截面的静矩和形心位及惯性矩的计算
惯性矩、静矩,形心坐标公式
§I −1 截面的静矩和形心位置如图I −1所示平面图形代表一任意截面,以下两积分表一任意截面,以下两积分ïþïýü==òòA z S A y S A y Az d d (I −1)分别定义为该截面对于z 轴和y 轴的静矩。
轴的静矩。
静矩可用来确定截面的形心位置。
由静力学中确定物体重心的公式可得心的公式可得ïïþïïýü==òòA A z z A A y y AC ACd d利用公式(I −1),上式可写成,上式可写成ïïþïïýü====òòA S A A z z A SA Ay y y A C z A C d d (I −2) 或þýü==C y C z Az S Ay S (I −3)ïïþïýü==A S z A S y y C z C(I −4)如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对d A C Zz y y y C Z c O 图I −1 Z 同一坐标轴的静矩的代数和。
即:同一坐标轴的静矩的代数和。
即:ïïþïïýü==åå==ni ci i y ni ci i z z A S y A S 11(I −5)式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。
单图形的个数。
将式(I −5)代入式(I −4),得到组合图形形心坐标的计算公式为ïïïïïþïïïïýü==åååå====ni ini c iic ni ini c i i c AzA z A y A y 1111(I −6)例题I −1 图a 所示为对称T 型截面,求该截面的形心位置。
惯性矩、静矩,形心坐标公式
§I−1 截面得静矩与形心位置如图I −1所示平面图形代表一任意截面,以下两积分(I −1)分别定义为该截面对于z 轴与y 轴得静矩。
静矩可用来确定截面得形心位置。
由静力学中确定物体重心得公式可得利用公式(I −1),上式可写成 (I −2) 或 (I −3) (I −4)如果一个平面图形就是由若干个简单图形组成得组合图形,则由静矩得定义可知,整个图形对某一坐标轴得静矩应该等于各简单图形对同一坐标轴得静矩得代数与。
即:(I −5)式中A i 、y ci 与z ci 分别表示某一组成部分得面积与其形心坐标,n 为简单图形得个数。
将式(I −5)代入式(I −4),得到组合图形形心坐标得计算公式为 (I −6)例题I −1 图a 所示为对称T 型截面,求该截面得形心位置。
解:建立直角坐标系zOy ,其中y 为截面得对称轴。
因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。
将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m,y Ⅱ=0.2m§I −2 惯性矩、惯性积例题I −1图图I −1与极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。
现在图形内取微面积d A ,d A 得形心在坐标系zOy 中得坐标为y 与z ,到坐标原点得距离为ρ。
现定义y 2d A 与z 2d A 为微面积d A 对z 轴与y 轴得惯性矩,ρ2d A 为微面积d A 对坐标原点得极惯性矩,而以下三个积分(I −7)分别定义为该截面对于z 轴与y 轴得惯性矩以及对坐标原点得极惯性矩。
由图(I −2)可见,,所以有(I −8) 即任意截面对一点得极惯性矩,等于截面对以该点为原点得两任意正交坐标轴得惯性矩之与。
另外,微面积d A 与它到两轴距离得乘积zy d A 称为微面积d A 对y 、z 轴得惯性积,而积分(I −9)定义为该截面对于y 、z 轴得惯性积。
惯性矩
x0
x IIII 10
120
10
C
70
I y I Iy I IIy I IIIy 1.84106 mm 4
5.08106 mm 4
I xy I Ixy I IIxy I IIIxy -2.31106 mm 4
附录I 平面图形的几何性质
§I-1 截面的静矩和形心的位置
1.静矩
S x A ydA S y AxdA
y yC x O xC y dA C
y d A 2.形心 yC A A xd A A xC A
x
3.形心与静 yC S x S x yC A A 矩的关系 或 Sy S y xC A
yC O
dy
