大体积混凝土测温方案及测温方法

合集下载

大体积混凝土测温方案

大体积混凝土测温方案

(三)、测温点布置基础大体积砼内测温点的布置,应真实地反映出砼浇筑体内最高温升、里表温差、降温速率及环境温度。

1、测温点位置该基础砼计划以后浇带为界分区段浇筑,各区段内混凝土一次浇注成型。

因此,在平面上的温度测点为梅花形布置,间距10m,并综合考虑电梯井的位置(测温点布置平面图见附图)。

由于底板混凝土最高温度多出现在厚度中部,故每个测温点按厚度方向沿厚度中部、混凝土表面和底部处布置三根测温线。

2、注意事项(1)所有测温线的埋设,必须按测温点布置图进行编号,并在埋设前进行测试检验。

(2)测温线必须在钢筋绑扎完毕和混凝土浇注前安好,测温线采用钢丝或胶布绑在一根Φ14的钢筋上,其感温头应处于测温点位置,不得与钢筋直接接触(测温点测温线布置示意图见图1)。

图1?测温点测温线布置示意图(3)测温线插头留在外面,并用塑料袋罩好,避免潮湿,保持清洁,留在外面的测温线长度应大于20cm,?并按上中下顺序分别绑扎,每组测温线在线的上段做上标记,?便于区分深度。

(4)砼表面测温线感温头位置在砼外表以内5cm处,砼底部测温线感温头位置在砼底面上5cm处。

三、测温(一)、测温要求1、一般在砼浇注完毕后10h开始测温,每班定时测定大气温度、砼内部温度,砼浇筑时,还应测砼的入模温度。

2、测温工作不分昼夜24h连续进行,第1天至第5天,每2h测温一次;第6天至第10天,?每4h测温一次;第11天至第28天,每8h测温一次。

3、测温数据应认真仔细记录分析,及时汇报结果,以便对混凝土的温控实施更及时的养护措施。

(二)、温控指标依据《YBJ224-91块体基础大体积施工技术规程》、《JGJ6-99?高程建筑箱型与筏型基础技术规范》的有关规定:混凝土结构内部中心温度与混凝土表面温度的差值小于25℃,温度场中的断面各测点温度陡降控制在10℃以内;大气温度与混凝土表面温度之差应控制在30℃以内;大体积混凝土的降温速率一般不宜大于2℃/d。

大体积混凝土测温方案

大体积混凝土测温方案

1、按照图纸要求,筏板厚度大于800mn长度大于6000mm勺混凝土为大体积混凝土,一般要求最小断面尺寸大于2米以上混凝土结构构件视为大体积混凝土。

按照此定义,主楼筏板和柱墩混凝土为大体积混凝土,必须采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的混凝土结构。

