材料力学——9压杆稳定
材料力学简明教程(景荣春)课后答案第九章

解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =
第九章-压杆稳定

第九章压杆的弹性稳定分析与稳定性设计————材料力学教案第九章 压杆的弹性稳定分析与稳定性设计刚体的平衡位形和弹性体的平衡构形都存在稳定与不稳定问题。
本章首先介绍关于弹性体平衡构形稳定性的基本概念。
然后根据微弯的屈曲平衡构形,由平衡条件和小挠度微分方程以及端部约束条件,确定不同刚性支承条件下弹性压杆的临界荷载。
最后介绍两种工程中常用的压杆稳定设计方法。
§9-1弹性体平衡构形稳定性的基本概念1. 弹性稳定性的静力学判别准则结构构件或者机器零件在荷载作用下,在某一位置保持平衡,这一平衡位置称为平衡构形。
例如弹性压杆具有直线平衡构形和弯曲平衡构形两种形式。
当载荷小于一定的数值时,微小外界扰动使其偏离初始平衡构形;外界扰动除去后,构件仍能回复到初始平衡构形,则称初始平衡构形是稳定的;当载荷大于一定的数值时,微小外界扰动使其偏离初始平衡构形;外界扰动除去后,构件不能回复到初始平衡构形,则称初始平衡构形是不稳定的。
此即判别弹性稳定性的静力学准则。
不稳定的平衡构形在任意微小的外界挠动下,都要转变为其它平衡构形或失稳,这种过程称为屈曲或失稳。
通常,屈曲将导致构件失效——称屈曲失效。
由于这种失效具有突发性,常给工程带来灾难性后果。
2. 弹性压杆的平衡构形及分叉屈曲轴向受压的理想细长直杆,当轴向压力小于一定数值时,压杆只有一种稳定的直线平衡构形;当轴向压力大于一定数值时,压杆存在直线或者屈曲的两种可能的平衡构形,而且直线平衡构形在微小侧向干扰力作用下立即会转变成不稳定的屈曲平衡构形,这种现象称为平衡构形分叉。
稳定的平衡构形与不稳定的平衡构形之间的分界点称为临界点,从临界点开始会出现平衡构形分叉现象,所以又称为分叉点。
临界点对应的荷载称为临界载荷或者分叉荷载,用Pcr F 表示。
直线平衡构形式形弯曲平衡构形图9-1a图9-1b§9-2确定分叉载荷的平衡方法1. 两端铰支的压杆考察如图9-2a 所示受压的理想直杆,忽略剪切变形影响及杆的轴向变形。
材料力学第9章 压杆稳定

第9章 压杆稳定 图9-6
第9章 压杆稳定
9.2.3 两端非铰支细长压杆的临界载荷 1.一端固定一端自由的细长压杆的临界载荷 图9-7所示为一端固定、一端自由的长为l的细长压杆。
当轴向压力F=Fcr时,该杆的挠曲轴与长为2l的两端铰支细 长压杆的挠曲轴的一半完全相同。因此,如果二杆各截面的 弯曲刚度相同,则临界载荷也相同。所以,一端固定一端自 由、长为l的细长压杆的临界载荷为
第9章 压杆稳定
9.2.2 大挠度理论与实际压杆 式(9-1)与式(9-2)是对于理想压杆根据小挠度挠
曲轴近似微分方程得到的。如果采用大挠度挠曲轴的微分方
程 ddx1xM ExI进行理论分析,则轴向压力F与压杆最
大挠度wmax之间存在着如图9-6中的曲线AB所示的确定关 系,其中A点为曲线的极值点,相应之载荷Fcr即为上述欧拉 临界载荷。
Fcr
2 EI
2l 2
(9-3)
第9章 压杆稳定
图9-7
第9章 压杆稳定
2.两端固定的细长压杆的临界载荷 图9-8所示为两端固定的长为l的细长压杆,当轴向压 力F=Fcr时,该杆的挠曲轴如图9-8(a)所示,在离两固定端 各l/4处的截面A、B存在拐点,A、B截面的弯矩均为零。因 此,长为l/2的AB段的两端仅承受轴向压力Fcr(见图9-8 (b)),受力情况与长为l/2的两端铰支压杆相同。所以,两 端固定的压杆的临界载荷为
Fcr
2EI
0.5l 2
(9-4)
第9章 压杆稳定
图9-8
第9章 压杆稳定
3.一端固定一端铰支的细长压杆的临界载荷 图9-9所示为一端固定一端铰支的长为l的细长压杆, 在微弯临界状态,其拐点与铰支端之间的正弦半波曲线长为
材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
材料力学_压杆稳定