S x 2r 3 / 3 4r yC 2 A r / 2 3
C r
y x
例I-2 求图示图形的形心。 解:将此图形分别为I、II、III三 部分,以图形的铅垂对称轴为y轴, 过II、III的形心且与y轴垂直的轴线 取为x轴,则
yC Ay A
i Ci
10
y y1
200
10 I II O III
300
C y 150 C
x1
x
i
(20010) (5 150) 2 (10 300) 0 20010 2 (10 300) 38.8 mm
由于对称知: xC=0
§I-2 极惯性矩 惯性矩 惯性积
1.极惯性矩: I p A 2 dA 为图形对一点的极惯性矩;
[I z C 1 ( y C - y 1 ) 2 A 1 ][ I z C 2 ( y C - y 2 ) 2 A 2 ] 34530mm 4
惯性矩地计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y xdAdSx ydA整个图形对y、z轴的静矩分别为S y xdAyASx 人 ydA2.形心与静矩关系(1-1 )设平面图形形心C的坐标为y c,z c-S x 一S y /、y , x (I-2 )A A推论1如果y轴通过形心(即x0),则静矩S y 0 ;同理,如果X轴通过形心(即y o),则静矩sx o;反之也成立。
推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为 A,A2,A3 A n的简单图形组成,且一直各族图形的形心坐标分别为丘,只;乂2*2;x3,y3 ,贝U图形对y轴和x轴的静矩分别为截面图形的形心坐标为nA i Xi 1 nA ii 14•静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为m 3。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(1-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(1-2 )求图形的形心坐标。
组 合图形的形心位置,通常是先由式(I-3 )求出图形对某一坐标系的静 矩,然后由式(1-4 )求出其形心坐标。
(二)•惯性矩 惯性积 惯性半径1.惯性矩定义 设任意形状的截面图形的面积为 A (图I-3 ),则图形对0点的极 惯性矩定义为 I p2dA (1-5)KAn nS yS yiARi 1 i 1nnS xSxiA i Vi 1 i 1(1-3 )A i y i(1-4 )图形对y轴和x轴的光性矩分别定义为I y A x2dA , I x A y2dA (1-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。
惯性矩
§I-4 惯性矩和惯性积的转轴公式 截面的主惯性轴和主惯性矩
一、惯性矩和惯性积的转轴公式 1.公式推导: 2.转轴公式:
cos - I xy sin 2 2 2 Ix Iy Ix - Iy Iy cos I xy sin 2 2 2 Ix - Iy Ix y sin 2 I xy cos 2 2 Ix
b
x1
2
bh 2h bh bh3 I x I x a2 A 36 3 2 4
3 2
2 C
2
30 C2 2 y2 C C1 y1 zC2 zC 30 5
ห้องสมุดไป่ตู้
1
yC
zC1
z
5 yC 再求截面对形心轴的惯性矩:
求T形截面对形心轴的惯性矩 先求形心的位置: 取参考坐标系如图,则: zC 0 A i y i A1 y 1 A 2 y 2 23.75mm yC A1 A 2 Ai y C、z C即截面的形心轴。
I x I xi
i 1
n
,I y I y i ,I xy I xy i
i 1 i 1
n
n
已知: I x C 、I y C 、I x C y C ,形心在xOy坐标系下的坐标(a,b),求Ix、Iy、Ixy y b yC x
2 I x Ay 2dA A(a y C ) 2 dA A(a 2 2ay C y C )dA 2 a 2 AdA 2a A y CdA Ay CdA
101203 6010 3 ( 60 - 5 ) 2 ( 6010) 2 12 12
10
x0
x IIII 10
惯性矩、静矩、截面抵抗矩计算
惯性矩和对Y轴的惯性矩。
y
解:
100
1)求出A1和A2分别对自身形心 2
