专升本高等数学各实用公式
专升本高数公式大全
专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。
11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。
专升本高等数学公式定理大全
专升本高等数学公式定理大全一、导数相关公式和定理:1.基本导数公式:-常数函数导数为零:(k)'=0-幂函数导数:(x^n)'=n*x^(n-1)- 指数函数导数:(a^x)' = a^x * ln(a)- 对数函数导数:(log_a(x))' = 1 / (x * ln(a)) 2.常用导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x) * tan(x)- csc(x)' = -csc(x) * cot(x)- arcsin(x)' = 1 / sqrt(1 - x^2)- arccos(x)' = -1 / sqrt(1 - x^2)- arctan(x)' = 1 / (1 + x^2)3.高阶导数公式:-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-(f(g(x)))'=f'(g(x))*g'(x)-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g^2(x)4.微分中值定理:-罗尔定理:若函数在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在c∈(a,b),使得f'(c)=0。
-拉格朗日定理:若函数在[a,b]上连续,在(a,b)内可导,那么存在c∈(a,b),使得[f(b)-f(a)]/[b-a]=f'(c)。
-柯西中值定理:若函数u(x)和v(x)在[a,b]上连续,在(a,b)内可导,并且v'(x)≠0,那么存在c∈(a,b),使得[u(b)-u(a)]/[v(b)-v(a)]=u'(c)/v'(c)。
专升本高等数学公式全集
专升本高等数学公式全集在高等数学中,有许多重要的公式需要掌握。
下面是一些常用的高等数学公式全集:1.点与直线公式:1)点到直线的距离公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,则点P到直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。
2)点到直线的垂足坐标公式:设直线方程为Ax+By+C=0,点P(x0,y0)为直线外一点,点Q(x1,y1)为点P到直线的垂足,则x1=(B^2*x0-A*B*y0-A*C)/(A^2+B^2),y1=(-A*B*x0+A^2*y0-B*C)/(A^2+B^2)。
2.导数的四则运算:1)和差法则:(f+g)'=f'+g',(f-g)'=f'-g'。
2)积法则:(f*g)'=f'*g+f*g'。
3)商法则:(f/g)'=(f'*g-f*g')/g^24)复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。
3.不定积分的基本公式:1)幂函数不定积分公式:∫x^n dx = (x^(n+1)) / (n+1) + C,其中n不等于-12)指数函数不定积分公式:∫a^x dx = (a^x) / ln(a) + C,其中a为常数且a不等于13)三角函数不定积分公式:∫sin x dx = -cos x + C,∫cos x dx = sin x + C,∫sec^2 x dx = tan x + C。
4.定积分的基本公式:1)定积分的基本公式:∫[a, b]f(x) dx = F(b) - F(a),其中F(x)为f(x)的一个原函数。
2)分部积分公式:∫[a, b]u(x)v'(x) dx = u(x)v(x)∣[a, b] -∫[a, b]u'(x)v(x) dx。
5.泰勒级数展开:若函数f(x)在x=a处具有n阶导数,则泰勒级数展开可表示为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为余项。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。
高等数学专升本公式集合
高等数学专升本公式集合以下是高等数学专升本常用公式集合:1.导数公式:1)反函数求导:如果y=f(x) (x在某区间上连续、可导),f'(x)≠0,且存在f'(x)的逆函数,则y=f^(-1)(x)在对应的区间上可导,且有(f^(-1))'(x) = 1 / f'(f^(-1)(x));2)乘积法则:(uv)' = u'v + uv';3)商法则:(u/v)' = (u'v - uv') / v^2;4)链式法则:(F(g(x)))' = F'(g(x)) * g'(x),其中F(u)是u的原函数。
2.积分公式:1)基本积分公式:∫x^n dx = x^(n+1) / (n+1) + C (这里C是常数);2)分部积分法:∫u dv = uv - ∫v du;3)替换法:设x=g(t),则dx=g'(t) dt,将dx替换为g'(t) dt 来进行积分。