施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。

温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。

另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。

为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。

2、测温的方法:采用采用温度计测温。

具体操作如下:(1)、混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。

(2)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。

一般七天后可停止测温,或温度梯度v 20度时,可停止测温。

(3)、每测温一次,应记录、计算每个测温点的升降值及温差值。

3、测温导管的具体埋设:1)、测温导管的制作测温导管采用薄壁钢管管制作而成,内径16伽,上口用胶带封口,下口压扁并用胶带封堵,导管内尽可能不要进水。

长度按照埋设位深度、位置而定。

在同一测温点,按照测温深度上中下分别将三根测温导管插入混凝土(混凝土初凝前)。

2、测温点的布置测温点的布置原则应在有代表性的整个基础底板最深处、底板四个角点及结构尺寸变化较大的地方。

测温点的具体布置为:主楼每个柱墩设置一个测温点,主楼筏板按照距筏板边3米间距每6米设置一个测温点。

详见测温点布置图,测温点分别设置在筏板的下部和中间位置,表面温度在砼面向下5-10 cm部位量取。

大体积混凝土测温方案

大体积混凝土测温方案

大体积混凝土测温方案为安全保障和质量监控,大型混凝土结构在建设过程中需要进行温度监测。

这篇文章将介绍一种适用于大体积混凝土的测温方案。

一、测温原理大体积混凝土的温度变化会影响它的性能和强度,因此需要进行温度监测。

测温原理是基于热敏电阻传感器,即给混凝土里埋入一些热敏电阻传感器,可以实时测量混凝土体内温度并输出数据。

这些数据可以用于计算混凝土的发热量和温度变化。

二、测温设备热敏电阻传感器是测温的核心设备。

传感器需要宽温度工作范围,以适应混凝土的高温度和变化范围。

目前市场上的传感器一般可以在-200℃至+800℃的温度范围内正常工作。

传感器还需要具有防水、耐高温、耐腐蚀、抗振动等特点。

三、测温方案1. 常规测温方案常规测温方案一般采用点式测温,即在混凝土的不同位置埋入一些热敏电阻传感器,测点一般选在混凝土厚度的1/3处。

在混凝土浇注过程中,将传感器与数据采集仪器相连,并记录每一个测点和时间的数据。

这种方案适用于混凝土体积较小的结构,但对于大体积混凝土结构则显得不够全面,需要采取更多的测温点来达到全面监测的效果,同时这也难以进行远程数据处理。

2. 分区域测温方案对于大体积混凝土结构,需要采用分区域测温方案。

该方案将区域划分为若干个均匀的小区域,每个小区域需要安装若干个传感器来实现全面监测。

在混凝土浇注过程中,将每个小区域内的传感器数据采集到单独的数据采集仪,并移至中控室进行数据处理和分析,便于实时监测和调整。

三、方案实施步骤1.设计阶段:根据混凝土结构的尺寸和特点,确定测温区域和传感器数量,设计合适的传感器布置方案。

2.施工前准备:在混凝土浇筑前,安装好传感器和数据采集仪器,并进行调试和测试,确保数据的准确性。

3.浇筑阶段:根据设计方案,安装好每个区域内的传感器,并连接到数据采集仪器。

在混凝土的各个阶段,实时记录每个区域内传感器的温度数据。

4.数据处理:将数据采集仪器内的数据传输至中控室进行处理和分析,生成图表和报告,并及时调整施工过程中的措施,以保障混凝土结构的安全和质量。

大体积混凝土测温方案

大体积混凝土测温方案

大体积混凝土测温方案混凝土是建筑工程常用的材料之一,其性能与物理特性在施工过程中需要进行准确的监测和控制。

其中,测温是混凝土施工过程中重要的一项工作,可以帮助工程师了解混凝土的温度变化情况,从而对施工进展和材料性能进行评估和调整。

本文将介绍一种适用于大体积混凝土测温的方案。

一、背景在大体积混凝土施工中,由于混凝土的体积较大,温度变化会对施工过程和混凝土的强度发展产生重要影响。

因此,准确监测混凝土温度的变化是确保工程质量和安全的关键。

二、测温原理与方法测温原理基于混凝土材料的热学性质。

在混凝土硬化过程中,水泥水化反应会产生大量热量,导致混凝土温度升高。

为了准确测量混凝土的温度,可以采用以下测温方法:1. 嵌入式温度传感器嵌入式温度传感器是一种常用的测温方法。

它将温度传感器嵌入混凝土内部,通过测量混凝土内部的温度来监测其变化。

嵌入式温度传感器可以提供较为准确的温度测量结果,但在施工过程中需要预留固定位置,且安装比较繁琐。

2. 表面温度传感器表面温度传感器是一种非接触式测温方法,可以通过放置在混凝土表面的传感器,测量混凝土表面的温度。

表面温度传感器使用简便,但精度相对较低,并且容易受到外部环境的干扰。

3. 红外线测温仪红外线测温仪是一种非接触式测温设备,可以通过测量混凝土表面的红外辐射来得到温度信息。

它可以快速、准确地测量大面积混凝土温度,但需要保持一定的距离和角度以确保测量准确性。

三、测温方案针对大体积混凝土测温的需求,我们提出了以下测温方案:1. 预置盒式嵌入式温度传感器为了解决传统嵌入式温度传感器安装繁琐的问题,我们设计了一种预置盒式嵌入式温度传感器。

该传感器可以预先在混凝土浇筑前进行安装,减少了施工过程中的时间和工作量。

传感器与混凝土连接紧密,可以提供准确的混凝土温度测量结果。

2. 热敏贴片温度传感器热敏贴片温度传感器是一种灵活、高精度的测温设备,可以直接粘贴在混凝土表面。

它可以快速响应温度变化,并提供实时的温度数据。

大体积混凝土测温方案

大体积混凝土测温方案

大体积混凝土测温方案一、工程概述在本次工程项目中,涉及到大体积混凝土的施工。

大体积混凝土由于其体积较大,水泥水化热释放集中,内部温升较快,容易产生温度裂缝,从而影响混凝土的质量和结构的安全性。

因此,为了有效控制大体积混凝土的温度变化,确保混凝土的质量,特制定本测温方案。

二、测温目的1、实时监测混凝土内部的温度变化,及时掌握混凝土的温升和降温情况。

2、发现温度异常,及时采取有效的温控措施,防止混凝土出现温度裂缝。

3、为施工过程中的养护措施提供依据,确保混凝土在适宜的温度环境下硬化。

三、测温设备选择1、采用电子测温仪进行温度测量,其具有测量精度高、响应速度快、数据存储方便等优点。

2、测温传感器选用热敏电阻式传感器,能够准确地感知混凝土内部的温度变化。

四、测温点布置1、根据混凝土的结构特点和尺寸,合理布置测温点。

在平面上,测温点应分布均匀,在重点部位(如基础的边角、结构的核心部位等)应适当加密。

2、在垂直方向上,测温点应沿混凝土的厚度方向布置,一般在混凝土表面以下50mm、混凝土中部和距底面50mm 处分别设置测温点。

3、每个测温点应设置多个传感器,以监测不同深度的温度变化。

五、测温时间及频率1、从混凝土浇筑开始,即进行温度测量。

2、在混凝土浇筑后的前 3 天,每 2 小时测量一次;第 4 7 天,每4 小时测量一次;第 8 14 天,每 8 小时测量一次;14 天后,每天测量一次,直至混凝土内部温度与环境温度之差小于 25℃为止。

