SPSS多元回归分析报告实例

合集下载

Spss对民航客运量的多元回归分析:

Spss对民航客运量的多元回归分析:

Spss对民航客运量的多元回归分析:1.首先方法选择:进入法。

然后分析相关性表格:国民收入,消费额,民航航线里程,来华旅游人数都与民航客运量高度相关,而铁路客运量和民航客运量的相关性较低。

通过观察调整后的判定系数为0.994,拟合优度较高,不被解释的变量较少。

回归方程的显著性小于0.05,说明被解释变量与解释变量的线性关系是显著的。

可以建立线性方程。

在显著性系数中,铁路客运量的sig 大于0.05,所以是不显著的,说明自变量铁路客运量对因变量的影响是不明显的,应该移除该变量。

回归方程:ˆY =-195.945+0.519X 1-0.771X 2+0.001X 3+15.983X 4+0.344X 52.方法选择:后退法。

然后分析相关性表格:由表可以看出:除了铁路客运量的相关性较低外,其余变量的相关性都较高。

采用后退法后,调整变量更高,拟合优度更高。

回归方程的显著性为0,认为被解释变量和解释的变量线性关系是显著的,可以建立线性方程。

在剔除变量铁路客运量后,剩余变量的sig 都变得更小,显著性更显著。

回归方程为:ˆY =-153.930+0.509X 1-0.754X 2+15.980X 4+0.347X 53.方法选择:逐步回归法。

然后分析相关性表格:铁路客运量相关性较低,其他变量相关性都较高。

采用逐步法后,调整值很高,拟合优度很高。

说明可以用该模型预测。

sig 值小于0.05,说明显著性很高。

采用逐步回归法后,变量得显著性很高。

变量为国民收入和民航航线里程。

回归方程为:ˆY =-299.004+0.083X 1+17.316X 4。

SPSS多元回归分析实例

SPSS多元回归分析实例

t i e an dl l t 多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y 与各自变量x j (j=1,2,3,…,n)之间的多元线性回归模型:其中:b 0是回归常数;b k (k =1,2,3,…,n)是回归参数;e 是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x 1为最多连续10天诱蛾量(头);x 2为4月上、中旬百束小谷草把累计落卵量(块);x 3为4月中旬降水量(毫米),x 4为4月中旬雨日(天);预报一代粘虫幼虫发生量y (头/m2)。

分级别数值列成表2-1。

预报量y :每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x 1诱蛾量0~300头为l 级,301~600头为2级,601~1000头为3级,1000头以上为4级;x 2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x 3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x 4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x 1x 2x 3x 4y 年 蛾量 级别 卵量 级别 降水量 级别 雨日 级别 幼虫密度级别1960102241121 4.31211011961300144030.111141196269936717.511191196318764675417.14745541965431801 1.9121111966422220101013119678063510311.82322831976115124020.612171197171831460418.444245419728033630413.433226319735722280213.224216219742641330342.243219219751981165271.84532331976461214017.515328319777693640444.7432444197825516510101112数据保存在“DATA6-5.SAV”文件中。