3.泰勒级数公式:1)常用泰勒级数展开:- e^x = 1 + x + x^2 / 2! + x^3 / 3! + ...;- sin x = x - x^3 / 3! + x^5 / 5! - ...;- cos x = 1 - x^2 / 2! + x^4 / 4! - ...;- ln(1+x) = x - x^2 / 2 + x^3 / 3 - ...。
4.极限公式:1)常用极限:- lim(x→0) (sin x / x) = 1;- lim(x→∞) (1 + 1/x)^x = e;- lim(x→a) (f(x))^g(x) = lim(x→a) e^(g(x) * ln(f(x)))。
5.级数公式:1)常用级数:-等比数列求和:∑(n=0)^(∞) ar^n = a / (1-r),其中|r|<1;-幂级数求和:∑(n=0)^(∞) a(n)x^n,其中a(n)是常数。
专升本高等数学公式
专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。
下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。
专升本高数公式大全总结
专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。
- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。
2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。
- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。
3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。
- 余弦定理:$c^2=a^2+b^2-2abcosC$。
- 正弦二倍角公式:$sin2x=2sinxcosx$。
- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。
4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。
- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。
- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。
5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。
专升本高等数学常用公式
1.偶函数关于y 轴对称。
f(-x)=f(x).奇函数关于原点对称。
f(-x)=-f(x)2.等价无穷小:sinx~x tanx~x arctanx~x arcsinx~x 1-cosx~~22x ln(1+x)~x1-x e ~x1-xa ~xlnaax x a→-+1)1(3.若)()(0~lim 0x f x f x x =称f(x)在点x 处连续。
4.若)0()0(00+≠-x f x f 时,x 为)(x f 的跳跃间断点。
)()(0lim 0x f A x f x x ≠=→或f(x)在点0x 处无定义,则点x 为可去间断点。
5.零点定理:f(a)f(b)<0,则f(ζ)=06.000)()()(limx x x f x f x f x x --='→ h x f h x f x f x x )()()(000lim-+='→7.求导公式:x x 2sec )(tan ='x x 2csc )(cot -='x x x cot csc )(csc -='x x x tan sec )(sec ='xxaa a •='ln )(xx ee =')(a x x a ln 1)(log =' 211)(arcsin x x -='211)(arccos x x --='211)(arctan x x +='211)cot (x x arc +-=' x x f x x f x f x ∆'-∆+'=''→)()(lim )(08.N 阶导数公式: 1!)1()(+-=⇒=n nna ax n x x ynn n x n y x y )1()!1()1()1ln(1+--=⇒+=-9.罗尔定理:闭连、开导、两头平 即f(a)=f(b). 10.拉格朗日中值定理:))(()()(a b f a f b f -'=-ξ11.柯西中值定理:)()()()()()(ξξg f b g a g b f a f ''=--12.泰勒公式:10100300200000)()!1()()(!)()(!3)()(!2)())(()()(++-+=⇒+-++-'''+-''+-'+=n n n n nn x x n f x R x R x x n x f x x x f x x x f x x x f x f x f ξ13.旋转体体积:以x 轴旋转:dx x f V b a2)]([⎰=π 。
专升本高等数学公式全集
专升本高等数学公式全集高等数学是专升本考试中的重要科目,掌握好相关公式是取得好成绩的关键。
以下为大家整理了一份较为全面的专升本高等数学公式,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数的定义:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个数 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x), x ∈ D。