六、测温数据记录与分析1、每次测量后,应及时记录测温数据,包括测量时间、测温点位置、各深度的温度值等。

2、对测温数据进行整理和分析,绘制温度变化曲线,观察温度的上升和下降趋势。

3、当发现混凝土内部温度过高或温差过大时,应及时报告,并采取相应的温控措施。

七、温控措施1、优化混凝土配合比,减少水泥用量,降低水化热。

2、分层浇筑混凝土,控制每层的浇筑厚度,以利于散热。

3、在混凝土中埋设冷却水管,通过循环水降低混凝土内部温度。

基础筏板大体积混凝土施工及测温方案

基础筏板大体积混凝土施工及测温方案

基础筏板大体积混凝土施工及测温方案基础施工是任何建筑工程的重要环节,而基础筏板混凝土施工更是其中关键的一环。

在基础筏板大体积混凝土施工中,需要考虑施工工艺、材料选用、施工时间和测温等因素。

下面将详细介绍基础筏板大体积混凝土施工及测温方案。

施工工艺:1.地基处理:清理施工区域表面杂物,对土壤进行平整,确保均匀承载力。

2.设置导向墙:将导向墙建立在筏板四周,用于引导混凝土的流动,并保持混凝土边界的竖直度。

3.浇筑模板:在导向墙内侧铺设模板,保持模板水平,模板的拼接处要严密,以防止混凝土流失。

4.铺设钢筋:根据设计要求,将钢筋按照预定位置进行排列,注意钢筋与导向墙的连接,使之固定。

5.安装临时设施:在施工期间,需要设置临时设施,如水泵、脚手架等,以保证施工的顺利进行。

6.混凝土浇筑:根据设计要求,选用优质的混凝土,并按照设计施工方案进行浇筑,保证整个筏板均匀、紧密。

7.养护:在混凝土浇筑完成后,进行适当的养护,如覆盖保温层、喷水养护等,使混凝土能够逐渐干燥和强化。

材料选用:1.混凝土:选择符合设计强度和流动性要求的大体积混凝土,使用具备合格证明的商标产品。

2.水泥:选用符合规定标准的硅酸盐水泥,流动性好、强度高。

3.砂、石:选用质量优良的细砂和骨料,确保混凝土强度和稳定性。

4.钢筋:选择优质的钢筋,按照设计要求进行排列和连接,确保基础筏板的承载能力。

施工时间:在施工前需要根据气温、湿度等气象条件以及混凝土配方的特性,合理安排施工时间。

避免在高温、低温或雨雪天气下施工,防止混凝土强度低、开裂等质量问题。

测温方案:在基础筏板大体积混凝土施工中,测温是非常重要的一项工作。

测温可以了解混凝土的温度变化情况,及时发现并纠正可能存在的问题。

1.温度测量点的设置:根据施工图纸和设计要求,在混凝土体内预留一定数量的测温点,设置在不同位置和深度,以全面了解混凝土的温度变化。

2.温度监测设备:选用可靠、精准的温度监测设备,如温度计、温度传感器等。

大体积混凝土测温施工方案

大体积混凝土测温施工方案

大体积混凝土测温施工方案1. 引言大体积混凝土结构在施工过程中需要对其温度进行监测和控制,以确保混凝土在硬化过程中的质量和性能。

本文档旨在提供一套详细的大体积混凝土测温施工方案,包括测温设备的选择、安装位置、数据采集与分析等内容,以帮助施工人员合理、准确地掌握混凝土的温度变化情况。

2. 测温设备的选择选择合适的测温设备对于准确测量大体积混凝土的温度至关重要。

以下是几种常用的测温设备:•温度计:采用数字式温度计进行实时测量,精度高,适用于对混凝土表面温度进行监测。

•热电偶:将热电偶导线嵌入混凝土中,可获得混凝土内部的温度数据,适用于对混凝土内部温度进行监测。

•光纤传感器:采用光纤传感技术对混凝土进行温度测量,具有高精度、无线传输等优点,适用于对混凝土浸泡温度的监测。

3. 测温设备的安装位置为了准确测量大体积混凝土的温度,应合理选择测温设备的安装位置。

以下是一些建议的测温设备安装位置:•混凝土表面:可以选择在混凝土表面安装温度计,用于监测混凝土表面温度变化情况。

•混凝土内部:利用热电偶或光纤传感器嵌入混凝土中,分布在不同深度上,以获取混凝土内部温度的垂直分布情况。

一般建议在距离混凝土表面至少1/3厚度处安装测温设备。

•监测孔:在混凝土浇筑过程中埋设监测孔,通过这些孔洞进行温度测量。

4. 数据采集与存储建议使用数据采集系统对测温设备采集的数据进行实时监测和记录,以便后续的数据分析和评估。

以下是一些常用的数据采集与存储方式:•数据记录仪:通过连接到测温设备,实时监测并记录数据。

可以选择便携式数据记录仪或定位数据记录仪,视具体情况而定。

•无线传输系统:利用现代无线传输技术,将测温设备采集到的数据无线传输到中央控制系统或云端存储服务器上。

•云端存储:将采集到的数据上传到云端存储服务器中,方便后续的数据分析和评估。

5. 数据分析与评估通过对采集到的数据进行分析和评估,可以得出大体积混凝土的温度变化规律及其对混凝土性能的影响。

大体积混凝土施工规范测温要求(2024)

大体积混凝土施工规范测温要求(2024)

引言概述:大体积混凝土施工规范测温要求是在大型基础建设项目中关键的一环,它直接影响到混凝土的质量与性能。

混凝土的温度是一个关键参数,在混凝土养护过程中起到了至关重要的作用。

本文将详细介绍大体积混凝土施工规范中对测温要求的各个方面。

正文内容:一、测温工具选择1.温度传感器的类型必须使用符合国家标准的热电阻温度传感器;热电阻温度传感器的使用范围应覆盖施工过程中常见的温度范围。

2.传感器的校准与检测温度传感器应在使用前进行校准,确保其准确度符合标准要求;定期对温度传感器进行检测,确保其测量精度。

3.测温设备的选择应使用专业的测温设备,保证测温不受外界环境的干扰;测温设备应具备合适的尺寸,便于在混凝土中定位和使用。

二、测点布置与测量方法1.测点布置测点应均匀分布在混凝土中,以保证测温数据的准确性;测点应尽量远离任何外部热源,如阳光直射、机械设备等。

2.测点尺寸与深度测点的尺寸应适当,既能满足测温的要求,又不会引起混凝土的破坏;测点的深度应足够达到混凝土温度的有效范围。

3.测量方法测温首先需要将温度传感器插入混凝土中,确保与混凝土充分接触;随后,使用专业的测温设备对温度传感器进行读数。

三、测温时间点的选择1.初始测温初始测温的时间点为混凝土浇筑后的30分钟内,测量混凝土的初始温度;初始温度能为施工及后续阶段的温度控制提供依据。

2.日常测温在混凝土养护过程中,每日固定时间段内测量混凝土温度,以了解混凝土的发展趋势;日常测温为及时调整养护措施提供基础,确保混凝土早期强度和耐久性。

3.最终测温在混凝土养护周期结束时,进行最终测温;最终测温用于判定混凝土是否达到设计要求的强度与性能。

四、测温记录与数据处理1.测温记录每次测温都应准确记录,包括测点的位置、深度和测量的时间;2.数据处理测温数据的处理应借助计算机软件进行,确保数据的准确性与可靠性;将测温数据进行分析与比较,以提供混凝土质量与性能的评估依据。

3.异常情况处理对于测温数据中出现的异常情况,如突然升高或降低的温度值,应及时进行分析与处理;如果是测温设备或传感器的问题,应及时修复或更换。

大体积混凝土测温方案

大体积混凝土测温方案

大体积混凝土测温方案为了保证混凝土的质量,测量混凝土温度是非常重要的一项工作。

特别是在大体积混凝土的浇筑工作中,温度的变化会对混凝土的硬化过程产生较大的影响。

因此,在大体积混凝土浇筑工作中,测温方案的选择显得尤为重要。

一、大体积混凝土测温原理在大体积混凝土的测温过程中,一般采用探针法进行测量。

探针法是以温度计的感应探头为测量对象,将探头通过混凝土搅拌机中的混凝土进行测量。

混凝土搅拌机中的混凝土通过不断的搅动,温度会逐渐趋于稳定。

在这个过程中,可以不断测量混凝土中的温度值,并通过计算得到混凝土的平均温度值。

二、大体积混凝土测温方案1.试验设计在进行大体积混凝土测温之前,需要进行试验设计。

试验设计是为了确定测量混凝土温度的具体方案。

试验设计应包括以下内容:(1)探针的材料选择。

(2)混凝土的生产工艺和配筋组合。

(3)测量温度的区域和深度。

(4)探头的数量和布置。

(5)探头与温度计的匹配方式。

2.试验操作在进行大体积混凝土测温时,需要进行如下操作:(1)在进行混凝土浇筑之前,需要先将混凝土搅拌均匀,并将其中的探头插入混凝土中进行测量。

(2)为了确保测温的准确性,需要不断地调整探头的位置,使其更贴近混凝土的中心地带。

(3)在混凝土温度达到一定数值时,需要及时停止混凝土的测量,并进行数据的处理和分析。

3.试验结果分析通过试验操作,可以得到混凝土温度的测量结果。

这些结果需要进行数据的统计和分析。

根据混凝土的实际情况,可以制定对应的处理方式,以确保混凝土的质量和性能。

三、测温方案的优化在大体积混凝土的测温工作中,为了使测量结果更加准确、可靠,需要进行优化。

优化主要包括以下方面:1.探头选用目前市场上的探针种类比较多,应该根据具体情况选择,选择探针的质量和防水性能要尽可能好。

2.测温深度在大体积混凝土的测温中,一般要求探头的插入深度达到混凝土中心一定的深度,以保证测量结果的准确性。

大体积混凝土测温方案及测温方法

大体积混凝土测温方案及测温方法

大体积混凝土测温方案及测温方法X交通大学第一医院l号、2号高层住宅楼采用筏板混凝土基础,剪力墙结构,地上33层.地下2层(含夹层),建筑高度97.8 m,建筑面积72,469rn2。