π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中
记
λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2
材料力学 第九章 压杆稳定

cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1
l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2
取
n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s
l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:
π 2 EI Fcr ( l )2
材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望
材料力学 第九章 压杆稳定分析

我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
几点重要说明:
1. 所有稳定问题(包括后续内容)均需首先计算λ以界定压 杆的属性。
2. 对一般金属材料,作如下约定:
A. λp≈100;λs≈60。故:
i
二、压杆的分类
1、大柔度杆:
cr
2E 2
P
2E P
P
100
满足 P 的杆称为大柔度杆(或 细长杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
2、中柔度杆─λP>λ≥λS,即: P<≤S
直线型经验公式: cr ab
crab s
a s
b
s
60
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr
失
l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B
挠
D
曲
线 形
C
C
状
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
工程实例
目录
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡
材料力学:压杆稳定

坍塌后的奎拜克桥
材料力学教学课件
韩国汉城
1995年6月29日下午,韩国汉城三 丰百货大楼,由于盲目扩建、加层, 致使大楼四五层立柱不堪重负而产 生失稳破坏,大楼倒塌,死502人, 伤930人,失踪113人。
2020年2月3日星期一
10
第九章 压杆稳定
中国南京 2000年10月25日上午10时,南京电视台演播中 心演播大厅的屋顶的施工中,由于脚手架失稳, 造成屋顶模板倒塌,死6人,伤34人。
材料力学教学课件
2020年2月3日星期一
26
第九章 压杆稳定
1)、细长杆的临界应力
cr
2E 2
p
2E p
引入记号 1
2E p
欧拉公式的适用范围
l
i
1
2E p
2)、中长杆的临界应力(经验公式)
cr a b, 2 1
sin
kl
l
coskl
0
2020年2月3日星期一
19
第九章 压杆稳定
由于杆在微弯状态下保持平衡时,
Fy不可能等于零,故由上式得
1 sin kl l coskl 0 k 亦即 tan kl kl
满足此条件的最小非零解为kl=4.49,亦即 Fcr l 4.49 EI
从而得到此压杆求临界力的欧拉公式:
受均匀压力的球形薄壳或薄圆环,当压力超过一定数值时,圆环将 不能保持圆对称的平衡形式,而突然变为非圆对称的平衡形式。
材料力学教学课件
2020年2月3日星期一
9
第九章 压杆稳定
由于构件的失稳往往是突然发生的,因而其危害性也较大。 历史上曾多次发生因构件失稳而引起的重大事故。如1907年 加拿大劳伦斯河上,跨长为548米的奎拜克大桥,因压杆失 稳,导致整座大桥倒塌。近代这类事故仍时有发生。
材料力学 第九章 压杆稳定