spss多元回归分析案例

spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析案例。

在统计学中,多元回归分析是一种用于探究多个自变量与因变量之间关系的方法。

通过多元回归分析,我们可以了解不同自变量对因变量的影响程度,以及它们之间的相互作用情况。

在本篇文档中,我将通过一个实际案例来介绍如何使用SPSS软件进行多元回归分析。

案例背景:假设我们是一家电子产品公司的市场营销团队,在推出新产品之前,我们希望了解不同因素对产品销量的影响。

我们收集了一些数据,包括产品的售价、广告投入、竞争对手的售价、季节等因素,以及产品的销量作为因变量。

数据准备:首先,我们需要将数据录入SPSS软件中。

在SPSS中,我们可以通过导入Excel文件的方式将数据导入到软件中,并进行必要的数据清洗和处理。

确保数据的准确性和完整性对于后续的多元回归分析非常重要。

模型建立:接下来,我们需要建立多元回归模型。

在SPSS中,我们可以通过依次选择“分析”-“回归”-“线性回归”来进行多元回归分析。

在“因变量”栏中输入销量,然后将所有自变量依次输入到“自变量”栏中。

在建立模型之前,我们还需要考虑是否需要进行变量转换或交互项的添加,以更好地拟合数据。

模型诊断:建立模型后,我们需要对模型进行诊断,以确保模型的准确性和有效性。

在SPSS中,我们可以通过查看残差的正态性、异方差性以及自相关性来进行模型诊断。

如果模型存在严重的偏差或违反了多元回归分析的假设,我们需要进行相应的修正或改进。

模型解释:最后,我们需要解释多元回归模型的结果。

在SPSS的输出结果中,我们可以看到各个自变量的系数、显著性水平、调整R方等统计指标。

通过这些指标,我们可以了解不同自变量对销量的影响程度,以及它们之间的相互作用情况。

同时,我们还可以进行各种假设检验,来验证模型的有效性和可靠性。

结论:通过以上多元回归分析,我们可以得出不同自变量对产品销量的影响程度,以及它们之间的相互作用情况。

这些结果对于我们制定产品的定价策略、广告投放策略以及市场营销策略都具有重要的指导意义。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

基于SPSS多元线性回归分析的案例

基于SPSS多元线性回归分析的案例

农民收入影响因素的多元回归分析自改革开放以来,虽然中国经济平均增长速度为9.5 % ,但二元经济结构给经济发展带来的问题仍然很突出。

农村人口占了中国总人口的70 %多,农业产业结构不合理,经济不发达,以及农民收入增长缓慢等问题势必成为我国经济持续稳定增长的障碍。

正确有效地解决好“三农”问题是中国经济走出困境,实现长期稳定增长的关键。

其中,农民收入增长是核心,也是解决“三农”问题的关键。

本文力图应用适当的多元线性回归模型,对有关农民收入的历史数据和现状进行分析,寻找其根源,探讨影响农民收入的主要因素,并在此基础上对如何增加农民收入提出相应的政策建议。

一、回归模型的建立(1)数据的收集根据实际的调查分析,我们在影响农民收入因素中引入3个解释变量。

即:X2-财政用于农业的支出的比重,X3-乡村从业人员占农村人口的比重,X4 -农作物播种面积1991223.2510.2650.92149585.8 1992233.1910.0551.53149007.1 1993265.679.4951.86147740.7 1994335.169.252.12148240.6 1995411.298.4352.41149879.3 1996460.688.8253.23152380.6 1997477.968.354.93153969.2 1998474.0210.6955.84155705.7 1999466.88.2357.16156372.8 2000466.167.7559.33156299.9 2001469.87.7160.62155707.9 2002468.957.1762.02154635.5 2003476.247.1263.721524152004499.399.6765.64153552.6 2005521.27.2267.59155487.7(1)回归模型的构建Y i=1+2X2+3X3+4X4+u i二、回归模型的分析(1)多重共线性检验系数a(2)模型异方差的检验异方差产生的原因有:数据质量原因、模型设定原因。

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析多元回归分析是一种统计方法,用于研究一个因变量与多个自变量之间的关系。

