山东高考数学理科试题及答案1
2015年高考山东理科数学试题及答案解析
2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B =( )(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,4 【答案】C【解析】2{|430}{|13}A x x x x x =-+<=<<,(2,3)A B =,故选C .(2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =( ) (A)1i - (B )1i + (C )1i -- (D)1i -+ 【答案】A【解析】2(1i)i i i 1i z =-=-+=+,1i z =-,故选A .(3)【2015年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像( )(A)向左平移12π个单位(B )向右平移12π个单位(C )向左平移3π个单位(D)向右平移3π个单位 【答案】B【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位,故选B .(4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( )(A )232a - (B )234a - (C)234a (D )232a【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=,故选D .(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是( )(A )(,4)-∞ (B)(,1)-∞ (C )(1,4) (D )(1,5)【答案】A【解析】当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,故选A . (6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =( )(A)3 (B)2 (C )—2 (D )-3 【答案】B 【解析】由z ax y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >,故选B . (7)【2015年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B)43π (C)53π (D )2π 【答案】C【解析】2215121133V πππ=⋅⋅-⋅⋅=,故选C .(8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)(A)4.56% (B )13.59% (C )27.18% (D)31.74% 【答案】D【解析】1(36)(95.44%68.26%)13.59%2P ξ<<=-=,故选D .(9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或23- (C )54-或45- (D )43-或34-【答案】D【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则22|3223|1,|55|11k k d k k k ----==+=++,解得43k =-或34-,故选D . (10)【2015年山东,理10】设函数31,1,()2,1.x x x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是( )(A )2[,1]3 (B)[0,1] (C )2[,)3+∞ (D )[1,)+∞【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,则121a a ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,故选C .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2015年山东,理11】观察下列各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【解析】0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++ 021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n nn n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)【2015年山东,理12】若“[0,],tan 4x x m π∀∈≤"是真命题,则实数m 的最小值为 .【答案】1【解析】“[0,],tan 4x x m π∀∈≤”是真命题,则tan 14m π≥=,于是实数m 的最小值为1.(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为 .【答案】116【解析】11200111111236T xdx x dx =++=++=⎰⎰.(14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += .【答案】32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得12,2b a =-=,则13222a b +=-=-.(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 . 【答案】32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为by x a =±,则22222222(,),(,)pb pb pb pb A B a a a a-22:2(0)C x py p =>的焦点(0,)2pF ,则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12Af a ==,求ABC ∆面积.解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=-,由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈.(Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1a =,由余弦定理可得2212cos 23(23)6b c bc bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即12323bc ≤=+-,11123sin sin 22644ABC S bc A bc bc π∆+===≤故ABC ∆面积的最大值为234+. (17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角(锐角)的大小.解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T ,在三棱台DEF ABC -中,2AB DE =,则2AC DF =, 而G 是AC 的中点,DF AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG FC . 又在BDC ∆,是BC 的中点,则TH DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH .(Ⅱ)由CF ⊥平面ABC ,可得DG ⊥平面ABC 而,AB BC ⊥,45BAC ∠=,则GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点,,,GA GB GC 所在的直线,分别为,,x y z 轴建立空间直角坐标系,设2AB =,则1,22,2DE CF AC AG ====,22(0,2,0),(2,0,0),(2,0,1),(,,0)22B C F H ---, 则平面ACFD 的一个法向量为1(0,1,0)n =,设平面FGH 的法向量为 2222(,,)n x y z =,则2200n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩,即22222202220x y x z ⎧-=⎪⎨⎪-+=⎩, 取21x =,则221,2y z ==,2(1,1,2)n =,1211cos ,2112n n <>==++,故平面FGH 与平面ACFD 所成角(锐角)的大小为60.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233nn S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .解:(Ⅰ)由233n n S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥,而11133a -=≠,则13,13,1n n n a n -=⎧=⎨>⎩.(Ⅱ)由3log n n n a b a =及13,13,1n n n a n -=⎧=⎨>⎩,可得3111log 3113n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩ 2311123133333n n n T --=+++++,2234111123213333333n n n n n T ---=++++++,22312231211111111111111()3333333333333331121213113213319392233182313n n n n n n n n n nn n T n n n ----=+-++++-=-+++++----+=+-=+--=-⋅⋅- 113211243n n n T -+=-⋅ (19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得—1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .解:(Ⅰ)125,135,145,235,245,345;(Ⅱ)X 的所有取值为-1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-=====0(1)13144221EX =⨯+⨯-+⨯=.(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,AB 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii)求ABQ ∆面积最大值.解:(Ⅰ)由椭圆2222:1(0)x y Ca b a b+=>>可知c e a ==,而222a b c =+则2,a b c ==, 左、右焦点分别是12(,0),,0)FF ,圆1F :22()9,x y +=圆2F :22()1,x y +=由两圆相交可得24<<,即12<,交点在椭圆C 上,则224134b b +=⋅,整理得424510b b -+=,解得21b =,214b =(舍去), 故21b =,24a =,椭圆C 的方程为2214x y +=.(Ⅱ)(i )椭圆E 的方程为221164x y +=,设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<, 代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP ==. (ii )点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d ==221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=,整理得222(14)84160k x kmx m +++-=.2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->,||AB = 211||||32214m S AB d k ∆==⋅⋅⋅=+ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k ==+等号成立.而直线y kx m =+与椭圆22:14x C y +=有交点P ,则2244y kx m x y =+⎧⎨+=⎩有解, 即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解,其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥, 则上述2282m k =+不成立,等号不成立,设(0,1]t =,则S ∆==(0,1]为增函数,于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12.(21)【2015年山东,理21】(本题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞,21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点.当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点.若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <,且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减;当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增. 因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<,所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调递増;当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减,所以函数只有一个极值点.综上可知当809a ≤≤时()f x 的无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 的有两个极值点.(Ⅱ)由(Ⅰ)可知当809a ≤≤时()f x 在(0,)+∞单调递增,而(0)0f =,则当(0,)x ∈+∞时,()0f x >,符合题意; 当819a <≤时,2(0)0,0g x ≥≤,()f x 在(0,)+∞单调递增,而(0)0f =, 则当(0,)x ∈+∞时,()0f x >,符合题意;当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =,则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.另解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++, 当0a =时,1()01f x x '=>+,函数()f x 在(1,)-+∞为增函数,无极值点.