点名
二、 欧拉公式的应用范围
(Applicable range for Euler’s formula)
只有在 cr P 的范围内,才可以用欧拉公式计算压杆的 临界压力 Fcr(临界应力 cr )。
cr
2E 2
P
或
2E
P
令1
E
P
点名
即 ≥ 1(大柔度压杆或细长压杆),为欧拉公式的适用范围。 1 的大小取决于压杆材料的力学性能。例如,对于Q235钢, 可取 E=206GPa,P=200MPa,得
构件的承载能力
①强度 ②刚度 ③稳定性
点名
工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
点名
二、工程实例(Example problem)
点名
点名
内燃机、空气压缩机的连杆
点名
点名
点名
点名
三、失稳破坏案例 (bucking examples)
案例1、上世纪初,享有盛誉的美国桥梁学家库柏(Theodore Cooper)在圣劳伦斯河上建造魁比克大桥(Quebec Bridge) 1907年8月29日,发生稳定性破坏,85位工人死亡,成为上世纪 十大工程惨剧之一.
A杆先失稳
点名
例题2 压杆截面如图所示。两端为柱形铰链约束,若绕 y 轴失
稳可视为两端固定,若绕 z 轴失稳可视为两端铰支。已知,杆长
l=1m ,材料的弹性模量E=200GPa,p=200MPa。
求压杆的临界应力。
z
解: 1
E 99
P
y
30mm
iy
Iy A
1 (0.03 0.023 )
Mechanics of Materials
材料力学:第九章 压杆稳定问题

实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的
小
稳
P定
的
P P
临界压力
Pcr
不
稳
撤去横向力Q 不稳定的
定 的
P
大
不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D
《材料力学》第9章压杆稳定习题解[整理]
![《材料力学》第9章压杆稳定习题解[整理]](https://img.taocdn.com/s3/m/058fcb1b854769eae009581b6bd97f192279bf25.png)
第九章 压杆稳定 习题解[习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式。
试分析当分别取图b,c,d 所示坐标系及挠曲22l EIP cr π=线形状时,压杆在作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得公cr F cr F 式又是否相同。
解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。
因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是。
(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw -=,显然,这微分方程与(a )的微分方程不同。
)("x M EIw =临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。
因此,以上四种情形的临界力具有相同的公式,即:。
22l EIP cr π=[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)?解:压杆能承受的临界压力为:。
由这公式可知,对于材料和截面相同的压22).(l EI P cr μπ=杆,它们能承受的压力与 原压相的相当长度的平方成反比,其中,为与约束情况有l μμ关的长度系数。
(a )ml 551=⨯=μ(b )ml 9.477.0=⨯=μ(c )ml 5.495.0=⨯=μ(d )ml 422=⨯=μ(e )ml 881=⨯=μ(f )(下段);(上段)m l 5.357.0=⨯=μm l 5.255.0=⨯=μ故图e 所示杆最小,图f 所示杆最大。
cr F cr F[习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。
试问两杆的临界力是否均为2min2).2(l EI P cr π=为什么并由此判断压杆长因数是否可能大于2。
材料力学 第9章 压杆稳定

第9章 压杆稳定
第9章 压杆稳定
材料力学
第9章 压杆稳定
第9章 压杆稳定
9.1 概述 9.2 细长压杆的临界力 9.3 压杆的临界应力 9.4 压杆的稳定计算 9.5 提高压杆稳定性的措施
小结
材料力学
9.1 概述
第9章 压杆稳定
在绪论中曾经指出,当作用在细长杆上的轴向压力达到或超过一定 限度时,杆件可能突然变弯,即产生失稳现象。杆件失稳往往产生很 大的变形甚至导致系统破坏。因此,对于轴向受压杆件,除应考虑其 强度与刚度问题外,还应考虑其稳定性问题。
(4)临界状态的压力恰好等于临界力,而所处的微弯状态称为屈曲模态, 临界力的大小与屈曲模态有关。
(5)n=2、3所对应的屈曲模态事实上是不能存在的,除非在拐点处增加 支座。这些结论对后面讨论的不同约束情况一样成立。
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
w xl
coskl 0
材料力学
9.2 细长压杆的临界力
9.2.2 一端固定、一端自由细长压杆的临界力
coskl 0
kl nπ k nπ
2
2l
Fcr
n 2 π 2EI (2l ) 2
n 1,3,5,
取最小值,可得该压杆临界力Fcr的欧拉公式为:
Fcr
π2EI (2l ) 2
第9章 压杆稳定
材料力学
第9章 压杆稳定
9.2 细长压杆的临界力
计算临界力归结为计算压杆处于微弯状态临界平衡时的平衡方程 及荷载值。 用静力法计算临界力时应按以下的思路来考虑: (1)细长压杆失稳模态是弯曲,所以弯曲变形必须考虑; (2)假设压杆处在线弹性状态; (3)临界平衡时压杆处于微弯状态,即挠度远小于杆长,于是, 梁近似挠曲线的微分方程仍然适用。 (4)压杆存在纵向对称面,且在纵向对称面内弯曲变形。
材料力学-压杆稳定