在SPSS中,可以使用该方法来构建、估计和解释多元回归模型。

下面将以一个实例来解析SPSS中的多元回归分析。

假设我们想要研究一个教育投资项目的效果,该项目包括多个自变量,例如教育资金、教育设施、学生人数等,并且我们希望预测该项目对学生学习成绩的影响。

首先,我们需要准备好数据并导入SPSS中。

数据应包含每个教育投资项目的多个观测值,以及与之相关的自变量和因变量。

例如,可以将每个项目作为一个观测值,并将教育资金、教育设施、学生人数等作为自变量,学生学习成绩作为因变量。

在SPSS中,可以通过选择“Analyze”菜单中的“Regression”选项来打开回归分析对话框。

然后,选择“Linear”选项来进行多元回归分析。

接下来,可以将自变量和因变量添加到对话框中。

在自变量列表中,选择教育资金、教育设施、学生人数等自变量,并将它们移动到“Independent(s)”框中。

在因变量框中,选择学生学习成绩。

然后,点击“OK”按钮开始进行分析。

SPSS将输出多元回归的结果。

关键的统计指标包括回归系数、显著性水平和拟合度。

回归系数表示每个自变量对因变量的影响程度,可以根据系数的大小和正负来判断影响的方向。

显著性水平表示自变量对因变量的影响是否显著,一般以p值小于0.05为标准。

拟合度指示了回归模型对数据的拟合程度,常用的指标有R方和调整后的R方。

在多元回归分析中,可以通过检查回归系数的符号和显著性水平来判断自变量对因变量的影响。

如果回归系数为正且显著,表示该自变量对因变量有正向影响;如果回归系数为负且显著,表示该自变量对因变量有负向影响。

此外,还可以使用其他方法来进一步解释和验证回归模型,例如残差分析、模型诊断等。

需要注意的是,在进行多元回归分析时,需要满足一些前提条件,例如自变量之间应该独立、与因变量之间应该是线性关系等。

SPSS实验多元线性回归分析12

SPSS实验多元线性回归分析12
1,确定因变量与自变量,初步设定回归方程。
这里我们以总成绩作为因变量Y,平时成绩和期中成绩分别作为自变量X1,X2,建立的多元回归模型为:
Байду номын сангаас2,估计参数,建立回归预测模型
利用SPSS可得一下结果:
Variables Entered/Removedb
Model
Variables Entered
Variables Removed
1183.800
19
a. Predictors: (Constant),期中成绩,平时成绩
b. Dependent Variable:总成绩
注释:从表中可得拟合方程的F统计量值为7.586,相应的P值为0.000说明,拟合方程是显著的。是具有统计意义的。
Coefficientsa
Model
Unstandardized Coefficients
Method
1
期中成绩,平时成绩a
.
Enter
a. All requested variables entered.
b. Dependent Variable:总成绩
注释:根据这个表的结果我们可以初步的知道,经过检验自变量X1,X2是可以加入到准备估计的回归方程中作为变量的。
Model Summaryb
Standardized Coefficients
t
Sig.
95% Confidence Interval for B
Correlations
Collinearity Statistics
B
Std. Error
Beta
Lower Bound
Upper Bound
Zero-order

spss多元回归分析案例

spss多元回归分析案例

spss多元回归分析案例SPSS多元回归分析是一种常用的统计方法,可以通过分析多个自变量对一个或多个因变量的影响程度,帮助研究者理解变量之间的关系以及预测变量之间的变化情况。

以下是一个关于人们消费意愿的多元回归分析的案例。

假设我们想研究人们的消费意愿受到收入水平、年龄和受教育水平的影响程度。

我们收集了100个参与者的数据,包括他们的收入、年龄、受教育水平以及消费意愿。

下面将介绍如何使用SPSS进行多元回归分析。

首先,在SPSS软件中打开数据文件,并选择"回归"菜单下的"线性回归"选项。

然后将因变量(消费意愿)拉入"因变量"框中,将自变量(收入、年龄、受教育水平)拉入"自变量"框中。

其次,点击"统计"按钮,在弹出的对话框中勾选"无多重共线性检验"、"离群值"和"样本相关矩阵"选项,并点击"确定"按钮。

接下来,点击"模型"按钮,在弹出的对话框中选择"全量"和"因素样本相关系数"选项,并点击"确定"按钮。

然后,点击"保存"按钮,在弹出的对话框中输入保存路径和文件名,并勾选"标准化残差"、"标准化预测值"和"离群值的DFITS"选项,并点击"确定"按钮。

最后,点击"OK"按钮开始进行多元回归分析。

在分析结果中,我们可以查看每个自变量的回归系数、标准误、t值以及显著性水平。

还可以查看整体模型的解释力、统计显著性和调整R 平方。

根据分析结果,我们可以得出结论:收入水平、年龄和受教育水平对消费意愿有显著影响。

收入水平对消费意愿的影响最大,其次是受教育水平,年龄对消费意愿的影响较小。

多元回归分析SPSS案例

多元回归分析SPSS案例

多元回归分析在大多数得实际问题中,影响因变量得因素不就就是一个而就就是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间得多元线性回归模型:其中:b0就就是回归常数;b k(k=1,2,3,…,n)就就是回归参数;e就就是随机误差。

多元回归在病虫预报中得应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10、0毫米为1级,10、1~13、2毫米为2级,13、3~17、0毫米为3级,17、0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1数据保存在“DATA6-5、SAV”文件中。

1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”与“幼虫密度”变量,并输入数据。

再创建蛾量、卵量、降水量、雨日与幼虫密度得分级变量“x1”、“x2”、“x3”、“x4”与“y”,它们对应得分级数值可以在SPSS数据编辑窗口中通过计算产生。

编辑后得数据显示如图2-1。

图2-1或者打开已存在得数据文件“DATA6-5、SAV”。

2)启动线性回归过程单击SPSS主菜单得“Analyze”下得“Regression”中“Linear”项,将打开如图2-2所示得线性回归过程窗口。

多元回归分析SPSS案例

多元回归分析SPSS案例

多元回归分析SPSS案例
一、案例背景
一所大学学术部门进行了一项有关学生毕业的调查,主要是为了探讨
学生毕业的影响因素,通过这个调查,大学试图及早发现潜在的学术发展
问题,从而改善学术教育和服务质量。

