【解析版】2020年浙江省高考数学(理)预测押题试卷 (2)
2020浙江省高考压轴卷数学理(解析版)
绝密★启封前2020浙江省高考压轴卷数 学 理 科数学I注意事项考生在答题前请认真阅读本注意事项及答题要求1.本试卷共4页,包含填空题(第1题~第14题)、 解析题(第15题~第20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上指定位置作答,在其它位置作答一律无效. 4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 参考公式:球体的体积公式:V =334R π,其中为球体的半径.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.全集12{}345U =,,,,,集合134{}}35{A B =,,,=,,则U A B ⋂()ð═ . 2.已知i 是虚数单位,若12i a i a R +∈(﹣)()=,,则a = . 3.我国古代数学算经十书之一的《九章算术》一哀分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽 人.4.如图是一个算法的流程图,则输出y 的取值范围是 .5.已知函数22353log (1)3x x f x x x -⎧-<⎨-+≥⎩()=,若f (m )=﹣6,则f (m ﹣61)= . 6.已知f (x )=sin (x ﹣1),若p ∈{1,3,5,7},则f (p )≤0的概率为 . 7.已知函数f (x )=2sin (ωx +φ)(ω>0,|φ|<2π)的部分图象如图所示,则f (76π)的值为 .8.已知A ,B 分别是双曲线2212x y C m :-=的左、右顶点,P (3,4)为C 上一点,则△PAB 的外接圆的标准方程为 .9.已知f (x )是R 上的偶函数,且当x ≥0时,f (x )=|x 2﹣3x |,则不等式f (x ﹣2)≤2的解集为 . 10.若函数f (x )=a 1nx ,(a ∈R )与函数g (x )=x ,在公共点处有共同的切线,则实数a 的值为 .11.设A ,B 在圆x 2+y 2=4上运动,且23AB =,点P 在直线3x +4y ﹣15=0上运动.则|PA PB |+u u u r u u u r 的最小值是 .12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =23π,∠ABC 的平分线交AC 于点D ,BD =1,则a +c 的最小值为 .13.如图,点D 为△ABC 的边BC 上一点,2BD DC =u u u r u u u r,E n (n ∈N )为AC 上一列点,且满足:11414n n n n n E A E D E a B a +=+u u u u r u u u u r u u u u r (﹣)﹣5,其中实数列{a n }满足4a n ﹣1≠0,且a 1=2,则111a -+211a -+311a -+…+11n a -= .14.已知函数2910(1)e ,023xx x f x x x ⎧++<⎪⎨⎪-≥⎩()=+6,x 0,其中e 是自然对数的底数.若集合{x ∈Z|x (f (x )﹣m )≥0}中有且仅有4个元素,则整数m 的个数为 .二、解答题(本大题共6小题,计90分. 解析应写出必要的文字说明,证明过程或演算步骤,请把 答案写在答题卡的指定区域内)15.(本小题满分14分) 如图,在直四棱柱ABCD ﹣A 1B 1C 1D 1中,已知点M 为棱BC 上异于B ,C 的一点. (1)若M 为BC 中点,求证:A 1C ∥平面AB 1M ; (2)若平面AB 1M ⊥平面BB 1C 1C ,求证:AM ⊥BC .16.(本小题满分14分)已知12(,),(0,cos(),.2273πππαπβαβαβ∈∈-=+=), (1)求22sin αβ(﹣)的值; (2)求cos α的值.17.(本小题满分14分) 学校拟在一块三角形边角地上建外籍教室和留学生公寓楼,如图,已知△ABC 中,∠C =2π,∠CBA =θ,BC =a .在它的内接正方形DEFG 中建房,其余部分绿化,假设△ABC 的面积为S ,正方形DEFG 的面积为T . (1)用a ,θ表示S 和T ; (2)设f (θ)=TS,试求f (θ)的最大值P ;18.(本小题满分16分) 已知椭圆22221x y C a b:+=0a b (>>)的离心率为22,短轴长为22. (Ⅰ)求C 的方程;(Ⅱ)如图,经过椭圆左项点A 且斜率为k (k ≠0)直线l 与C 交于A ,B 两点,交y 轴于点E ,点P 为线段AB 的中点,若点E 关于x 轴的对称点为H ,过点E 作与OP (O 为坐标原点)垂直的直线交直线AH 于点M ,且△APM面积为23,求k 的值.19.(本小题满分16分) 已知函数()212ln 2f x x x ax a R =+-∈,. (1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由.20.(本小题满分16分) 已知集合A =a 1,a 2,a 3,…,a n ,其中a i ∈R (1≤i ≤n ,n >2),l (A )表示和a i +a j (1≤i <j ≤n )中所有不同值的个数.(Ⅰ)设集合P =2,4,6,8,Q =2,4,8,16,分别求l (P )和l (Q ); (Ⅱ)若集合A =2,4,8, (2),求证:(1)()2n n l A -=; (Ⅲ)l A ()是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由? 数学Ⅱ(附加题)21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.请在答题卡指定区域内........注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共2页,均为非选择题(第21~23题)。
浙江省2020届高三高考模拟试题数学试卷及解析word版
浙江省2020届高三高考模拟试题数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U=R,集合A={x|x<32},集合B={y|y>1},则∁U(A∩B)=()A.[32,+∞)B.(−∞,1]∪[32,+∞)C.(1,32)D.(−∞,32)2.已知i是虚数单位,若z=3+i1−2i,则z的共轭复数z等于()A.1−7i3B.1+7i3C.1−7i5D.1+7i53.若双曲线x2m−y2=1的焦距为4,则其渐近线方程为()A.y=±√33x B.y=±√3x C.y=±√55x D.y=±√5x4.已知α,β是两个相交平面,其中l⊂α,则()A.β内一定能找到与l平行的直线B.β内一定能找到与l垂直的直线C.若β内有一条直线与l平行,则该直线与α平行D.若β内有无数条直线与l垂直,则β与α垂直5.等差数列{a n}的公差为d,a1≠0,S n为数列{a n}的前n项和,则“d=0”是“S2nS n∈Z”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.随机变量ξ的分布列如表:ξ﹣1012P13a b c其中a,b,c成等差数列,若E(ξ)=19,则D(ξ)=()A.181B.29C.89D.80817.若存在正实数y,使得xyy−x =15x+4y,则实数x的最大值为()A.15B.54C.1D.48.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85B .95C .2040D .22809.已知三棱锥P ﹣ABC 的所有棱长为1.M 是底面△ABC 内部一个动点(包括边界),且M 到三个侧面P AB ,PBC ,P AC 的距离h 1,h 2,h 3成单调递增的等差数列,记PM 与AB ,BC ,AC 所成的角分别为α,β,γ,则下列正确的是( )A .α=βB .β=γC .α<βD .β<γ10.已知|2a →+b →|=2,a →⋅b →∈[−4,0],则|a →|的取值范围是( ) A .[0,1]B .[12,1]C .[1,2]D .[0,2]二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.若α∈(0,π2),sinα=√63,则cosα= ,tan2α= .12.一个长方体被一个平面截去一部分后,剩余部分的三视图如图所示,则该几何体与原长方体的体积之比是 ,剩余部分表面积是 .13.若实数x ,y 满足{x +y −3≥02x −y +m ≤0y ≤4,若3x +y 的最大值为7,则m = .14.在二项式(√x +1ax 2)5(a >0)的展开式中x﹣5的系数与常数项相等,则a 的值是 .15.设数列{a n }的前n 项和为S n .若S 2=6,a n +1=3S n +2,n ∈N *,则a 2= ,S 5= . 16.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知a cos B =b cos A ,∠A =π6,边BC 上的中线长为4.则c = ;AB →⋅BC →= .17.如图,过椭圆C:x2a2+y2b2=1的左、右焦点F1,F2分别作斜率为2√2的直线交椭圆C上半部分于A,B两点,记△AOF1,△BOF2的面积分别为S1,S2,若S1:S2=7:5,则椭圆C离心率为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知函数f(x)=sin(2x+π3)+sin(2x−π3)+2cos2x,x∈R.(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[−π4,π2]上的最大值和最小值.19.(15分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.(1)求证:AB1⊥平面A1BC1;(2)若D在B1C1上,满足B1D=2DC1,求AD与平面A1BC1所成的角的正弦值.20.(15分)已知等比数列{a n}(其中n∈N*),前n项和记为S n,满足:S3=716,log2a n+1=﹣1+log2a n.(1)求数列{a n}的通项公式;(2)求数列{a n•log2a n}(n∈N*)的前n项和T n.21.(15分)已知抛物线C:y=12x2与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.(1)证明:直线AB恒过定点Q;(2)试求△P AB面积的最小值.22.(15分)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2).(1)求a的取值范围;(2)证明:f(x1)−f(x2)<12.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【详解详析】∵U=R,A={x|x<32},B={y|y>1},∴A∩B=(1,32),∴∁U(A∩B)=(−∞,1]∪[32,+∞).故选:B.2.【详解详析】∵z=3+i1−2i =(3+i)(1+2i)(1−2i)(1+2i)=15+75i,∴z=15−75i.故选:C.3.【详解详析】双曲线x2m−y2=1的焦距为4,可得m+1=4,所以m=3,所以双曲线的渐近线方程为:y=±√33x.故选:A.4.【详解详析】由α,β是两个相交平面,其中l⊂α,知:在A中,当l与α,β的交线相交时,β内不能找到与l平行的直线,故A错误;在B中,由直线与平面的位置关系知β内一定能找到与l垂直的直线,故B正确;在C中,β内有一条直线与l平行,则该直线与α平行或该直线在α内,故C错误;在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5.【详解详析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和, “d =0”⇒“S 2n S n∈Z ”,当S2nS n∈Z 时,d 不一定为0,例如,数列1,3,5,7,9,11中,S 6S 3=1+3+5+7+9+111+3+5=4,d =2,故d =0”是“S 2n S n∈Z ”的充分不必要条件.故选:A .6.【详解详析】∵a ,b ,c 成等差数列,E (ξ)=19, ∴由变量ξ的分布列,知:{a +b +c =232b =a +c (−1)×13+b +2c =19,解得a =13,b =29,c =19,∴D (ξ)=(﹣1−19)2×13+(0−19)2×13+(1−19)2×29+(2−19)2×19=8081.故选:D .7.【详解详析】∵xyy−x =15x+4y , ∴4xy 2+(5x 2﹣1)y +x =0, ∴y 1•y 2=14>0, ∴y 1+y 2=−5x 2−14x ≥0,∴{5x 2−1≥0x <0,或{5x 2−1≤0x >0, ∴0<x ≤√55或x ≤−√55①, △=(5x 2﹣1)2﹣16x 2≥0, ∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x , 解得:﹣1≤x ≤15②,综上x 的取值范围是:0<x ≤15;x的最大值是15,故选:A.8.