A
பைடு நூலகம்
B
L
L
C
3、钢制矩形截面杆的长度为L=1.732米,横截面为 60×100,P=100KN,许用应力为[σ]=30MPa, 弹性模量E=200GPa,比例极限σP=80MPa, 屈服极限σS=160MPa,稳定安全系数nw=2, a=304MPa,b=1.12MPa。构件安全吗?
L
100
60
4、AB杆的两端固定,在20OC时杆内无内力。已知: 杆长为L=400毫米,杆的直径d=8毫米,材料的弹性 模量为E=200GPa,比例极限为σP=200Mpa,线胀 系数α=1.25×10-51/OC,杆的稳定安全系数为2,当 温度升高到40OC时,校核杆的稳定性。
i I D2d2 16mm A4
得11.713 61230108 P
3、选用公式,计算临界应力
AB为大柔度杆
FcrcrA
2E 2
A
2lE2I118kN
4、计算安全系数
n F cr FN
1184.4 26.6
2nst3
5、结论
AB杆满足稳定性要求
1、圆截面杆BD的直径为d=35毫米,采用普通碳 钢,弹性模量 E=200GPa,比例极限为σP= 200MPa,屈服极限为σS=235MPa,a=304 MPa,b=1.12 MPa,稳定安全系数取nw=3, 载荷G=30K N,校核BD杆的稳定性。
cr
2E 2
临界应力的欧拉公式
塑性材料在压缩时的应力应变曲线
σ
σp
σs
O
σ
σp
σs
O
细长杆 1
σ
当临界应力小于或等于材料的比例极限时 cr p σp
σs
材料力学-第9章压杆的稳定问题

0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
微分方程的解 w =Asinkx + Bcoskx 边界条件 w ( 0 ) = 0 , w( l ) = 0
0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B 不全为零的条件是他们的系数行列式等于零:
FP F FP P
FP>FPcr :在扰动作用下, 直线平衡构形转变为弯曲平 衡构形,扰动除去后, 不能恢复到直线平衡构形, 则称原来的直线平衡构形 是不稳定的。
第9章 压杆的稳定问题
压杆稳定的基本概念
当压缩载荷大于一定的数值时,在任意微小的外界扰动下, 压杆都要由直线的平衡构形转变为弯曲的平衡构形,这一过程 称为屈曲(buckling)或失稳(lost stability)。对于细长压杆, 由于屈曲过程中出现平衡路径的分叉,所以又称为分叉屈曲 (bifurcation buckling)。 稳定的平衡构形与不稳定的平衡构形之间的分界点称为临 界点(critical point)。对于细长压杆,因为从临界点开始, 平衡路径出现分叉,故又称为分叉点。临界点所对应的载荷称 为临界载荷(critical load)或分叉载荷(bifurcation load), 用FP表示。
第9章 压杆的稳定问题
压杆稳定的基本概念
在很多情形下,屈曲将导致构件失效,这种失 效称为屈曲失效(failure by buckling)。由于屈曲 失效往往具有突发性,常常会产生灾难性后果,因 此工程设计中需要认真加以考虑。
《材料力学》第九章 压杆稳定

第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。
一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。
二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。
(它是稳定与不稳定的转折点)。
压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。
①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。
2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。
解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。
材料力学第九章-压杆稳定