调查采用SPSS软件分析,将来自
一所大学学生的有关信息作为研究目标,本研究的研究对象为大学学生。

二、研究目的
1、探索影响大学生毕业的主要因素;
2、研究各变量对大学生毕业的影响程度;
3、提出适合大学学生的毕业提升策略。

三、研究变量
本研究采用多元线性回归分析方法,研究变量有:(1)身体健康程
度(即体检结果);(2)现金流(即家庭收入);(3)家庭教育水平;(4)学习成绩;(5)家庭状况,即与家庭成员的关系;(6)个人情感
状况;(7)考试作弊。

四、研究方法
1、获取研究数据:
通过与学校协商,确定调查对象,以及采集问卷的方法(如发放问卷、网络调查等),以获取有关学生毕业的数据;
2、数据处理:
清洗数据,将数据分类进行处理,去除无关信息;
3、多元回归分析:
计算自变量与因变量之间的线性关系,分析变量间关系,建立多元回归模型;。

spss多元回归分析报告案例

spss多元回归分析报告案例

企业管理对居民消费率影响因素的探究---以湖北省为例改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。

居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。

本模型以湖北省1995年-2010年数据为例,探究各因素对居民消费率的影响及多元关系。

(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。

通常来说,影响居民消费率的因素是多方面的,如:居民总收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。

(注:数据来自《湖北省统计年鉴》)总消费(C:亿元) 总GDP(亿元)消费率(%)1995 1095.97 2109.38 51.96 1997 1438.12 2856.47 50.35 2000 1594.08 3545.39 44.96 2001 1767.38 3880.53 45.54 2002 1951.54 4212.82 46.32 2003 2188.05 4757.45 45.99 2004 2452.62 5633.24 43.54 2005 2785.42 6590.19 42.27 2006 3124.37 7617.47 41.02 2007 3709.69 9333.4 39.75 2008 4225.38 11328.92 37.30 2009 4456.31 12961.1 34.38 2010 5136.78 15806.09 32.50一、计量经济模型分析(一)、数据搜集根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。

X1:居民1.人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14岁人口与 15-64岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。

多元回归分析实验报告

多元回归分析实验报告

多元回归分析实验报告【实验环境】SPSS 23.0【实验名称】多元回归分析【实验目的】(1)掌握应用SPSS软件执行简单的多元回归分析,并根据统计输出结果整理报表(2)熟悉按Enter和Stepwise等不同的方法把自变量置入回归模型,分析并报告结果【实验内容】1.分析前期的虚拟变量处理准备。

利用“回归分析数据”执行统计分析,以便探讨主管品德、主管工作能力、主管人际能力三个因素对员工离职倾向的影响。

其中,为了排除员工性别(1=男,2=女)和组织类型(1=政府机关;2=事业单位;3=国有企业;4=非国有企业)两个因素对分析结果的干扰,通常需要把员工性别和组织类型作为控制变量建立分析模型。

并且,由于上述两个控制变量均为分类变量,不宜直接置入回归模型,应将其应用重新编码为不同变量,分别将它们转换为取值为0或者1的虚拟变量。

在进行虚拟变量转换时,可以把“男”作为性别的参照组,而把“政府机关”作为组织类型的参照组,以此进行转换(可以参照实验结果中的表1加以理解)。

2.按照Enter法置入解释变量执行回归分析。

把主管品德、主管工作能力、主管人际能力三个因素,以及经过上一步经过转换得到并用作控制变量的虚拟变量,同时置入模型作为IV (Independent Variable),同时注意勾选方差变化量及多重共线性检验,执行统计分析,并根据输出结果按表1要求的信息制作报表。

3.按照stepwise法置入解释变量执行回归分析。

把主管品德、主管工作能力、主管人际能力三个因素,以及经过上一步经过转换得到并用作控制变量的虚拟变量,同时置入模型作为IV(Independent Variable),同时注意勾选方法为Stepwise(步进,或译为逐步)及多重共线性检验,执行统计分析,并根据输出结果按表2要求的信息制作报表。