【详解详析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A,B,D,E,F中选出2个字母,有C52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A44=24种情况,则一共有85×24=2040种不同排法;故选:C.9.【详解详析】依题意知正四面体P﹣ABC的顶点P在底面ABC的射影是正三角形ABC的中心O,由余弦定理可知,cosα=cos∠PMO•cos<MO,AB>,其中<MO,AB>表示直线MO与AB的夹角,同理可以将β,γ转化,cosβ=cos∠PMO•cos<MO,BC>,其中<MO,BC>表示直线MO与BC的夹角,cosγ=cos∠PMO•cos<MO,AC>,其中<MO,AC>表示直线MO与AC的夹角,由于∠PMO是公共的,因此题意即比较OM与AB,BC,AC夹角的大小,设M到AB,BC,AC的距离为d1,d2,d3则d1=sinℎ1θ,其中θ是正四面体相邻两个面所成角,sinθ=2√23,所以d1,d2,d3成单调递增的等差数列,然后在△ABC中解决问题由于d1<d2<d3,可知M在如图阴影区域(不包括边界)从图中可以看出,OM与BC所成角小于OM与AC所成角,所以β<γ,故选:D.10.【详解详析】选择合适的基底.设m →=2a →+b →,则|m →|=2,b →=m →−2a →,a →⋅b →=a →⋅m →−2a →2∈[−4,0], ∴(a →−14m →)2=a →2−12a →•m →+116m →2≤8+116m →2 |m →|2=m →2=4,所以可得:m→28=12,配方可得12=18m →2≤2(a →−14m →)2≤4+18m →2=92,所以|a →−14m →|∈[12,32], 则|a →|∈[0,2]. 故选:D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 11.【详解详析】∵α∈(0,π2),sinα=√63, ∴cosα=√1−sin 2α=√33,tanα=sinαcosα=√2,∴tan2α=2tanα1−tan 2α=√21−(√2)2=−2√2.故答案为:√33,﹣2√2.12.【详解详析】根据几何体的三视图转换为几何体为: 如图所示:该几何体为长方体切去一个角.故:V =2×1×1−13×12×2×1×1=53.所以:V 1V =532=56.S =2(1×2+1×2+1×1)−12(1×2+1×2+1×1)+12×√2×√2=9.故答案为:56,9.13.【详解详析】作出不等式组{x +y −3≥02x −y +m ≤0y ≤4对应的平面区域如图:(阴影部分).令z =3x +y 得y =﹣3x +z , 平移直线y =﹣3x +z , 由图象可知当3x +y =7.由 {3x +y =7y =4,解得 {x =1y =4,即B (1,4),同时A 也在2x ﹣y +m =0上, 解得m =﹣2x +y =﹣2×1+4=2. 故答案为:2.14.【详解详析】∵二项式(√x +1ax2)5(a >0)的展开式的通项公式为 T r +1=C 5r •(1a)r•x5−5r 2,令5−5r 2=−5,求得r =3,故展开式中x﹣5的系数为C 53•(1a )3;令5−5r 2=0,求得r =1,故展开式中的常数项为 C 51•1a =5a , 由为C 53•(1a )3=5•1a ,可得a =√2,故答案为:√2.15.【详解详析】∵数列{a n }的前n 项和为S n .S 2=6,a n +1=3S n +2,n ∈N *, ∴a 2=3a 1+2,且a 1+a 2=6,解得a 1=1,a 2=5,a 3=3S 2+2=3(1+5)+2=20, a 4=3S 3+2=3(1+5+20)+2=80, a 5=3(1+5+20+80)+2=320, ∴S 5=1+5+20+80+320=426. 故答案为:5,426.16.【详解详析】由a cos B =b cos A ,及正弦定理得sin A cos B =sin B cos A , 所以sin (A ﹣B )=0, 故B =A =π6,所以由正弦定理可得c =√3a ,由余弦定理得16=c 2+(a2)2﹣2c •a2•cos π6,解得c =8√217;可得a =8√77,可得AB →⋅BC →=−ac cos B =−8√77×8√217×√32=−967.故答案为:8√217,−967. 17.【详解详析】作点B 关于原点的对称点B 1,可得S △BOF 2=S△B′OF 1,则有S 1S2=|y A ||y B 1|=75,所以y A =−75y B 1.将直线AB 1方程x =√2y4−c ,代入椭圆方程后,{x =√24y −c x 2a 2+y 2b 2=1,整理可得:(b 2+8a 2)y 2﹣4√2b 2cy +8b 4=0, 由韦达定理解得y A +y B 1=4√2b 2cb 2+8a 2,y A y B 1=−8b 4b 2+8a 2,三式联立,可解得离心率e =ca =12. 故答案为:12.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【详解详析】(1)f (x )=sin2x +cos2x +1=√2sin(2x +π4)+1 所以最小正周期为π. 因为当π2+2kπ≤2x +π4≤3π2+2kπ时,f (x )单调递减.所以单调递减区间是[π8+kπ,5π8+kπ].(2)当x ∈[−π4,π2]时,2x +π4∈[−π4,5π4],当2x +π4=π2函数取得最大值为√2+1,当2x +π4=−π4或5π4时,函数取得最小值,最小值为−√22×√2+1=0.19.【详解详析】(1)在直三棱柱ABC ﹣A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1, 根据已知条件易得AB 1⊥A 1B ,由A 1C 1⊥面ABB 1A 1,得AB 1⊥A 1C 1, A 1B ∩A 1C 1=A 1,以AB 1⊥平面A 1BC 1;(2)以A 1B 1,A 1C 1,A 1A 为x ,y ,z 轴建立直角坐标系,设AB =a , 则A (0,0,a ),B (a ,0,a ),C 1(0,a ,0),D(a3,2a 3,0),所以AD →=(a3,2a 3,−a),设平面A 1BC 1的法向量为n →,则n →=(1,0,−1), 可计算得到cos <AD →,n →>=2√77,所以AD 与平面A 1BC 1所成的角的正弦值为2√77. 20.【详解详析】(1)由题意,设等比数列{a n }的公比为q , ∵log 2a n +1=﹣1+log 2a n , ∴log 2a n+1−log 2a n =log 2a n+1a n=−1,∴q =a n+1a n =12.由S 3=716,得a 1[1−(12)3]1−12=716,解得a 1=14.∴数列{a n }的通项公式为a n =12n+1.(2)由题意,设b n =a n •log 2a n ,则b n =−n+12n+1. ∴T n =b 1+b 2+…+b n =−(222+323+⋯+n+12n+1) 故−T n =222+323+⋯+n+12n+1,−T n2=223+⋯+n2n+1+n+12n+2.两式相减,可得−T n2=12+123+⋯+12n+1−n+12n+2=34−n+32n+2.∴T n=n+32n+1−32.21.【详解详析】(1)由y=12x2求导得y′=x,设A(x1,y1),B(x2,y2),其中y1=12x12,y2=12x22则k P A=x1,P A:y﹣y1=x1(x﹣x1),设P(x0,kx0﹣1),代入P A直线方程得kx0﹣1+y1=x1x0,PB直线方程同理,代入可得kx0﹣1+y2=x2x0,所以直线AB:kx0﹣1+y=xx0,即x0(k﹣x)﹣1+y=0,所以过定点(k,1);(2)直线l方程与抛物线方程联立,得到x2﹣2kx+2=0,由于无交点解△可得k2<2.将AB:y=xx0﹣kx0+1代入y=12x2,得12x2−xx0+kx0−1=0,所以△=x02−2kx0+2>0,|AB|=2√1+x02√△,设点P到直线AB的距离是d,则d=02√1+x02,所以S△PAB=12|AB|d=(x02−2kx0+2)32=[(x0−k)2+2−k2]32,所以面积最小值为(2−k2)32.22.【详解详析】(1)求导得f′(x)=lnx+1﹣2ax(x>0),由题意可得函数g(x)=lnx+1﹣2ax有且只有两个零点.∵g′(x)=1x −2a=1−2axx.当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,舍去;当a>0时,令g′(x)=0,解得x=12a,所以x∈(0,12a ),g′(x)>0,g(x)单调递增,x∈(12a,+∞),g′(x)<0,g(x)单调递减.所以x=12a 是g(x)的极大值点,则g(12a)>0,解得0<a<12;(2)g(x)=0有两个根x1,x2,且x1<12a<x2,又g(1)=1﹣2a>0,所以x1<1<12a<x2,从而可知f(x)在区间(0,x1)上递减,在区间(x1,x2)上递增,在区间(x2,+∞)上递减.所以f(x1)<f(1)=−a<0,f(x2)>f(1)=−a>−1,2.所以f(x1)−f(x2)<12。
2020年浙江省高考数学压轴试卷 (含答案解析)
2020年浙江省高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1. 已知集合A ={x||x|<2},B ={−1,0,1,2,3},则A ∩B =( )A. {0,1}B. {0,1,2}C. {−1,0,1}D. {−1,0,1,2} 2. 复数5i−2的共轭复数是( )A. 2+iB. −2−iC. −2+iD. 2−i3. 记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A. 1B. 2C. 4D. 84. 一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则四棱锥的表面积为( )A. 83B. 4√3C. 4√5+1D. 4(√5+1)5. 已知x 、y ∈R ,不等式组{x +2y ≥0x −y ≤00≤y ≤k 所表示的平面区域的面积为6,则实数k 的值为( )A. 1B. 2C. 3D. 46. 已知直线l 1:mx +y −1=0,直线l 2:(m −2)x +my −1=0,则“l 1⊥l 2”是“m =1”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7. 函数f(x)=(e x +1)lnx 2e x −1(e 是自然对数的底数)的图象大致为( )A. B. C. D.8. 已知实数a >b >0,m ∈R ,则下列不等式中成立的是( )A. (12)a <(12)bB. a −2>b −2C. m a >m bD. b+m a+m >ba 9. 如图,四棱锥P −ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N −PAC 与四棱锥P −ABCD 的体积比为( )A. 1:2B. 1:3C. 1:6D. 1:810. 若对圆(x −1)2+(y −1)2=1上任意一点P(x,y),|3x −4y +a|+|3x −4y −9|的取值与x ,y无关,则实数a 的取值范围是( )A. a ≤−4B. −4≤a ≤6C. a ≤−4或a ≥6D. a ≥6二、填空题(本大题共7小题,共36.0分) 11. 古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述的已知条件,可求得该女子前3天所织布的总尺数为______ .12. 在二项式(√2+x)9的展开式中,常数项是_____________,系数为有理数的项的个数是______________.13. 已知双曲线x 2a 2−y 2b 2=1(b >a >0),焦距为2c ,直线l 经过点(a,0)和(0,b),若(−a,0)到直线l 的距离为2√23c ,则离心率为______. 14. 已知函数f(x)={|x +a|+|x −1|,x >0x 2−ax +2,x ≤0的最小值为a +1,则实数a 的取值范围为____________. 15. 若平面向量a ⃗ ,b ⃗ 满足|a ⃗ |=|2a ⃗ +b ⃗ |=2,则a ⃗ ⋅b⃗ 的取值范围是______. 16. 从甲、乙等8名志愿者中选5人参加周一到周五的社区服务活动,每天安排一人,每人只参加一天,若要求甲、乙两人中至少有一人参加,且当甲、乙两人都参加时,他们参加社区服务活动的日期不相邻,那么不同的安排方法种数为________(用数字作答).17. 若方程x +m =√4−x 2有且只有一个实数解,则实数m 的取值范围为________.三、解答题(本大题共5小题,共74.0分)18. 