按照 Iy计算临界压力。
工程力学
例 按照 Iy计算临界压力。
F b z
h l
π 2 EI π 2 200 10 3 48 10 4 Fcr N 2 2 ( l ) (2 2500 )
37860N 37.86kN
若
y
h b 60mm
bh3 60 4 Iy Iz mm 108 10 4 mm 12 12
工程力学
三、其它支承情况下细长压杆的临界力 不同约束形式 压杆的临界力,可 以用类似的方法求 解微分方程导出。 但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l
F
F
一端固定,一端自由, 长为l 的的压杆的挠曲线 和两端铰支,长为2l的 压杆的挠曲线的上半部 分相同。则临界压力:
工程力学
二、稳定性问题的分类 1.压杆的稳定性。2.板壳的稳定性。 本课程只讨论压杆的稳定性。
三、压杆的稳定与失稳 1.压杆的稳定性: 压杆维持其原有直线平衡状态的能力
2.压杆的失稳: 压杆丧失其原有直线平衡状态,不能稳定地工作。
工程力学
四、压杆失稳的原因 1)杆轴线本身不直(有初曲率); 2)加载偏心; 3)压杆的材质不均匀;
4)外界干扰力。 五、失稳现象的特点 1.多样性。(如扭转、弯曲失稳,板、壳、柱) 2.整体性。构件失稳引起受力重新分配。整体失效、 整体分析。 3.破坏的突然性。应力在弹性范围,类似脆性破坏。
工程力学
• 1907年加拿大
魁北克大桥在 剪彩前突然坍 塌,600米长, 19000吨重的大
桥和86名建桥
3、中柔度杆的经验公式 对于 < p的压杆,其临界应力大于材料的比例极限,欧拉 公式已经不适用。
材料力学第9章 压杆稳定

BC ≈ 0.7l
FACcr =
( 2 × 0.3l )
π 2 EI
2
=
( 0.6l )2π 2 源自I2, FBCcr =
( 0.7l )
π 2 EI
2
综合得: 综合得:
Fcr =
( 0.7l )
π 2 EI
(9.4) )
三、欧拉公式的普遍表达式 π 2 EI 1、公式: 、公式: Fcr = 2 ( µl ) 2、常见约束压杆的长度系数: 、常见约束压杆的长度系数: •两端铰支: 两端铰支: µ=1 两端铰支 •一端固定,一端自由: 一端固定, µ=2 一端固定 一端自由: •两端固定: 两端固定: µ=0.5 两端固定 •一端固定,一端铰支: 一端固定, µ≈0.7 一端固定 一端铰支:
w = A sin kx + B cos kx
3、挠曲线讨确定临界压力计算公式: 、挠曲线讨确定临界压力计算公式: 由x=0时w=0得: A sin k ⋅ 0 + B cos k ⋅ 0 = 0 时 得
B=0
由x=l时w=0得:A sin k ⋅ l = 0 时 得
A≠0 sin kl = 0
π EI Fcr = = 2 ( µl )
2
π × (210 ×10 Pa ) ×
2 9
π
64
d4
(1×1.25m) 2
解得: 解得: d = 0.0246m = 24.6mm 取为: 取为:d=25mm。 。
4、校核计算: 、校核计算:
1×1250mm λ= = = 200 25mm i 4 π 2E π 2 × (210 ×109 Pa) λ1 = = = 97 6 σP 220 ×10 Pa
材料力学9压杆稳定性标准

临界压力计算
Beijing Jiaotong University
Institute of Engineering Mechanics
—— 理想铰支中心压杆
问题:
思路:过程倒序
F
Fcr
Fcr
F
Fcr
Q
北京交通大学工程力学研究所 汪越胜 Wang Yue-Sheng
1
理想铰支中心压杆
Beijing Jiaotong University
Institute of Engineering Mechanics
F w
w
wmax
F
M w
F
F
M = Fw
d2w = − M dx2 EI
= − Fw EI
(小挠度假设)
d2w dx2
+
k
2
w
=
0
⎛ ⎜⎝
k
2
=
F EI
⎞ ⎟⎠
w = Asin kx + B cos kx
(A, B: 积分常数)
北京交通大学工程力学研究所 汪越胜 Wang Yue-Sheng
M0 F
M0 F
边界条件为: x = 0, w = w' = 0 ; x = L,w = w' = 0
北京交通大学工程力学研究所 汪越胜 Wang Yue-Sheng
其他支座条件 — 例1
Beijing Jiaotong University
Institute of Engineering Mechanics
欧拉公式应用范围
Beijing Jiaotong University
Institute of Engineering Mechanics
孙训方材料力学09压杆稳定