【实验过程】【实验结果】1.根据统计输出结果,按表1要求的信息报告相应内容,并回答后面的思考问题。

表1 应用Enter法置入解释变量的多元回归分析结果摘要(N=___722_____)注:*P<0.05,**P<0.01,***P<0.001(双尾检验)。

SPSS中多元回归分析实例解析

SPSS中多元回归分析实例解析

1965 43 1 80 1 1.9 1 2 1 1
1
1966 422 2 20 1 0 1 0 1 3
1
1967 806 3 510 3 11.8 2 3 2 28 3
1976 115 1 240 2 0.6 1 2 1 7
1
1971 718 3 1460 4 18.4 4 4 2 45 4
1972 803 3 630 4 13.4 3 3 2 26 3
某地区病虫测报站用相关系数法选取了以下 4 个预报因子;x1 为最多连续 10 天 诱蛾量(头);x2 为 4 月上、中旬百束小谷草把累计落卵量(块);x3 为 4 月中旬降 水量(毫米),x4 为 4 月中旬雨日(天);预报一代粘虫幼虫发生量 y(头/m2)。 分级别数值列成表 2-1。
预报量 y:每平方米幼虫 0~10 头为 1 级,11~20 头为 2 级,21~40 头为 3 级, 40 头以上为 4 级。
1978 255 1 65 1 0 1 0 1 11 2
数据保存在“DATA6-5.SAV”文件中。
1)准备分析数据
在 SPSS 数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼 虫密度”变量,并输入数据。再创建蛾量、卵量、降水量、雨日和幼虫密度的分 级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在 SPSS 数据编 辑窗口中通过计算产生。编辑后的数据显示如图 2-1。
本例选中“Unstandardized”非标准化预测值。
②“Distances”距离栏选项:
Mahalanobis: 距离。 Cook’s”: Cook 距离。 Leverage values: 杠杆值。
③“Prediction Intervals”预测区间选项:

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤步骤1:导入数据首先,打开SPSS软件,并导入准备进行多元线性回归分析的数据集。