已知函数f(x)=(sinx +cosx)2+2cos 2x −1.(1)求函数f(x)的递增区间;(2)当x ∈[0,π2]时,求函数f(x)的值域.19. 如图,在四棱锥P −ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60∘.(1)求证:平面PBD ⊥平面PAC ;(2)若PA=AB,求PC与平面PBD所成角的正弦值20.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;}的前n项和T n.(2)设b n=log3a1+log3a2+⋯+log3a n,求数列{1b n21.已知点F是抛物线C:y2=2px(p>0)的焦点,一点M(0,√2)满足线段MF的中点在抛物线C2上.(1)求抛物线C的方程;(2)若直线MF与抛物线C相交于A、B两点,求线段AB的长.22.已知函数f(x)=lnx+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若函数f(x)的两个零点为x1,x2,且x2x1⩾e2,求证:(x1−x2)f′(x1+x2)>65.-------- 答案与解析 --------1.答案:C解析:本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.先求出集合A和B,由此利用交集的定义能求出A∩B.解:∵集合A={x||x|<2}={x|−2<x<2},B={−1,0,1,2,3},∴A∩B={−1,0,1}.故选C.2.答案:C解析:解:复数5i−2=5(−2−i)(−2+i)(−2−i)=5(−2−i)5=−2−i的共轭复数为−2+i.故选:C.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,属于基础题.3.答案:C解析:本题主要考查等差数列公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.解:S n为等差数列{a n}的前n项和,设公差为d,∵a4+a5=24,S6=48,∴{a 1+3d +a 1+4d =246a 1+6×52d =48, 解得a 1=−2,d =4,∴{a n }的公差为4.故选C .4.答案:D解析:解:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,由该四棱锥的主视图可知四棱锥的底面边长2,高为2,则四棱锥的斜高为√22+12=√5.所以该四棱锥侧面积为:4×12×2×√5=4√5,底面积为:2×2=4,故表面积S =4+4√5=4(√5+1),故选:D由题意可知原四棱锥为正四棱锥,由四棱锥的主视图得到四棱锥的底面边长和高,进而可得答案. 本题考查三视图复原几何体形状的判断,几何体的表面积与体积的求法,考查空间想象能力与计算能力. 5.答案:B解析:解:作出不等式组对应的平面区域:则k >0由{x +2y =0y =k,解得{x =−2k y =k ,即A(−2k,k), 由{x −y =0y =k,解得{x =k y =k ,即B(k,k) ∵平面区域的面积是9,∴12(3k)k =6,即k 2=4解得k =±2,解得k =2或k =−2(舍),故选:B .作出不等式组对应的平面区域,利用平面区域的形状,结合面积公式即可得到结论.本题主要考查二元一次不等式组表示平面区域,以及三角形的面积公式的计算,比较基础. 6.答案:B解析:解:直线l 1:mx +y −1=0,直线l 2:(m −2)x +my −1=0,若“l 1⊥l 2”, 则m(m −2)+m =0,解得m =0或m =1,故“l 1⊥l 2”是“m =1”的必要不充分条件,故选:B .利用两条直线相互垂直的充要条件求出m 的值,再根据充分必要条件的定义即可得出.本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.7.答案:A解析:解:f(−x)=(e −x +1)ln(−x)2e −x −1=(1+e x )lnx 21−e x =−(e x +1)lnx 2e x −1=−f(x),则函数f(x)是奇函数,图象关于原点对称,排除B ,C .当x >1时,f(x)>0,排除D ,故选:A .判断函数的奇偶性和图象的对称性,利用特殊值的符号是否对应进行排除.本题主要考查函数图象的识别和判断,判断函数的奇偶性以及对称性是解决本题的关键. 8.答案:A解析:解:∵函数y =(12)x 在R 上单调递减,∴当a >b >0时,(12)a <(12)b .故选:A .根据函数y =(12)x 在R 上单调递减知当a >b >0时,(12)a <(12)b .本题考查了利用函数的单调性判断比较大小和不等式的基本性质,属基础题.。
2020年浙江省高考压轴卷数学试题(解析版)
2020年浙江省高考压轴卷一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =A .{0,1}B .{0,1,2}C .{1,0,1}-D .{1,0,1,2}-3.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .84.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是( )A.B .8 CD .835.若实数,x y 满足不等式组02222y x y x y ⎧⎪-⎨⎪-⎩,则3x y -( )A .有最大值2-,最小值83- B .有最大值83,最小值2 C .有最大值2,无最小值D .有最小值2-,无最大值6.“a=1”是“直线x+y=0和直线x -ay=0互相垂直”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.函数()()11x xe f x x e +=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .8.已知a 、b R ∈,且a b >,则( )A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >9.设P ABCD -是一个高为3,底面边长为2的正四棱锥,M 为PC 中点,过AM 作平面AEMF 与线段PB ,PD 分别交于点E ,F (可以是线段端点),则四棱锥P AEMF -的体积的取值范围为( ) A .4,23⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .[]1,210若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关, 则实数a 的取值范围是( )A .4a ≤B .46a -≤≤C .4a ≤或6a ≥D .6a ≥第II 卷(非选择题)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分11.《九章算术》中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺.12.二项式521)x的展开式中常数项为__________.所有项的系数和为__________. 13.设双曲线()222210x y b a a b-=>>的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l,则双曲线的离心率为____;渐近线方程为_________. 14.已知函数22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩,若(1)(1)f f -=,则实数a =_____;若()y f x =存在最小值,则实数a 的取值范围为_____. 15.设向量,,a b c 满足1a =,||2b =,3c =,0b c ⋅=.若12λ-≤≤,则(1)a b c λλ++-的最大值是________.16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是________.17.已知函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩若在区间[1,1]-上方程()1f x =只有一个解,则实数m 的取值范围为______.三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤。18.已知函数()()222cos 1x R f x x x =-+∈.(1)求()f x 的单调递增区间;(2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域.19.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形AC BD O =,1A O ⊥底面ABCD ,12AA AB ==.(1)求证:平面1ACO ⊥平面11BB D D ; (2)若60BAD ∠=︒,求OB 与平面11A B C 所成角的正弦值.20.等比数列{}n a 的各项均为正数,且212326231,9aa a a a +==.(1)求数列{}n a 的通项公式;(2)设 31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .21.已知抛物线22y px =(0p >)上的两个动点()11,Ax y 和()22,B x y ,焦点为F.线段AB 的中点为()03,M y ,且点到抛物线的焦点F 的距离之和为8(1)求抛物线的标准方程;(2)若线段AE 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.22.已知函数2()(1)(0)x f x x e ax x =+->.(1)若函数()f x 在(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个不同的零点12,x x . (ⅰ)求实数a 的取值范围;(ⅱ)求证:12011111x x t +->+.(其中0t 为()f x 的极小值点)——★ 参 考 答 案 ★——1.『答案』C『解析』由,得,选C.3.『答案』C『解析』设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.4.『答案』C『解析』根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2, 画出图形,如图所示;所以该四棱锥的底面积为224S ==,高为h ==;所以该四棱锥的体积是11433V Sh ==⨯=. 故选:C. 【点睛】本题考查了利用三视图求几何体体积的问题,属于中档题.5.『答案』C『解析』画出不等式组02222y x y x y ⎧⎪-⎨⎪-≥⎩表示的平面区域,如图阴影所示;设3z x y =-,则直线30x y z --=是一组平行线; 当直线过点A 时,z 有最大值,由022y x y =⎧⎨-=⎩,得(2,0)A ;所以z 的最大值为3202x y -=-=,且z 无最小值. 故选:C. 6.『答案』C『解析』直线0x y +=和直线0x ay -=互相垂直的充要条件是1()110a ⨯-+⨯=,即1a =,故选C7.『答案』A『解析』∵f (﹣x )()()()111111x x x x x xe e e x e x e x e --+++====-----f (x ),∴f (x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 故选A . 8.『答案』C『解析』对于A 选项,取1a =,1b =-,则a b >成立,但11a b>,A 选项错误; 对于B 选项,取a π=,0b =,则a b >成立,但sin sin0π=,即sin sin a b =,B 选项错误;对于C 选项,由于指数函数13x y ⎛⎫= ⎪⎝⎭在R 上单调递减,若a b >,则1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,C 选项正确;对于D 选项,取1a =,2b =-,则a b >,但22a b <,D 选项错误. 故选:C. 9. 『答案』D『解析』依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的距离之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如下图所示,故圆心()1,1到直线340x y a -+=的距离3415ad -+=≥,解得6a ≥或4a ≤-(舍去) 故选:D. 10.『答案』B『解析』首先证明一个结论:在三棱锥S ABC -中,棱,,SA SB SC 上取点111,,A B C则111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角θ,11111111111111sin sin 3211sin sin 32S A B C B SA C S ABC B SAC SA SC ASC SB V V SA SB SC V V SA SB SC SA SC ASC SB θθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅,证毕.