B
11
材 料 力 学 x
Fcr
Fcr M(x)=Fcr w m w B m x y
l m
m x
B y
m-m 截面的弯矩
M ( x) Fcr w
材 料 力 学
杆的挠曲线近似微分方程
EIw M ( x) Fcr w (a)
''
Fcr M(x)=Fcr w m x m
令 得
Fcr k EI
材 料 力 学
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩. 取 Iy 、Iz 中小的一个计算临界力。 若杆端在各个方向的约束情况不同(如柱 形铰),应分别计算杆在不同方向失稳时的临 x y z
界压力。 I 为其相应中性轴的惯性矩。
π 2 EI Fcr ( l )2
l—相当长度
—长度因数
材 料 力 学
π 2 EI Fcr 2 ( l )
讨 论 (1)相当长度 l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 长度 l 。
l是各种支承条件下,细长压杆失稳时,挠曲线中相当
于半波正弦曲线的一段长度。
材 料 力 学
解:
E p π 100 σp
压杆 = 1
i
I A
π( D d ) 1 2 2 64 D d π( D 2 d 2 ) 4 4
4 4
lmin
l
i
4l D2 d 2
2
p 100
2
100 0.05 0.04 1.6m 41
y yl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pcr
=π
2
l
EI
2
Pcr ≈(π0.27El)I2
Pcr ≈(π0.25El)I2
Pcr ≈π(22lE)2I
Pcr
=π
2
l
EI
2
长度系数μ =1 ≈0.7 =0.5 =2
=1
例1 试由挠曲线近似微分方程,导出下述两种细长压杆的临界力
公式。
解:变形如图,其挠曲线近似微分方程为:
P
P
EIy′′=−M (x)=−Py+M
=λP
满足 λ>λP 的杆称为大柔度杆(或长细杆),其临界力用欧拉公式求。
λ<λP 的杆为中小柔度杆,其临界力不能用欧拉公式求。
二、中小柔度杆的临界应力计算
1.直线型经验公式
①σP<σ<σS 时:
σ cr =a−bλ
∴λ≥σ
s −a b
=λs
σ cr =a−bλ≤σ s
λs<λ<λP 的杆为中柔度杆,其临界应力用经验公式求。
第九章 压杆稳定
§9–1 压杆稳定性的概念 §9–2 细长压杆临界力的欧拉公式 §9–3 超过比例极限时压杆临界应力 §9-4 压杆的稳定校核及其合理截面
§9–1 压杆稳定性的概念 构件的承载能力: ①强度
②刚度 ③稳定性
工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
P
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
③微分方程的解:
y= Asin x+Bcosx
④确定积分常数: y(0)=y(L)=0
A×0+B=0
即:
AsinkL+BcoskL=0
0
1
∴
=0
sinkL coskL
∴ sinkL=0
∴k=nπ = P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
求临界压力和安全系数。
z
解:一个角钢:
y
A1=8.367cm2, I y1=23.63cm4
两根角钢图示组合之后 I y <I z
Imin =I y =2I y1=2×23.63=47.26cm4
i= Imin = 47.26 =1.68cm A 2×8.367
支承情况
失 稳 时 挠 曲 线 形 状
l l 0.7l l 0.5支 一端固定 两端固定 另端铰支
Pcr
Pcr
Pcr
一端固定 两端固定但可沿 另端自由 横向相对移动
Pcr
Pcr
B
B
B
D
C
C
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
∴
Pcr
=π
2