1号、20楼筏板混凝土总方量分别约为1 250m 3,筏板强度等级C35,抗渗等级P6。

筏板混凝土厚度为600mm,基础梁l400mm,核心承台1 800mm。

本筏板工程属于大体积混凝土。

大体积混凝土施二r中要求控制混凝土内外温差,混凝土厚度小于2. 0m时,内外温差不宜大于25℃;对于厚度超过2.0m的混凝土,根据已有的经验,只要控制温度梯度小于12.5℃/m。

可适当放宽内外温差至30~ 33℃,否则会产生温差裂缝。

1 大体积混凝土施工的技术要求1.1 本工程大体积混凝±筏板的特点(1)筏板要求具有足够的强度,达到设计强度等级C35。

水泥、粉煤灰、膨胀剂等胶凝材料在水化过程中将放出大量的热量。

(2)筏板要求具有良好的抗渗性,因此,原材料要严格控制含泥量。

在混凝土配合比设计中要加入优质的泵送减水剂,提高混凝土密实度,同时掺入膨胀剂,以补偿混凝土收缩。

(3)筏板要求具有良好的整体性,防止贯穿性裂缝产生,同时尽量减少浅层裂缝的出现。

1.2 大体积混凝±施工技术要求本工程采用商品混凝土,l号楼于2O04年5月3日(16:30)至5日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为10~28℃。

混凝土入模温度15—22℃。

2号楼于2004年6月1日(4:30)至2日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为16~29 ℃,混凝土入模温度22~3l℃。

白天温度较高的时候只覆盖塑料布保湿,晚上温度较低的时候及时增加覆盖棉毡进行保湿保温养护;如遇大雨天则在混凝土上面再加盖塑料布,防止积水太多(不超过20mm)导致混凝土表面温度太低而加大温差。

经过9d的温度监测,1号楼大体积混凝土筏板的内部最高温度从59.9 ℃降至40℃以下,表面温度相应降至30℃左右;2号楼大体积混凝土筏板的内部最高温度从64. 8℃降至40℃以下,表面温度相应降至30℃左右,已达到安全温度,可不对筏板混凝土进行温度监控。

大体积混凝土简易测温法

大体积混凝土简易测温法

大体积混凝土简易测温法在建筑工程中,大体积混凝土的施工是一项具有挑战性的任务。

由于混凝土在硬化过程中会释放出大量的水化热,如果不能有效地控制温度变化,可能会导致混凝土出现裂缝,从而影响结构的安全性和耐久性。

因此,对大体积混凝土进行温度监测是非常重要的。

本文将介绍一种简易的大体积混凝土测温法,帮助您在实际工程中更好地掌握混凝土的温度变化情况。

一、大体积混凝土温度变化的特点大体积混凝土在浇筑后的初期,由于水泥的水化反应,会产生大量的热量。

这些热量在混凝土内部积聚,导致内部温度迅速升高。

而混凝土的表面则与外界环境接触,散热较快,温度相对较低。

这种内外温差会在混凝土内部产生温度应力,如果温差过大,可能会超过混凝土的抗拉强度,从而引起裂缝。

随着时间的推移,混凝土内部的热量逐渐散发到外界,温度逐渐降低。

在这个过程中,如果降温速度过快,也可能会产生收缩裂缝。

因此,了解大体积混凝土温度变化的特点,对于采取有效的测温措施和控制温度裂缝至关重要。

二、简易测温法的原理和设备简易测温法的原理是通过测量混凝土内部不同深度处的温度,来了解混凝土的温度分布情况。

常用的测温设备包括温度计、热电偶和热敏电阻等。

温度计是一种简单直观的测温工具,通常使用水银温度计或酒精温度计。

在使用时,将温度计插入预先在混凝土中预留的测温孔内,经过一定时间后读取温度值。

热电偶是一种基于热电效应的测温元件,它由两种不同的金属材料组成。

当热电偶的两端存在温度差时,会产生热电势,通过测量热电势的大小可以得到温度值。

热电偶具有测量精度高、响应速度快等优点,但安装和使用相对复杂。

热敏电阻是一种电阻值随温度变化而变化的元件。

通过测量热敏电阻的电阻值,再根据其电阻温度特性曲线,可以计算出温度值。

热敏电阻的体积小、价格便宜,但测量精度相对较低。

在实际工程中,可以根据具体情况选择合适的测温设备。

对于要求不高的工程,温度计通常能够满足需求;对于精度要求较高的工程,则可以选择热电偶或热敏电阻。

大体积混凝土测温方案

大体积混凝土测温方案

大体积混凝土测温方案随着房地产行业的发展,大体积混凝土的使用越来越广泛。

然而,在浇筑大体积混凝土时,温度的控制成为一个关键问题。

因为温度的过高或过低都会影响混凝土的强度和耐久性,甚至导致开裂。

因此,制定一个有效的大体积混凝土测温方案至关重要。

1.使用温度传感器温度传感器是大体积混凝土测温的关键工具。

可以使用贴片式温度传感器或插入式温度传感器。

贴片式温度传感器可以直接粘贴在混凝土表面,通过测量混凝土表面温度来推算内部温度。

插入式温度传感器则是将传感器插入混凝土内部,直接测量混凝土内部的温度。

这两种传感器都具有优点和缺点,需要根据具体情况选择适合的传感器。

2.测量点布置在测量温度时,应该合理布置测量点,以获取尽可能准确的温度数据。

可以根据实际情况,例如混凝土的体积和形状,以及温度的变化情况,来决定测量点的数量和位置。

通常情况下,应该在混凝土表面和内部设置多个测量点,以确保获取全面的温度数据。

3.数据采集和记录测温方案不仅要求准确测量温度,还需要进行数据采集和记录。

可以使用数据采集设备,将测得的温度数据实时传输到计算机或数据存储设备上。

同时,应该建立完善的数据记录系统,将测温数据进行备份并进行分析,以便后续的温度控制和质量评估。

4.温度控制测温方案的目的是为了控制大体积混凝土的温度,以确保其强度和耐久性。

根据测温数据,可以及时采取措施,如降低或增加环境温度、调节水泥的配比,来控制混凝土的温度。

同时,还需要根据测温数据对施工进度进行调整,以避免温度过高或过低对混凝土造成不利影响。

5.质量评估测温方案还可以用于评估大体积混凝土的质量。

通过对测温数据的分析,可以了解混凝土的温度分布情况,判断是否存在过热或过冷的问题。

同时,还可以对不同测量点的温度变化进行比较,以评估施工质量和温度控制的效果。

总之,制定一个有效的大体积混凝土测温方案对于保证混凝土的强度和耐久性至关重要。

通过使用温度传感器、合理布置测量点、进行数据采集和记录、根据测温数据进行温度控制和质量评估,可以为大体积混凝土的施工提供可靠的技术支持。

大体积混凝土测温方案

大体积混凝土测温方案

大体积混凝土测温方案标准化管理部编码-[99968T-6889628-J68568-1689N]1、按照图纸要求,筏板厚度大于800mm长度大于6000mm的混凝土为大体积混凝土,一般要求最小断面尺寸大于2米以上混凝土结构构件视为大体积混凝土。