设222()21,(1)1,8(1)98g x ax ax a g a a a a a =++--=∆=--=-,当0a ≠时,根据二次函数的图像和性质可知()0g x =的根的个数就是函数()f x 极值点的个数.若(98)0a a ∆=-≤,即809a <≤时,()0g x ≥,()0f x '≥函数在(1,)-+∞为增函数,无极值点.若(98)0a a ∆=->,即89a >或0a <,而当0a <时(1)0g -≥此时方程()0g x =在(1,)-+∞只有一个实数根,此时函数()f x 只有一个极值点;当89a >时方程()0g x =在(1,)-+∞都有两个不相等的实数根,此时函数()f x 有两个极值点;综上可知当809a ≤≤时()f x 的极值点个数为0;当0a <时()f x 的极值点个数为1;当89a >时,()f x 的极值点个数为2.(Ⅱ)设函数2()ln(1)()f x x a x x =++-,0x ∀>,都有()0f x ≥成立,即2ln(1)()0x a x x ++-≥当1x =时,ln 20≥恒成立;当1x >时,20x x ->,2ln(1)0x a x x++≥-;当01x <<时,20x x -<,2ln(1)0x a x x++≤-;由0x ∀>均有ln(1)x x +<成立.故当1x >时,,2ln(1)11x x x x +<--(0,)∈+∞,则只需0a ≥; 当01x <<时,2ln(1)1(,1)1x x x x +>∈-∞---,则需10a -+≤,即1a ≤.综上可知对于0x ∀>,都有()0f x ≥成立,只需01a ≤≤即可,故所求a 的取值范围是01a ≤≤. 另解:(Ⅱ)设函数2()ln(1)()f x x a x x =++-,(0)0f =,要使0x ∀>,都有()0f x ≥成立,只需函数函数()f x 在(0,)+∞上单调递增即可,于是只需0x ∀>,1()(21)01f x a x x '=+-≥+成立,当12x >时1(1)(21)a x x ≥-+-,令210x t -=>,2()(,0)(3)g t t t =-∈-∞+, 则0a ≥;当12x =时12()023f '=>;当102x <<,1(1)(21)a x x ≤-+-,令21(1,0)x t -=∈-,2()(3)g t t t =-+关于(1,0)t ∈-单调递增,则2()(1)11(13)g t g >-=-=--+,则1a ≤,于是01a ≤≤. 又当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a的讨论来研究函数的单调性,进一步确定参数的取值范围;二是分离参数法,求相应函数的最值或取值范围以达到解决问题的目的;三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即可确定所求.。
2016年高考山东理科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试〔##卷〕数学〔理科〕第Ⅰ卷〔共50分〕一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 〔1〕[2016年##,理1,5分]若复数z 满足232i z z +=-,其中i 为虚数为单位,则z =〔〕〔A 〕12i +〔B 〕12i -〔C 〕12i -+〔D 〕12i -- [答案]B[解析]设(),,z a bi a b R =+∈,则2()i 23i 32i z z z z z a b a a b +=++=++=+=-,所以1,2a b ==-,故选B . [点评]本题考查复数的代数形式混合运算,考查计算能力.〔2〕[2016年##,理2,5分]已知集合{}{}22,,10x A y y x R B x x ==∈=-<,则AB =〔〕〔A 〕()1,1-〔B 〕()0,1〔C 〕()1,-+∞〔D 〕()0,+∞ [答案]C[解析]由题意()0,A =+∞,()1,1B =-,所以()1,AB =-+∞,故选C .[点评]本题考查并集与其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题. 〔3〕[2016年##,理3,5分]某高校调查了200名学生每周的自习时间〔单位:小时〕,制成了如图所示的频率分布直方图,其中自习时间的X 围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是〔〕 〔A 〕56〔B 〕60〔C 〕120〔D 〕140 [答案]D[解析]由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . [点评]本题考查的知识点是频率分布直方图,难度不大,属于基础题目.〔4〕[2016年##,理4,5分]若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是〔〕〔A 〕4〔B 〕9〔C 〕10〔D 〕12 [答案]C[解析]由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .[点评]本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题. 〔5〕[2016年##,理5,5分]有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为〔〕〔A 〕1233+π〔B 〕1233+π〔C 〕1236+π〔D 〕216+π[答案]C[解析]由三视图可知,半球的体积为26π,四棱锥的体积为13,所以该几何体的体积为1236+π,故选C .[点评]本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.〔6〕[2016年##,理6,5分]已知直线,a b 分别在两个不同的平面α,β内,则"直线a 和直线b 相交〞是"平面α和平面β相交〞的〔〕〔A 〕充分不必要条件〔B 〕必要不充分条件〔C 〕充要条件〔D 〕既不充分也不必要条件 [答案]A[解析]由直线a 和直线b 相交,可知平面αβ、有公共点,所以平面α和平面β相交.又如果平面α和平面β相交,直线a 和直线b 不一定相交,故选A .[点评]本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题. 〔7〕[2016年##,理7,5分]函数()()()3sin cos 3cos sin f x x xx x =+-的最小正周期是〔〕〔A 〕2π〔B 〕π〔C 〕32π〔D 〕2π[答案]B[解析]由()2sin cos 3cos 22sin 23f x x x x x π⎛⎫=+=+ ⎪⎝⎭,所以,最小正周期是π,故选B .[点评]本题考查的知识点是和差角与二倍角公式,三角函数的周期,难度中档.〔8〕[2016年##,理8,5分]已知非零向量,m n 满足143,cos ,3m n m n =<>=,若()n tm n ⊥+则实数t 的值为〔〕〔A 〕4〔B 〕4-〔C 〕94〔D 〕94-[答案]B[解析]因为21cos ,4nm m n m n n =⋅<>=,由()n tm n ⊥+,有()20n tm n tmn n +=+=,即2104t n ⎛⎫+= ⎪⎝⎭,4t =-,故选B .[点评]本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.〔9〕[2016年##,理9,5分]已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =〔〕〔A 〕2-〔B 〕1-〔C 〕0〔D 〕2 [答案]D[解析]由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .[点评]本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题. 〔10〕[2016年##,理10,5分]若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是〔〕〔A 〕sin y x =〔B 〕ln y x =〔C 〕x y e =〔D 〕3y x = [答案]A[解析]因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .[点评]本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷〔共100分〕二、填空题:本大题共5小题,每小题5分〔11〕[2016年##,理11,5分]执行右边的程序框图,若输入的的值分别为0和9,则输出i 的值为. [答案]3[解析]i 1=时,执行循环体后1,8a b ==,a b >不成立;i 2=时,执行循环体后3,6a b ==,a b >不成立;i 3=时,执行循环体后6,3a b ==,a b >成立;所以i 3=,故填 3.[点评]本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答. 〔12〕[2016年##,理12,5分]若521ax x ⎛⎫+ ⎪⎝⎭的展开式中5x 的系数是80-,则实数a =.[答案]2-[解析]由()23222355551C C 80ax a x x x ⎛⎫==- ⎪⎝⎭,得2a =-,所以应填2-.[点评]考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.〔13〕[2016年##,理13,5分]已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率为.[答案]2[解析]由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.[点评]本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.〔14〕[2016年##,理14,5分]在[]1,1-上随机的取一个数k ,则事件"直线y kx =与圆()2259x y -+=相交〞发生的概率为. [答案]34[解析]首先k 的取值空间的长度为2,由直线y kx =与圆22(5)9x y -+=相交,得事件发生时k 的取值空间为33,44⎡⎤-⎢⎥⎣⎦,其长度为32,所以所求概率为33224=. [点评]本题主要考查了几何概型的概率,以与直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.〔15〕[2016年##,理15,5分]在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值X 围是.[答案]()3,+∞[解析]因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. [点评]本题考查根的存在性与根的个数判断,数形结合思想的运用是关键,分析得到24m m m -<是难点,属于中档题.三、解答题:本大题共6题,共75分.〔16〕[2016年##,理16,12分]在ABC ∆中,角,,A B C 的对边分别为a,b,c ,已知()tan tan 2tan tan cos cos A BA B B A+=+. 〔1〕证明:2a b c +=; 〔2〕求cos C 的最小值.解:〔1〕由()tan tan 2tan tan cos cos A B A B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,2sin sin sin C B C =+, 由正弦定理,得2a b c +=.〔2〕由()222222cos 22a b ab ca b c C ab ab +--+-==222333111122222c c ab a b =-≥-=-=+⎛⎫⎪⎝⎭.所以cos C 的最小值为12. [点评]考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以与三角函数的诱导公式,正余弦定理,不等式222a b ab +≥的应用,不等式的性质.〔17〕[2016年##,理17,12分]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.〔1〕已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;〔2〕已知123,2EF FB AC AB BC ====,求二面角F BC A --的余弦值.解:〔1〕连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC ⊂平 面ABC ,MH ⊄平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH ⊂平面GHM ,所以//GH 平面ABC .〔2〕连结OB ,AB BC =OA OB ∴⊥,以为O 原点,分别以,,OA OB OO '为,,x y z 轴,建立空间直角坐标系.123,2EF FB AC AB BC ====,22()3OO BF BO FO '=--=,于是有()23,0,0A ,()23,0,0C -,()0,23,0B ,()0,3,3F ,可得平面FBC 中的向量()0,3,3BF =-, ()23,23,0CB =,于是得平面FBC 的一个法向量为()13,3,1n =-,又平面ABC 的一个法向量为()20,0,1n =,设二面角F BC A --为θ, 则121217cos 77n n n n θ⋅===⋅.二面角F BC A --的余弦值为77. [点评]本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.〔18〕[2016年##,理18,12分]已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.〔1〕求数列{}n b 的通项公式;〔2〕令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:〔1〕因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. 〔2〕由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅,两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅,两式相减,得2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.[点评]本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.〔19〕[2016年##,理19,12分]甲、乙两人组成"星队〞参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则"星队〞得3分;如果只有一人猜对,则"星队〞得1分;如果两人都没猜对,则"星队〞得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设"星队〞参加两轮活动,求: 〔1〕"星队〞至少猜对3个成语的概率;〔2〕"星队〞两轮得分之和X 的分布列和数学期望EX . 解:〔1〕"至少猜对3个成语〞包括"恰好猜对3个成语〞和"猜对4个成语〞.