四棱锥P ABCD -中,设,PE PF x y PB PD ==,212343P ABCD V -=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEFP ABCD P ABD P ABD P DBC P ABD P DBCV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭111222PA PE PF PE PM PF xy xy PA PB PD PB PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMF V xy -=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAFP ABCD P ABC P ABC P DAC P ABC P DACV V V V V VV V V V V V V -------------⎛⎫+==+=+ ⎪⎝⎭11112222PA PE PM PA PM PF x y PA PB PC PA PC PD ⋅⋅⋅⋅⎛⎫⎛⎫=+=+ ⎪⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMF V x y -=+ 即3,31x x y xy y x +==-,又01,0131xx y x ≤≤≤=≤-, 解得112x ≤≤ 所以体积2313,[,1]312x V xy x x ==∈-,令131,[,2]2t x t =-∈ 2(1)111()(2),[,2]332t V t t t t t +==++∈根据对勾函数性质,()V t 在1[,1]2t ∈递减,在[1,2]t ∈递增所以函数()V t 最小值4(1)3V =,最大值13(2)()22V V ==, 四棱锥P AEMF -的体积的取值范围为43,32⎡⎤⎢⎥⎣⎦故选:B 11.『答案』1031165 『解析』设该女子每天的织布数量为n a ,由题可知数列{}n a 为公比为2的等比数列,设数列{}n a 的前n 项和为n S ,则()51512512a S -==-,解得1531a =, 所以2110231a a ==,()10105123116512S -==-. 故『答案』为:1031,165. 【点睛】本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题. 12.『答案』5 32『解析』展开式的通项为5552215521()r r rr r r T C C xx--+==, 令55022r -=,解得1r =, 所以展开式中的常数项为1255T C ==,令1x =,得到所有项的系数和为5232=,得到结果.点睛:该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果. 13.『答案』2y =『解析』由题可设直线l 方程为:1x ya b+=,即0bx ay ab,则原点到直线的距离ab d c ===,解得24ab =,两式同时平方可得224163a b c =,又222b c a =-,代换可得()2224163a c a c -=,展开得:224416162a c a c -=,同时除以4a 得:2416163e e -=,整理得()()223440e e --=,解得243e =或4,又0b a >>,所以2222222222b a c a a c a e >⇒->⇒>⇒>,所以24,2ce e a===;b a a a===b y x a =±=故『答案』为:2;y = 14.『答案』1 [1,0)-『解析』(1)(1)f f -=,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又0x 时,2()log ()f x x a =-递增,故2()(0)log ()f x f a =-, 要使函数()f x 存在最小值,只需2()0a log a ->⎧⎨-⎩,解得:10a -<.故『答案』为:1,[1,0)-. 15.『答案』1『解析』令()1n b c λλ=+-,则()2211318n b c λλλλ⎡⎤=+-=-⎣⎦12λ-≤≤,所以当1λ=-,max 13n ==,因此当n 与a 同向时a n +的模最大,max 2101a n a n +=+=+16.『答案』36『解析』把“参观工厂”与“环保宣讲”当做一个整体,共有4242A A 48=种,把“民俗调查”安排在周一,有3232A A 12⋅=,∴满足条件的不同安排方法的种数为481236-=, 故『答案』为:36. 17.『答案』1|12m m ⎧-≤<-⎨⎩或1}m = 『解析』当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m +的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所求实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或.18.『答案』(1),()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)⎡-⎣. 『解析』(1) 函数()222cos 122226f x x x cos x in x x s π⎛⎫ ⎪=⎝=-+-=⎭-,令222()262πππππ-≤-≤+∈k x k k Z ,求得()63k x k k Z ππππ-≤≤+∈, 故函数f(x)的增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)若,64x ππ⎡⎤∈-⎢⎥⎣⎦,则2,623x πππ⎡⎤-∈-⎢⎥⎣⎦,故当262x ππ-=-时,函数f(x)取得最小值为−2;当263x ππ-=时,函数f(x),所以函数的值域为⎡-⎣. 【点睛】本题考查三角恒等变换,考查正弦型函数的性质,考查运算能力,属于常考题.19.『答案』(1)证明见『解析』(2)7『解析』(1)证明:由1A O ⊥底面ABCD 可得1AO BD ⊥, 又底面ABCD 是菱形,所以CO BD ⊥, 因为1AO CO O ⋂=,所以BD ⊥平面1A CO , 因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D . (2)因为1A O ⊥底面ABCD ,以O 为原点,OB ,OC ,1OA 为x ,y ,z 轴建立如图所示空间直角坐标系O xyz -,则(1,0,0)B,C,(0,A ,1(0,0,1)A ,11(1,A B AB ==,()10,1AC =-, 设平面11A B C 的一个法向量为(,,)m x y z =,由1110000m A B x m ACz ⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩,取1x=得1,1m ⎛⎫=- ⎪⎝⎭, 又(1,0,0)OB =,所以cos ,7||||2OB mOB m OBm ⋅===,所以OB 与平面11A B C 所成角的正弦值为7. 20.『答案』(1)13n n a = (2)21nn -+ 『解析』(Ⅰ)设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n. (Ⅱ)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+ 21.『答案』(1)24y x =(2 『解析』(1)由题意知126x x +=, 则1268AF BF x x p p +=++=+=,2p ∴=,∴抛物线的标准方程为24y x =(2)设直线AB :x my n =+(0m ≠),由24x my ny x=+⎧⎨=⎩,得2440y my n --=, 124y y m ∴+=212426x x m n ∴+=+=,即232n m =-,即()21221216304812m y y my y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩,12AB y y ∴=-=设AB 的中垂线方程为:()23y m m x -=--,即()5y m x =--, 可得点C 的坐标为()5,0,直线AB :232x my m =+-,即2230x my m -+-=, ∴点C 到直线AB的距离d ==()21412S AB d m ∴=⋅=+令t =则223m t =-(0t <<,令()()244f t t t =-⋅,()()2443f t t '∴=-,令()0f t '∴=,则t =,在⎛ ⎝⎭上()0f t '>;在⎝上()0f t '<, 故f t在⎛ ⎝⎭单调递增,⎝单调递减, ∴当t =,即m =,maxS = 22.『答案』(1)1(2,2⎛⎫+⋅-∞ ⎪ ⎪⎝⎭;(2)(ⅰ)12⎛⎫+⋅+∞ ⎪ ⎪⎝⎭;(ⅱ)证明见『解析』.『解析』(1)由2()(1)x f x x e ax =+-,得2()2x x f x x e a x +⎛⎫'=-⎪⎝⎭,设2()x x g x e x +=⋅,(0)x >;则2222()xx x g x e x+-'=⋅; 由()0g x ',解得1x ≥,所以()g x在1)上单调递减,在1,)+∞上单调递增,所以1min ()1)(2==⋅g x g因为函数()f x 在(0,)+∞上单调递增,所以()0f x '在(0,)+∞恒成立所以1(22⋅≥a ;所以,实数a的取值范围是:1(2,2⎛⎫+⋅-∞ ⎪ ⎪⎝⎭. (2)(i )因为函数()f x 有两个不同的零点,()f x不单调,所以1(22a +⋅>.因此()0f x '=有两个根,设为10,t t,且1001t t <<-<,所以()f x 在()10,t 上单调递增,在()10,t t 上单调递减,在()0,t +∞上单调递增; 又()1(0)1f t f >=,()22()(1)(1)xxxf x x e ax a e xx a e =+-=-++-⋅,当x 充分大时,()f x 取值为正,因此要使得()f x 有两个不同的零点,则必须有()00f t <,即()200010t t e a t +-⋅<;又因为()()0000220tf t t e at '=+-=;所以:()()000002202ttt t e t e +-⋅+<,解得0t >,所以1122+>=a g 因此当函数()f x 有两个不同的零点时,实数a的取值范围是12⎛⎫++∞ ⎪⎪⎝⎭. (ⅱ)先证明不等式,若12,(0,)x x ∈+∞,12x x ≠211221112x x x xnx nx -+<<-.证明:不妨设210x x >>,即证2212211211ln 1x x x x x x x ⎛⎫-- ⎪⎝⎭<<+,设211x t x =>,()ln g t t =-2(1)()ln 1t h t t t -=-+,只需证()0g t <且()0h t >;因为()0g t '=<,22(1)()0(1)t h t t t -'=>+, 所以()g t 在(1,)+∞上单调递减,()h t 在(1,)+∞上单调递增, 所以()(1)0g t g <=,()(1)0h t h >=,从而不等式得证.再证原命题12011111x x t +->+. 由()()1200f x f x ⎧=⎪⎨=⎪⎩得()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩; 所以()()2212221211x x x e x e xx++=,两边取对数得:()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦;即()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+.因为()()()()()()()2121212112211111121111nx nx n x n x x x x x x x -+-+-<--+-++++,所以121221112x x x x +<<+++, 因此,要证12011111x x t +->+. 只需证1202x x t +<;因为()f x 在()0,t +∞上单调递增,1020x t x <<<,所以只需证()()2022f x f t x <-, 只需证()()1012f x f t x <-,即证()()00f t x f t x +<-,其中()0,0x t ∈-; 设()()00()r x f t x f t x =+--,00t x -<<,只需证()0r x <; 计算得()()00000()224ttr x x t e x x t e x at '=++++-++--;()()2000()33t xr x e x x t e x t ''⎡⎤=-+++--⎣⎦.由()()20033xy x t ex t =+++--在()0,0t -上单调递增,得()()0003030y t e t <++--=,所以()0r x ''<;即()r x '在()0,0t -上单调递减, 所以:()0()(0)20r x r f t '''>==;即()r x 在()0,0t -上单调递增,所以()(0)0r x r <=成立,即原命题得证.。