在菜单栏中选择"File",然后选择"Open",在弹出的窗口中选择数据集的位置并点击"Open"按钮。

步骤2:选择变量在SPSS的数据视图中,选择需要用于分析的相关自变量和因变量。

选中的变量将会显示在变量视图中。

确保选择的变量是数值型的,因为多元线性回归只适用于数值型变量。

步骤3:进行多元线性回归分析在菜单栏中选择"Analyze",然后选择"Regression",再选择"Linear"。

这将打开多元线性回归的对话框。

将因变量移动到"Dependent"框中,将自变量移动到"Independent(s)"框中,并点击"OK"按钮。

步骤4:检查多元线性回归的假设在多元线性回归的结果中,需要检查多元线性回归的基本假设。

这些假设包括线性关系、多重共线性、正态分布、独立性和等方差性。

可以通过多元线性回归的结果来进行检查。

步骤5:解读多元线性回归结果多元线性回归的结果会显示在输出窗口的回归系数表中。

可以检查各个自变量的回归系数、标准误差、显著性水平和置信区间。

同时,还可以检查回归模型的显著性和解释力。

步骤6:完成多元线性回归分析报告根据多元线性回归的结果,可以编写一份完整的多元线性回归分析报告。

报告应包括简要介绍、研究问题、分析方法、回归模型的假设、回归结果的解释以及进一步分析的建议等。

下面是一个多元线性回归分析报告的示例:标题:多元线性回归分析报告介绍:本报告基于一份数据集,旨在探究x1、x2和x3对y的影响。

通过多元线性回归分析,我们可以确定各个自变量对因变量的贡献程度,并检验模型的显著性和准确性。

研究问题:本研究旨在探究x1、x2和x3对y的影响。

SPSS多元回归分析实例

SPSS多元回归分析实例

SPSS多元回归分析实例多元回归分析是一种多变量统计分析方法,它用于探讨自变量与因变量之间的关系。

在实际应用中,可以通过SPSS软件进行多元回归分析。

以下是一个关于房屋价格的多元回归分析实例。

假设我们想要解释一些城市房屋价格与房屋的面积、年龄和地理位置之间的关系。

首先,我们需要收集相关数据,包括房屋价格作为因变量,房屋的面积、年龄和地理位置作为自变量。

我们可以通过SPSS软件建立一个数据文件,将这些数据输入到相应的变量中。

然后,我们需要进行数据预处理,包括缺失值处理和异常值处理。

在SPSS中,可以使用"Transform"菜单中的"Recode"功能来处理缺失值和异常值。

接下来,我们可以建立一个多元回归模型,通过分析自变量与因变量之间的关系。

在SPSS中,可以使用"Analyze"菜单中的"Regression"功能来进行多元回归分析。

在多元回归分析的对话框中,我们需要选择因变量和自变量,然后点击"OK"按钮运行分析。

在本例中,我们可以选择价格作为因变量,面积、年龄和地理位置作为自变量。

SPSS将输出分析结果,包括回归系数、标准误差、显著性水平等信息。

我们可以根据这些结果来解释自变量与因变量之间的关系。

例如,回归系数表示自变量对因变量的影响程度。

正的回归系数表示自变量与因变量呈正相关关系,负的回归系数表示自变量与因变量呈负相关关系。

标准误差用于评估回归模型的准确性。

较小的标准误差表示模型的预测能力较强,较大的标准误差表示模型的预测能力较弱。

显著性水平用于判断自变量与因变量之间的关系是否显著。

通常情况下,显著性水平小于0.05时,表示自变量与因变量之间的关系是显著的。

最后,我们可以通过图表来展示多元回归分析的结果。

在SPSS中,可以使用"Graphs"菜单中的"Chart Builder"功能来绘制相关的图表,如散点图、线性回归图等。

多元线性回归实例分析报告

多元线性回归实例分析报告

SPSS--回归-多元线性回归模型案例解析!(一)多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。

2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。

数据如下图所示:点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“和”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值)点击继续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元回归分析在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。

可以建立因变量y与各自变量x j(j=1,2,3,…,n)之间的多元线性回归模型:其中:b0是回归常数;b k(k=1,2,3,…,n)是回归参数;e是随机误差。

多元回归在病虫预报中的应用实例:某地区病虫测报站用相关系数法选取了以下4个预报因子;x1为最多连续10天诱蛾量(头);x2为4月上、中旬百束小谷草把累计落卵量(块);x3为4月中旬降水量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫发生量y(头/m2)。

分级别数值列成表2-1。

预报量y:每平方米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级。

预报因子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降水量0~10.0毫米为1级,10.1~13.2毫米为2级,13.3~17.0毫米为3级,17.0毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天或6天以上为4级。

表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降水量级别雨日级别幼虫密度级别1960 1022 4 112 1 4.3 1 2 1 10 1 1961 300 1 440 3 0.1 1 1 1 4 1 1962 699 3 67 1 7.5 1 1 1 9 1 1963 1876 4 675 4 17.1 4 7 4 55 4 1965 43 1 80 1 1.9 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 11.8 2 3 2 28 3数据保存在“DATA6-5.SAV”文件中。

1)准备分析数据在SPSS数据编辑窗口中,创建“年份”、“蛾量”、“卵量”、“降水量”、“雨日”和“幼虫密度”变量,并输入数据。

再创建蛾量、卵量、降水量、雨日和幼虫密度的分级变量“x1”、“x2”、“x3”、“x4”和“y”,它们对应的分级数值可以在SPSS数据编辑窗口中通过计算产生。

编辑后的数据显示如图2-1。

图2-1或者打开已存在的数据文件“DATA6-5.SAV”。

2)启动线性回归过程单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图2-2所示的线性回归过程窗口。

图2-2 线性回归对话窗口3) 设置分析变量设置因变量:用鼠标选中左边变量列表中的“幼虫密度[y]”变量,然后点击“Dependent”栏左边的向右拉按钮,该变量就移到“Dependent”因变量显示栏里。

设置自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降水量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量显示栏里。

设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。

选择标签变量: 选择“年份”为标签变量。

选择加权变量: 本例子没有加权变量,因此不作任何设置。

4)回归方式本例子中的4个预报因子变量是经过相关系数法选取出来的,在回归分析时不做筛选。

因此在“Method”框中选中“Enter”选项,建立全回归模型。

5)设置输出统计量单击“Statistics”按钮,将打开如图2-3所示的对话框。

该对话框用于设置相关参数。

其中各项的意义分别为:图2-3 “Statistics”对话框①“Regression Coefficients”回归系数选项:“Estimates”输出回归系数和相关统计量。

“Confidence interval”回归系数的95%置信区间。

“Covariance matrix”回归系数的方差-协方差矩阵。

本例子选择“Estimates”输出回归系数和相关统计量。

②“Residuals”残差选项:“Durbin-Watson”Durbin-Watson检验。

“Casewise diagnostic”输出满足选择条件的观测量的相关信息。

选择该项,下面两项处于可选状态:“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;“All cases”选择所有观测量。