函数的定义域:使函数有意义的自变量 x 的取值范围。
函数的值域:函数值的集合。
2、极限的概念数列的极限:对于数列{an},如果当 n 无限增大时,数列的项 an 无限趋近于一个常数 A,则称 A 为数列{an} 的极限,记作lim(n→∞)an = A。
函数的极限:当自变量x 趋近于某个值x0(或趋近于无穷大)时,函数 f(x) 趋近于一个常数 A,则称 A 为函数 f(x) 在该点的极限,记作lim(x→x0) f(x) = A 或lim(x→∞) f(x) = A。
3、极限的运算四则运算:若lim(x→x0) f(x) = A,lim(x→x0) g(x) = B,则lim(x→x0) f(x) ± g(x) = A ± Blim(x→x0) f(x) × g(x) = A × Blim(x→x0) f(x) / g(x) = A / B (B ≠ 0)无穷小量与无穷大量:无穷小量:以 0 为极限的变量。
若lim(x→x0) f(x) = 0,则称 f(x) 是x → x0 时的无穷小量。
无穷大量:绝对值无限增大的变量。
若lim(x→x0) f(x) =∞,则称f(x) 是x → x0 时的无穷大量。
无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界量的乘积是无穷小量。
无穷小量与无穷大量的关系:在自变量的同一变化过程中,无穷大量的倒数是无穷小量,无穷小量的倒数是无穷大量。
专升本数学公式汇总
专升本数学公式汇总在专升本的数学学习中,掌握各类公式是解题的关键。
下面为大家汇总了一些重要的数学公式,希望能对大家的学习有所帮助。
一、函数部分1、幂函数:$y = x^a$ ($a$为常数)2、指数函数:$y = a^x$ ($a > 0$且$a ≠ 1$)指数运算法则:$a^m × a^n = a^{m + n}$$(a^m)^n = a^{mn}$$a^{m} =\frac{1}{a^m}$3、对数函数:$y =\log_a x$ ($a > 0$且$a ≠ 1$)对数运算法则:$\log_a (MN) =\log_a M +\log_a N$$\log_a \frac{M}{N} =\log_a M \log_a N$$\log_a M^n = n\log_a M$换底公式:$\log_a b =\frac{\log_c b}{\log_c a}$二、三角函数部分1、基本关系$\sin^2\alpha +\cos^2\alpha = 1$$\tan\alpha =\frac{\sin\alpha}{\cos\alpha}$2、诱导公式$\sin (\alpha) =\sin\alpha$$\cos (\alpha) =\cos\alpha$$\sin (\pi \alpha) =\sin\alpha$$\cos (\pi \alpha) =\cos\alpha$$\sin (\pi +\alpha) =\sin\alpha$$\cos (\pi +\alpha) =\cos\alpha$3、和差公式$\sin (\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta$$\sin (\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta$$\cos (\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta$$\cos (\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta$4、二倍角公式$\sin 2\alpha = 2\sin\alpha\cos\alpha$$\cos 2\alpha =\cos^2\alpha \sin^2\alpha = 2\cos^2\alpha 1 = 1 2\sin^2\alpha$$\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}$5、半角公式$\sin^2\frac{\alpha}{2} =\frac{1 \cos\alpha}{2}$$\cos^2\frac{\alpha}{2} =\frac{1 +\cos\alpha}{2}$$\tan\frac{\alpha}{2} =\frac{1 \cos\alpha}{\sin\alpha} =\frac{\sin\alpha}{1 +\cos\alpha}$三、导数部分1、基本导数公式$(x^n)'= nx^{n 1}$$(\sin x)'=\cos x$$(\cos x)'=\sin x$$(\ln x)'=\frac{1}{x}$$(e^x)'= e^x$2、导数的四则运算$(u ± v)'= u' ± v'$$(uv)'= u'v + uv'$$\left(\frac{u}{v}\right)'=\frac{u'v uv'}{v^2}$($v ≠ 0$)3、复合函数求导法则设$y = f(u)$,$u = g(x)$,则复合函数$y = fg(x)$的导数为:$y' = f'g(x) \cdot