按照此定义,主楼筏板和柱墩混凝土为大体积混凝土,必须采取相应的技术措施妥善处理温度差值,合理解决温度应力并控制裂缝开展的混凝土结构。

施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。

温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。

另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。

为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。

2、测温的方法:采用采用温度计测温。

具体操作如下:(1)、?混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。

(2)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。

一般七天后可停止测温,或温度梯度<20度时,可停止测温。

(3)、每测温一次,应记录、计算每个测温点的升降值及温差值?。

3、测温导管的具体埋设:1)、测温导管的制作测温导管采用薄壁钢管管制作而成,内径16㎜,上口用胶带封口,下口压扁并用胶带封堵,导管内尽可能不要进水。

长度按照埋设位深度、位置而定。

在同一测温点,按照测温深度上中下分别将三根测温导管插入混凝土(混凝土初凝前)。

2、测温点的布置测温点的布置原则应在有代表性的整个基础底板最深处、底板四个角点及结构尺寸变化较大的地方。

测温点的具体布置为:主楼每个柱墩设置一个测温点,主楼筏板按照距筏板边3米间距每6米设置一个测温点。

大体积混凝土测温方案完整版

大体积混凝土测温方案完整版

大体积混凝土测温方案完整版一、工程概况本次施工的大体积混凝土工程为_____,其混凝土强度等级为_____,混凝土浇筑方量约为_____立方米。

该工程的大体积混凝土结构尺寸较大,施工过程中由于水泥水化热的作用,混凝土内部温度升高较快,容易产生温度裂缝,影响混凝土的质量和耐久性。

因此,需要对大体积混凝土进行温度监测和控制,以确保混凝土的质量。

二、测温目的1、及时掌握混凝土内部温度变化情况,以便采取有效的温控措施,防止混凝土出现温度裂缝。

2、验证所采取的温控措施的效果,为后续类似工程提供参考经验。

三、测温设备选择1、测温传感器选用数字式温度传感器,其具有精度高、稳定性好、响应速度快等优点。

传感器的测量范围为-50℃至150℃,精度为±05℃。

2、数据采集仪选择具有多通道、自动采集、存储数据功能的数据采集仪,能够实时记录温度数据,并可将数据传输至计算机进行处理和分析。

四、测温点布置1、测温点的布置应具有代表性,能够反映混凝土内部温度的分布情况。

2、在混凝土的厚度方向,每个测温点应布置在混凝土表面、中部和底部,间距不宜大于 500mm。

3、在平面上,测温点应均匀分布,相邻测温点的间距不宜大于10m。

具体布置方案如下:(绘制测温点布置平面图和剖面图,标明测温点的位置和编号)五、测温时间间隔1、混凝土浇筑完成后 0-3 天,每 2 小时测温一次。

2、混凝土浇筑完成后 3-7 天,每 4 小时测温一次。

3、混凝土浇筑完成后 7-14 天,每 8 小时测温一次。

4、混凝土浇筑完成 14 天后,每天测温一次,直至混凝土内部温度与环境温度之差小于 25℃时,可停止测温。

六、测温数据记录与分析1、每次测温时,应记录测温时间、测温点编号、混凝土温度等数据。

2、对测温数据进行整理和分析,绘制混凝土内部温度变化曲线。

3、根据温度变化曲线,判断混凝土内部温度是否超过允许的最高温度,以及混凝土内部与表面的温差是否超过允许值。

大体积混凝土测温技术

大体积混凝土测温技术

大体积混凝土测温技术在现代建筑工程中,大体积混凝土的应用越来越广泛。

然而,由于大体积混凝土在浇筑和养护过程中会产生大量的水化热,如果不能有效地控制温度变化,就容易导致混凝土出现裂缝,从而影响结构的安全性和耐久性。

因此,大体积混凝土测温技术就显得尤为重要。

大体积混凝土测温的目的主要有两个:一是及时掌握混凝土内部的温度变化情况,以便采取有效的温控措施,防止混凝土出现温度裂缝;二是为混凝土的养护提供依据,确保混凝土在适宜的温度环境下养护,提高混凝土的强度和耐久性。

目前,常用的大体积混凝土测温技术主要包括以下几种:一、热电偶测温法热电偶测温法是一种比较传统且常用的测温方法。

它是利用热电偶的热电效应来测量温度的。

热电偶由两种不同的金属材料组成,当两端存在温度差时,就会产生热电势。

通过测量热电势的大小,就可以计算出温度值。

在使用热电偶测温时,需要将热电偶预先埋设在混凝土中。

一般来说,热电偶的布置应遵循均匀、有代表性的原则。

例如,可以在混凝土的中心、表面、边缘等部位分别布置热电偶,以全面了解混凝土内部的温度分布情况。

同时,为了保证测量结果的准确性,热电偶的埋设深度和间距也需要根据混凝土的厚度和结构特点进行合理设计。

二、热敏电阻测温法热敏电阻测温法是利用热敏电阻的电阻值随温度变化的特性来测量温度的。

热敏电阻通常具有较高的灵敏度和精度,能够准确地反映出温度的微小变化。

在大体积混凝土测温中,热敏电阻可以通过预埋的方式安装在混凝土内部。

与热电偶相比,热敏电阻的体积较小,更容易布置,但其测量范围相对较窄。

三、光纤测温法光纤测温法是一种较为先进的测温技术。

它是利用光纤中传输的光信号随温度变化的特性来实现温度测量的。

光纤具有抗电磁干扰、耐腐蚀、耐高温等优点,适用于恶劣的环境条件。

在大体积混凝土中使用光纤测温时,可以将光纤沿着混凝土的结构布置成网状或蛇形。

通过光纤传感器采集到的温度数据,可以实时传输到计算机系统进行处理和分析。

大体积混凝土如何测温(一)

大体积混凝土如何测温(一)

