:平行四边形的性质(第1课时)教学内容:人教版新课标教材:八年级下册页一、教学目标:1.掌握并理解平行四边形的概念和平行四边形对边、对角相等的性质。
2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。
3.通过观察、猜测、证明、归纳,能运用数学语言进行讨论与质疑,发展学生合理的推理意识,培养学生主动探究的习惯。
4.通过平行四边形性质的探究应用过程,培养学生独立思考的能力,在数学学习活动中获得成功的体验。
同时树立起学习的信心。
5.培养学生发现问题、解决问题的能力及逻辑推理能力。
二、重点、难点:1.重点:平行四边形的定义以及平行四边形的性质。
2.难点:平行四边形性质的探究。
三、教学过程实录及评析:(一)创设情境,导入新课师:多媒体演示(图一)问题1:请同学们欣赏一组日常生活中常见的图片,你能观察到图片中有我们学过的哪些四边形?生:观察思考后回答:图片中的四边形有(如图二):长方形、正方形、平行四边形和梯形。
师:同学们观察得仔细,回答得很好。
问题2:图片中表现出最多的是哪种四边形?生:平行四边形。
问题3:你能举出生活中常见的平行四边形的一些其它例子吗?生:举例略。
问题4:正方形、长方形、平行四边形、梯形和四边形之间有怎能样的关系?生:回忆、思考。
但答不出来。
师:多媒体演示(如图三):并提示:正方形、长方形属于平行四边形,平行四边形、梯形属于四边形。
师:强调:平行四边形属于四边形,具有四边形的性质,但它是具有特殊条件的四边形。
本节课就来研究平行四边形具有哪些特殊性,由此导出课题。
板书:“平行四边形”评析:创设情境出示并四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系。
通过这种问题式谈话开场,清新自然.让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题。
(二)活动体验、新知探究:活动1:平行四边形定义探究将一张纸对折,剪下两个完全一样的三角形纸片,将这两个三角形相等的一组边重合,你会得到怎样的图形.生:分小组活动:用事先准备好的长方形纸片进行对折、剪三角形、拼出图形。
问题1:你能利用手中两张全等的三角形纸板(△和△)拼出什么图形?生:学生动手操作,教师留意观察,并请同学将拼出的形状不同的图形形展示在黑板上(展示图形略)。
问题2:在拼出的这些图形中,有平行四边形吗?生:有。
师:用多媒体演示(如图四)拼出平行四边形的动画过程。
问题3:观察拼出的这个平行四边形的对边与,与有怎样的位置关系?说说你的理由。
生:平行。
师:说说你的理由。
生:思考后有疑惑,没有人答出。
师:请同学们议一议,从上面的结果中归纳出平行四边形的定义。
生:你一言,我一语,并最终归纳出:有两组对边分别平行的四边形叫做平行四边形。
师:板书:定义:两组对边平行的四边形是平行四边形。
问题3:怎样用符号表示平行四边形?师:示范画图(图五).结合图形介绍平行四边形的读法、记法。
师:如图五,平行四边形用符号“□”表示,如图五,平行四边形,记作□,读作平行四边形。
师:结合图五介绍:平行四边形相对的边称为对边(与,与);相对的角称为对角(与,与);相邻的角称为邻角(与或与,与或与);平行四边形不相邻的两个顶点、连结成的线段(或)叫平行四边形的对角线。
评析:活动1让学生自觉地进入到对定义的深入探究中,突出概念本质,深化对定义的理解,可使枯燥的概念学习更加生动。
但是,从课堂教学活动层面上看,虽然学生分组积极活动,但活动内涵价值不高,没有从理性上认识活动的目的。
即定义主要是通过四边形的对边的位置关系确定平行四边形的形状,但实际上学生仍处于知其然不知其所以然的状态。
关于定义的教学,建议注意以下几点:1.定义探究:结合平行四边形图形思考:平行四边形的“平行”体现在哪里?突出定义本质特征:“两组对边分别平行”体现平行四边形的对边的位置关系。
2.定义的内涵:本节课对平行四边形的定义采用的是内涵定义法,即“属概念+种差=被定义的概念”。
在平行四边形的定义中,大前提是“四边形(属概念)”,条件是“两组对边分别平行(种差)”。
“两组对边分别平行”是平行四边形独有用以区别于一般四边形的本质属性,这是平行四边形概念的重点。
3.定义的两层含义:一是平行四边形的判定:两组对边分别平行的四边形是平行四边形;二是平行四边形的性质:平行四边形的两组对边分别平行。
4.定义的几何语言表述:如图五,在四边形中∵∥,∥,∴四边形是平行四边形。
∵四边形是平行四边形,∴∥,∥。
活动2:平行四边形性质探究问题1:我们已经知道平行四边形是特殊的四边形,由定义可知平行四边形的对边平行。
除此之外,你还能发现平行四边形的“对边”、“对角”之间在“数量”上存在什么关系?师:活动要求:画一画:画一个平行四边形猜一猜:平行四边形的对边、对角之间有什么数量关系?量一量:度量验证平行四边的对边、对角之间的数量关系与你的猜想一致吗??。
剪一剪:将所画的平行四边形沿其中一条对角线剪开,得到两个三角形,将两个三角形叠合在一起,操作验证平行四边的对边、对角之间的数量关系与你的猜想一致吗?生:按教师的要求分项活动。
师:巡视课堂,并以合作者的身份深入到各小组中,了解学生的探究过程并适当予以指导。
生:汇报:学生展示活动过程,相互补充探究出的结论。
师:通过活动,你们得出平行四边形的对边之间有什么关系?生:平行四边形的对边相等。
师:平行四边形的对角之间有什么关系?生:平行四边形的对角相等。
师:还有其他的吗?生:平行四边形的邻角互补。
问题2:是不是所有的平行四边形都具是否具有上述结论?你们能利用所学的知识和方法证明上述结论吗?师生共议,写出已知、求证及证明过程.已知:如图七,四边形为平行四边形。
求证:,;,。
分析:连结对角线将平行四边形的问题通过转化为全等三角形的问题进行解决。
师:板书证明过程,略。
评析:活动2中的两个问题设计很好,问题1分层次加强学生对平行四边形性质的感性认识,培养学生敢于猜想的意识。
目的是让学生通过画一画、猜一猜、量一量、剪一剪得出平行四边形的两组对边分别相等,两组对角分别相等的性质。
问题2使学生体会几何论证是探究性活动的自然延续和必然发展,感受到数学结论的确定性和证明的必要性。
同时在这一教学过程中找到了将四边形问题转化为三角形问题的有效途径,这样既渗透了转化思想,又巧妙的突破了难点。
但是在一些活动环节的处理上,还有待商榷的地方:如用画一画、猜一猜、量一量、剪一剪猜想并验证平行四边形的边、角关系,这种探究问题的方法固然是数学探究中的重要方法之一,但是从学生的知识基础来分析,这个探究活动就稍显简单了.学生在小学已经学习了平行四边形的基础知识,经历了针对图形的探究过程,知晓了平行四边形的边、角关系的结论,那么在此基础上的再次“观察、猜想、实验验证”就失去了其真正的意义,也很难激发学生的学习热情。
在解决问题2时,将四边形问题转化为三角形来解决的转化思想是本课的难点,教学过程中教师在通过逻辑分析的方法引导学生来突破难点,但是通过课堂实际观察笔者感觉到学生现阶段的思维发展状况与常用思维方法还是稍有差异。
学生在此之前的学习中,还是以图形的直观认识为主,逻辑推理刚刚起步,还没有成为多数学生分析问题的首选方法,所以在探究性的问题中,逻辑推理很难成为多数学生的自然联想,虽然学生在教师的引导之下可以理解和接受,但是这个过程的教学难以实现“面向每一个学生”。
师:归纳总结:性质1:平行四边形的对边相等且平行。
符号语言:∵四边形是平行四边形,∴,。
∥,∥。
性质2:平行四边形的对角相等,邻角互补。
符号语言:∵四边形为平行四边形,∴,。
,。
师:以上性质为证明(或解决)线段相等,角相等,提供了新的理论依据。
评析:对平行四边形性质的归纳,是学生对平行四边形特征的更深入认识,也是知识的一次升华,突出了教学重点.(三)学以致用:自主练习1.已知:图八(1),□中,,求出其他各角的度数。
2.如图,已知:□中,,周长等于24,求其余各边的长度?3.如图,用图钉把一根平放在上的细纸板条固定在对角线、的交点处.拨动纸板条,使它随意停留在任意的位置。
观察几次拨动的结果,你有什么新发现?记录下来,再与同伴交流。
生:练习。
师:巡视,并对部分学生进行指导,讲评略。
评析:练习是学生心智技能和动作技能形成的基本途径,精心设计的练习将会使这一功用得到更充分的体现。
以上这组练习层层递进、由浅入深,有效地促进学生对本节课所学习的概念与性质进行更加深刻的理解与掌握。
第4小题构造了一个图动→手动→脑动的动态思维场景,学生在此场景中观察、分析、归纳、推理。
培养了学生自己发现问题、分析问题和解决问题的能力,使学生真正成为知识的主动建构者.在全体学生获得必要发展的前提下,不同的学生还可以获得不同的体验.应该说是对教材的基本设计思想的一个很好的诠释。
(四)反思小结、持续发展师:这节课我们一起探究了哪些问题?同学们收获了什么?生:思考后回答:①平行四边形的定义:两组对边分别平行的四边形叫做平行四边形;性质.:边:平行四边形的对边平行且相等;角:平行四边形的对角相等;邻角互补;②方法:证明平行、线段相等、角相等的新方法;③转化思想。
评析:教师引导学生归纳本节课的知识要点和思想方法,使学生在对平行四边形的概念有一个整体、全面认识。
这是一次知识与情感的交流,浓缩知识要点、突出内容本质、渗透思想方法。
培养学生自我反馈、自主评价的意识,养成良好的学习习惯。
促进学生可持续地、和谐地发展。
(五)目标检测、课后延伸⑴平行四边形中,若,则;⑵平行四边形的一个外角为,则这个平行四边形的每个内角的度数分别为;⑶已知平行四边形的周长为,若,则。
⑷已知任意三点、、,是否存在点,使、、、围成一个平行四边形。
若存在,请你画出平行四边形,若不存在,请说明理由。