g'(x)$四、积分部分1、基本积分公式$\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C$ ($n ≠ -1$)$\int \sin x dx =\cos x + C$$\int \cos x dx =\sin x + C$$\int \frac{1}{x} dx =\ln |x| + C$$\int e^x dx = e^x + C$2、定积分的性质$\int_a^b kf(x) dx = k\int_a^b f(x) dx$ ($k$为常数)$\int_a^b f(x) ± g(x) dx =\int_a^b f(x) dx ±\int_a^b g(x) dx$$\int_a^b f(x) dx =\int_a^c f(x) dx +\int_c^b f(x) dx$五、向量部分1、向量的加减法:$\overrightarrow{a} ±\overrightarrow{b} =(x_1 ± x_2, y_1 ± y_2)$($\overrightarrow{a} =(x_1, y_1)$,$\overrightarrow{b} =(x_2, y_2)$)2、向量的数量积:$\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = x_1x_2 + y_1y_2$ ($\theta$为两向量的夹角)六、立体几何部分1、长方体体积:$V = abc$ ($a$、$b$、$c$分别为长方体的长、宽、高)2、正方体体积:$V = a^3$ ($a$为正方体的棱长)3、圆柱体体积:$V =\pi r^2h$ ($r$为底面半径,$h$为高)4、圆锥体体积:$V =\frac{1}{3}\pi r^2h$ ($r$为底面半径,$h$为高)七、概率部分1、古典概型概率:$P(A) =\frac{m}{n}$($A$为事件,$m$为事件$A$包含的基本事件个数,$n$为基本事件总数)2、条件概率:$P(B|A) =\frac{P(AB)}{P(A)}$($P(AB)$为事件$A$和事件$B$同时发生的概率)以上只是专升本数学中的一部分重要公式,大家在学习过程中要理解公式的推导过程,多做练习,熟练掌握这些公式的应用。
高数专升本公式汇总
高数专升本公式汇总以下是一些高数专升本常用的公式汇总:1. 三角函数相关公式:- 数学常数:π≈3.14159;- 三角函数关系:sin(θ)=cos(90°−θ); cos(θ)=sin(90°−θ);- 三角函数的基本关系式:sin^2(θ)+cos^2(θ)=1;- 三角函数的和差倍角公式:sin(α±β)=sinαcosβ±cosαsinβ;cos(α±β)=cosαcosβ∓sinαsinβ;- 二倍角公式:sin2θ=2sinθcosθ;cos2θ=cos^2(θ)−sin^2(θ)=2cos^2(θ)−1=1−2sin^2(θ);- 半角公式:sin(θ/2)=±√[(1−cosθ)/2]; cos(θ/2)=±√[(1+cosθ)/2];2. 导数的基本公式:- 基本导数公式:(a^n)'=n×a^(n−1); (sinx)'=cosx; (cosx)'=−sinx; (ex)'=ex; (lnx)'=1/x;- 基本求导法则:- 乘法法则:(u×v)'=u'v+uv';- 除法法则:(u/v)'=(u'v−uv')/v^2;- 链式法则:(f(g(x)))'=f'(g(x))g'(x);3. 微分中值定理:- 罗尔定理:若f(x)在[a,b]内连续,在(a,b)内可导,且f(a)=f(b),则必存在ξ∈(a,b),使得f(ξ)=0;- 拉格朗日中值定理:若函数f(x)在区间[a,b]上连续,在(a,b)内可导,则在(a,b)内至少有一点ξ,使得f'(ξ)=(f(b)−f(a))/(b−a); - 柯西中值定理:若函数f(x)和g(x)在区间[a,b]上连续,在(a,b)内可导且g'(x)≠0,则在(a,b)内至少有一点ξ,使得(f(b)−f(a))/(g(b)−g(a))=(f'(ξ))/(g'(ξ));4. 不定积分公式:- 基本积分表:∫kdx=kx+C; ∫x^n dx=(x^(n+1))/(n+1)+C (其中n≠−1);- 基本积分法则:- 基本积分公式:∫f'(x)dx=f(x)+C;- 代换法则:若∫f(g(x))g'(x)dx=F(g(x))+C,则∫f(u)du=F(u)+C (其中u=g(x));- 分部积分法则:∫u'vdx=uv−∫uv'dx;希望以上的公式对您有所帮助!。
专升本数学必考公式大全
专升本数学必考公式大全
以下是一些专升本数学考试中常用的公式:
1. 平方差公式:(a±b)² = a² ± 2ab + b²
2. 二次方程的根公式:对于 ax² + bx + c = 0,根的公式为 x = [-b ± √(b² - 4ac)] / 2a
3. 三角函数和三角恒等式:
- 正弦定理:a/sinA = b/sinB = c/sinC
- 余弦定理:c² = a² + b² - 2abcosC
- 正弦恒等式:sin(A ± B) = sinAcosB ± cosAsinB
- 余弦恒等式:cos(A ± B) = cosAcosB ∓ sinAsinB
4. 指数与对数运算:
- a^x = b,则x = log(a, b)。
其中,log(a, x)表示以a为底,x
的对数。