大体积混凝土如何测温(一)引言概述:大体积混凝土指的是混凝土结构中具有较大体积和较厚混凝土构件的结构。

在混凝土的浇筑和养护过程中,及时准确地监测混凝土温度是确保混凝土质量的重要环节。

本文将介绍大体积混凝土测温的方法和步骤。

正文:一、传感器选择和布置1.选择适合的传感器类型,常用的有热电偶、铂电阻温度传感器等。

2.根据混凝土的布置及结构尺寸,合理布置传感器,保证温度监测的全面性和准确性。

3.传感器与混凝土的接触面应充分接触,避免气隙和空洞,以确保测量结果的准确性。

二、测量仪器准备1.选择合适的温度测量仪器,如数字温度计、多功能温度计等。

2.校准测量仪器,确保测量结果的准确性和可靠性。

3.检查测量仪器的操作指南并熟悉操作步骤,以确保正确使用测温设备。

三、测温操作步骤1.根据实际需要确定监测时间间隔,例如每小时或每日进行测温。

2.在混凝土浇筑后的一定时间内进行测温,例如浇筑后的1小时、3小时等。

3.将温度传感器插入混凝土内部,确保传感器与混凝土结构充分接触。

4.记录测得的温度数值,并标注测量时间,确保数据的准确性和完整性。

5.重复以上操作,持续测温直至混凝土养护结束。

四、监测数据处理1.将测得的温度数据整理并记录。

2.根据监测数据分析混凝土的温度变化趋势,判断混凝土的养护状态及质量。

3.如发现温度异常情况,及时采取措施进行调整或纠正。

4.将监测数据整合为报告,方便后续参考和研究。

五、安全注意事项1.在进行测温操作时,需严格按照相关安全规范进行,并佩戴好相应的防护设备。

2.要保证测温设备和传感器的安全,避免破坏或损坏。

3.在对混凝土进行测温时,需注意周围环境和施工现场的安全,避免发生意外。

总结:通过合理选择和布置传感器,准备好合适的测量仪器,严格按照操作步骤进行测温操作,并合理处理监测数据,可以有效地测量大体积混凝土的温度。

在整个测温过程中,要注意安全事项,确保操作人员和设备的安全。

混凝土温度的及时监测可以帮助我们了解混凝土的养护情况,进而保证混凝土的质量。

大体积混凝土测温方案及测温方法(一)

大体积混凝土测温方案及测温方法(一)