轴的惯性矩
0
I x1
b1h13 12
100 203 12
66.67 103
100
A1 •Ⅱ•ຫໍສະໝຸດ A2Ⅰx1
xc a2 30 x
Ix2
b2h23 12
20 100 3 12
16.67 105
2 0
2)求对整个截面形心X轴的惯性矩
截面对x轴的惯性矩:
I x y2dA
量纲:L4 y
A
截面对y轴的惯性矩: I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
x
dA
y r
x
3)惯性矩的单位为m4;
2、惯性半径(回转半径)
截面对x轴的惯性半径: ix I x / A 截面对y轴的惯性半径: iy I y / A
二、常见截面的惯性矩和惯性半径
形心轴:通过截面形心的坐标轴 ➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性矩。
y
对x轴的惯性矩
x
Ix
1 12
bh3
h 对y轴的惯性矩:
b
Iy
1 12
hb3
➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性半径。
y
对x轴的惯性半径
x
h
ix
Ix A
1/12bh3 h
截面的几何性质
知识点:截面惯性矩和静矩的计算 一、截面惯性矩的定义及计算 二、常见截面的惯性矩和惯性半径 三、组合截面的概念 四、惯性矩的平行移轴公式 五、静矩的概念及公式 六、常见截面的静矩
截面的静矩和形心位置及惯性矩的计算
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Iy , A
二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
x
80
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为
y
Ip Aρ2dA
y 0
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
因为 ρ2 y2 z2
I p Aρ2 dA
所以 Ip = Ix + Iy
y
y
dA
ix
Ix A
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
解:
dA = b dy
Ix
A y2dA
h
2h
by2dy
2
bh3 12
Ix A y2dA
惯性矩、静矩,形心坐标公式
惯性矩、静矩,形心坐标公式-CAL-FENGHAI.-(YICAI)-Company One1§I?1 截面的静矩和形心位置如图I ?1所示平面图形代表一任意截面,以下两积分⎪⎭⎪⎬⎫==⎰⎰A z S A y S A y Az d d (I ?1)分别定义为该截面对于z 轴和y 轴的静矩。
静矩可用来确定截面的形心位置。
由静力学中确定物体重心的公式可得⎪⎪⎭⎪⎪⎬⎫==⎰⎰A A z z A A y y AC A Cd d利用公式(I ?1),上式可写成⎪⎪⎭⎪⎪⎬⎫====⎰⎰A S A A z z A S A Ay y y AC z A C d d (I ?2)或⎭⎬⎫==C y C z Az S Ay S (I ?3)⎪⎪⎭⎪⎪⎬⎫==A S z A S y yCz C (I ?4)图I ?1如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对同一坐标轴的静矩的代数和。
即:⎪⎪⎭⎪⎪⎬⎫==∑∑==ni ci i y ni ci i z z A S y A S 11(I ?5)式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。
将式(I ?5)代入式(I ?4),得到组合图形形心坐标的计算公式为⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫==∑∑∑∑====ni i ni ci i c ni i ni ci i c A z A z A y A y 1111(I ?6)例题I ?1 图a 所示为对称T 型截面,求该截面的形心位置。
解:建立直角坐标系zOy ,其中y 为截面的对称轴。
因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。