- 对数公式:log(a*b) = loga + logb;log(a/b) = loga - logb
5. 概率公式:
- 事件A的概率:P(A) = n(A) / n(S),其中n(A)表示事件A
的样本点个数,n(S)表示样本空间的样本点个数。
- 事件A和事件B同时发生的概率:P(A∩B) = P(A) * P(B|A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
- 事件A和事件B至少一个发生的概率:P(A∪B) = P(A) +
P(B) - P(A∩B)
这只是一些常用的数学公式,专升本数学考试还涵盖其他各个分支的知识,建议针对具体考试大纲进行深入学习和准备。
专升本高等数学公式大全
专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。
专升本高数公式大全
专升本高数公式大全1.初等函数的性质- 一次函数的表达式:y = kx + b,其中k为斜率,b为截距。
- 二次函数的表达式:y = ax² + bx + c,其中a、b、c为常数。
-绝对值函数的表达式:y=,x。
2.导数与微分的基本公式- 函数极限的定义:lim(x→a) f(x) = L。
- 导数的定义:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx。
-基本导数公式:- (1) 若f(x) = xⁿ,则f'(x) = nxⁿ⁻¹。
-(2)若f(x)=eˣ,则f'(x)=eˣ。
- (3) 若f(x) = sin(x),则f'(x) = cos(x)。
- (4) 若f(x) = cos(x),则f'(x) = -sin(x)。
- (5) 若f(x) = ln(x),则f'(x) = 1/x。
3.极限的基本性质-极限的四则运算:- (1) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)±g(x)] = A±B。
- (2) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)g(x)] = AB。
- (3) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x)/g(x)] = A/B。
- (4) 若lim(x→a) f(x) = A,则lim(x→a) [c·f(x)] = c·A。
4.函数的极值与最值-函数的极值:设f(x)在x₀处有定义,称f(x)在x₀处有极小值,如果存在εₒ>0,使得当0<,x-x₀,<εₒ时,恒有f(x)≥f(x₀)。
-函数的最值:设f(x)在区间I上有定义,x₀∈I,如果对于任意x∈I,恒有f(x)≥f(x₀),则称f(x)在x₀处有最小值。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:2)1(32111112nn n q q q q q nn +=++++--=++++- 等差数列:等比数列: 常见数列的前n 项和:)1(21321+=++++n n n2)12(531n n =-++++ )14(31)12(53122222-=-++++n n n)12)(1(613212222++=++++n n n n )2)(1(31)1(433221++=+++⋅+⋅+⋅n n n n n111)1(1431321211+-=+++⋅+⋅+⋅n n n'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+1.导数公式:x x 2sec )(tan ='x x 2c s c )(c o t -=' x x x c o t c s c )(c s c -=' x x x t a n s e c )(s e c =' x x a a a ∙='ln )( x x e e =')( a x x a ln 1)(log ='211)(a r c s i n x x -=' 211)(a r c c o s x x --=' 211)(arctan x x +=' 211)c o t (x x a r c +-=' x x f x x f x f x ∆'-∆+'=''→)()(l i m)(0基本积分表:三角函数的有理式积分:两个重要极限:常用三角函数公式:x x 22sec tan 1=+x x 22c s c c o t 1=+x xx 2tan 1tan 22tan -=2cos 12sin 2x x -=2c o s 12c o s 2x x +=x x x s i n c o s 12t a n -=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ...590457182818284.2)11(lim 1sin lim==+=∞→→e xx xx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。
专升本数学公式汇总
专升本数学公式汇总在专升本的数学考试中,掌握好各种公式是取得优异成绩的关键。
以下是为大家精心汇总的专升本数学常见公式,希望能对大家的学习有所帮助。