大体积混凝土测温方案及测温方法(一)引言概述:本文将介绍大体积混凝土测温方案及测温方法。

大体积混凝土在建筑工程中应用广泛,为确保其施工质量和持久性,对其温度进行监测至关重要。

本文将以五个大点为主线,详细阐述大体积混凝土测温的方案和具体方法。

正文:一、温度传感器选择1. 预埋式电阻温度计:预埋式电阻温度计可直接嵌入混凝土内部,测量混凝土温度。

其优点是准确、稳定,适用于长期测温,但安装细节要注意,避免损坏电阻体。

2. 分布式光纤传感器:分布式光纤传感器可连续、实时地测量混凝土温度分布。

它具有灵敏度高、可靠性好的优点,但需要专业技术和设备配合进行安装。

二、测点布置方案1. 测点密度:根据混凝土施工的特点和具体要求,确定合适的测点密度。

通常,大体积混凝土需要在其内部设置多个测点来获取温度分布数据。

2. 测点布置位置:测点应尽可能分布在混凝土横截面上,包括顶部、中部和底部等位置,以全面了解混凝土的温度变化情况。

三、测温方法1. 实时测温:通过连续监测某个测点的温度变化,获取混凝土的实时温度数据。

可以使用温度传感器实时采集数据,并通过数据采集系统进行记录和分析。

2. 定点测温:选取几个特定测点进行定点测温,了解混凝土的温度变化趋势。

可以通过手持式测温仪器对测点进行测温,也可使用远程测温装置。

四、温度数据处理与分析1. 数据采集与存储:使用数据采集系统实时采集温度数据,并进行存储。

可以选择云端存储或本地存储的方式,以便后续的数据分析和结论。

2. 温度数据分析:对采集到的数据进行分析,包括温度变化趋势、温度分布等,以获得对混凝土采取相应的调控措施的依据。

五、温度控制与调节1. 温度监控:根据温度测量结果,及时监控混凝土的温度情况,确保其在施工过程中的质量和安全。

2. 温度调节:根据温度监测结果,对混凝土施工过程中的温度进行调控。

可采取降温措施,如增加外部冷却措施,或调节混凝土配方等方式。

总结:通过选择合适的温度传感器、科学布置测点、合理选取测温方法,结合温度数据处理与分析以及温度控制与调节,可以实现对大体积混凝土的准确测温和有效控制。

大体积混凝土测温规范

大体积混凝土测温规范

大体积混凝土测温规范大体积混凝土测温规范1. 引言大体积混凝土是指单个施工部位需浇筑的混凝土体积大于3m³的混凝土。

由于大体积混凝土在硬化过程中温度变化较大,会对混凝土的强度、收缩、裂缝等性能产生影响,因此需要对混凝土进行温度监测。

本规范旨在规范大体积混凝土测温的方法和要求,保证混凝土施工的质量和安全。

2. 测温仪器2.1 温度计应选择精确、灵敏,并能满足施工要求的仪器。

2.2 常用的测温仪器包括接触式温度计、红外线测温仪和电子数据采集系统等。

3. 测点设置3.1 测温点应平均分布在混凝土体积中,覆盖混凝土体积的不同高度和位置。

3.2 测量剂的设置应在施工前确定,并进行标记和记录,以便后续的数据采集和分析。

4. 测温方法4.1 接触式测温方法4.1.1 将温度计的探头插入混凝土内部,直接测量混凝土的温度。

4.1.2 测温过程中应保证温度计与混凝土接触良好,排除外界环境对测温结果的干扰。

4.1.3 测温时间应根据混凝土的特性和测温点的位置确定,确保测量结果准确可靠。

4.2 红外线测温方法4.2.1 使用红外线测温仪对混凝土表面进行测温。

4.2.2 测温过程中应保证测温仪与混凝土表面保持一定距离,并保持仪器的稳定性。

4.2.3 测温时间应根据混凝土的特性和测温点的位置确定,确保测量结果准确可靠。

4.3 电子数据采集系统4.3.1 使用电子数据采集系统对混凝土进行实时温度监测。

4.3.2 数据采集系统应具备多点测温、数据存储和分析功能。

4.3.3 测温数据应及时传输到数据采集系统,并进行实时监测和分析。

5. 数据记录与分析5.1 测温数据应及时、准确地记录下来,并进行编号和标记。

5.2 数据记录应包括测温时间、测温点位置、测温方法和温度数值等信息。

5.3 测温数据的分析应结合混凝土的强度、收缩、裂缝等性能要求,评估混凝土的质量和工程安全性。

6. 结论大体积混凝土测温是保证混凝土施工质量和安全的重要环节。

什么是大体积混凝土测温

什么是大体积混凝土测温

什么是大体积混凝土测温范本一:大体积混凝土测温详细解析一、概述大体积混凝土测温是指测量大型混凝土结构物内部温度的一种方法。

本文将从测温原理、测温设备、测温方法等方面进行详细解析。

二、测温原理1. 热传导原理热传导是大体积混凝土测温的基本原理之一。

混凝土中的温度会通过热传导的方式向周围传播,通过测量不同位置的温度差异,来获取结构物内部的温度分布情况。

2. 热电偶原理热电偶是大体积混凝土测温的常用设备之一。

热电偶原理是利用两种不同材质的导线连接处产生的温差电动势来测量温度变化。

3. 其他原理除了热传导原理和热电偶原理,还有红外线测温、光纤测温等方法可以用于大体积混凝土测温。

三、测温设备1. 热电偶热电偶由两种不同材质的导线连接处组成,可以根据导线的材质选择合适的热电偶。

2. 红外线测温仪红外线测温仪可以通过接收物体辐射的红外线来测量物体的温度,适合于大范围测温。

3. 光纤测温仪光纤测温仪利用光纤的传输特性,通过测量光纤中的光信号变化来获取物体的温度。

四、测温方法1. 单点测温法单点测温法是指在大体积混凝土结构物中选取一个代表性点进行温度测量。

2. 多点测温法多点测温法是指在大体积混凝土结构物中选择多个测点进行温度测量,以获取更全面的温度分布情况。

3. 连续测温法连续测温法是指在大体积混凝土结构物中布置多个测点,并通过连续监测来获取温度变化曲线,以分析结构物的温度特性。

五、附件本所涉及的附件如下:1. 测温设备购买指南2. 测温数据记录表3. 测温仪器操作手册六、法律名词及注释本所涉及的法律名词及注释如下:1. 混凝土结构物:指使用混凝土作为主要结构材料的建造物或者工程构筑物。

2. 测温原理:指用于测量温度的基本物理原理。

3. 热传导:指温度通过物质内部的传导方式传递。

范本二:全面解析大体积混凝土测温方法一、引言大体积混凝土测温是一项关键的工作,对于混凝土结构物的温度控制和后续加工具有重要意义。

本文将全面解析大体积混凝土测温的方法,读者更好地了解和实践。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大体积混凝土测温方案及测温方法X交通大学第一医院l号、2号高层住宅楼采用筏板混凝土基础,剪力墙结构,地上33层.地下2层(含夹层),建筑高度97.8 m,建筑面积72,469rn2。

1号、20楼筏板混凝土总方量分别约为1 250m 3,筏板强度等级C35,抗渗等级P6。

筏板混凝土厚度为600mm,基础梁l400mm,核心承台1 800mm。

本筏板工程属于大体积混凝土。

大体积混凝土施二r中要求控制混凝土内外温差,混凝土厚度小于2. 0m时,内外温差不宜大于25℃;对于厚度超过2.0m的混凝土,根据已有的经验,只要控制温度梯度小于12.5℃/m。

可适当放宽内外温差至30~ 33℃,否则会产生温差裂缝。

1 大体积混凝土施工的技术要求1.1 本工程大体积混凝±筏板的特点(1)筏板要求具有足够的强度,达到设计强度等级C35。

水泥、粉煤灰、膨胀剂等胶凝材料在水化过程中将放出大量的热量。

(2)筏板要求具有良好的抗渗性,因此,原材料要严格控制含泥量。

在混凝土配合比设计中要加入优质的泵送减水剂,提高混凝土密实度,同时掺入膨胀剂,以补偿混凝土收缩。

(3)筏板要求具有良好的整体性,防止贯穿性裂缝产生,同时尽量减少浅层裂缝的出现。

1.2 大体积混凝±施工技术要求本工程采用商品混凝土,l号楼于2O04年5月3日(16:30)至5日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为10~28℃。

混凝土入模温度15—22℃。

2号楼于2004年6月1日(4:30)至2日(16:00)一次浇筑完毕,混凝土浇筑期间环境温度为16~29 ℃,混凝土入模温度22~3l℃。

白天温度较高的时候只覆盖塑料布保湿,晚上温度较低的时候及时增加覆盖棉毡进行保湿保温养护;如遇大雨天则在混凝土上面再加盖塑料布,防止积水太多(不超过20mm)导致混凝土表面温度太低而加大温差。

经过9d的温度监测,1号楼大体积混凝土筏板的内部最高温度从59.9 ℃降至40℃以下,表面温度相应降至30℃左右;2号楼大体积混凝土筏板的内部最高温度从64. 8℃降至40℃以下,表面温度相应降至30℃左右,已达到安全温度,可不对筏板混凝土进行温度监控。

2 测温方式本工程采用计算机温度监控系统对X交通大学第一医院1号、2号高层住宅楼筏板进行温度监测。

在混凝土浇筑以前,将下端封闭的测温套管(图1)固定在测温点平面位置上,并在套管的不同高度放置测温元件。

通过热电转换,数据采集及处理,在计算机上监控混凝土的温度变化测温点的平面布置按浇筑前后顺序、不同混凝土厚度等共布置6个测温点。

测温点在竖向测试3个深度处的温度:混凝土表层温度(距混凝土表面10cm高度处的温度)、混凝土中心温度(即1/2高度处的温度)和混凝土底部的温度(距混凝土底面20cm高度处的温度)。

对厚度小于1000mm的测点只监测其内部温度即可3 测温结果从监视器自动形成的温度变化曲线可以看出:环境曲线显示一天中温度最高点为午后的4h内,最低点为天亮时分;混凝土上部温度随环境温度变化,在同一时间点温度高于环境温度;混凝土中部及下部温度自浇筑之后的48h内为温度最高时期,之后温度逐渐下降。

3.1 1号楼测温结果混凝土浇筑及养护过程中,大气温度10-37℃,混凝土入模温度1 5~22℃,环境湿度20%一84%。

本程筏板布置6个测桩,整个筏板混凝土内部最高温度为59.9 ℃,最大温差为21.7℃。

3.2 2号楼测温结果混凝土浇筑及养护过程中。

大气温度15—35℃,混凝土入模温度22-31℃,环境湿度23%~93%。

本工程筏板布置6个测桩,整个筏板混凝土内部最高温度为64.8℃,最大温差为24.8℃。

本工程采用大体积混凝七测温技术并根据测温结果提出了养护措施,通过9d的保温、保湿养护,确保了筏板、混凝土均匀散热降温,使混凝土中心温度降至40℃以下,控制了混凝土裂缝的出现。