将截面分成Ⅰ、Ⅱ两个矩形,则A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m ,y Ⅱ=0.2m例题I ?1图m323.008.0072.02.008.046.0072.0III II II I I 11=+⨯+⨯=++==∑∑==A A y A y A AyA y ni ini cii c§I ?2 惯性矩、惯性积和极惯性矩如图I ?2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。
惯性矩的计算方法及常用截面惯性矩计算公式讲解
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdAdS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0A S y x=, AS x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
惯性矩、静矩、抵抗矩形心、重心、质心
力学计算中截面参数计算,关键点的描述原先对于惯性矩、静矩、极惯性矩、抵抗矩的概念及计算方法总是模糊不清,这次认真的整理了下,估计大家对这些基本概念认知也比较凌乱,在此斗胆与大家分享下,其中的不足之处希望大家谅解,也恳请大家批评指正。
计算平面的惯性矩方法:在CAD中将平面图画好——生成面域——工具(查询——面域/质量特性)——得到质心和惯性矩(此惯性矩的计算轴为坐标原点处X、Y 轴)——将坐标轴原点移动刚算出的质心坐标上——工具(查询——面域/质量特性)得此平面图的惯性矩和面积1:静矩:平面图形的面积A与其形心到某一坐标轴的距离的乘积称为平面图形对该轴的静矩。
一般用S 来表示。
Sx=Yc*A 其中Yc=∑Yci*Ai/∑Ai2:惯性矩:轴惯性矩反映截面抗弯特性的一个量,简称惯性矩。
截面对某个轴的轴惯性矩等于截面上各微面积乘微面积到轴的距离的平方在整个截面上的积分。
公式如:Ix=∫y*ydA3:极惯性矩:极惯性矩是平面图形对坐标轴原点(即o点)的矩,计算公式为:ip=ix+iy(各惯性矩之和)4:抵抗矩:截面抵抗矩(W)就是截面对其形心轴惯性矩与截面上最远点至形心轴距离的比值。
公式为:W=I/Ymax面积矩:面积矩是一个概念,凡是与面积有关的都称为面积矩,如静矩,抵抗矩等都为面积矩。
质心:为质量集中在此点的假想点;重心:为重力作用点(与组成该物体的物质有关);(如没有引力,则就没有重心一说了)形心:物体的几何中心只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。
三者的关系:1:一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。
2:质心就是物体质量集中的假想点(对于规则形状物体就是它的几何中心),重心就是重力的作用点,通常情况下,由于普通物体的体积比之于地球十分微小,所以物体所处的重力场可看作是均匀的,此时质心与重心重合;如果该物体的体积比之于地球不可忽略(例如一个放在地面上半径为3000km的球体),则该球体所处的重力场就不均匀了,具体说是由下自上重力场逐渐减小,此时重力的作用点靠下,也就是重心低于质心.如果物体所处的位置不存在重力场(如外太空),则物体就无所谓重心了,但由于质量仍然存在,所以质心仍然存在。
截面的静矩和形心位置及惯性矩的计算
02 截面的静矩
静矩的定义
静矩
截面内力与作用点到截面某一固定点的距离的乘积的 积分。
面积矩
截面内力与作用点到截面某一固定点的距离的平方的 积分。
极惯性矩
截面内力与作用点到截面某一固定点的距离的四次方 的积分。
静矩的计算
1 2
静矩的计算公式
静矩 = Σ (y_i * dA_i),其中y_i为截面内力作用 点到某一固定点的距离,dA_i为该点处的面积微 元。
截面的静矩和形心位置及惯性矩的 计算
contents
目录
• 截面的几何特性 • 截面的静矩 • 截面的形心位置 • 截面的惯性矩 • 截面特性在工程中的应用
01 截面的几何特性
截面的定义
01
截面是一个二维平面图形,可以 通过在三维空间中切割一个物体 来获得。
02
截面可以是封闭的或开放的,可 以有不同的形状和大小,取决于 切割的方式和角度。
05 截面特性在工程中的应用
在结构设计中的应用
结构设计是工程中非常重要的环节,截面的静 矩和形心位置及惯性矩的计算可以为结构设计 提供重要的参考依据。