2020届高考数学仿真押题卷02(浙江卷) 理 新人教A版 精
2020届高考数学仿真押题卷——浙江卷(理2)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集}1|{},03|{,2-<=>--==x x B x x x A R U ,则图中阴影部分表示的集合为 ( ) A.}0|{>x xB.}13|{-<<-x xC.}03|{<<-x xD.}1|{-<x x2.已知直线l 过定点(-1,1),则“直线l 的斜率为0”是“直线l 与圆122=+y x 相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3. 若复数i i ai -=++3)2)(1(,则实数a 的值为 ( ) A.1B.-1C.±2D. -24. 设a 是抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率为( ) A.23B.13C.12D.125 5. 设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列 四个命题,其中为真命题的是 ( ) ①m n m n αα⊥⎫⇒⊥⎬⊂⎭②a a ααββ⊥⎫⇒⊥⎬⊂⎭ ③ //m m n n αα⊥⎫⇒⎬⊥⎭④ ////m n m n αβαβ⊂⎫⎪⊂⇒⎬⎪⎭A. ①和②B. ②和③C. ③和④D. ①和④6. 执行如图所示的程序框图所表示的程序,则所得的结果为( ) A.3 B.41-C.34- D.3- 7. 为得到)3(π+=x sin y 的图象,可将函数x sin y =的图象向左平移1A 个单位长度或者向右平移212,,A A A 个单位长度均为正数,则|21A A |-的最小值为( )A.34πB.32πC.3πD.2π(第1题)(第6题)8. 已知约束条件⎪⎩⎪⎨⎧≤-+≥-+≥+-083,012043y x y x y x 若目标函数z =x +ay (a ≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为 ( ) A.0<a <13B.a ≥13C.a >13D.0<a <129. 已知双曲线)0,0(12222>>=-b a by a x 的左右焦点分别为21,F F , P 为双曲线右支上的任意一点,若||||221PF PF 的最小值为a 8,则双曲线离心率的取值范围是( )A. (1,+)∞B.]2,1(C.]3,1(D.(1,3]10. 已知函数2|3|)(3--+=a x x x f 在)2,0(上恰有两个零点,则实数a 的取值范围为( ) A.)2,0(B.)4,0(C.)6,0(D.(2,4)第Ⅱ卷(非选择题部分 共100分) 二、填空题:本大题共7小题,每小题4分,共28分。
2020年高考数学(理)临考押题卷(解析版)(02)
2020年高考临考押题卷(六)理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题1.若集合A={x|x ﹣1<5},B={x|﹣4x+8<0},则A∩B=( ) A .{x|x <6} B .{x|x >2}C .{x|2<x <6}D .∅【答案】C【解析集合A={x|x ﹣1<5}={x|x <6}, 集合B={x|﹣4x+8<0}={x|x >2}, 所以A∩B={x|2<x <6}2.若复数23201934134i z i i i i i-=+++++++L ,则复数z 对应的点在第( )象限A .一B .二C .三D .四【答案】D【解析】z =1+i+i 2+i 3+…+i 2019+3434i i-+=(1+i ﹣1﹣i )+…+(1+i ﹣1﹣i )+534i + =0+5(34)(34)(34)i i i -+-=345i-,∴复数z 对应的点在第四象限.3.已知非零向量,a b r r ,满足||4||,a b =r r ||[1b ∈r 且()1,a b b -⋅=r r u r 记θ是向量a r 与b r 的夹角,则θ的最小值是( ) A .6πB .4π C .13D .3π 【答案】D【解析】由题意知非零向量a r ,b r 满足4||||b a =r r,b ∈r 且()1,a b b -⋅=r r u r ,可得21a b b -=r r r g ,即2cos 1a b b θ=+r r r g ,所以22221111cos 444b b a b bb θ++===+r r r r r r g因为b ⎡∈⎣r ,所以[]21,3b ∈r ,所以21111cos ,4324b θ⎡⎤=+∈⎢⎥⎣⎦r 因为[]0,θπ∈,且余弦函数cos y x =在[]0,π上单调递减, 所以min 3πθ=4.为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图像,可以将函数cos 2y x =的图像( ) A .向左平移512π个单位 B .向右平移512π个单位 C .向右平移6π个单位 D .向左平移6π个单位 【答案】B【解析】因为sin26y x π⎛⎫=- ⎪⎝⎭,且cos2y x ==sin 22x π⎛⎫+⎪⎝⎭=sin 24x π⎛⎫+⎪⎝⎭, 所以由φ4x π++=6x π-,知5φ6412πππ=--=-,即只需将cos2y x =的图像向右平移512π个单位,故选B5.已知3log 0.8a =,0.83b =, 2.10.3c =,则( ) A .a ab c << B .ac b c << C .ab a c << D .c ac b <<【答案】C【解析】33log 0.8log 10a =<=,0.80331b =>=,()2.10.30,0.3c =∈,故0a <,1b >,01c <<.对A,若()10a ab a b <⇒-<,不成立.故A 错误. 对B,因为1c b <<,故B 错误. 对C, ab a c <<成立.对D, 因为0ac c <<,故D 错误.6.函数()ln |||sin |f x x x =+(,x ππ-≤≤且0x ≠)的大致图像是( )A .B .C .D .【答案】D【解析】函数()ln |||sin |f x x x =+(,x ππ-≤≤且0x ≠)是偶函数,排除B ; 当0x >时,()ln sin f x x x =+, 可得:()1cos f x x x '=+,令1cos 0x x+=, 作出1y x=与cos y x =-图像如图:可知两个函数有一个交点,就是函数的一个极值点,()ln 1fππ=>,排除C ;当0x x =时,()00f x '=,故()00,x x ∈时,函数()f x 单调递增,()0,x x π∈时,函数()f x 单调递减,排除A7.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球贏球的概率为25,则在比分为10:10后甲先发球的情况下,甲以13:11赢下此局的概率为( ) A .225B .310C .110D .325【答案】C【解析】分两种情况:①后四球胜方依次为甲乙甲甲,概率为113123252550P =⋅⋅⋅=; ②后四球胜方依次为乙甲甲甲,概率为212121252525P =⋅⋅⋅=. 所以,所求事件概率为:12110P P +=. 8.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .12π+B .136π+ C .12π+D .1233π+ 【答案】B【解析】根据三视图知,该几何体是三棱锥与14圆锥体的组合体, 如图所示;则该组合体的体积为21111111212323436V ππ=⨯⨯⨯⨯+⨯⨯⨯=+; 所以对应不规则几何体的体积为136π+.故选B .9.如图的框图中,若输入1516x =,则输出的i 的值为( )A .3B .4C .5D .6【答案】B 【解析】输入1516x =,0i =,进入循环体: 15721168x =⨯-=,011i =+=,0x =判定为否; 732184x =⨯-=,112i =+=,0x =判定为否;312142x =⨯-=,213i =+=,0x =判定为否;12102x =⨯-=,314i =+=,0x =判定为是;输出4i =.10.已知函数()()lg ,1lg 2,1x x f x x x ≥⎧=⎨--<⎩,()3g x x =,则方程()()1f x g x =-所有根的和等于( )A .1B .2C .3D .4【答案】C【解析】设点(),x y 是函数lg ,1y x x =≥图象上任意一点,它关于点()1,0的对称点为()'',x y ,则22,0x x x x y y y y+==-⎧⎧∴⎨⎨+=='-''⎩'⎩,代入lg y x =, 得()()'''''lg 2,lg 2,1y x y x x -=-∴=--≤.∴函数lg ,1y x x =≥的图象与函数()lg 2,1y x x =--≤的图象关于点()1,0对称,即函数()()lg ,1lg 2,1x x f x x x ≥⎧=⎨--<⎩的图象关于点()1,0对称,易知函数()f x 在定义域R 上单调递增.又函数()3g x x =的图象关于原点()0,0对称,∴函数()1y g x =-的图象关于点()1,0对称,且函数()1y g x =-在定义域R 上单调递增.又()()0111,1f g x =-=∴=是方程()()1f x g x =-的一个根.当1x ≥时,令()()()()31lg 1h x x x g x f x -=--=-,则()h x 在[)1,+∞上单调递减.()()33331313lg 210,lg lg lg100,202222822h h h h ⎛⎫⎛⎫⎛⎫-<=-=-=>∴< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=Q ,根据零点存在定理,可得()h x 在3,22⎛⎫⎪⎝⎭上有一个零点1x ,根据()h x 的单调性知()h x 在()1,+∞上有且只有一个零点1x ,即方程()()1f x g x =-在()1,+∞上有且只有一个根1x .根据图象的对称性可知方程()()1f x g x =-在(),1-∞上有且只有一个根2x ,且122x x +=. 故方程()()1f x g x =-所有根的和等于1213x x ++=.11.F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B ,若2AF FB =u u u r u u u r,则C 的离心率是( ) A.3B.3CD .2【答案】A【解析】由题意得,2,3;,2AF b BF b AB b OA a OB a =====,因此222222224(2)(3)33()3a a b a b c a e e =+⇒==-⇒=⇒=3,选A. 12.已知函数()x xf x xe e =-,函数()g x mx m =-(0m >),若对任意的1[22]x ∈-,,总存在2[22]x ∈-,使得12()()f x g x =,则实数m 的取值范围是() A .21[3,]3e -- B .2[,)e +∞ C .21[,]3eD .1[,)3+∞【答案】B【解析】由题意,函数()(1)xf x e x =-的导数为()xf x xe '=,当0x >时,()0f x '>,则函数()f x 为单调递增; 当0x <时,()0f x '<,则函数()f x 为单调递减, 即当0x =时,函数()f x 取得极小值,且为最小值1-,又由()2223,(2)f e f e --=-=,可得函数()f x 在[2,2]-的值域2[1,]e -,由函数()(0)g x mx m m =->在[2,2]-递增,可得()g x 的值域[3,]m m -, 由对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得12()()f x g x =,可得2[1,][3,]e m m -⊆-,即为231m m e-≤-⎧⎨≥⎩,解得2m e ≥,故选B. 二、填空题13. 曲线cos 2xy x =-在点()0,1处的切线方程为__________. 【答案】220x y +-= 【解析】1'sin 2y x =--, 当0x =时其值为12-, 故所求的切线方程为112y x -=-,即220x y +-=. 14.()2521x x +-的展开式中x 的系数是______. 【答案】5【解析】()()()()55542212521121C 12x x x x x x x ⎡⎤+-=-+=-+-⋅+⎣⎦Q L ,x \的系数为()445C 15-=.15.如图,在平面直角坐标系xOy ,中心在原点的椭圆与双曲线交于,,,A B C D 四点,且它们具有相同的焦点12,F F ,点12,F F 分别在,AD BC 上,则椭圆与双曲线离心率之积12e e ⋅=______________.