设"至少猜对3个成语〞为事件A ;"恰好猜对3个成语〞和"猜对4个成语〞分别为事件C B ,,则1122332131225()4433443312P B C C =⋅⋅⋅⋅+⋅⋅⋅⋅=;33221()44334P C =⋅⋅⋅=.所以512()()()1243P A P B P C =+=+=.〔2〕"星队〞两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ==⋅⋅⋅=;112212*********(1)4343434314472P X C C ==⋅⋅⋅+⋅⋅⋅==;1211223311132125(2)443344334433144P X C ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=;123211121(3)434314412P X C ==⋅⋅⋅==; 12321231605(4)()43434314412P X C ==⋅⋅⋅+⋅==;3232361(6)43431444P X ==⋅⋅⋅==; XX 的数学期望01234614472144121241446EX =⨯+⨯+⨯+⨯+⨯+⨯==. [点评]本题考查离散型随机变量的分布列和数学期望,属中档题.〔20〕[2016年##,理20,13分]已知221()(ln ),x f x a x x a R x-=-+∈.〔1〕讨论()f x 的单调性; 〔2〕当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈成立.解:〔1〕求导数3122()(1)x f x a x x'=---23(1)(2x ax x =--),当0a ≤时,x ∈(0,1),()0f x '>,()f x 单调递增,x +∞∈(1,),()0f x '<,()f x 单调递减当0a >时,()()()233112()a x x x x ax f x x x⎛--+ --⎝⎭⎝⎭'== ①当02a<<时,1,x ∈(0,1)或x ⎫+∞⎪⎪⎭∈,()0f x '>,()f x 单调递增,x ⎛ ⎝∈,()0f x '<,、()f x 单调递减;②当a =2时1,x ∈+∞(0,),()0f x '≥,()f x 单调递增, ③当a >2时,01<,x ⎛∈ ⎝或()x ∈+∞1,,()0f x '>,()f x 单调递增,x ⎫∈⎪⎪⎭1,()0f x '<, ()f x 单调递减.〔2〕当1a =时,221()ln x f x x x x=+--,2323(1)(212()1x x f x x x x x '==+--)2--, 于是2232112()()ln 1)x f x f x x x x x x x '=++-2---(--23312ln 1x x x x x =--++-,[1,2]x ∈令()g ln x x x =-,2332h()x x x x=-++-11,[1,2]x ∈,于是()()g(()f x f x x h x '-=+), 1g ()10x x x x-'=-=≥1,()g x 的最小值为()11g =;又22344326326()x x h x x x x x --+'=--+=, 设()2326x x x θ=--+,[1,2]x ∈,因为()11θ=,()210θ=-,所以必有0[1,2]x ∈,使得()00x θ=,且01x x <<时,()0x θ>,()h x 单调递增;02x x <<时,()0x θ<,()h x 单调递减;又()11h =,()122h =, 所以()h x 的最小值为()122h =.所以13()()g(()g(1(2)122f x f x x h x h '=+>+=+=))-. 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. [点评]本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.〔21〕[2016年##,理21,14分]平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率是,抛物线2:2E x y =的焦点F 是C 的一个顶点.〔1〕求椭圆C 的方程;〔2〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12SS 的最大值与取得最大值时点P 的坐标.解:〔1,有224a b =,又抛物线22x y =的焦点坐标为10,2F ⎛⎫⎪⎝⎭,所以12b =,于是1a =,所以椭圆C 的方程为2241x y +=.〔2〕〔i 〕设P 点坐标为()2,02m P m m ⎛⎫> ⎪⎝⎭,由22x y =得y x '=,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22m y mx =-,设()()1122,,,A x y B x y ,()00,D x y ,将22m y mx =-代入2241x y +=,得()223214410m x m x m +-+-=.于是3122414m x x m +=+,312022214x x m x m +==+, 又()220022214m m y mx m -=-=+,于是直线OD 的方程为14y x m =-. 联立方程14y x m =-与x m =,得M 的坐标为1,4M m ⎛⎫- ⎪⎝⎭.所以点M 在定直线14y =-上.〔ii 〕在切线l 的方程为22m y mx =-中,令0x =,得22m y =-,即点G 的坐标为20,2m G ⎛⎫- ⎪⎝⎭,又2,2m P m ⎛⎫ ⎪⎝⎭,10,2F ⎛⎫ ⎪⎝⎭,所以211(1)24m m S m GF +=⨯=;再由()32222,41241m m D m m ⎛⎫- ⎪ ⎪++⎝⎭,得 ()()22232222112122441841m m m m m S m m +++=⨯⨯=++于是有()()()221222241121m m S S m ++=+.令221t m =+, 得()12221211122t t S S t t t ⎛⎫-+ ⎪⎝⎭==+-,当112t =时,即2t =时,12S S 取得最大值94.此时212m =,m =所以P点的坐标为14P ⎫⎪⎪⎝⎭.所以12S S 的最大值为94,取得最大值时点P的坐标为14P ⎫⎪⎪⎝⎭. [点评]本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以与直线方程的运用,考查三角形的面积的计算,以与化简整理的运算能力,属于难题.。
2005年高考理科数学山东卷试题及答案
2005年高考理科数学山东卷试题及答案第Ⅰ卷(选择题共60分)参考公式:如果事件A、B互斥,那么如果事件A、B相互独立,那么 = 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的(1)(A) (B) (C) (D) (2)函数的反函数的图象大致是(A) (B) (C) (D) (3)已知函数则下列判断正确的是(A)此函数的最小正周期为,其图象的一个对称中心是 (B) 此函数的最小正周期为,其图象的一个对称中心是 (C) 此函数的最小正周期为,其图象的一个对称中心是 (D) 此函数的最小正周期为,其图象的一个对称中心是(4)下列函数中既是奇函数,又是区间上单调递减的是(A) (B) (C) (D) (5)如果的展开式中各项系数之和为128,则展开式中的系数是(A) (B) (C) (D) (6)函数若则的所有可能值为(A) (B) (C) , (D) , (7)已知向量,且则一定共线的(A)A、B、D (B) A、B、C (C) B、C、D (D)A、C、D (8)设地球半径为R,若甲地位于北纬东经,乙地位于南纬度东经,则甲、乙两地球面距离为(A) (B) (C) (D) (9)10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是(A)(B) (C) (D) (10)设集合A、B是全集U的两个子集,则是(A)充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D)既不充分也不必要条件(11)下列不等式一定成立的是(A) (B) (C) (D) (12)设直线关于原点对称的直线为,若与椭圆的交点为A、B,点P为椭圆上的动点,则使的面积为的点P的个数为(A) 1 (B) 2 (C) 3 (D)4 第Ⅱ卷(共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上 (13)__________ (14)设双曲线的右焦点为F,右准线与两条渐近线交于P、Q两点,如果是直角三角形,则双曲线的离心率 (15)设满足约束条件则使得目标函数的值最大的点是_______ (16)已知m、n是不同的直线,是不重合的平面,给出下列命题:①若则②若则③若,则④m、n是两条异面直线,若则上面命题中,真命题的序号是____________(写出所有真命的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤 (17)(本小题满分12分)已知向量和,且,求的值\ (18) (本小题满分12分)袋中装有罴球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时即终止每个球在每一次被取出的机会是等可能的,用表示取球终止时所需的取球次数.(Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量的概率分布;(Ⅲ)求甲取到白球的概率 (19) (本小题满分12分)已知是函数的一个极值点,其中. (Ⅰ)求m与n的关系表达式; (Ⅱ)求的单调区间;(Ⅲ)当时,函数的图象上任意一点的切线斜率恒大于3m,求m的取值范围(20) (本小题满分12分)如图,已知长方体,,直线与平面所成的角为,垂直于为的中点.(Ⅰ)求异面直线与所成的角;(Ⅱ)求平面与平面所成二面角(锐角)的大小;(Ⅲ)求点到平面的距离 (21) (本小题满分12分)已知数列的首项前项和为,且(I)证明数列是等比数列;(II)令,求函数在点处的导数并比较与的大小 (22) (本小题满分14分)已知动圆过定点,且与直线相切,其中. (I)求动圆圆心的轨迹的方程;(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标 2005年高考理科数学山东卷试题及答案参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B B D C C A D D A A B (13)(14)(15))(16)③④ (17)(本小题满分12分)考查知识点:(三角和向量相结合)解法一:由已知,得又所以∵∴解法二:由已知,得∵,∴∴ (18) (本小题满分12分)(考查知识点:概率及分布列)解:(1)设袋中原有个白球,由题意知:所以,解得舍去,即袋中原有3个白球(Ⅱ)由题意,的可能妈值为1,2,3,4,5. : : : 所以,取球次数的分布列为:1 2 3 4 5 (Ⅲ)因为甲先取,所以甲只有可能在第1次、第3次和第5次取球,记“甲取到白球”的事件为A,则(“”,或“”,或“”). 因为事件“”、“”、“”两两互斥,所以 (19) (本小题满分12分)(考查知识点:函数结合导数)(Ⅰ)解:. 因为是的一个极值点,所以,即. 所以(Ⅱ)解:由(Ⅰ)知当时,有,当变化时与的变化如下表: 1 <0 0 >0 0 <0 单调递减极小值单调递增极大值单调递减由上表知,当时,在单调递减,在单调递增, 在单调递减(Ⅲ)解法一:由已知,得,即. . . 即. (*)设,其函数图象的开口向上. 由题意(*)式恒成立, 又. 即的取值范围是解法二:由已知,得,即, . . (*) 时. (*)式化为怛成立.. 时. (*)式化为.令,则,记 , 则在区间是单调增函数.由(*)式恒成立,必有又..综上、知 (20) (本小题满分12分)(考查知识点:立体几何) 解法一:(向量法)在长方体中,以所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系如图.由已知,可得.又平面,从面与平面所成的角即为又从而易得(Ⅰ)即异面直线、所成的角为(Ⅱ)易知平面的一个法向量设是平面的一个法向量.由取∴即平面与平面所成二面角(锐角)大小为(Ⅲ)点A到平面BDF的距离,即在平面BDF的法向量上的投影的绝对值所以距离所以点A到平面BDF的距离为解法二:(几何法) (Ⅰ)连结,过F作的垂线,垂足为K,∵与两底面ABCD,都垂直,∴又因此∴为异面直线与所成的角连结BK,由FK⊥面得,从而为在和中,由得又,∴∴异面直线与所成的角为(Ⅱ)由于面由作的垂线,垂足为,连结,由三垂线定理知∴即为平面与平面所成二面角的平面角且,在平面中,延长与;交于点∵为的中点,∴、分别为、的中点即,∴为等腰直角三角形,垂足点实为斜边的中点F,即F、G重合易得,在中,∴,∴,即平面于平面所成二面角(锐角)的大小为(Ⅲ)由(Ⅱ)知平面是平面与平面所成二面角的平面角所在的平面∴面在中,由A作AH⊥DF于H,则AH即为点A到平面BDF的距离由AHDF=ADAF,得所以点A到平面BDF的距离为 (21) (本小题满分12分)(考查知识点:数列)解:由已知,可得两式相减得即从而当时所以又所以从而故总有,又从而即数列是等比数列;(II)由(I)知因为所以从而= =-= 由上-= =12①当时,①式=0所以;当时,①式=-12所以当时,又所以即①从而 (22) (本小题满分14分)(考查知识点:圆锥曲线)解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;(II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知①(1)当时,即时,所以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点(2)当时,由,得== 将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为即所以直线恒过定点所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点。
2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)
2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e)rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2006年山东高考理科数学试题及答案