在结构设计时,需要考虑到截面的承载能力、 稳定性以及变形等因素,而这些因素都与截面 的特性密切相关。
通过计算截面的静矩和形心位置及惯性矩,可 以更好地了解截面的受力特性,从而优化结构 设计,提高结构的承载能力和稳定性。
转动惯量
是指刚体绕某点转动时,其转动惯量 等于刚体的所有质量微元与各微元距 离平方的乘积之和。
惯性矩的计算
矩形截面惯性矩
对于矩形截面,其惯性矩可以通过计算其面 积与面积上分布的物质质量的乘积,再乘以 一个常数得到。
圆形截面惯性矩
惯性矩的计算方法与常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为⎰⎰==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0AS y x= , A S x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii ni yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积 dA ,定义它对任意轴的 一次矩为它对该轴的静矩,即dS y =xdA dSx 二 ydA整个图形对y 、z 轴的静矩分别为S y = AXdA(I )Sx ydA、A2. 形心与静矩关系设平面图形形心C 的坐标为y C , z CS xSyy - , x( I-2)AA推论1如果y 轴通过形心(即x = 0),则静矩S y =0 ;同理,如果x 轴 通过形心(即y = 0),则静矩Sx=o ;反之也成立。
推论2如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果 y 轴为图形对称轴,贝昭形形心必在此轴上。
3. 组合图形的静矩和形心设截面图形由几个面积分别为 A,A 2,A3……A n 的简单图形组成,且一直 各族图形的形心坐标分别为 丘局乂2*2;壬3,『3"…=,则图形对y 轴和x 轴 的静矩分别为图I-1则 0S y = " S yi = 'Ai Xii 4 i 4nnS x = ' S xi = 'A i y ii 4i 4截面图形的形心坐标为、' A i X i4. 静矩的特征(1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2)静矩有的单位为m 3(3)静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
⑷ 若已知图形的形心坐标。
则可由式(1-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。
组 合图形的形心位置,通常是先由式(1-3)求出图形对某一坐标系的静 矩,然后由式(1-4)求出其形心坐标。
(二)■惯性矩惯性积惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A'2dA(1-5)图形对y 轴和x 轴的光性矩分别定义为 I y 「A X 2dA , I x 「A y 2dA ( I-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐 标轴定义的。
截面的静矩和形心位置及惯性矩的计算课件
数值模拟与优化
利用数值模拟技术,如有限元方法、边界元方法等,可以更精确地计算 截面的静矩和形心位置及惯性矩,并在此基础上进行结构优化设计。
03
多学科交叉
未来研究可以结合多个学科领域,如物理学、化学、生物学等,以更全
面地理解截面的静矩和形心位置及惯性矩的本质和规律,推动相关领域
的发展。
感谢您的观看
THANKS
详细描述
对于任意形状截面,其静矩可以通过对截面进行微分, 然后计算每个微元面积与微元重心到截面边缘的距离乘 积,最后对所有微元的静矩进行积分得到。形心位置可 以通过对截面进行微分,然后计算每个微元的面积与微 元重心坐标的平均值得到。惯性矩可以通过对截面进行 微分,然后计算每个微元的面积、微元重心到截面边缘 的距离以及微元的转动惯量,最后对所有微元的转动惯 量进行积分得到。
矩值。
通过公式计算其半径和 圆周率,得出惯性矩值。
通过公式计算其长轴、 短轴和圆周率,得出惯
性矩值。
不规则截面
需采用数值分析方法进 行近似计算或通过实验
测量得出。
03
截面几何特性的应用
结构强度分析
静矩