【答案】1【解析】设椭圆和双曲线方程分别为()221122111,0x y a b a b+=>>,()222222221,,0x y a b a b -=>设点()0,B c y ,由点B 既在椭圆上也在双曲线上,则有2202211222111y c a b a c b ⎧+=⎪⎨⎪=+⎩,解得22221101111b ac c y a a a a -===- 2202222222221y c a b c a b ⎧-=⎪⎨⎪=+⎩,解得22222202222b c a c y a a a a -===- 则()22212121212c a a c c a a a a a a ++=+=,即2121211c c c a a a a ⎛⎫⎛⎫=⇒= ⎪⎪⎝⎭⎝⎭121e e ∴=16.如图,四棱锥P ABCD -中,底面为四边形ABCD .其中ACD V 为正三角形,又3DA DB DB DC DB AB ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r.设三棱锥P ABD -,三棱锥P ACD -的体积分别是12,V V ,三棱锥P ABD -,三棱锥P ACD -的外接球的表面积分别是12,S S .对于以下结论:①12V V <;②12V V =;③12V V >;④12S S <;⑤12S S =;⑥12S S >.其中正确命题的序号为______.【答案】①⑤【解析】不妨设2AD =,又ACD V 为正三角形,由3DA DB DB DC DB AB ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r,得()0DA DB DB DC DB DA DC DB CA ⋅-⋅=⋅-=⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即有DB AC ⊥,所以30ADB CDB ∠=∠=︒.又3DB DC DB AB ⋅=⋅u u u r u u u r u u u r u u u r 得()2333DB DC DB DB DA DB DB DA ⋅=⋅-=-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,又DB DC DB DA ⋅=⋅u u u r u u u r u u u r u u u r,故2344cos30DB DB DA DB DA =⋅=⋅⋅︒u u u r u u u r u u u r u u u r u u u r.化简可以得DB =,∴90DAB ∠=︒,易得ABD ACD S S <△△,故12V V <.故①正确. 又由于60ADB ACD ∠=∠=︒,所以ABD △与ACD V 的外接圆相同(四点共圆),所以三棱锥P ABD -,三棱锥P ACD -的外接球相同,所以12S S =.故⑤正确. 三、解答题17.设数列{}n a 的前n 项和为n S ,且*22,n n S a n N =-∈.(1)求证:数列{}n a 为等比数列; (2)设数列2{}na 的前n 项和为n T ,求证:2nnS T 为定值; (3)判断数列{}3nn a -中是否存在三项成等差数列,并证明你的结论. 【解析】(1)当1n =时,1122,S a =-,解得12a =.当2n ≥时,()()111222222n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=. 因为10a ≠,所以12nn a a -=,从而数列{}n a 是以2为首项,2为公比的等比数列,所以2n n a =. (2)因为()2224n nna ==,所以2124n na a +=, 故数列{}2n a 是以4为首项,4为公比的等比数列, 从而()()2221224112nnnS-==--,()()414441143n nn T -==--,所以232n n S T =. (3)假设{}3nn a -中存在第,,()m n k m n k <<项成等差数列,则()2333nm kn m k a a a -=-+-,即()233232nm m k kn a -=-+-.因为m n k <<,且*,,m n k N ∈,所以1n k +≤.因为()112332323232n m m k k m m n n n a ++-=-+-≥-+-,所以332n m m -≥-,故矛盾,所以数列{}3nn a -中不存在三项成等差数列.18.已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF ∥平面PQB . (2)是否存在点P 使得二面角B PQ E --5?如果存在,求出CP 的长;如果不存在,请说明理由.【解析】(1)证法1:在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,易知四边形MNQP 是平行四边形,所以MN PQ P ,联结,,FM MN NE , 则AE ND =,且AE ND P所以四边形ADNE 为矩形,故AD NE P ,同理,FM BC AD P P且NE MF AD ==,故四边形FMNE 是平行四边形,所以EF MN P ,所以EF PQ P 故,,,E F P Q 四点共面又EF PQ P ,EF ⊄平面BPQ ,PQ ⊂平面BPQ , 所以EF P 平面PQB .证法2:因为直棱柱1111ABCD A B C D -的底面是菱形,∴AC BD ⊥,1AA ⊥底面ABCD ,设,AC BD 交点为O ,以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系.则有()2,0,0A ,()0,1,0B ,()2,0,0C -,()0,1,0D -,设BF a =,[]1,3a ∈,则()2,0,1E a -,()0,1,F a ,()2,0,1P a -+,()0,1,Q a -,()2,1,1EF =-u u u r ,()2,1,1QP =-u u u r ,所以EF PQ P ,故,,,E F P Q 四点共面.又EF PQ P ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF P 平面PQB .(2)平面EFPQ 中向量()2,1,1EF =-u u u r ,()2,1,1EQ =--u u u r ,设平面EFPQ 的一个法向量为()111,,x y z ,则1111112020x y z x y z -++=⎧⎨--+=⎩,可得其一个法向量为()11,0,2n =u r . 平面BPQ 中,()2,1,1BP a =--+u u u r ,()0,2,BQ a =-u u u r ,设平面BPQ 的一个法向量为()222,,n x y z =r ,则()2222221020x y a z y az ⎧--++=⎨-+=⎩,所以取其一个法向量()22,2,4n a a =+u u r . 若()1212225cos ,5216n n n n a a ⋅==⋅+++u r u u r u r u u r则()2210548a a a +=++, 即有24230a a --=,[]1,3a ∈,解得[]2321,3a =±,故不存在点P 使之成立.19.已知圆221:2C x y +=,圆222:4C x y +=,如图,12,C C 分别交x 轴正半轴于点,E A .射线OD 分别交12,C C 于点,B D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点,M N ,射线OH l ⊥与点H ,且交曲线C 于点Q .问:211MN OQ +的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.【解析】方法一:(1)如图设BOE α∠=,则()22B αα ()2cos ,2sin D αα,所以2cos P x α=,2P y α=.所以动点P 的轨迹C 的方程为22142x y +=. 方法二:(1)当射线OD 的斜率存在时,设斜率为k ,OD 方程为y kx =,由222y kx x y =⎧⎨+=⎩得2221P y k =+,同理得2241P x k =+,所以2224P P x y +=即有动点P 的轨迹C 的方程为22142x y +=.当射线OD 的斜率不存在时,点()0,2±也满足. (2)由(1)可知E 为C 的焦点,设直线l 的方程为2x my =+(斜率不为0时)且设点()11,M x y ,()22,N x y ,由22224x my x y ⎧=+⎪⎨+=⎪⎩得()2222220m y my ++-= 所以121222222m y y y y m ⎧+=-⎪⎪⎨⎪=-⎪+⎩,所以()2221212411m MN m m y y +==++- 又射线OQ 方程为y mx =-,带入椭圆C 的方程得()2224x my +=,即22412Q x m=+ 222412Q m y m=+,()22211241m m OQ +=+ 所以()()2222211212344141m m MN m m OQ +++=+=++ 又当直线l 的斜率为0时,也符合条件.综上,211MN OQ +为定值,且为34. 20.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -≤≤.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值.①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.【解析】(1)设从A ,B 生产线上各抽检一件产品,至少有一件合格为事件C ,从A ,B 生产线上抽检到合格品分别为事件M ,N ,由题知,M ,N 互为独立事件,所以()P M p =,()21P N p =-, ()1()1()()P C P M N P M P N =-⋅=-⋅21(1)[1(21)]12(1)p p p =----=--,令212(1)0.995p --…,解得0.95p …,故p 的最小值00.95p =. (2)由(1)可知,A ,B 生产线生产的产品为合格品率分别为0.95和0.9,不合格品率分别为0.05和0.1.①由题知,A 生产线上随机抽检1000件产品,估计不合格品10000.0550⨯=(件),可挽回损失为505250⨯=(元),B 生产线上随机抽检1000件产品,估计不合格品10000.1100⨯=(件),可挽回损失为1003300⨯=(元).由此,估计B 生产线挽回的平均损失较多.②由题知,X 的所有可能取值为6,8,10,用样本的频率分布估计总体分布,则20259(6)20040P X +===,60401(8)2002P X +===, 203511(10)20040P X +===, 所以X 的分布列为所以9111()68108.140240E X =⨯+⨯+⨯=(元). 故估计该厂产量为2000件时利润的期望值为20008.116200⨯=(元).21.已知函数()ln f x a x x a =-+,()ln g x kx x x b =--,其中,,a b k R ∈.(1)求函数()f x 的单调区间;(2)若对任意[]1,a e ∈,任意[]1,x e ∈,不等式()()f x g x ≥恒成立时最大的k 记为c ,当[]1,b e ∈时,b c +的取值范围.【解析】(1)∵()()ln 0,f x a x x a x a R =-+>∈∴()1a a x f x x x-'=-=,∵0x >,a R ∈ ∴①当0a ≤时,()f x 的减区间为()0,∞+,没有增区间②当0a >时,()f x 的增区间为()0,a ,减区间为(),a +∞(2)原不等式()1ln ln a x x x x b k x+-++⇔≤. ∵[]1,a e ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x b x x +-+++-++≥, 令()()21ln ln ln x x x x b x x b g x g x x x+-++-+-'=⇒=, 令()()1ln 1p x x x b p x x'=-+-⇒=-+ ()ln p x x x b ⇒=-+-在()1,+∞上递增;①当()10p ≥时,即1b ≤,∵[]1,b e ∈,所以1b =时[]1,x e ∈,()()00p x g x '≥⇒≥,∴()g x 在[]1,e 上递增;∴()()min 122c g x g b b c b ===⇒+==.②当()0p e ≤,即[]1,b e e ∈-时[]1,x e ∈,()()00p x g x '≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 2212,1b b c g x g e b c b e e e e ee ++⎡⎤===⇒+=+∈+++⎢⎥⎣⎦ ③当()()10p p e <时,又()ln p x x x b =-+-在()1,e 上递增;存在唯一实数()01,x e ∈,使得()00p x =,即00ln b x x =-,则当()01,x x ∈时()()00p x g x '⇒<⇒<.