本例子都不选。

③其它输入选项“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。

“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。

“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。

“Part and partial correlation”相关系数和偏相关系数。

“Collinearity diagnostics”显示单个变量和共线性分析的公差。

本例子选择“Model fit”项。

6)绘图选项在主对话框单击“Plots”按钮,将打开如图2-4所示的对话框窗口。

该对话框用于设置要绘制的图形的参数。

图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。

图2-4“Plots”绘图对话框窗口左上框中各项的意义分别为:∙“DEPENDNT”因变量。

∙“ZPRED”标准化预测值。

∙“ZRESID”标准化残差。

∙“DRESID”删除残差。

∙“ADJPRED”调节预测值。

∙“SRESID”学生氏化残差。

∙“SDRESID”学生氏化删除残差。

“Standardized Residual Plots”设置各变量的标准化残差图形输出。

其中共包含两个选项:“Histogram”用直方图显示标准化残差。

“Normal probability plots”比较标准化残差与正态残差的分布示意图。

“Produce all partial plot”偏残差图。

对每一个自变量生成其残差对因变量残差的散点图。

本例子不作绘图,不选择。

7) 保存分析数据的选项在主对话框里单击“Save”按钮,将打开如图2-5所示的对话框。

图2-5 “Save”对话框①“Predicted Values”预测值栏选项:Unstandardized 非标准化预测值。

就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回归模型拟合的预测值。

Standardized 标准化预测值。

Adjusted 调整后预测值。

S.E. of mean predictions 预测值的标准误。

本例选中“Unstandardized”非标准化预测值。

②“Distances”距离栏选项:Mahalanobis: 距离。

Cook’s”: Cook距离。

Leverage values: 杠杆值。

③“Prediction Intervals”预测区间选项:Mean: 区间的中心位置。

Individual: 观测量上限和下限的预测区间。

在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值。

Confidence Interval:置信度。

本例不选。

④“Save to New File”保存为新文件:选中“Coefficient statistics”项将回归系数保存到指定的文件中。

本例不选。

⑤“Export model information to XML file”导出统计过程中的回归模型信息到指定文件。

本例不选。

⑥“Residuals”保存残差选项:“Unstandardized”非标准化残差。

“Standardized”标准化残差。

“Studentized”学生氏化残差。

“Deleted”删除残差。

“Studentized deleted”学生氏化删除残差。

本例不选。

⑦“Influence Statistics”统计量的影响。

“DfBeta(s)”删除一个特定的观测值所引起的回归系数的变化。

“Standardized DfBeta(s)”标准化的DfBeta值。

“DiFit”删除一个特定的观测值所引起的预测值的变化。

“Standardized DiFit”标准化的DiFit值。

“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率。

本例子不保存任何分析变量,不选择。

8)其它选项在主对话框里单击“Options”按钮,将打开如图2-6所示的对话框。

图2-6 “Options”设置对话框①“Stepping Method Criteria”框用于进行逐步回归时内部数值的设定。

其中各项为:“Use probability of F”如果一个变量的F值的概率小于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当变量的F值的概率大于设置的剔除值(Removal),则该变量将从回归方程中被剔除。

由此可见,设置“Use probability of F”时,应使进入值小于剔除值。

“Ues F value”如果一个变量的F值大于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当变量的F值小于设置的剔除值(Removal),则该变量将从回归方程中被剔除。

同时,设置“Use F value”时,应使进入值大于剔除值。

本例是全回归不设置。

②“Include constant in equation”选择此项表示在回归方程中有常数项。

本例选中“Include constant in equation”选项在回归方程中保留常数项。

③“Missing Values”框用于设置对缺失值的处理方法。

其中各项为:“Exclude cases listwise”剔除所有含有缺失值的观测值。

“Exchude cases pairwise”仅剔除参与统计分析计算的变量中含有缺失值的观测量。

“Replace with mean”用变量的均值取代缺失值。

本例选中“Exclude cases listwise”。

9)提交执行在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中。

主要结果见表2-2至表2-4。

10) 结果分析主要结果:表2-2表2-2 是回归模型统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差。

表2-3表2-3 回归模型的方差分析表,F值为10.930,显著性概率是0.001,表明回归极显著。

相关文档
最新文档