静矩是截面内力的一个重要参数,用于计算截面在受力时的稳定性。静矩的计算公式为 ∫(y*dA),其中y为截面各点到截面中心的距离,dA为面积微元。
形心位置
形心是截面的几何中心,其位置决定了截面的质量分布和转动惯量。形心位置可以通过积分 计算得到,公式为∫dA/A∫dxdy,其中A为截面面积。
惯性矩
惯性矩是衡量截面抗弯能力的重要参数,其计算公式为∫y^2dA,其中y为截面各点到形心距 离,dA为面积微元。
结构稳定性分析
结构失稳
当结构受到的外部载荷超 过其承载能力时,结构会 发生失稳,导致结构变形 甚至破坏。
惯性矩与惯性积计算
dA
C
y
∫ ∫ ydA
zdA
yC =
A
A
,
zC =
A
A
由静矩公式
yC
=
Sz A
,
zC
=
Sy A
或
Sz = yC A, Sy = zC A
当坐标yc或zc为0,即当坐标轴z或y通过形心时, 截面对该轴的静矩为0;反之,如果截面对某轴的静矩
为0,则该轴必通过形心。
3
常见几何图形的形心位置和面积
1. 矩形截面
解:
yC
=
Sz A
=
144× 6 + 72× 4 −16× 6 144 + 72 −16
=
5.28
mm
zC
=
Sy A
= 144× 6 + 72×16 −16× 4 144 + 72 −16
= 9.76
mm
7
[练习] 求图示截面的形心位置。
解:
9 C2
C1 9
9 y
12 z
∵ z 轴为对称轴,∴ yC = 0
惯性矩恒为正,单位为:m4。 y
组合图形的惯性矩
y
z dA
A1 A2
z
∑ I z = I z1 + I z2 + = I zi
9
二、简单截面的惯性矩 1. 矩形截面的惯性矩
h/2 C
z
h/2 dA y
b dy
Iz
=
bh3 12
∫ ∫ Iz =
y2dA = 2 h/ 2 by2dy
A
0
=
2 by3 3
=
b(
h 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
dA
x
x 0
截面对 x , y 轴的惯性积为
Ixy A xydA
惯性矩的数值恒为正,惯性积则可能为正值,负值,
也可能等于零。
y
若 x , y 两坐标轴中有一个为
dA y
截面的对称轴,则截面对 x , y 轴的 惯性积一定等于零 。
dx dx x
截面对 x , y 轴的惯性半俓为
iy
Z1 80 Z2 0
所以截面的形心坐标为
ZC
A1 Z1 A1
A2 Z2 A2
46.7mm
20 140
zc
20
1
yc
ZC
2
y
100
I1yC
1 12
20 1403
20 140
(8046.7)2
I
2 yC
1 12
100
203
100
20
(46.7)2
zc
120 103 152 120 10
1 12
703
10
(25)2
70
10
100.4 104 mm 4
Iy 278.4 104 mm4
70 20 10
120
y
80
c
x
10
y
I xy 0 15 20 120 10 0 (25) (35) 70 10
x2
10
70 2
45mm
y2 5mm
y 10
1 x1
y1
o
2 y2
10
x2
x
80
所以
x
A1 x1 A 2 x2 A1 A2
37500 1900
20mm
y
A1 y1 A1
A2 y2 A2
75500 1900
40mm
y 10
1 x1
C(y, x)
y1
2 y2
10
o x2
§І-1 截面的静矩和形心位置
一、 定义
z
截面对 z , y 轴的静矩为:
dA
S z A ydA
z
S y AzdA
oy
y
静矩可正,可负,也可能等于零。
截面的形心 C 的坐标
公式为:
y A ydA S z
A
A
z
z
z
dA
c
z AzdA S y
o
y
y
A
A
y
Sz Ay
S y Az
97.3 104 mm 4
2 I xy
tg2 0 (
Ix
) 1.093 Iy
Ix Iy 2α 0 在第三象限 2α 0 227.60
0
113.80
形心主惯性轴 x0 , y0 分别由 x 轴和 y 轴绕 C点 逆时针转 113.80 得出。
形心主惯形矩为
I x0 I x I y 1
y
yc
I x I xc a2 A
Iy Iyc b2 A
I xy I xcyc abA
a
C(a,b)
xc
ob
x
二、组合截面的惯性矩 惯性积
Ixi , Iyi , Ixyi —— 第 i个简单截面对 x ,y 轴的惯性矩、
惯性积。
组合截面的惯性矩,惯性积
n
I x I xi i1