EI L2
min
Pcr
=π
2 EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
Pcr =π(2µELI)m2in
压杆临界力欧拉公式的一般形式
µ—长度系数(或约束系数)。
表9–1 各种支承约束条件下等截面细长压杆临界力的欧拉公式
kL=2π
所以,临界力为:
Pcr
=
4π 2EI
L2
=
π 2EI
(L/2)2
µ = 0.5
例2 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
µ=1.0,
I
y
=b3h 12
,
b
Pcry
π
=
2 EI L22
y
②绕 z 轴,左端固定,右端铰支:
µ=0.7,
I
z
=bh3 12
,
Pcrz
=
σ
s
1
−
α
λ λc
2
对于A3钢、A5钢和16锰钢:α =0.43,λc =
π 2E 0.56σ S
λ<λc 时,由此式求临界应力。
②σs<σ 时:
σ cr = σ s
例4 一压杆长L=1.5m,由两根 56×56×8 等边角钢组成,两端铰
支,压力P=150kN,角钢为A3钢,试用欧拉公式或抛物线公式
L L
z
y
图(b)
图(a)
(45×45× 6) 等边角钢
图(b)
Imin =I z =3.89×10−8 m4
Pcr
=π 2 Imin E (µ2l)2
=π
2×(02×.308.59×)2200=76.8kN
§9–3 超过比例极限时压杆临界应力
一、 基本概念
1.临界应力:压杆处于临界状态时横截面上的平均应力。
§9–2 细长压杆临界力的欧拉公式 一、两端铰支压杆的临界力:
假定压力已达到临界值,杆已经处于微弯状态,如图, 从挠曲线入手,求临界力。
P P
y
x M
P x
P ①弯矩: M (x,y)=Py
②挠曲线近似微分方程: y′′=− M =− P y EI EI y′′+ P y=y′′+k 2 y=0 EI 其中:k 2 = P EI
②σS<σ 时: σ cr =σ s
σ cr
λ<λS 的杆为小柔度杆,其临界应力为屈服极限。
σS
σ cr =a−bλ
③临界应力总图
σP
σ = π 2E
cr
λ2
λs =σs −a
b
λP = π 2E
σP
λ=µL
i
2.抛物线型经验公式
①σP<σ<σs 时:
σ cr =a1−b1λ2
我国建筑业常用:
σ cr
2. 稳定平衡
3. 稳定平衡和不稳定平衡
二、压杆失稳与临界压力 : 1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 2.压杆的稳定平衡与不稳定平衡:
稳 定 平 衡
不 稳 定 平 衡
3.压杆失稳:
4.压杆的临界压力
临界状态
稳 定过 平 衡
对应的 压力
临界压力:
不
稳 度定
平
衡 Pcr
σ
cr
=
Pcr A
2.细长压杆的临界应力:
σ
cr
=
Pcr A
=
(
µπL2 E) 2IA=
(
π 2E µL/i)
2
=πλ22E
即:σ cr
=
π 2E λ2
i= I ——惯性半径。 A
3.柔度: λ=µL ——杆的柔度(或长细比)
i
4.大柔度杆的分界: σ cr =πλ22E ≤σ P
λ≥
π 2E σP
= π 2EI
(0.7L1
z
)2
③压杆的临界力 Pcr =min(Pcry , Pcrz )
例3 求下列细长压杆的临界力。
解:图(a)
P
P
I
min
=50×103 12
×10−12
=4.17×10−9
m
4
10 30
Pcr =π(2µI1mli)n2E
=π
2×4.17×200 (0.7×0.5)2
=67.14kN
M0
令:k 2 = P
EI
x
Px
EIy′′+k 2 y=k 2 M
M0
P
y=ccoskx+dsinkx
L
M0 P
M0 P
边界条件为:
x=0, y= y′=0;x=L, y= y′=0
c=−M ,d=0,kL=2nπ 并 kL=nπ
P
∴ kL=2nπ
为求最小临界力,“k”应取除零以外的最小值,即取: