材料科学基础_第2章_高分子的链结构及聚集态结构

合集下载

【高分子物理】第2章 高聚物的聚集态结构

【高分子物理】第2章 高聚物的聚集态结构
这个模型最早由斯托克斯(Storks)在1938年 提出的,但在当时没有能被接受。直到1957年凯勒 (Keller)从稀溶液中培养出聚乙烯单晶体,由电子 显微镜测定并计算出它的厚度在40~100Ao,由于单 晶只存在于晶相中并且有清晰的界面,然而缨状微 束模型不能解释这一现象。
这个模型认为:在晶体中,大分子不改变原来分 子链的键角、键长而非常有规则地反复折叠成链带, 其厚度相当于折叠周期,大约为100Ao,而通常大 分子的长度大于104Ao,所以分子链只能在晶片中 进行折叠,而且分子链与平面垂直。
第二章 高聚物的聚集态结构
(Structure of molecular aggregation of polymers)
聚集态结构:高分子链之间的排列和堆砌 结构,也称为超分子结构。
聚集态结构的变化导致材料的性能变化。
加工中赋予材料以什么样的聚集态结构,直 接影响使用的性能。
2.1 高聚物分子间的作用力 2.2 高分子的聚集态结构模型 2.3 高聚物结晶的形态和结构 2.4 高聚物的结晶过程 2.5 结晶热力学 2.6 高聚物的取向态结构 2.7 高聚物的液晶态结构 2.8 共混高聚物的织态结构
洛斯对凝胶提出来的。这个模型的提出,打破了以 往认为高分子无规线团是杂乱无章的聚集态的概念, 证明了不完善结晶结构的存在。
这个模型认为:在结晶高聚物中,晶区和非晶区 互相穿插,同时存在于结晶高聚物中。在晶区中, 分子链相平行排列,形成规整的结构,但晶区的尺 寸非常小,一根分子链可以同时通过几个晶区和非 晶区;而在非晶区中,分子链的堆砌是完全无序的。
ΔHv: 摩尔蒸发热 RT:转化为气体所做的膨胀功
内聚能密度(CED): 单位体积的内聚能
CED
E V~

第二章高分子链的结构(共57张PPT)

第二章高分子链的结构(共57张PPT)
〔1〕结晶性能——大分子链中结构单元键接顺序整齐对 聚合物的结晶有利;混杂的键接结构会影响大分子链的规整 性,从而使聚合物的结晶性能下降。
〔2〕化学稳定性——头-头连接对高分子链的稳定 性有不良影响,如受热或氧等的作用,易在此处产生 断裂,从而使大分子产生降解。
二、高分子链的连接方式
2、共聚结构
两种或两种以上单体链节以不同的连接方式形成的结构称为共聚结 构。它可分为:
一、分子链的化学组成
3. 元素有机高分子 ~~~~~Si-〔O,P,Al,Ti,)~~~~
大分子主链上没有碳原子,侧基为有机基团。该类聚合 物具有较好的可塑性和弹性,还具有优异的耐热性和耐寒性, 可以在一些特殊埸合使用。
如聚硅氧烷、有机钛等,其中Si的成键能力较强,已有多种有 机硅高聚物。
二、高分子链的连接方式
二、高分子链的连接方式〔结构单元的键接方式〕 键接结构是指结构单元在高分子链中的连接方式。尽
管链节结构相同,但键接结构的不同,那么高聚物的性能 也有很大差异。键接结构可分为如下几种结构。 1、顺序异构
二、高分子链的连接方式
一般情况下,头-尾相连占主导优势,而头-头相连占 较低比例。头-头连接对高分子一般有不良影响:
旋光异构 由于不对称碳原子存在于分子中所引起的异构现象
称为旋光异构。
什么是不对称碳原子?
四、构型
〔1〕旋光异构的概念 碳原子的四个价键和四个基团成键时,当连接的
四个基团互不相同时,即为不对称碳原子,只要有两
个取代基互换位置,就能构成互为镜像的左旋L和右 旋D两种异构体。
四、构型
当两种异构体在大分子链中有不同排列时就 产生了不同的构型,一般有三种不同的构型:
刚性。
单键及相连 质软,不能结晶,-20℃下变脆,不能用于生产塑料、纤维制品。

高分子物理课后习题名词解释

高分子物理课后习题名词解释

以下为1~6章的名词解释,资料来源为高分子物理(第四版)材料科学基础(国外引进教材),化工大词典,百度百科,维基百科等。

第一章高分子链的结构全同立构:高分子链全部由一种旋光异构单元键接而成间同立构:高分子链由两种旋光异构单元交替键接而成构型:分子中由化学键所固定的原子在空间的几何排列,这种排列就是热力学稳定的,要改变构型必需经过化学键的断裂与重组分子构造(Architecture):指聚合物分子的各种形状,一般高分子链的形状为线形,还有支化或交联结构的高分子链,支化高分子根据支链的长短可以分为短支链支化与长支链支化两种类型共聚物的序列结构:就是指共聚物根据单体的连接方式不同所形成的结构,共聚物的序列结构分为四类:无规共聚物、嵌段共聚物、交替共聚物、接枝共聚物接枝共聚物:由两种或多种单体经接枝共聚而成的产物,兼有主链与支链的性能。

嵌段共聚物(block copolymer):又称镶嵌共聚物,就是将两种或两种以上性质不同的聚合物链段连在一起制备而成的一种特殊聚合物。

环形聚合物:它的所有结构单元在物理性质与化学性质上都就是等同的超支化聚合物:就是在聚合物科学领域引起人们广泛兴趣的一种具有特殊大分子结构的聚合物构象:由于σ单键内旋转而产生的分子在空间的不同形态。

链段: 高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。

链柔性:就是指高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态的特性。

近程相互作用:就是指同一条链上的原子或基团之间,沿着链的方向,因为距离相近而产生相互作用远程相互作用:因柔性高分子链弯曲所导致的沿分子链远距离的原子或基团之间的空间相互作用。

远程相互作用可表现为斥力或引力,无论就是斥力还就是引力都使内旋转受阻,构想数减少,柔性下降,末端距变大。

自由连接链:假定分子就是由足够多的不占体积的化学键自由结合而成,内旋转时没有键角限制与位垒障碍,其中每个键在任何方向取向的几率都相同。

高分子的聚集态结构

高分子的聚集态结构

5
分子间作用力的表征: 内聚能与内聚能密度

内聚能:克服分子间作用力,把1摩尔凝聚体(液 体或固体)分子移到其分子间的引力范围之外(汽 化时)所需要的能量△E。 △E = △Hv - RT
(△E为内聚能, △Hv为摩尔蒸发/升华热)

内聚能密度:是单位体积的内聚能(cohesive energy density —简写为CED)。 △E CED = V m

12
影响聚合物单晶生长的因素

溶液的浓度:为了培养完善的单晶,溶液的浓度必须足够 稀,以避免分子链的缠结。通常浓度约0.01%时可得单层片 晶。

结晶温度:若得到完善的单晶,需使结晶速度足够慢,以保 证分子链的规整排列和堆砌。一般过冷程度20-30K时,可形 成单层片晶;增加过冷程度,可生成多层片晶,甚至更复杂 的形式。
6
CED大小与聚合物物理性质间的关系

CED < 290 J/cm3 的高聚物都是非极性高聚物,可 用作橡胶。 CED > 420 J/cm3的高聚物,由于分子链上有强极 性基团,或者分子链间能形成氢键,分子间作用力 大,可做纤维材料或工程塑料。


CED在290-420 J/cm3之间的高聚物分子间力适 中,适合作塑料使用。
15
每个晶胞有Z=2个链节
9
等规聚丙烯晶胞结构

等规聚丙烯(PP)属单斜晶系,a = 0.665 nm, b = 2.096 nm, c=0.650nm。α=γ=90o, β=99.2o 。 但结晶条件不同,还有单斜、六方、拟六方不同的 晶型,晶型不同、聚合物的性能也不同。

每个晶胞含 12个链节
10
3

天大高分子物理课件第二章高分子链的聚集态结构(206)-2008.9-p3

天大高分子物理课件第二章高分子链的聚集态结构(206)-2008.9-p3
液晶类型 结构形式 名称 纵向性 垂直型 主链型 星型 盘型
混合型
29
2.3.1 液晶的化学结构
梳型 多重梳型 盘梳型 侧链型 腰接型 结合型
网型
30
2.3.3 分子结构对液晶行为的影响


主链型液晶高分子–由液晶元和柔性链节相间 而成 刚性分子- 溶致液晶 主链中引入柔性链段–Tm ↓-热致液晶 侧链型液晶高分子 -主链柔性,刚性液晶元连 接于侧链 柔性间隔段,有利于排列与取向 主链柔性的增加,转变温度降低 液晶基元长度增加,液晶相温度加宽

8
2.2.1 无规线团模型(实验依据)
橡胶的弹性理论的建立的基础。橡胶弹性模量 和应力~T的关系不随稀释剂的加入而有反常 变化-分子链无规,不存在可被溶解或拆散的 局部有序 X光小角散射测得:PS分子在本体和在溶液中 均方旋转半径相近 - 分子链具有相近的构象 在非晶高聚物的本体和溶液中,分别用高能辐 射交联,结果两者交联的倾向相同 - 并不存 在排列紧密的局部有序结构 中子小角散射的实验结果- 非晶高聚物形态是 无规线团
31
2.3.1 液晶的化学结构
多盘型
支链型
树枝型
32
2.3.2 液晶的类型
根据分子排列的形式和有序性的不同, 液晶有三种结构类型:近晶型、向列型 和胆甾型。
近晶型
向列型
胆甾型
35
2.3.2 液晶的类型
近晶型液晶(Smectic liquid crystals)是所有液 晶中最接近结晶结构的一类,因此得名,在这类 液晶中, 棒状分子互相平行排列成层状结构。 分子的长轴垂直于层状结构平面。 层内分子排列具有2D有序性。但这些层状结构 并非严格刚性,分子可在本层内运动,但不能来 往于各层之间。因此,层状结构之间可以相互滑 移,而垂直于层片方向的流动却很困难。

高分子物理第二章 高聚物的聚集态结构

高分子物理第二章  高聚物的聚集态结构

晶态 非晶态
取向结构 Orientation


高分子的聚集态 定 聚合物的基本性能特点 定 材料的性能
控制成型加工条件
获 得
预定材料结构
得 到
预定材料性能
高聚物的聚集态
晶态 一般晶态与半晶态
半晶态 取向晶态与半晶态 玻璃态
非晶态 取向态Leabharlann 橡胶态 粘流态液晶态
织态
第二节 结晶高聚物的结构模型
一、樱状微束模型(两相结构模型)
从而存在最大结晶温 度Tmax
Tmax=(0.80~0.85) Tm
低温
高温
Tmax=0.63 Tm+0.37 Tg-18.5
如: PP Tm=176℃ Tmax=0.85(176+273)K=381K
例 如 定向PS
Tc →Tm时,成核少,但生长快,
容易成为大球晶,不透明,脆,
表面粗糙。
Tc →Tg时,成核多,但生长慢, 容易成为小球晶,可能透明, 脆,表面细致。
这是人们多年来所接受和公认的结晶高聚物的结构模 型。
1、依据: 通过X-衍射
证实:除了有晶 相的衍射环外, 还有由于非晶造 成的弥散环。
2、中心论点: 高聚物只能部分结晶,有晶区,同时也有非晶区,
两相同时并存,一条高分子链可以贯穿好几个晶区和非晶 区,在非晶区中分子链仍是卷曲的。
3、应用: 用此模型可以解释一些实验事实,但有另一些实验事
后来许多聚合物如古塔波胶,PP, 聚α-烯烃,纤维素及衍生物等也相 继培养出了单晶。在电镜下可以清楚 的看到这些单晶具有规则的几何外 形。
Andrew Keller (1925~) 英国
远程有序和进程有序贯穿整个晶体。

2高分子的聚集态结构

2高分子的聚集态结构

2高分子的聚集态结构高分子的聚集态结构是指由高分子链相互排列和空间有序排布所形成的特定结构。

高分子材料的聚集态结构直接影响其性质和性能,因此对于高分子材料的研究和应用具有重要意义。

通过研究高分子的聚集态结构,可以揭示高分子材料的力学性能、热学性能、传质性能等方面的规律,为高分子材料的应用提供理论指导。

高分子的聚集态结构主要包括无序态、部分有序态和完全有序态三种。

1.无序态:在无序态下,高分子链相互交织、随机排列,没有任何规则的结构。

这种结构通常是由高分子材料在固态下由熔融态或溶液中形成的,没有特定的结晶形态。

无序态的高分子材料具有良好的可塑性和变形性能,常见于塑料材料。

2.部分有序态:部分有序态是指高分子链部分按照一定规则排列,但整体结构仍然随机分布。

这种结构的高分子材料通常在固态下由无序态经过加工过程形成,如拉伸、压缩、拉伸-轻度热处理等。

部分有序态的高分子材料具有介于无序态和有序态之间的性质,具备较高的力学性能和热学性能,常见于纤维材料。

3.完全有序态:完全有序态是指高分子链按照一定规则有序排列,形成有序的晶体结构。

有序态的高分子材料具有良好的力学性能、热学性能和传质性能,常见于高分子晶体材料、高分子纤维和高分子薄膜等。

完全有序态的高分子材料的结晶形态可以通过X射线衍射、热分析、光学显微镜以及电子显微镜等手段进行表征。

高分子的聚集态结构形成的过程主要与高分子链的构型调整和高分子链之间的相互作用有关。

在高分子合成或高分子材料加工过程中,高分子链可能具有不同的构象,如直线构象、环状构象、扭曲构象等。

同时,高分子链之间的相互作用也会影响聚集态结构的形成。

例如,范德华力、静电相互作用、亲疏水性等会影响高分子链的相互吸引和排斥,进而决定高分子的聚集态结构。

综上所述,高分子的聚集态结构直接影响高分子材料的性质和性能,三种主要的聚集态结构包括无序态、部分有序态和完全有序态。

通过研究高分子的聚集态结构,可以深入了解高分子材料的力学性能、热学性能、传质性能等方面的规律,为高分子材料的应用提供理论指导。

第二章 凝聚态结构

第二章 凝聚态结构

第二章高分子的凝聚态结构Structure of condensed state of polymer12学时——引言链结构:单个分子的结构和形态凝聚态结构:分子群体的结构和形态。

指高分子链之间的排列和堆砌结构。

也称为“超分子结构”。

链结构:决定材料的基本性能,间接影响使用性能。

凝聚态结构:决定材料的本体性能,直接影响使用性能。

例子——砖和建筑物的关系用质量好的砖盖的房子不一定坚固。

譬如结构不好,水泥不好,歪了斜了。

质量稍差的砖,好好盖的话房子也会比较坚固。

材料——分子群体——承担负荷的不是单个分子,而是分子群体。

材料的结构应该均匀(各部分整齐划一),不希望在某些位置出现明显缺陷。

因为材料的破坏总是从最薄弱的位置发生和发展的。

凝聚态结构包括:晶态结构(crystalline structure)非晶态结构(non-crystalline structure)取向结构(oriented structure)共混物结构(织态结构)(texture structure)在实际材料中,它们或共存或单独存在,多方面地影响材料的性能。

目的和意义:了解凝聚态结构特征——物理力学性能的关系掌握凝聚态结构——加工成型条件的关系——指导生产加工和应用§3.1 高聚物的分子间作用力单个分子——(分子间作用力)——〉凝聚态(固态和液态)Note:高分子材料只有凝聚态,没有气态。

说明。

一、分子间作用力的类型分子间的作用力包括范德华力和氢键。

范德华力——存在于分子之间或分子内非键合原子间的一种相互吸引的作用力。

包括静电力、诱导力、色散力。

(1)静电力:极性分子——极性分子之间的引力。

(永久偶极之间)极性分子具有永久偶极,静电相互作用与分子偶极的大小和定向程度有关。

温度升高,定向程度下降,则静电力将减小。

作用能量12~21千焦/摩尔,极性高分子中的主要作用力。

C—C键键能350kJ/mol (2)诱导力:极性分子与非极性分子之间(或者同一分子内极性部分与非极性部分之间) 诱导力是极性分子的永久偶极与它在其它分子上引起的诱导偶极之间的相互作用力。

第二章 高分子的聚集态结构详解

第二章 高分子的聚集态结构详解

晶体结构=空间点阵+结构单元
点阵
Polymer Physics (Yu CAO)
直线点阵——分布在同一直线上的点阵 平面点阵——分布在同一平面上的点阵
空间点阵——分布在三维空间的点阵
晶胞
Polymer Physics (Yu CAO)
晶胞和晶系
1,晶胞:空间格子中划出的大小和形状完全一样 的平行六面体,以代表晶格结构的基本重复单元, 这种在三维空间中具有周期性排列的最小单位 2,晶胞参数:a,b,c 和 ,, 3,晶系:七种晶胞类型构成晶系
结晶聚合物的重 要实验证据
X射线衍射曲线
Inte ns ity (cps )
1000 500 0 10 20 30 40 50 Polar angle (degree)
Polymer Physics (Yu CAO)
2.2.1 晶体结构的基本概念
晶体:物质内部的质点三维有序周期性排列
把组成晶体的质点抽象成为几何点,由这些等同的几何点的集 合所以形成的格子,称为空间格子,也称空间点阵。 点阵结构中,每个几何点代表的是具体内容,称为晶体的结构 单元。
氢键:≦40kJ/mol
小分子间相互作用能 < 共价键键能
2.1.2高分子间的相互作用非常大
高分子的特点:大 其中的链单元数:103~105 链单元间的相互作用
Polymer Physics (Yu CAO)
小分子间的相互作用
高分子间相互作用能 》共价键键能
高聚物无气态
高聚物气化所需的能量 》破坏化学键所需的能量
Polymer Physics (Yu CAO)
内聚能密度—衡量高分子间相互作用力的大小
高聚物 CED(J/cm3) 高聚物 CED(J/cm3)

第二章高分子的聚集态结构

第二章高分子的聚集态结构
3-2-1平面锯齿结构(plane zigzag)
没有取代基(PE)或取代基较小的(polyester,polyamide,POM,PVA等)的碳氢链中为了使分子链取位能最低的构象,并有利于在晶体中作紧密而规整的堆砌,所以分子取全反式构象,即:取平面锯齿形构象(P.Z)。
例如:PE
1.PE构象(平面锯齿) 2.晶系系: 斜方(正交) 晶系
2-3 内聚能密度(CED)
内聚能密度(cohesive energy density — CED)是聚合物分子间作用力的宏观表征 聚合物分子间作用力的大小,是各种吸引力和排斥力所作贡献的综合反映,而高分子分子量又很大,且存在多分散性,因此,不能简单的用某一种作用力来表示,只能用宏观的量来表征高分子链间作用力的大小。
1-2 高聚物的聚集态结构
高聚物的聚集态结构很长一段时间内搞不清楚,很长而柔的链分子如何形成规整的晶体结构是很难想象的,特别是这些分子纵向方向长度要比横向方向大许多倍;每个分子的长度又都不一样,形状更是变化多端。所以起初人们认为高聚物是缠结的乱线团构成的系统,象毛线一样,无规整结构可言。
1-2 高聚物的聚集态结构
晶胞
3-1 基本概念
3. 晶胞——在空间格子中划分出余割大小和形状完全一样的平行六面体以代表晶体的结构的基本重复单位。这种三维空间中具有周期性排列的最小单位称为晶胞。
3-1 基本概念
4.晶胞参数——描述晶胞结构的参数 有 6个: 平行六面体的三边的长度:a、b、c 平行六面体的三边的夹角:
第一节 概述
分子的聚集态结构: 平衡态时分子与分子之间的几何排列
1-1 小分子的聚集态结构
物质内部的质点(分子、原子、离子)在空间的排列情况可分为: 近程有序——围绕某一质点的最近邻质点的配置有一定的秩序(邻近质点的数目(配位数)一定;邻近质点的距离一定;邻近质点在空间排列的方式一定) 远程有序——质点在一定方向上,每隔一定的距离周期性重复出现的规律。

第二章 高分子链结构

第二章 高分子链结构
支化产生:聚合过程中,活性大分子发生链转移。 支化对高聚物的影响较大。 单体单元的官能团f≥3
HDPE main chain
LDPE main chain
µÍ ÃÜ ¶È ¾Û Ò Ï© Óë ¸ß ÃÜ ¶È ¾Û Ò Ï© ÐÔ ÄÜ È± ½Ï
LDPE
HDPE
ÃÜ ¶È ½á ¾§ ¶È ÈÛ µã Ç¿ ¶È Èá Èí ÐÔ Í¸ Ã÷ ÐÔ Óà ;
2.3 共聚物中单体单元的键合顺序
主要有:无规(random)、交替(alternating) 嵌段(block)和接枝(graft)四种。
无规共聚: ABAABABAABBABBBAABABB
交替共聚: ABABABABABABABABABABA
嵌段共聚: AAAAAAABBBBBAAAAAABBBB
4) –S-R-R-S-S-R- 4)R-S无规立构聚合物
几 何 异 构 : 共 轭 二 烯 烃 ( conjugated diene)发生1,4-加成聚合时,在聚合物主 链上含有C=C双键,由于双键不能自由旋 转,使双键两侧的取代基可以有不同的排 列 方 式 , 形 成 顺 式 构 型 (cis-) 和 反 式 构 型 (trans-)。
交联高分子表征 用相邻两个交联点之间链的平均分子量Mc
来表示,交联度越大,Mc越小
交联点密度:交联的结构单元占总结构单 元的分数,即每一个结构单元的交联几率
橡胶的硫化是使含有双键的分子之间产生硫桥
未经硫化的橡胶,分子之间容易滑动,受力后会 产生永久变形,不能恢复原状,因此没有使用价 值。经硫化的橡皮,分子之间不能滑移,才有可 逆的弹性变形,所以橡胶一定经过硫化变成交联 结构后才能使用。

第二章 高分子的聚集态结构(共52张PPT)

第二章  高分子的聚集态结构(共52张PPT)

• 4、隧道—折叠链模型
• 由于实际高聚物结晶大多是晶相与非晶相共存的,以上各模型都有片 面性。
• 各种形态都有:晶区、非晶区、伸直链、折叠链、空穴
• 5、插线板模型 • 以PE为例,分子的无规线团在熔体中松弛时间太长
,而实验观察到聚乙烯的结晶速度又很快,结晶时 分子链根本来不及作规那么的折叠,而只能对局部 链段作必要调整,即分子链是完全无序进入晶片的 。
• 采用内聚能密度来度量分子间作用力的大小。
• 内聚能:把一摩尔液体或固体分子移到其分子间力 范围之外缩需要的能量。 单位体积的内聚能叫内聚能
密度

⊿E= ⊿Hv-RT CED= ⊿E/V
表 线型高聚物的内聚能密度
高聚物
PE PIB 天然橡胶 PB 丁苯橡胶 PS
内聚能密度(兆 焦/米3)
259
272 280 276 276 305
• 2〕嵌段共聚物的各嵌段根本保持相对独立性,能结晶 的嵌段形成自己的晶区
• 3〕交替共聚的结构规整性好,也易结晶
• 4、其它结构因素
• 1〕柔顺性好,便于链段向结晶外表扩散和排列, 易结晶
• 2〕支化可破坏链的对称和规整,结晶能力降低,PE( 支化〕<PE(线性〕
• 3〕交联大点限制链的活动,轻度交联,还能结晶 。交联度增大,结晶能力丧失
• 2、孤立分子链所采取的构象应是同等规那么许可的能量最小的构 象,也就是优先选位能最低的构象
• 1〕聚乙烯〔PE〕 • 为平面锯齿形全反式构象,位能最低 • C-C键长l=0.154nm,键角θ=109.5°
• 一个单体的长度C=2Lsinθ/2=0.252nm>0.24nm
• 氢原子的范德华半径为0.12nm 2x0.12=0.24nm

高分子物理第二章 高分子的凝聚态结构

高分子物理第二章 高分子的凝聚态结构

范德华力
诱导力:极性分子的永久偶极与它在邻近分子上引起的诱导 偶极之间的相互作用力。6~13KJ/mol
色散力:是分子瞬间偶极之间的相互作用。是一切分子中, 电子在诸原子周围不停的旋转着,原子核也不停的振动着, 在某一瞬间,分子的正负电荷中心不相重合,便产生了瞬间 的偶极。色散力存在于一切分子中,是范德华力最普遍的一 种。0.8~8KJ/mol
立方晶系
六方晶系
四方晶系
三方晶系
正交晶系
单斜晶系
三斜晶系
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(3)晶面和晶面指数
结晶格子内所有的格子点全部集中在相互平行的等间 距的平面群上,这些平面叫做晶面
第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
晶面指数 从不同的角度去观察某一晶体,将会见到不同的晶面, 所以需要标记,一般常以晶面指数(Miller指数)来 标记某个晶面
2.1.1 晶体结构的基本概念
(1)空间格子(空间点阵):把组成晶体的质点抽象成 几何点,有这些等同的几何点的集合所形成的格子, 点阵中每个质点代表的具体内容为晶体的结构单元。
晶体结构
= 空间点阵 + 结构基元(重复单元) 第二章 高分子的凝聚态结构
2.1.1 晶体结构的基本概念
(2)晶胞和晶系
第二章 高分子的凝聚态结构
高分子的结构
高分子的结构
高分子链的结构
近程结构 (一次结构)
化 学 组 成 分 子 构 造
共 聚 物 序 列 结 构
远程结构 (二次结构)
构 型
大 小
柔 顺 性
高 分( 子三 聚次 集结 态构 结) 构
第二章 高分子的凝聚态结构
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全同立构和间同立构高聚物称作有规立构聚合物。 高聚物中含有全同和间同立构的总的百分数称为等规度
8
(2) 几何异构(顺反异构) 在1,4加聚的双烯类聚合物中,主链含有双键。由于主链双键 的碳原子上的取代基不能绕双键旋转,当组成双键的两个碳 原子同时被两个不同的原子或基团取代时,即可形成顺式、 反式两种构型,它们称作几何异构体。
15
• 一个高分子链在内旋转时,不考虑键角的限制和位垒的障碍(C原子上 没有H原子和取代基),C-C键的内旋转应该是完全自由的理想模型, 这样的链叫自由连接链。
• 但实际上键角的限制和位垒的障碍都是存在的,高分子链中的单键旋 转时互相牵制,一个键转动,要带动附近一段链一起运动,这样,每 个键不成为一个独立运动单元。
双键上基团在双键一侧的为顺式,在双键两侧的为反式。
聚合物的构型的测定方法: 有X射线衍射法(XRD)、核磁共振谱(NMR)、红外光
谱法(IR)等。
9
顺式 反式
10
(3 )键接异构 (a ) 单烯类单体形成聚合物的键接方式 对于不对称的单烯类单体,例如CH2=CHR,在聚合时就有可 能有头-尾键接和头-头(或尾-尾)键接两种方式:
• 可以把由若干个键组成的一段链作为一个独立运动的单元,称为 “链 段”。高分子的链段之间可以自由旋转,无规取向。链段是高分子链 中能够
•所谓柔顺性,是高分子链能够改变其构象的性质。高分子的 柔顺性是高分子材料的性能不同于小分子物质的主要原因。
•高分子链类似一根绳子,为不规则地蜷曲的无规线团。 •单键的内旋转是导致高分子链呈蜷曲构象的原因。单键的内 旋转是高分子链能够改变构象的原因。单键的内旋转也是高 分子链的柔顺性的原因。 •内旋转单键数目越多,内旋转阻力越小,构象越多,链段越 短,柔顺性越大
17
1. 静态柔顺性(平衡态柔顺性) 2. 动态柔顺性 分子结构对链的柔顺性的影响 (1)主链结构:
主链全由单键组成的,一般柔性较好 主链中含有芳杂环结构的高分子链柔顺性较差 主链含有孤立双键,柔顺性较好
(2)取代基(侧基)
极性强,作用力大,内旋转困难,柔顺性差 体积大小,空间位阻愈大,柔顺性差 比例大小,数量多的,柔顺性差 取代基分布
14
1 高分子链的内旋转现象
• 高分子的主链通常不是伸直的,它可以卷曲起来,在空间采 取各种形态。这种不规则地蜷曲的高分子链的构象称为无规 线团。
• 高分子在运动时C—C单键可以绕键轴旋转,称为内旋转。 • 高分子的构象可定义为由于单键的内旋转而产生的分子在空
间的不同形态。分子主链中单键(σ键)的内旋转是导致高 分子链呈卷曲构象的原因。
d型
l型
7
•全同立构(或等规立构):当取 代基全部处于主链平面的一侧 或者说高分子全部由一种旋光 异构单元键接而成。 •间同立构(或间规立构):取代 基相间的分布于主链平面的二 侧或者说两种旋光异构单元交 替键接。 •无规立构:当取代基在平面两 侧作不规则分布或者说两种旋 光异构体单元完全无规键接时。
材料科学基础
2.6 高分子的链结构及聚集态结构
高聚物结构研究的内容:
结构单元的化学组成
近程结构
结构单元的构型 分子链的构造
一级结构
高分子链的
共聚物的序列结构