经检查整个筏板混凝土未见有害裂缝。

关于大体积混凝土测温方法1、首先,我说一下为什么要测温?施工混凝土内部热量较难散发,外部表面热量散发较快,内部和外部热胀冷缩过程相应会在混凝土表面产生拉应力。

温差大到一定程度,混凝土表面拉应力超过当时的混凝土极限抗拉强度时,在混凝土表面会产生有害裂缝,有时甚至贯穿裂缝。

另外,混凝土硬化后随温度降低产生收缩,由于受到地基约束,会产生很大外约束力,当超过当时的混凝土极限抗拉强度时,也会产生裂缝。

为了了解基础大体积混凝土内部由于水化热引起的温度升降规律,掌握基础混凝土中心与表面、表面与大气温度间的温度变化情况,以便采取必要的措施。

2、其次,测温的方法:比较常用的是:采用建筑电子测温仪(JDC-2)配合预埋测温导线进行测温。

具体操作如下:(1)、混凝土浇捣前测出各测温探头的初始温度值,并作好记录。

(2)、混凝土浇捣前测出大气温度及入模混凝土温度并作好记录。

(3)、自混凝土入模至浇捣完毕的四天期间内每隔二小时测温一次,以后每隔四小时测温一次。

一般十~十四天后可停止测温,或温度梯度<20度时,可停止测温。

(4)、每测温一次,应记录、计算每个测温点的升降值及温差值。

3、测温导线的具体埋设:对于这个问题,仁者见仁,智者见智,我就不评说什么,我来说一下我的具体操作。

竖向导线埋设,我采用的是1根20的钢筋做竖向支撑,记得是:3米的承台砼,竖向共埋设了4根导线(每处),用30mm*30mm*30m m的小木方绑在钢筋上做隔离,然后安装测温导线上的探头,用电工用的相色带绑牢,4个探头的安装高度分别为:底板上部20公分,砼中心处,砼表面下20公分,砼表面。

电子测温比较贵也麻烦,还是埋设测温管的好。

1、测温管的制作测温管采用PVC管制作而成,内径17㎜,长度按埋设位置的基础筏板厚度加工,下口塞入长600㎜的ф16紫铜管,外面用胶布裹坚实,紫铜管下端用胶布层层封住,PVC管上露200,管内灌入机油,浇筑砼前插入一根ф14的钢筋防止塑料管变形,塞紧管口后胶布密封。

表面温度测量点直接用30㎝长镀锌管点焊在上层钢筋网片上。

2、测温点的布置测温点的布置原则应在有代表性的整个基础底板最深处、底板四个角点及结构尺寸变化较大的地方。

测温点的布置详见测温点布置图,测温点分别设置在筏板的下部和中间位置,表面温度在砼面向下5-10㎝部位量取。

3、测温的时间砼浇注完6至10小时开始测温。

2d内,每2h测温一次;龄期3-7d内,每4h测温一次,7天后一天测一次,14天后结束测温,每次测温同时须测出周围环境的温度。

测温管在基础中的预埋方法见下图:以下是大体积混凝土施工规范GB50496-2009讨论稿对测温的要求:6 温控施工的现场监测与试验6.0.1 大体积混凝土浇筑体里表温差、降温速率、环境温度及温度应变的测试,在混凝土浇筑后7天内,每昼夜可不少于24次;以后可按每昼夜6-8次进行测试,入模温度进行测量,每台班不少于2次。

6.0.2 大体积混凝土浇筑体内监测点的布置,以真实地反映出混凝土浇筑体内最高温升、最大应变、里表温差、降温速率及环境温度为原则,一般可按下列方式布置:1 监测点的布置范围以所选混凝土浇筑体平面图对称轴线的半条轴线为测试区,在测试区内监测点按平面分层布置;2 在测试区内,监测点的位置与数量可根据温凝土浇筑体内温度场和应力场的分布情况及温控的要求确定,经理论计算基本可以确定温度场和应力场规律的可以将测点沿最不利位置布置;3 在基础平面对称轴线上,监测点位宜不少于4处,传感器布置应充分考虑结构的几何尺寸;4 沿混凝土浇筑体厚度方向,每一点位的测点数量,宜不少于5点;5 保温养护效果及环境温度监测点数量应根据具体需要确定;6 混凝土浇筑体的外表温度,应以混凝土外表以内50mm处的温度为准;7 混凝土浇筑体底面的温度,应以混凝土浇筑体底面上50mm处的温度为准。

6.0.3 测温元件的选择应符合以下列规定:1 测温元件的测温误差应不大于0.3℃(25℃环境下);2 测试范围:-30~150℃;3 绝缘电阻大于500MΩ6.0.4 应变测试元件的选择应符合以下列规定:1 测试误差应不大于1.0με;2 测试范围:-1000~1000με;3 绝缘电阻大于500MΩ;6.0.5 温度和应变测试元件的安装及保护符合下列规定:1 测试元件安装前,必须在水下1m处经过浸泡24h不损坏;2 测试元件接头安装位置应准确,固定牢固,并与结构钢筋及固定架金属体绝热;3 测试元件的引出线宜集中布置,并加以保护;4 测试元件周围应进行保护,混凝土浇筑过程中,下料时不得直接冲击测试测温元件及其引出线;振捣时,振捣器不得触及测温元件及引出线。

6.0.6 测试过程中宜及时描绘出各点的温度变化曲线和断面的温度分布曲线;6.0.7 大体积混凝土进行应变测试时,应设置一定数量的零应力测点。

按照以前的规范,对大体积混凝土测温实际要求不是很细,中冶在主持编制新的大体积规范,不知道正式版批了没有。

按传统做法:埋设上中下三点,下点离板底100mm,中间点局厚度中间,上点板顶以下100mm(也有观点应该就是表面的),这是垂直步点原则。

另外,从平面来看,应该根据构件特点(代表性)确定测温点的布置,不用太近,当然也不能太远,主要根据构件特点,平板我一般大概10m左右方格。

测温点的埋设方法,最简单就是埋设竖直测温管(铁的或PVC),个人认为此做法可能偏差较大,因为中间一般温度最高,但是热通过对流可能造成孔口温度高于混凝土温度;还有一种方式是埋设测温导线(热电耦),伸出三根导线(一般用根12钢筋竖直绑扎牢固),用配套手持电子测温仪测温,很方便。

这仪器导线有便宜的也有贵的,便宜的一根导线几毛钱,仪器几百到千把块都有。

最先进的还有一种无线测温的,适合于特别大的大体积混凝土,可能比较贵,没用过,但是很方便。

测温频率:由于在养护开始阶段,混凝土温升比较快,在前15天,对混凝土每2个小时测温一次,以后对混凝土每4个小时测温一次。

中止测温条件:测温主要控制中心温度与表面温差,表面和大气温差不超过25度,(测量最高温度-最低气温),控制降温梯度一般每天不超3度,至表面温度和大气温度之差小于25度就可以撤除保温。

测温点布置原则:测点须具有代表性,能全面反映大体积砼内各部位的温度,从大体积混凝土高度断面考虑,应包括底面、中心和上表面,从平面考虑应包括中部和边角区。

但首先考虑温度变化敏感区,这是规程里面要求的!但是在具体实施中还是有经验的元素,举例说明一下吧!某高层住宅楼工程地上14层,局部15层,地下2层,剪力墙结构,总建筑面积27216.6m2。

施工中采用大体积混凝土施工技术。

测温方案:测温点的布置——为保证测温点的代表性和可比性,混凝土测温孔按不大于25mm一个孔的原则布置,工程共布置56个中层测温点和56个表层测温点。

相关文档
最新文档