一、函数1、函数的定义:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个数 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,那么就称 y 是 x 的函数,记作 y = f(x),x ∈ D。
2、基本初等函数(1)幂函数:y =x^α(α 为常数)(2)指数函数:y = a^x(a > 0 且a ≠ 1)(3)对数函数:y =logₐx(a > 0 且a ≠ 1)(4)三角函数:如正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y = tan x 等(5)反三角函数:如反正弦函数 y = arcsin x,反余弦函数 y =arccos x 等二、极限1、数列极限:对于数列{an},如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 都成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数极限(1)当x → x₀时函数的极限:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 0 <|x x₀| <δ 时,不等式|f(x) A| <ε 都成立,那么就称常数 A 是函数 f(x)当x → x₀时的极限,记作lim(x→x₀) f(x) = A。
(2)当x → ∞ 时函数的极限:设函数 f(x)当|x| 大于某一正数时有定义,如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正数 X,使得当|x| > X 时,不等式|f(x) A| <ε 都成立,那么就称常数 A 是函数 f(x)当x → ∞ 时的极限,记作lim(x→∞) f(x) =A。
专升本高等数学必备公式(修订版)
(3)
1 x2
dx
1 x
C
(5)
1dx x
ln
x
C
指数函数:(6)
a
x dx
ax ln a
C
1)
(4) x 1 2x
(6) (e x ) e x (8) (ln x) 1
x (10) (cos x) sin x
(12) (cot x) csc2 x
(14) (csc x) csc x cot x
(6)1 tan 2 x sec2 x
(7) 1 cot 2 x csc2 x
(8) sin x 1 csc x
(10) tan x 1 cot x
(9) cos x 1 sec x
4、等价无穷小(11 个):
当 0时: sin~
arcsin~
tan~
e 1 ~
ln(1) ~
1 cos~ 2 2
(16) sec xdx ln sec x tan x C
(17) csc xdx ln csc x cot x C
(18) 1 dx arcsin x C
1 x2
(20)
1
1 x
2
dx
arctan
x
C
(19)
1 dx arcsin x C
a2 x2
a
(21)
a2
1
x2 dx
1 a
arctan
x a
C
(22)
1 dx ln x x2 a2 C x2 a2
(23)
1 dx ln x x2 a2 C x2 a2
(24)
x2
1
a2
dx
1 ln 2a
专升本高等数学公式全集
专升本高等数学公式全集1.极限与连续- 极限的定义:对于函数f(x),当x趋于无穷大时,如果存在常数L,使得对于任意给定的正数ε,总存在正数δ,当,x-a,<δ时,有,f(x)-L,<ε,则称函数f(x)在点a处极限为L,记为lim(x→a)f(x)=L。
- 极限运算法则:设lim(x→a)f(x)=A,lim(x→a)g(x)=B,则lim(x→a)(f(x)±g(x))=A±B,lim(x→a)f(x)g(x)=A·B,lim(x→a)f(x)/g(x)=A/B(其中B≠0)。
- 无穷小量:若lim(x→∞)f(x)=0,则称函数f(x)为当x趋于无穷大时的无穷小量。
- 利用洛必达法则可以求解极限:“若lim(x→a)f(x)=0,lim(x→a)g(x)=0,且lim(x→a)f'(x)/g'(x)存在(或为∞),则lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)”。
2.微分学- 导数定义:函数f(x)在点x=a处的导数定义为:lim(h→0)(f(a+h)-f(a))/h,记为f'(a),也可表示为dy/dx或y'。
- 基本导数法则:(1)(c)'=0,其中c为常数;(2)(x^n)'=nx^(n-1),其中n为任意实数;(3)(e^x)'=e^x,(a^x)'=a^xlna,其中a>0且a≠1;(4)(lnx)'=1/x,(log_a(x))'=1/(xlna),其中a>0且a≠1-高阶导数:函数f(x)的n阶导数记作f^(n)(x),其中n为正整数,可从一阶导数f'(x)重复求导得到。
- 隐函数求导:对于方程F(x,y)=0,若能求出y',则有dy/dx=-F_x/F_y(其中F_x和F_y分别表示F关于x、y的偏导数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y m tx x p n m s t p z z n y y m x x C B A DCz By Ax d c zb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。