结构





远程结构
高分子链的形态
(构象)
高分子的大小
(分子量及分布)
二级结构
晶态结构
非晶态结构
聚集态结构
取向态结构 液晶态结构
三级结构
织态结构
头-尾: 头-头或尾-尾:
11
3、分子构造
构造指聚合物分子的各种形状。
一般为线形,还有支化高分子、接技梳形高分子、星形高分子、交 联网络高分子、树枝状高分子、“梯形” 高分子、双螺旋型高分子 等。
高分子的构造类型
12
4、共聚物的序列结构
• 共聚物是由两种以上单体共同聚合制得。 • 以由A和B两种结构单元构成的二元共聚物为例,按其连接方式可分为以
链接异构
头-头结构 头-尾结构
6
2.高分子链的构型
分子中最近邻原子间的相对位置的表征
(1) 旋光异构 (空间立构) 饱和碳氢化合物分子中的碳,以4个共价键与4个原子或基
团相连,形成一个正四面体,当4个基团都不相同时,该碳原 子称作不 对称碳原子,以C*表示,这种有机物能构成互为镜 影的两种异构体,表现出不同的旋光性,称为旋光异构体。
基硅氧烷 无机高分子:主链上不含碳元素,也不含有机取代基。聚二硫化硅
5
高分子链的构型
构型(Configuration) 分子中由化学键所固定的原子在空间的 几何排列。这种排列是稳定的,要改变构型必须经过化学键的
断裂和重组。
旋光异构
全同立构 间同立构 无规立构
高分子的 构型
几何异构
反式构型 顺式构型
下统计型(含无规)、交替型、嵌段型、接枝型高分子。 • 无规共聚物 ~~~ABBABAAABBAB~~~ • 交替共聚物 ~~~ABABABABABAB~~~ • 嵌段共聚物 ~~~AAAAAABBBBBB~~~ • 接枝共聚物
13
2.4.2高分子的构象(了解)
§2.4.2.1 高分子链的内旋转现象 §2.4.2.2 高分子链的柔顺性 §2.4.2.3 高分子链的构象统计 §2.4.2.4 晶体和溶液中的构象
2
高分子结构的层次
高聚物结构是组成高分子的不同尺度的结构单元在空间的相对 排列 1.高分子链结构是指单个分子的结构和形态,又分为近程结构 和远程结构。
近程结构:单体单元的化学组成、结构及其键接方式。 远程结构:整个高分子的大小与形态。
2.高分子聚集态结构是指高分子链之间的几何排列和堆砌状态。 包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织 态结构。
高分子链结构决定的聚合物的基本性能特点 凝聚态结构与材料的使用性能有着直接的关系。
3
高分子的二级和三级结构示意图
二级结构 三级结构
4
1.结构单元的化学组成
高分子是由单体通过聚合反应连接而成的链状分子。
按化学组成不同聚合物可分成下列几类:
碳链高分子:主链(链原子)完全由C原子组成。聚苯乙烯(PS)、聚 氯乙烯(PVC) 杂链高分子:主链原子除C外,还含O,N,S等杂原子。尼龙—66 元素有机高分子:主链原子不含碳元素,侧链含有机取代基。聚二甲
相关文档
最新文档