2006年山东高考数学理科第I 卷(共60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名,准考证号,考试科目涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫干净后,再选其他答案标号,不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,P (A ·B )=P (A )·P (B )一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.(1)定义集合运算:A ⊙B ={z ︳z = xy (x+y ),z ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为(A )0 (B )6 (C )12 (D )18 (2)函数y=1+a x (0<a <1)的反函数的图象大致是(A ) (B ) (C ) (D )(3)设f (x )=⎪⎩⎪⎨⎧≥-<-,2),1(log ,2,221x x x t t x 则不等式f (x )>2的解集为(A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2) (4)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3π,a =3,b =1,则c = (A) 1 (B )2 (C )3—1 (D )3(5)设向量a=(1,2),b=(-1,1),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为(A)(2,6) (B)(-2,6) (C)(2,-6) (D)(-2,-6) (6)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为(A)-1 (B) 0 (C) 1 (D)2(7)在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(A)2 (B)22 (C) 21 (D)42(8)设p :x 2-x -20>0,q :212--x x <0,则p 是q 的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 (9)已知集合A ={5},B ={1,2},C ={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A)33 (B) 34 (C) 35 (D)36(10)已知nx x ⎪⎪⎭⎫ ⎝⎛-12的展开式中第三项与第五项的系数之比为-143,其中i 4=-1,则展开式中常数项是 (A)-45i (B) 45i (C) -45 (D)45(11)某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则z =10x +10y 的最大值是(A)80 (B) 85 (C) 90 (D)95(12)如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的外接球的体积为 (A)2734π (B)26π (C)86π (D)246π(12题图)绝密★启用前2006年普通高等学校招生全国统一考试(山东卷)理科数学(必修+选修II )注意事项:1.用钢笔或圆珠笔直接答在试题卷中。
2007年山东高考数学理科试题及答案详解
AB∥DC .
D1
(Ⅰ)设 E 是 DC 的中点,求证: D1E ∥平面 A1BD1 ; A1
B1
C1
(Ⅱ)求二面角 A1 BD C1 的余弦值.
(20)(本小题满分 12 分)
D
E C
A
B
如图,甲船以每小时 30 2 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲
船位于 A1 处时,乙船位于甲船的北偏西105 方向的 B1 处,此时两船相距 20 海里,当甲船
(Ⅲ)记“先后两次出现的点数有中 5”为事件 D ,“方程 x2 bx c 0 有实数”为事件 E ,
由上面分析得
P(D) 11 , P(D E) 7 ,
36
36
P(E D) P(D E) 7 . P(D) 11
(19)(本小题满分 12 分)
解法一:
(Ⅰ)连结 BE ,则四边形 DABE 为正方形,
间直角坐标系,不妨设 DA 1,则 D(0,00,) ,A(1,0,0) ,B(1,1,0) ,C(0,2,2) ,A1(1,0,2) ,
DA1 (1,0,2) , DB (1,1,0) ,
z
设 n (x,y,z) 为平面 A1BD 的一个法向量.
D1
C1
(Ⅰ)当 b 1 时,判断函数 f (x) 在定义域上的单调性; 2
(Ⅱ)求函数 f (x) 的极值点;
(Ⅲ)证明对任意的正整数 n
,不等式
ln
1 n
1
1 n2
1 n3
都成立.
2007 年普通高等学校招生全国统一考试(山东卷)
理科数学参考答案
山东数学高考真题及答案
山东数学高考真题及答案今年山东省高考数学试题在难度上有所提高,试题主要考察了学生对数学知识的理解和运用能力。
下面将列举部分试题及其答案供大家参考。
一、选择题(共40分)1. 若函数$f(x)=ax^2+bx+c$在区间$[0, 1]$上是增函数,则$a$, $b$, $c$应该满足的条件是()A.$a>0$, $b<0$, $c<0$B.$a<0$, $b>0$, $c>0$C.$a>0$, $b>0$, $c<0$D.$a<0$, $b<0$, $c>0$答案:C2. 设等差数列$\{a_n\}$满足$a_1=3$, $a_2=7$,则$a_1+a_2+a_{10}$的值为()A.50B.51C.52D.53答案:B3. 曲线$y=x^2$与直线$y=2x+k$交于两点$A$, $B$,且点$A$在点$B$的右下方,则$k$的取值范围是()A.($-\infty$, $1$)B.($1$, $2$)C.($2$, $3$)D.($3$, $+\infty$)答案:A4. 记$z=\frac{3}{2}+\frac{i\sqrt{15}}{2}$,则$\cos{\text{Arg}(z)}$的值为()A.$\frac{1}{\sqrt{2}}$B.$\frac{1}{2}$C.$-\frac{1}{\sqrt{2}}$D.-$\frac{1}{2}$答案:A5. 有二次方程$x^2+(\alpha-1)x+(\alpha-2)=0$的两个根$x_1$,$x_2$的值满足$x_1<x_2$,则$\alpha$的取值范围是()A.($-\infty$, $-2$)B.($-2$, $0$)C.($0$, $1$)D.($1$, $+\infty$)答案:C6. 在三棱锥$P-ABC$中,$AB=AC$, $\angle{BAC}=90^\circ$,$M$是$AC$的中点,$N$是$PB$上的一点,且$PN\bot AB$,若$\overrightarrow{PM}=(1, 2, -1)$,则$\overrightarrow{PN}$的坐标是()A.($1$, $1$, $-1$)B.($1$, $-1$, $1$)C.($1$, $1$, $1$)D.($-1$, $1$, $1$)答案:B以上是部分选择题,供大家参考,更多试题及答案请参考山东数学高考真题。
2019年山东省高考数学真题(理科)及答案
数学试卷绝密★启用并使用完毕前2019 年普通高等学校招生全国统一考试(山东卷 )理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共 4 页,满分150 分。
考试用时150 分钟 .考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5 毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用 0.5 毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案 ,解答题应写出文字说明证明过程或演算步骤 .参考公式 :如果事件 A , B 互斥,那么 P( A+B ) =P(A)+P(B) ;如果事件 A , B 独立,那么 P (AB ) =P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共 12 小题,每小题 5 分,满分 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 .1z为()、复数 z 满足 (z 3)(2 i) 5(i 为虚数单位),则 z 的共轭复数( A ) 2+i(B ) 2-i( C) 5+i(D ) 5-i2、已知集合 A { 0,1,2} ,则集合B{ x y | x A, y A} 中元素的个数是()(A)1(B)3(C) 5(D)93、已知函数 f (x) 为奇函数,且当x0 时, f ( x)x21,则 f ( 1) =()x(A)-2(B)0(C)1(D)24、已知三棱柱ABC A1B1C1的侧棱与底面垂直,体积为9,底面是边长为 3 的正三角4形,若 P 为底面A1B1C1的中心,则 PA 与平面 ABC 所成角的大小为()5( B)( C)( D)( A )312465、若函数f (x)sin( 2x) 的图像沿x轴向左平移个单位,得到一个偶函数的图像,8则的一个可能取值为()3(A)(B)(C)0(D)444数学试卷2x y206、在平面直角坐标系xOy 中, M 为不等式组x 2 y10 ,所表示的区域上一动点,3x y80则直线 OM 斜率的最小值为A 2B 11D1 C2 37、给定两个命题p、q,若p 是 q 的必要而不充分条件,则p 是q 的(A )充分而不必要条件( B )必要而不充分条件(C)充要条件(D )既不充分也不必要条件8、函数y x cos x sin x 的图象大致为yyy yππππO xO x O x O x(A)(B)(C)(D)9、过点( 3, 1)作圆( x1) 2y21作圆的两条切线切点为A,B,则直线AB的方程(A )2xy30(B )(C)4xy30(D )2x y 304x y 3010、用 0,1,, 9十个数字可以组成有重复数字的三位数的个数为(A ) 243( B)252( C)261( D) 279C1 : y1x2 ( p 0)C2: x2y21C1 于11、抛物线2 p的焦点与双曲线3的右焦点的连线交第一象限的点 M ,若C1在点 M 处的切线平行于C2的一条渐近线,则p3323436(B)8( C)3( D)312、设正实数x, y, z满足x24y 2xy2123xy z,则当 z取最大值时,xyz的最大值为9(A )0(B)1(C)4(D)3二、填空题:本大题共 4 小题,每小题 4 分,共 16 分13、执行右面的程序框图,若输入的值为0.25,则输出的 n 的值为______________14、在区间3,3 上随机取一个数 x ,使得 x 1x 21 成立的概率为 ______________.15 、已知向量AB 与 AC 的夹角 120 0 ,且| AB |=3 ,|AC |=2 ,若AP ABAC,且 APBC ,则实数的值为 ____________.16、 定义“正对数 ” : lnx0,0 x 1ln x, x, 现有四个命题:1①若 a 0, b 0, l n a bb l n a;②若 a0, b0, ln abln a ln b;③若 a 0, b 0, l naln al n b;b④若 a 0, b0, ln a b ln a ln b+ ln 2;其中真命题有 ____________. (写出所有真命题的编号)三、解答题:本大题共6 小题,共 74 分。
山东省数学高考试题及答案
山东省数学高考试题及答案一、选择题(每小题4分,共80分)1. 已知函数 f(x) 的图象如下:(略)根据图象可知, f(x) 在区间(−∞, 0] 上是增函数,则下列结论中正确的是()A. f(−4) < f(0)B. f(−4) > f(0)C. f(−2) < f(−4)D. f(−2) > f(−4)答案:D2. 若集合 A={x | x<4且x>−2},则集合 A 的数目是()A. 7B. 5C. 3D. 2答案:B3. 已知数列 { an } 为等差数列,首项为 3,公差为 2。
若 a5 > a6,则 n 的最小值为()A. 2B. 3C. 4D. 5答案:B4. 不等式x(x−2)(x−4)(x−6) > 0 的整数解的个数为()A. 0B. 1C. 2D. 3答案:C5. y=log2(x−1)∣x<3 ,则函数y=log2(x−1)的定义域为()A. (−∞, 1)B. (1, ∞)C. (0, ∞)D. (−∞, 0) ∪ (0, 1)答案:A二、填空题(每小题4分,共40分)6. 整式−2a^2b^3 c 的由高到低的项系数和为______答案:-27. 平移变换 y=(2−x)cos π(x−12) 的平移向量为______。
答案:(a, b)=(−2, 0)三、解答题(共80分)8. 已知函数 f(x)=x^x 交直线x=2x+3 于点 (1, 5),求 a 的值。
解答:因为该函数与直线交于点 (1, 5),所以有 f(1)=2×1+3=5,即 a=a^1=5。
所以 a=5。
9. 已知集合 A={x | 3x−2<−4},集合 B={x | x>0},求集合A ∩ B 的解集。
解答:将不等式 3x−2<−4 化简得x<−2/3。
由于x>0,所以集合A ∩ B 的解集为∅。
10. 求等差数列 { a_n } 的第 8 项及公差,已知该数列前 7 项的和为42,首项为 2。
2021年山东高考理科数学试题及答案
2021年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3]2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为A .0BC .1D 4.不等式|5||3|10x x -++≥的解集是A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞ D .(][),46,-∞-+∞5.对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 42 3 5销售额y (万元)49 26 3954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 9.函数2sin 2xy x =-的图象大致是10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .911.右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是 14.若62()a x x -展开式的常数项为60,则常数a 的值为 .15.设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值; (II )若cosB=14,b=2,ABC ∆的面积S 。
2019年山东省高考数学理科试题含答案(Word版)
2019年山东省高考数学理科试题含答案(Word版)2019年山东卷数学理科试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.在答题卡和试卷规定的位置上,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写。
2.第Ⅰ卷每小题选出答案后,在答题卡上对应题目的答案标号处涂黑,如需改动,用橡皮擦干净后再涂其他答案标号。
答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上。
如需改动,先划掉原来的答案,然后再写上新的答案。
不能使用涂改液、胶带纸、修正带。
不按要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A)1+2i(B)1-2i(C)-1+2i(D)-1-2i设集合A={y|y=2,x∈R},B={x|x-1<0},则A)(-1,1)(B)(0,1)(C)(-1,+∞)(D)(0,+∞)某高校调查了200名学生每周的自时间(单位:小时),制成了如图所示的频率分布直方图,其中自时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]。
根据直方图,这200名学生中每周的自时间不少于22.5小时的人数是()A)56(B)60(C)120(D)140若变量x,y满足x>0,y>0,xy2,2x3y9,则x2y2的最大值是()A)4(B)9(C)10(D)12一个由半球和四棱锥组成的几何体,其三视图如图所示。
则该几何体的体积为()A)(1/3+2/3)π(B)(1/3+2/3)π(C)122/3+6π(D)1+6π已知直线a和直线b分别在两个不同的平面α和β内,则直线a和直线b相交是平面α和平面β相交的(C)充要条件。
2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)
2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A. {x|−4<x <3}B. {x|−4<x <−2}C. {x|−2<x <2}D. {x|2<x <3}2. 设复数z 满足|z -i |=1,z 在复平面内对应的点为(x ,y ),则( )A. (x +1)2+y 2=1B. (x −1)2+y 2=1C. x 2+(y −1)2=1D. x 2+(y +1)2=1 3. 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190 cm5. 函数f (x )=sinx+xcosx+x 2在[-π,π]的图象大致为( )A.B.C.D.6. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A. 516 B. 1132 C. 2132 D. 1116 7. 已知非零向量a ⃗ ,b ⃗ 满足|a ⃗ |=2|b ⃗ |,且(a ⃗ -b ⃗ )⊥b ⃗ ,则a ⃗ 与b ⃗ 的夹角为( )A. π6B. π3C. 2π3D. 5π68. 如图是求12+12+12的程序框图,图中空白框中应填入()A. A =12+A B. A =2+1A C. A =11+2A D. A =1+12A9. 记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A. a n =2n −5 B. a n =3n −10 C. S n =2n 2−8nD. S n =12n 2−2n10. 已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=111. 关于函数f (x )=sin|x |+|sin x |,有下述四个结论:①f (x )是偶函数②f (x )在区间(π2,π)上单调递增③f (x )在[-π,π]上有4个零点④f (x )的最大值是2 其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③12. 已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共4小题,共20.0分)13. 曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和,若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是______.16. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为______.三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB |.20. 已知函数f (x )=sin x -ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(-1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.21. 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.(i )证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; (ii )求p 4,并根据p 4的值解释这种试验方案的合理性.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =1−t 21+t 2,y =4t1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】解:∵M={x|-4<x<2},N={x|x2-x-6<0}={x|-2<x<3},∴M∩N={x|-2<x<2}.故选:C.利用一元二次不等式的解法和交集的运算即可得出.本题考查了一元二次不等式的解法和交集的运算,属基础题.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z-i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z-i=x+(y-1)i,∴|z-i|=,∴x2+(y-1)2=1,故选:C.3.【答案】B【解析】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.4.【答案】B【解析】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,可得咽喉至肚脐的长度小于≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,可得肚脐至足底的长度小于=110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选:B.充分运用黄金分割比例,结合图形,计算可估计身高.本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.5.【答案】D【解析】解:∵f(x)=,x∈[-π,π],∴f(-x)==-=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f ()=,因此排除B,C;故选:D.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.6.【答案】A【解析】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.【答案】B【解析】解:∵(-)⊥,∴=,∴==,∵,∴.故选:B.由(-)⊥,可得,进一步得到,然后求出夹角即可.本题考查了平面向量的数量积和向量的夹角,属基础题.8.【答案】A【解析】解:模拟程序的运行,可得:A=,k=1;满足条件k≤2,执行循环体,A=,k=2;满足条件k≤2,执行循环体,A=,k=3;此时,不满足条件k≤2,退出循环,输出A的值为,观察A的取值规律可知图中空白框中应填入A=.故选:A.模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】A【解析】【分析】根据题意,设等差数列{a n}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n-5,,故选:A.10.【答案】B【解析】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=,∴|AF2|=a,|BF1|=a,在Rt△AF2O中,cos∠AF2O=,在△BF1F2中,由余弦定理可得cos∠BF2F1=,根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=3,∴a=.b2=a2-c2=3-1=2.所以椭圆C的方程为:+=1.故选:B.根据椭圆的定义以及余弦定理列方程可解得a=,b=,可得椭圆的方程.本题考查了椭圆的性质,属中档题.11.【答案】C【解析】解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sinx|=f(x),则函数f(x)是偶函数,故①正确.当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误.当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0得2sinx=0,得x=0或x=π,由f(x)是偶函数,得在[-π,π)上还有一个零点x=-π,即函数f(x)在[-π,π]上有3个零点,故③错误.当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确的结论是①④,故选C.根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键.12.【答案】D【解析】解:如图,由PA=PB=PC ,ABC是边长为2的正三角形可知,三棱锥P-ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC.∵E,F分别是PA,AB的中点,∴EF∥PB.又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P-ABC的三条侧棱两两互相垂直.把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D=,半径为,则球O的体积为.故选D.由题意画出图形,证明三棱锥P-ABC为正三棱锥,且三条侧棱两两互相垂直,再由补形法求外接球球O的体积.本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究函数上某点的切线方程,切点处的导数值为斜率是解题关键,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,结合条件建立方程组求出q是解决本题的关键.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5==,故答案为:. 15.【答案】0.18【解析】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.【答案】2【解析】解:如图,∵=,且•=0,∴OA⊥F1B,则F1B:y=,联立,解得B (,),则,,∴=4c2,整理得:b2=3a2,∴c2-a2=3a2,即4a2=c2,∴,e=.故答案为:2.由题意画出图形,结合已知可得F1B⊥OA,写出F1B的方程,与y=联立求得B点坐标,再由勾股定理求解.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.17.【答案】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.则sin2B+sin2C-2sin B sin C=sin2A-sin B sin C,∴由正弦定理得:b2+c2-a2=bc,∴cos A =b2+c2−a22bc =bc2bc=12,∵0<A<π,∴A=π3.(2)∵√2a+b=2c,A=π3,∴由正弦定理得√2sinA+sinB=2sinC,∴√6 2+sin(2π3−C)=2sinC解得sin(C-π6)=√22,∴C-π6=π4,C=π4+π6,∴sin C=sin(π4+π6)=sinπ4cosπ6+cosπ4sinπ6=√22×√32+√22×12=√6+√24.【解析】(1)由正弦定理得:b2+c2-a2=bc,再由余弦定理能求出A.(2)由已知及正弦定理可得:sin(C-)=,可解得C的值,由两角和的正弦函数公式即可得解.本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.18.【答案】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且NH=12AA1,又MB∥AA1,MB=12AA1,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A1(√3,-1,4),NM⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2),设平面A1MN的一个法向量为m⃗⃗⃗ =(x,y,z),由{m⃗⃗ ⋅NM⃗⃗⃗⃗⃗⃗⃗ =√32x+32y=0m⃗⃗ ⋅NA1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x−12y+2z=0,取x=√3,得m⃗⃗⃗ =(√3,−1,−1),又平面MAA1的一个法向量为n⃗=(1,0,0),∴cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ |⋅|n⃗⃗ |=√3√5=√155.∴二面角A-MA1-N的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N作NH⊥AD,证明NM∥BH,再证明BH∥DE,可得NM∥DE,再由线面平行的判定可得MN∥平面C1DE;(2)以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,分别求出平面A1MN与平面MAA1的一个法向量,由两法向量所成角的余弦值可得二面角A-MA1-N的正弦值.19.【答案】解:(1)设直线l的方程为y=32(x-t),将其代入抛物线y2=3x得:94x2-(92t+3)x+94t2=0,设A(x1,y1),B(x2,y2),则x1+x2=92t+394=2t+43,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t+43+32=4,解得t=712,直线l 的方程为y =32x -78.(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则y 1=-3y 2,∴32(x 1-t )=-3×32(x 2-t ),化简得x 1=-3x 2+4t ,③ 由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【解析】(1)很具韦达定理以及抛物线的定义可得. (2)若=3,则y 1=-3y 2,⇒x 1=-3x 2+4t ,再结合韦达定理可解得t=1,x 1=3,x 2=,再用弦长公式可得.本题考查了抛物线的性质,属中档题.20.【答案】证明:(1)f (x )的定义域为(-1,+∞),f ′(x )=cos x −11+x ,f ″(x )=-sin x +1(1+x)2,令g (x )=-sin x +1(1+x)2,则g ′(x )=-cos x −2(1+x)3<0在(-1,π2)恒成立, ∴f ″(x )在(-1,π2)上为减函数,又∵f ″(0)=1,f ″(π2)=-1+1(1+π2)2<-1+1=0,由零点存在定理可知,函数f ″(x )在(-1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(-1,x 0)上单调递增, 在(x 0,π2)上单调递减,可得f ′(x )在区间(-1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减; 当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0,由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,-11+x <0,于是f ′(x )=cos x -11+x <0,f (x )单调递减, 其中f (π2)=1-ln (1+π2)>1-ln (1+3.22)=1-ln2.6>1-ln e =0, f (π)=-ln (1+π)<-ln3<0. 于是可得下表:x (-1,0) 0 (0,x 1) x 1(x 1,π2) π2 (π2,π) π f ′(x ) - 0 + 0---- f (x )减函数0 增函数大于0 减函数大于0 减函数小于0结合单调性可知,函数f (x )在(-1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,f (x )=sin x -ln (1+x )<1-ln (1+π)<1-ln3<0,因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点. 【解析】(1)f (x )的定义域为(-1,+∞),求出原函数的导函数,进一步求导,得到f″(x )在(-1,)上为减函数,结合f″(0)=1,f″()=-1+<-1+1=0,由零点存在定理可知,函数f″(x )在(-1,)上存在唯一得零点x 0,结合单调性可得,f′(x )在(-1,x 0)上单调递增,在(x 0,)上单调递减,可得f′(x )在区间(-1,)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f′(x )>0,f (x )单调递增;由于f′(x )在(x 0,)上单调递减,且f′(x 0)>0,f′()<0,可得函数f′(x )在(x 0,)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈()时,f (x )单调递减.当x ∈(,π)时,f (x )单调递减,再由f ()>0,f (π)<0.然后列x ,f′(x )与f (x )的变化情况表得答案.本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大. 21.【答案】(1)解:X 的所有可能取值为-1,0,1.P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β), X -11P (1-α)β αβ+(1-α)(1-β) α(1-β)()()证明:∵,, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1-p i )=0.4(p i -p i -1),即(p i +1-p i )=4(p i -p i -1),又∵p 1-p 0=p 1≠0,∴{p i +1-p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0=p 1(1−48)1−4=48−13P 1,∵p 8=1,∴p 1=348−1,∴P 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44−13p 1=1257.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理. 【解析】(1)由题意可得X 的所有可能取值为-1,0,1,再由相互独立试验的概率求P (X=-1),P (X=0),P (X=1)的值,则X 的分布列可求;(2)(i )由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i-1+bp i +cp i+1,得到(p i+1-p i )=4(p i -p i-1),由p 1-p 0=p 1≠0,可得{p i+1-p i }(i=0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=,进一步求得p 4=.P 4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列,根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度. 22.【答案】解:(1)由{x =1−t 21+t 2,y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t 2, 两式平方相加,得x 2+y 24=1(x ≠-1),∴C 的直角坐标方程为x 2+y 24=1(x ≠-1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0. 即直线l 的直角坐标方程为得2x +√3y +11=0;(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0, 联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2-12=0. 由△=16m 2-64(m 2-12)=0,得m =±4. ∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小,为|11−4|√22+3=√7. 【解析】(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x=ρcosθ,y=ρsinθ代入2ρcosθ+ρsinθ+11=0,可得直线l 的直角坐标方程; (2)写出与直线l 平行的直线方程为,与曲线C 联立,化为关于x 的一元二次方程,利用判别式大于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值. 本题考查间单曲线的极坐标方程,考查参数方程化普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1. 就要证:abc a +abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2-2bc -2ac -2ab ≥0(a -b )2+(a -c )2+(b -c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a -b )2≥0;(a -c )2≥0;(b -c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a -b )2+(a -c )2+(b -c )2≥0得证. 故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立; 即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24; 当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证. 故得证. 【解析】(1)利用基本不等式和1的运用可证,(2)分析法和综合法的证明方法可证. 本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.。
2014山东高考数学试题及答案(理)
2014年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共50分)二、填空题:本大题共5小题,每小题5分,共25分11.执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为__________。
12.在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为__________13.三棱锥P ABC -中,,D E 分别为,PB PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为1V ,则12V V =__________ 14.若62b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为_____________15.已知函数(),()y f x x R =∈,对函数(),()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数(),()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,()),(,())x h x x g x 关于点(,())x f x 对称,若()h x 是2()4g x x =-关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是_____________。
16.(本小题满分12分)已知向量()(),cos2,sin 2,a m x b x n ==,函数()f x a b =⋅,且()y f x =的图像过点12π⎛ ⎝和点2,23π⎛⎫- ⎪⎝⎭. (I )求,m n 的值;(II )将()y f x =的图像向左平移()0ϕϕπ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.17.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;(II )若1CD 垂直于平面ABCD 且1CD ,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.B 1C 1D 1A 1DCBMA18、(本小题满分12分)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球. 规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(I )小明两次回球的落点中恰有一次的落点在乙上的概率; (II )两次回球结束后,小明得分之和ξ的分布列与数学期望.BA CD19.(本小题满分12分)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。
2011年山东高考理科数学试题及答案
2011年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|260x x +-<},N ={x|1≤x ≤3},则M ∩N =A .[1,2)B .[1,2]C .[2,3]D .[2,3]2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3x y =的图象上,则tan=6a π的值为A .0BC .1D 4.不等式|5||3|10x x -++≥的解集是A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞D .(][),46,-∞-+∞5.对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要6.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= A .3B .2C .32D .237.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元) 42 3 5销售额y (万元)49 26 3954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元8.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -= 9.函数2sin 2xy x =-的图象大致是10.已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .911.右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y 的值是14.若6(x 展开式的常数项为60,则常数a 的值为 .15.设函数()(0)2xf x x x =>+,观察: 1()(),2xf x f x x ==+21()(()),34xf x f f x x ==+32()(()),78xf x f f x x ==+43()(()),1516xf x f f x x ==+根据以上事实,由归纳推理可得:当n N +∈且2n ≥时,1()(())n n f x f f x -== .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值; (II )若cosB=14,b=2,ABC ∆的面积S 。
高考数学山东省(理科)试题及答案【解析版】
2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.【2016山东(理)】若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【答案】B【解析】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.【2016山东(理)】设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)【答案】C【解析】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).【2016山东(理)】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[,30],样本数据分组为[,20),[20,),[,25),[25,),[,30].根据直方图,这200名学生中每周的自习时间不少于小时的人数是()A.56 B.60 C.120 D.140【答案】D【解析】解:自习时间不少于小时的频率为:(++)×=,故自习时间不少于小时的频率为:×200=140,【2016山东(理)】若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【答案】 C【解析】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.【2016山东(理)】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【答案】 C【解析】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,【2016山东(理)】已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,【2016山东(理)】函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π【答案】B【解析】解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)?2cos(x+)=2sin(2x+),∴T=π,【2016山东(理)】已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【答案】B【解析】解:∵4||=3||,cos<,>=,⊥(t+),∴?(t+)=t?+2=t||?||?+||2=()||2=0,解得:t=﹣4,【2016山东(理)】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2【答案】 D【解析】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.【2016山东(理)】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【答案】 A【解析】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;二、填空题:本大题共5小题,每小题5分,共25分.11.【2016山东(理)】执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.【答案】3【解析】解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,【2016山东(理)】若(ax2+)5的展开式中x5的系数是﹣80,则实数a= .【答案】﹣2【解析】解:(ax2+)5的展开式的通项公式T r+1=(ax2)5﹣r=a5﹣r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.【2016山东(理)】已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.【答案】2【解析】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2?=3?2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.【2016山东(理)】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.【答案】【解析】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.【2016山东(理)】已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.【答案】(3,+∞)【解析】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.【2016山东(理)】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【解析】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.【2016山东(理)】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.【解析】证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH∥,又∵EF BO,∴GQ BO,∴平面GQH∥平面ABC,∵GH?面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>==﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.【2016山东(理)】已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【解析】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)?2n,∴T n=6[2?2+3?22+…+(n+1)?2n]①,∴2T n=6[2?22+3?23+…+n?2n+(n+1)?2n+1]②,①﹣②可得﹣T n=6[2?2+22+23+…+2n﹣(n+1)?2n+1]=12+6×﹣6(n+1)?2n+1=(﹣6n)?2n+1=﹣3n?2n+2,∴T n=3n?2n+2.【2016山东(理)】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【解析】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++ =,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 012 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==【2016山东(理)】已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【解析】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数φ(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.【2016山东(理)】平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.【解析】解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|?|x0|=x0?(+y0)=x0(1+x02);S2=|PM|?|x0﹣|=(y0+)?=x0?,则=,令1+2x02=t(t≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,).2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.【2016山东(理)】若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.【2016山东(理)】设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)3.【2016山东(理)】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[,30],样本数据分组为[,20),[20,),[,25),[25,),[,30].根据直方图,这200名学生中每周的自习时间不少于小时的人数是()A.56 B.60 C.120 D.1404.【2016山东(理)】若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.【2016山东(理)】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.【2016山东(理)】已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.【2016山东(理)】函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π8.【2016山东(理)】已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.【2016山东(理)】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.210.【2016山东(理)】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.【2016山东(理)】执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.【2016山东(理)】若(ax2+)5的展开式中x5的系数是﹣80,则实数a= .13.【2016山东(理)】已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.14.【2016山东(理)】在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.【2016山东(理)】已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题,:本大题共6小题,共75分.16.【2016山东(理)】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.17.【2016山东(理)】在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.18.【2016山东(理)】已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.19.【2016山东(理)】甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.20.【2016山东(理)】已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.21.【2016山东(理)】平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.。
2017年高考真题-山东卷-理科数学-A4精排版可打印-附答案-无水印
2017 年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共 50 分)一、选择题:本大题共 10 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.( 1 )设函数的定义域为,函数的定义域为,则()( A )( B )( C )( D )( 2 )已知,是虚数单位,若,,则()( A ) 1 或( B )或( C )( D )( 3 )已知命题:,;命题:若,则,下列命题为真命题的是()( A )( B )( C )( D )( 4 )已知、满足约束条件,则的最大值是()( A ) 0 ( B ) 2 ( C ) 5 ( D ) 6( 5 )为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为 24 ,据此估计其身高为()( A ) 160 ( B ) 163 ( C ) 166 ( D ) 170( 6 )执行两次如图所示的程序框图,若第一次输入的值为 7 ,第二次输入的值为 9 ,则第一次、第二次输出的值分别为()( A ) 0 , 0 ( B ) 1 , 1 ( C ) 0 , 1 ( D ) 1 , 0( 7 )若,且,则下列不等式成立的是()( A )( B )( C )( D )( 8 )从分别标有 1 , 2 ,… , 9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取1 张,则抽到在2 张卡片上的数奇偶性不同的概率是()( A )( B )( C )( D )( 9 )在中,角、、的对边分别为、、,若为锐角三角形,且满足,则下列等式成立的是()( A )( B )( C )( D )( 10 )已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是( A )( B )( C )( D )第 II 卷(共 100 分)二、填空题:本大题共 5 小题,每小题 5 分( 11 )已知的展开式中含有的系数是 54 ,则.( 12 )已知、是互相垂直的单位向量,若与的夹角为,则实数的值是.( 13 )由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.( 14 )在平面直角坐标系中,双曲线(,)的右支与焦点为的抛物线()交于、两点,若,则该双曲线的渐近线方程为.( 15 )若函数(是自然对数的底数)在的定义域上单调递增,则称函数具有 M 性质。
2014山东高考数学(理)真题及详细答案
2014年高考山东卷理科数学真题及参考答案一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D解析:a i -与2bi +互为共轭复数,()()2222,124434a b a bi i i i i∴==∴+=+=++=+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C 解析:[][][)12212132,0,21,41,3x x x x y x y A B -<∴-<-<∴-<<=∈∴∈∴⋂=Q Q3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+,(C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C解析:()22log 10x ->2log 1x ∴>或2log 1x ∴<-2x ∴> 或102x ∴<>。
4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根 (C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 5.已知实数y x ,满足)10(<<<a a a yx,则下列关系式恒成立的是(A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D 解析:,01x y a a a x y<<<∴>Q ,排除A,B ,对于C ,sin x 是周期函数,排除C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(山东卷)
理科数学
第I卷(共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数满足(为虚数单位),则的共轭复数为
(A) (B) (C)(D)
2.已知集合={0,1,2},则集合中元素的个数是
(A) 1 (B) 3 (C)5 (D)9
3.已知函数为奇函数,且当时,,则
(A) (B) 0 (C) 1 (D) 2
4.已知三棱柱的侧棱与底面垂直,体积为,底面是边长为的正三角形.若为底面的中心,则与平面所成角的大小为
(A) (B) (C)(D)
5.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为
(A) (B) (C)0 (D)
6.在平面直角坐标系xoy中,为不等式组所表示的区域上一
动点,则直线斜率的最小值为
(A)2 (B)1 (C)(D)
7.给定两个命题,.若是的必要而不充分条件,则是的(A)充分而不必要条件(B)必要而不充分条件
(C)充要条件(D )既不充分也不必要条件
8.函数的图象大致为
9.过点作圆的两条切线,切点分别为,,则直线的
方程为
(A)(B)(C)(D)
10.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(A)243 (B)252 (C)261 (D)279
11.已知抛物线:的焦点与双曲线:的右焦点的连线交于第一象限的点。
若在点处的切线平行于的一条渐近线,则
(A)(B)(C)(D)
12.设正实数满足,则当取得最大值时,的最大值为
(A)0 (B)1 (C)(D)3
二、填空题:本大题共4小题,每小题4分,共16分。
13.执行右图的程序框图,若输入的的值为0.25,则输出的n的值为_____.