当()0,x x e ∈时()()00p x g x '⇒>⇒>.∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===. ∴00000011ln ln b c x x x x x x +=++-=+. 令()()()11ln 10x h x x x h x h x x x -'=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭. 综上所述,22,1b c e e ⎡⎤+∈++⎢⎥⎣⎦. 22.在平面直角坐标系xOy 中,直线l的参数方程为x m y ⎧=⎪⎨=⎪⎩(t 为参数).以原点O 为极点,以x 轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆C的方程为,l ρθ=被圆C 截得的.(Ⅰ)求实数m 的值;(Ⅱ)设圆C 与直线l 交于点A B 、,若点P的坐标为(m ,且0m >,求PA PB +的值.【解析】(Ⅰ)由ρθ=得220,x y +-=即(225x y +-=.直线的普通方程为0x y m +-=, 被圆C=解得33m m ==-或. (Ⅱ)法1:当3m =时,将l 的参数方程代入圆C 的直角坐标方程得,())2235-+=,即2220t -+=,由于(24420∆=-⨯=>,故可设12t t ,是上述方程的两实根,所以12121t t t t ⎧+=⎪⎨⎪=⎩又直线l过点(P ,故由上式及t 的几何意义得,PA PB += 122(|t |+|t |)= 122(t +t )=法2:当3m =时点(3P ,易知点P 在直线l 上.又2235+>,所以点P 在圆外.联立(22530x y x y ⎧+=⎪⎨⎪+-=⎩消去y 得,2320x x -+=.不妨设((2A B ,、,所以PA PB +==23.已知()2121f x x x =++-.(Ⅰ)解不等式()(1)f x f >;(Ⅱ)若不等式11()(0,0)f x m n m n ≥+>>对任意x ∈R 的都成立,证明:43m n +≥. 【解析】(Ⅰ)()()1f x f >就是21215x x ++->.(1)当12x >时,()()21215x x ++->,得1x >. (2)当112x -≤≤时,()()21215x x +-->,得35>,不成立. (3)当1x <-时,()()21215x x -+-->,得32x <-. 综上可知,不等式()()1f x f >的解集是()312⎛⎫-∞-⋃+∞ ⎪⎝⎭,,. (Ⅱ)因为()()2121222122213x x x x x x ++-=++-≥+--=, 所以113m n+≤. 因为0m >,0n >时,11m n +≥3≤23≥.所以43m n +≥≥.。
2020届浙江省名校高三高考预测冲刺模拟考试卷数学试卷(二)及解析
2020届浙江省名校高三高考预测冲刺模拟考试卷数学试卷(二)★祝考试顺利★(解析版)本试卷满分150分,考试时间120分钟.参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+如果事件A ,B 相互独立,那么()()()P A B P A P B ⋅=⋅如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()n P k =(1)(0,1,2,,)k k n k n C p p k n --=…球的表面积公式24S R π=,球的体积公式343V R π=,其中R 表示球的半径 棱柱的体积公式V Sh =,其中S 表示棱柱的底面积,h 表示棱柱的高 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高棱台的体积公式()1213V S S h =+,其中1S ,2S 分别表示棱台的上下底面积,h 表示棱台的高选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|13}A x x =≤<,{}2|13B x x =≤<,则()R A B =( ).A. {|1}x x <≤-B. {|1}x x ≤≤-C. {|1x x <≤D. {|1x x ≤≤ 【答案】A【解析】先由{|13}A x x =≤<,求得A R ,再利用一元二次不等式的解法化简集合B ,然后利用交集的定义求解.【详解】因为{|13}A x x =≤<,所以{|1R A x x =<或3}x ≥,又{}2|13{|13B x x x x =≤<=≤<或31}x -<≤-, 所以()R A B ={|31}x x -<≤-,故选:A .2.双曲线22221x y a b-=的右焦点(2,0)到双曲线的渐近线的距离为1,则双曲线的方程是( ) A. 22143x y -= B. 22134x y -= C. 2213x y -= D. 2213y x -= 【答案】C【解析】由点到直线的距离公式可得双曲线焦点到渐近线的距离等于b ,由此可求得,b a ,得双曲线方程.【详解】双曲线一个焦点为2(,0)F c ,一条渐近线为b y x a =,即0bx ay -=,则焦点到渐近线的距离为220bc d b a b -==+,所以1b =,又2c =,则2223a c b =-=,所以双曲线方程为2213x y -=, 故选:C.3.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12.则该几何体的俯视图可以是( )A. B. C. D.【答案】C。
浙江省2020年高考数学压轴卷(含解析)
2
1
1 1
SA SB SC
SA SC sin ASC SB sin
3 2
,证毕.
PE
PF
1
x,
y VP ABCD 22 3 4
PD
3
四棱锥 P ABCD 中,设 PB
,
VP AEMF VP AEF VP MEF VP AEF
8选项,取 a 1 , b 1 ,则 a b 成立,但 a b ,A 选项错误;
对于 B 选项,取 a , b 0 ,则 a b 成立,但 sin sin 0 ,即 sin a sin b ,B 选项
错误;
x
a
b
1
1 1
.
的单调递增区间;
x ,
6 4 时,求 f x 的值域.
(2)当
19.如图,四棱柱
A1O
ABCD A1 B1C1 D1
底面 ABCD ,
(1)求证:平面
AA1 AB 2
A1CO
平面
的底面 ABCD 是菱形 AC BD O ,
.
BB1 D1 D
C
7.【答案】A
【解析】
∵f(﹣x)
e x 1
1 ex
ex 1
x 1 e x
x ex 1
x 1 ex
f(x),
∴f(x)是偶函数,故 f(x)图形关于 y 轴对称,排除 C,D;
又 x=1 时,
∴排除 B,
f 1
e 1
2020年高考数学临考押题卷(浙江专版)(解析版)(02)
2020年高考临考押题卷(六)数学(浙江卷)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题1.设集合{}{|01}|2M x x x R N x x x R =<<∈=<∈,,,,则( ) A .M N M ⋂= B .M N N ⋂= C .M N M ⋃= D .M N R ⋃=【答案】A【解析】由题意{}{}2,22,N x x x R x x x R =<∈=-<<∈,{}01,M x x x R =<<∈, 所以{}01,M N x x x R M ⋂=<<∈=,{}22,M N x x x R N ⋃=-<<∈=. 2.过点()1,1-的抛物线的标准方程为( ) A .2y x = B .2y x =- C .2x y = D .2y x =-或2x y =【答案】D【解析】由题意可设抛物线方程为2y ax =或2x ay =,∵抛物线过点(﹣1,1), ∴当抛物线方程为2y ax =时,得a =﹣1;当抛物线方程为2x ay =时,得a =1. ∴抛物线的标准方程是2y x =-或2x y =.3.设,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,则3z x y =-的最小值为( )A .0B .-4C .-8D .-6【答案】D【解析】作出可行域,如下图所示:当目标函数3z x y =-经过(0,2)A 时, z 取得最小值-6.4.某空间几何体的三视图如图所示,则该几何体的体积为( )A .10B .5C .20D .30【答案】C【解析】由几何体的三视图可得几何体的直观图: 三棱柱111ACD AC D -截去一个三棱锥1D ACD -,如图:该几何体的体积:111111143543520232ACD A C D D ACD V V V --=-=⨯⨯⨯-⨯⨯⨯⨯=. 5.已知1223p x q x +><<:,:,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意:1212p x x +>⇔+>或121x x +<-⇔>或3x <-, 由“1x >或3x <-”不能推出“23x <<”; 由“23x <<”可推出“1x >或3x <-”; 故p 是q 的必要不充分条件.6.函数()(22)sin 2x x f x x -=-的部分图像大致为( )A .B .C .D .【答案】A【解析】()(22)sin 2x xf x x -=-,()()(22)sin 2xx f x x f x --=--=,函数为偶函数,排除BD ;当0,2x π⎛⎫∈ ⎪⎝⎭时,0,22sin 20x x x ->->,故()0f x >,排除C .7.已知随机变量ξ的分布列,则下列说法正确的是( )A .存在x ,y ∈(0,1),E (ξ)>12B .对任意x ,y ∈(0,1),E (ξ)≤14C .对任意x ,y ∈(0,1),D (ξ)≤E (ξ) D .存在x ,y ∈(0,1),D (ξ)>14【答案】C【解析】依题意可得()2E xy ξ=,()()()()()()()222222222212121212D x xy y y xy x y x y x y x y x x y yx ξ⎡⎤=-+-=-+-=-+-⎣⎦因为1x y +=所以()21222x y xy +≤=即()12E ξ≤故A ,B 错误;()()()()()()222221121212D x x x y yx x x y yx x yx ξ⎡⎤∴=-+-=-+=-⎣⎦01x <<Q1211x ∴-<-<()20211x ∴<-< ()D yx ξ∴<即()()12D E ξξ<,故C 成立; ()()()2211244x y D x yx xy ξ+=-<≤=Q 故D 错误8.如图,三棱锥V ABC -的底面ABC 是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,二面角P AC B --的平面角为β,则αβ+不可能是( )A .34πB .23π C .2π D .3π 【答案】D【解析】如图,由题意,三棱锥V ABC -为正三棱锥,过P 作//PE AC ,则BPE ∠为直线PB 与直线AC 所成角为α,当P 无限靠近A 时,PBE ∠无限接近3π,但小于3π,则3BPE BEP πα∠=∠=>. 当棱锥的侧棱无限长,P 无限靠近V 时,α无限趋于2π但小于2π; 二面角P AC B --的平面角为β,即V AC B --的平面角为β, 由三棱锥存在,得0β>,随着棱长无限增大,β无限趋于2π. ,3παβπ⎛⎫∴+∈ ⎪⎝⎭.则αβ+不可能是3π. 9.已知函数()f x 是定义在[100,100]-的偶函数,且(2)(2)f x f x +=-.当[0,2]x ∈时,()(2)xf x x e =-,若方程2[()]()10f x mf x -+=有300个不同的实数根,则实数m 的取值范围为( ) A .15,2e e⎛⎫--- ⎪⎝⎭B .15,2e e ⎡⎤---⎢⎥⎣⎦C .(,2)-∞-D .1,2e e⎛⎫--- ⎪⎝⎭【答案】A【解析】由(2)(2)f x f x +=-知函数的周期为4,当[0,2]x ∈时,()(2)x f x x e =-,则'()(1)x f x x e =-,当01x ≤<时,'()0f x <,()f x 递减,当12x <≤时,'()0f x >,()f x 递增,()(1)f x f e ==-极小值,又()f x 是偶函数,作出()f x 在[2,2]-上的图象,如图. 函数()f x 的周期是4,定义域为[100,100]-,含有50个周期,方程2[()]()10f x mf x -+=有300个不同的实数根,因此在一个周期内有6个根(这里(2)0f ±=,2±不是方程的根).令()f x t =,方程210t mt -+=有两个不等实根12,t t ,且1(,2)t e ∈--,2(2,0)t ∈-,设2()1g t t mt =-+,则()0(2)0(0)0g e g g ->⎧⎪-<⎨⎪>⎩,解得152e m e --<<-.