极惯性矩为 y
Iρ
π d4 32
Ix Iy Iρ
x
Ix Iy
所以
Ix
Iy
π d4 64
§ І -3 惯性矩和惯性积的平行移轴公式 组合截面的惯性矩和惯性积
一、 平行移轴公式
y x , y ——任意一对坐标轴
C —— 截面形心
a
(a , b ) _____ 形心 c
ix
Ix A
例 2 _ 1 求矩形截面对其对称轴 x , y 轴的惯性矩。
解:
dA = b dy
Ix
A y2dA
h
2h
by2dy
2
bh3 12
Ix A y2dA
y
Iy
hb3 12
dy
h
y
C
x
b
例 2 - 2 求圆形截面对其对称轴的惯性矩 。
解:因为截面对其圆心 O 的
I y0
2
2
Ix
Iy
2
4 I xy
2
321 104 57.4 104
mm 4
n
x
Ai xi
i1 n
Ai
A1 x1 A1
A2 x2 A2
i1
y A1 y1 A2 y2 A1 A2
y 10
x1 1
y1
o x2
80
y2
2 10 x
矩形 1
A1 10 120 1200mm2
x1 5mm
y1 60mm
矩形 2
A2 10 70 700mm2
坐标。
o
xc , yc ——过截面的形心 c 且与 x , y 轴平 行的坐 标轴(形心轴)
yc
C(a,b)
xc
b
x
Ix , Iy , Ixy _____ 截面对 x , y 轴的惯性矩和惯性积。
Ixc ,Iyc , Ixc yc —— 截面对形心轴 xc , yc 的惯性矩和惯性积。
则平行移轴公式为
I x0
I y0
Ix
Iy 2
1 2
Ix
Iy
2
4
I
2
xy
过截面上的任一点可以作无数对坐标轴,其中必有
一对是主惯性轴。截面的主惯性矩是所有惯性矩中
的极值。即:Imax = Ix0 ,
Imin = Iy0
截面的对称轴一定是形心主惯性轴。
求形心主惯性矩的步骤
确定形心 的位置
x
Ai x i
二 、 截面的主惯性轴和主惯性矩
I x1y1
Ix
2
Iy
sin 2α
I xy cos 2α
主惯性轴 —— 总可以找到一个特定的角 0 , 使截面对新坐标 轴 x0 , y0 的惯性积等于 0 , 则称 x0 , y0 为主惯轴。
主惯性矩——截面对主惯性轴的惯性矩。
形心主惯性轴 ——当一对主惯性轴的交点与截面的形心 重合时,则称为形心主惯性轴。
n
I y I yi i1
n
I xy I xyi i 1
例 3 -1 求梯形截面对其形心轴 yc 的惯性矩。
解:将截面分成两个矩形截面。
截面的形心必在对称轴 zc 上。 取过矩形 2 的形心且平行 于底边的轴作为参考轴, 记作 y 轴 。
20 140
zc
20
1
yc
2
y
100
A1 20140 A2 100 20
x
80
§ І -2 极惯性矩 惯性矩 惯性积
定义:
z dA
z
截面对 o 点的极惯性矩为
y
Ip Aρ2dA
y 0
截面对 y ,z 轴的惯性矩分别为
Iy A z2dA Iz A y2dA
因为 ρ2 y2 z2
I p A ρ 2 dA
所以 Ip = Ix + Iy
y
若截面对某一轴的静矩等于零,则该轴必过形心。
截面对形心轴的静矩等于零。
二 、 组合截面 由几个简单图形组成的截面称为组合截面
截面各组成部分对于某一轴的静矩之代数和,就等于该截 面对于同一轴的静矩。
组合截面静矩的计算公式为
n
S
z
Ai
y i
i1
n
S y Ai zi i1
其中: Ai —— 第 i 个简单截面面积
I y0
2
1 2
(I x
I
y
)2
4
I
2 xy
例 4-1 计算所示图形的形心主惯性矩。
120
y
80
70 20 10
c
x
10
y
解:该图形形心 c 的位置已确定, 如图所示。 过形心 c 选一对座标轴 X , y 轴, 计算其惯性矩(积)。
70 20 10
120
y
80
c
x
10
y
Ix
1 12
,
y
Ai
yi
Ai
Ai
选择一对通过形心且便于计算惯性矩(积)的坐 标轴 x ,y, 计算 Ix , Iy , Ixy
I x I xi I y I yi
I xy I xyi
确定主惯性轴的位置
I 1 2 xy
2 0
tg
(
)
Ix Iy
计算形心主惯性矩
Ix0 I x I y
形心主惯性矩—— 截面对形心主惯性轴的惯性矩。
主惯性轴的位置:设 为主惯性轴与原坐标轴 之间的夹角,
则有 由此
I I x I y 2 sin 2 0 xy cos 2 0 0
tg 2 0