,使得成立的概率为______. 15.已知向量与的夹角为°,且,,若,且,
则实数的值为__________.
否
是
开
输入
输出
结
16.定义“正对数”:现有四个命题:
①若,则;
②若,则
③若,则
④若,则
其中的真命题有__________________.(写出所有真命题的编号)
三、解答题:本大题共6小题,共74分。
17.(本小题满分12分)设△的内角所对的边分别为,且,,。
(Ⅰ)求的值;(Ⅱ)求的值。
18.(本小题满分12分)如图所示,在三棱锥中,平面,
,分别是的中点,,与交于点,与交于点,连接.
(Ⅰ)求证:;(Ⅱ)求二面角的余弦值。
19.(本小题满分12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是,假设各局比赛结果相互独立.
(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;
(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分的分布
列及数学期望。
20.(本小题满分12分)设等差数列的前n项和为,且,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列前n项和为,且(为常数).令
.求数列的前n项和。
21.(本小题满分13分)设函数(=2.71828……是自然对数的底数,).
(Ⅰ)求的单调区间、最大值;(Ⅱ)讨论关于的方程根的个数。
22.(本小题满分13分) 椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线交的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,若,试
证明为定值,并求出这个定值.
参考答案
一、选择题
1.D【解析】由(z-3)(2-i)=5,得,所
以,选D.
2.C【解析】因为,所以,即,有5个元素,选C.
3.A【解析】因为函数为奇函数,所以,选A.
4.B【解析】取正三角形ABC的中心,连结,则是PA与平面ABC所成的角。
因为底面边长为,所以,.三棱柱的体积为,解得,即,所以,即,选 B.
5.B【解析】将函数y=sin(2x +)的图像沿x轴向左平移个单位,得到函数
,因为此时函数为偶函数,所以,即,所以选B.
6.C【解析】作出可行域如图
由图象可知当M位于点D处时,OM的斜率最小。
由得,即,此时OM的斜率为,选C.
7.A【解析】因为﹁p是q的必要而不充分条件,所以﹁q是p的必要而不充分条件,即p是﹁q的充分而不必要条件,选A.
8.D【解析】函数y=xcosx + sinx为奇函数,所以图象关于原点对称,所以排除B,C.当时,,排除A,选D.
9.A【解析】由图象可知,是一个切点,所以代入选项知,不成立,排除。
又直线的斜率为负,所以排除C,选A
10.B【解析】有重复数字的三位数个数为。
没有重复数字的三位数有,所以有重复数字的三位数的个数为,选B.
11.D【解析】经过第一象限的双曲线的渐近线为。
抛物线的焦点为,双曲线的右焦点为.,所以在处的切线斜率为,即,所以,即三点,,共线,所以,即,选D.
12. B 【解析】由,得。
所以
,当且仅当,即时取等号此时,.
,故选B.
13.3【解析】第一次循环,,此时不成立。
第二次循环,,此时成立,输出。
14.【解析】设,则。
由,解得,即当时,。
由几何概型公式得所求概率为。
15.【解析】向量与的夹角为,且所以。
由得,,即
,所以,即,解得。
16.①③④【解析】①当时,,,所以成立。
当时,,此时,即
成立。
综上恒成立。
②当时,
,所以不成立。
③讨论的取值,可知正确。
④讨论的取值,可知正确。
所以正确的命题为①③④。
17.解:(Ⅰ)由余弦定理,得,又,,,所以,解得,.
(Ⅱ)在△中,,
由正弦定理得,
因为,所以为锐角,所以
因此.
18.解:(Ⅰ)证明:因为分别是的中点,
所以∥,∥,所以∥,
又平面,平面,
所以∥平面,
又平面,平面平面,
所以∥,
又∥,
所以∥.
(Ⅱ)解法一:在△中,,,
所以,即,因为平面,所以,
又,所以平面,由(Ⅰ)知∥,
所以平面,又平面,所以,同理可得,所以为二面角的平面角,设,连接,
在△中,由勾股定理得,,
在△中,由勾股定理得,,
又为△的重心,所以
同理,
在△中,由余弦定理得,
即二面角的余弦值为.
解法二:在△中,,,
所以,又平面,所以两两垂直,
以为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,设,则,,,,,,所以,,,,
设平面的一个法向量为,
由,,
得
取,得.
设平面的一个法向量为
由,,
得
取,得.所以
因为二面角为钝角,所以二面角的余弦值为. 19.解:(Ⅰ)记“甲队以3:0胜利”为事件,“甲队以3:1胜利”为事件,“甲队以3:2胜利”为事件,由题意,各局比赛结果相互独立,故,
,
所以,甲队以3:0,3:1,3:2胜利的概率分别是,,;
(Ⅱ)设“乙队以3:2胜利”为事件,由题意,各局比赛结果相互独立,所以
由题意,随机变量的所有可能的取值为0,1,2,3,,根据事件的互斥性得
,
,
,
故的分布列为
0 1 2 3
所以
20.解:(Ⅰ)设等差数列的首项为,公差为,
由,得
,
解得,,
因此
(Ⅱ)由题意知:
所以时,
故,
所以,
则
两式相减得
整理得
所以数列数列的前n项和
21.解:(Ⅰ),
由,解得,
当时,,单调递减
所以,函数的单调递增区间是,单调递减区间是,最大值为
(Ⅱ)令
(1)当时,,则,
所以,
因为,所以
因此在上单调递增.
(2)当时,当时,,则,
所以,
因为,,又
所以所以
因此在上单调递减.
综合(1)(2)可知当时,,
当,即时,没有零点,
故关于的方程根的个数为0;
当,即时,只有一个零点,
故关于的方程根的个数为1;
当,即时,
①当时,由(Ⅰ)知
要使,只需使,即;
②当时,由(Ⅰ)知
;
要使,只需使,即;
所以当时,有两个零点,故关于的方程根的个数为2;综上所述:
当时,关于的方程根的个数为0;
当时,关于的方程根的个数为1;
当时,关于的方程根的个数为2.
22.解:(Ⅰ)由于,将代入椭圆方程得
由题意知,即又
所以,所以椭圆方程为
(Ⅱ)由题意可知:=,=,设其中,将向量坐标代入并化简得:m(,因为,
所以,而,所以
……………………………………………………………最新资料推荐…………………………………………………(3)由题意可知,l为椭圆的在p点处的切线,由导数法可求得,切线方程
为:
,所以,而,代入中得
为定值。