故选:A .10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【答案】B 【解析】依题意n a :1,4,8,14,23,36,54,……两两作差得n b :3,4,6,9,13,18,……两两作差得n c :1,2,3,4,5,……设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,设{}n c 的前n 项和为n C .易n c n =,22n n n C +=,进而得21332n n n n b C ++=+=+,所以2(1)133222n n n n b n -=+=-+,则(1)(1)36n n n n B n +-=+,所以11n n a B +=+,所以191024a =.二、填空题11.i 是虚数单位,则51ii-+的值为__________. 13【解析】5(5)(1)23131(1)(1)i i i i i i i ---==-=++-.12.已知直线()20y kx k =->与抛物线C :28x y =相交于A ,B 两点,F 为C 的焦点,若2FA FB =,则k =______. 【答案】324【解析】由已知,直线()20y kx k =->过点(0,2)P - ,恰好是抛物线 C :28x y =的准线:2l y =- 与y 轴的交点,如下图所示,过点A ,B 分别作AM l ⊥ 于M ,BN l ⊥ 于N ,由2FA FB =,则2AM BN =.∴ 点B 为AP 的中点,连接OB ,则12OB AF =,∴OB BF =,∴点B 的纵坐标为1,∴()22,1B ∴32422022AB PB k k ====- 13.已知周期为6的函数()f x 满足()()44f x f x +=-,当[]1,4x ∈时,()ln xf x x=,323a e <≤时(e 为自然对数的底数),关于x 的不等式()()20f x af x -<在区间[]1,15上的整数解的个数为______.【答案】7【解析】由()()44f x f x +=-得:()f x 关于4x =对称, 又()f x Q 是周期为6的周期函数,()f x ∴关于1x =对称, 当[]1,4x ∈时,()21ln xf x x -'=, ∴当[)1,x e ∈时,()0f x '>;当(],4x e ∈时,()0f x '<;()f x ∴在[)1,e 上单调递增,在(],4e 上单调递减,()()max 1f x f ee ∴==,且()10f =,()114ln 4ln 242f ==,()12ln 22f =,()13ln 33f =,由此可得()f x 图象如下图所示:323a e <≤11ln 2ln 323a <≤,()()20f x af x ∴-<等价于()0f x a <<,∴当[]1,4x ∈时,整数解为:2x =和4x =;∴当(]4,15x ∈时,整数解为:6x =、8x =、10x =、12x =和14x =;综上所述:不等式()()20fx af x -<在区间[]1,15上的整数解的个数为7个.14.设直线y kx =与圆C :()2221x y -+=相交于A ,B 两点,若3AB ,则k =______,当k 变化时,弦AB 中点轨迹的长度是______. 【答案】1515±23π【解析】由垂径定理可得222311k ⎛⎫+=+⎝⎭,解得1515k =±; 设()()1122,,,A x y B x y ,弦AB 中点00(,)M x y , 则1201202,2x x x y y y +=+=,联立22(2)1y kx x y =⎧⎨-+=⎩,消去y 得()221430k x x +-+=, ()2161210k ∴∆=-+>,解得213k <,12241x x k ∴+=+,()1212241ky y k x x k +=+=+,即02022121x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩,消去k 得()220011x y -+=, 又由213k <得032x >, 故弦AB 中点轨迹长度为半径为1的圆的周长的13,如图:所以弦AB 中点轨迹长度为12233ππ⨯=, 15.已知6625601256(1)(2)x x a a x a x a x a x +-+=+++++L L ,则6a =_____,01256a a a a a +++++=L L _______.【答案】0 665【解析】因为6625601256(1)(2)x x a a x a x a x a x +-+=+++⋯++L , 令1x =可得:660125623665a a a a a +++⋯⋯++=-=-. 所以:666660a C C =-=;060066263a C C =-⋅=-Q ; 1511662186a C C =-=-;22422662225a x C C +=-=-;……5556626a C C =-⋅=-; 60666620a C C =-⋅=;故0125601256665a a a a a a a a a a +++++=------=L L L L .16.在ABC V 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若22sin sin cos sin A B C C =,则(1)222a b c+=__________,(2)C ∠的最大弧度数为___________. 【答案】23π【解析】∵22sin sin cos sin A B C C =,∴222222222cos 2a b ab C c a b c c c +=⇒+-=⇒=; 又222221cos 242a b c a b C ab ab +-+==≥,∵0C π<<,∴C π≤3,当且仅当a b =时取等号.17.设函数2()2x x f x =,点()*(,())n A n f n n N ∈,0A 为坐标原点,向量01121n n n a A A A A A A -=+++u u r u u u u r u u u u r u u u u u u r L ,设(1,0)i =r ,且n θ是n a u u r 与i r的夹角,记n S 为数列{}tan n θ的前n 项和,则3tan θ=_____;n S =_____. 【答案】38 222n n +-【解析】依题意()22n n f n =,即2,2n n n A n ⎛⎫ ⎪⎝⎭,且n A 在第一象限,n θ为锐角.所以0112210,2n n n n n a A A A A A A A A n n -=+++==⎛⎫ ⎪⎝⎭u u r u u u u r u u u u r u u u u u u r u u u u u r L .所以cos n n n a i a i θ⋅==⋅u u r r u u r r,所以sin tan cos n θθθ====2nn ===. 所以3333tan 28θ==. 212222n n n S =+++L ①,2311122222n n nS +=+++L ②,两式相减得21111122222n n n n S +=+++-L 1111111222111222212n n n n n n n n +++⎛⎫- ⎪+⎝⎭=-=--=--,所以222n n n S +=-.三、解答题18.ABC ∆的内角A B C ,,的对边分别为a b c ,,,已知c =,且满足absinCasinA bsinB csinC=+-(1)求角C 的大小; (2)求2b a +的最大值.【解析】(1)由题意及正弦定理可得:222abca b c =+-,由余弦定理得:2222cos a b c ab C +-=⋅,所以2221cos 22a b c C ab +-===,由()0,C π∈可得3C π=;(2)由正弦定理可得:2sin sin sin 2a b cA B C====, 所以2sin a A =,2sin b B =,又A B C π++=,所以22sin 2sin 2sin 33b B A A ππ⎛⎫⎛⎫==-=+⎪ ⎪⎝⎭⎝⎭,所以22sin 4sin sin 4sin 5sin 3b a A A A A A A A π⎛⎫+=++=++=+ ⎪⎝⎭()A ϕ=+,由tan ϕ=可得0,2πϕ⎛⎫∈ ⎪⎝⎭,又因为20,3A π⎛⎫∈ ⎪⎝⎭,所以2,3A πϕϕϕ⎛⎫+∈+⎪⎝⎭,2,23ππϕϕ⎛⎫∈+⎪⎝⎭, 所以()sin 1max A ϕ+=,所以2b a +≤. 故2b a +的最大值为19.如图1,在边长为2的等边ABC V 中,D E ,分别为边AC AB ,的中点,将∆AED 沿ED 折起,使得AB AD ⊥ , AC AE ⊥,得到如图2的四棱锥A -BCDE ,连结BD CE ,,且BD 与CE 交于点H .(1)求证:AH ⊥平面BCDE ; (2)求二面角B AE D --的余弦值.【解析】(1)证明:由题意1AE AD ==,3CE BD ==,因为D 、E分别为AC 、BD 的中点,所以EHD CHB △△∽且相似比为2,所以33EH DH ==,233BH CH ==, 所以3AE EH CE AE ==,3AD DHBD AD ==, 所以EHA EAC △△∽,DHA DAB △△∽,又因为AB AD ⊥,AC AE ⊥,所以AH BD ⊥,AH EC ⊥, 由BD CE H =I 可得AH ⊥平面BCDE ,得证.(2)如图,过D 作Dz ⊥平面BCDE ,DB 为x 轴,DC 为y 轴,Dz 为z 轴,建立空间直角坐标系;所以()000D ,,,)30B ,,,()010C ,,,由(1)知226AH AD DH =-=,则36033A ⎛ ⎝⎭,, 由131,0222DE CB ⎛⎫==- ⎪ ⎪⎝⎭u u u r u u u r 可知31022E ⎛⎫- ⎪ ⎪⎝⎭,,所以12AE =-⎝⎭u u u r ,,0AB =-⎝⎭u u u r ,,0DA =⎝⎭u u u r , 设平面AED 的一个法向量为()1111n x y z =u r,,,所以110 0AE n DA n ⎧⋅=⎪⎨⋅=⎪⎩u u u v u v u u u v u v,即11111102 033x y z x z -=⎨⎪+=⎪⎩,取11z =-得)11n =-u r ,同理可得平面AEB的一个法向量(21n =-u u r,,所以121212cos n n n n n n ⋅==u r u u ru r u u r u r u u r ,, 由图可知,所求二面角为钝角,所以二面角B AE D --的余弦值为-20.甲、乙两同学在复习数列时发现原来曾经做过的一道数列问题因纸张被破坏,导致一个条件看不清,具体如下:等比数列{}n a 的前n 项和为n S ,已知_____, (1)判断1S ,2S ,3S 的关系; (2)若133a a -=,设12n n n b a =,记{}n b 的前n 项和为n T ,证明:43n T <.甲同学记得缺少的条件是首项a 1的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是1S ,3S ,2S 成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题.【解析】(1)由题意可得11S a =,2121111122S a a a a a =+=-=,31231111113244S a a a a a a a =++=-+=,可得1232S S S +=,即1S ,3S ,2S 成等差数列; (2)证明:由133a a -=,可得11134a a -=,解得14a =, 112141212232n nn n n n b a n -⎛⎫⎛⎫==⋅⋅-=⋅ ⎪⎪⎝⎭⎝⎭, 则2111112332482n n T n ⎛⎫=⋅+⋅+⋅++⋅ ⎪⎝⎭L ,11211111232348162n n T n +⎛⎫=⋅+⋅+⋅++⋅ ⎪⎝⎭L , 上面两式相减可得112111111232481622n n n T n +⎛⎫=+++++-⋅ ⎪⎝⎭L 1111212213212n n n +⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎢⎥=-⋅⎢⎥-⎢⎥⎣⎦, 化简可得142132n n n T ++⎛⎫=- ⎪⎝⎭, 由12112n n ++-<,可得43nT <. 21.已知M e过点)A,且与(2216N x y ++=e :内切,设M e 的圆心M 的轨迹为C ,(1)求轨迹C 的方程;(2)设直线l 不经过点()20B ,且与曲线C 交于点P Q ,两点,若直线PB 与直线QB 的斜率之积为12-,判断直线l 是否过定点,若过定点,求出此定点的坐标,若不过定点,请说明理由. 【解析】(1)由题意M e过点)A,且与(2216N x y +=e :内切,易知点()N ,N e 半径为4, 设两圆切点为D ,所以4MD MN ND +==,在M e 中,MD MA =,所以4MA MN MA +=>,所以M的轨迹为椭圆,由椭圆定义可知24a c =⎧⎪⎨=⎪⎩,所以2221b a c =-=,所以轨迹C 的方程为2214x y +=;(2)①当l 的斜率不存在的时,设()00P x y ,,所以()00Q x y -,, 所以000022001222 14PB QB y y k k x x x y -⎧⋅=⋅=-⎪--⎪⎨⎪+=⎪⎩,解得0023x y ⎧=⎪⎪⎨⎪=⎪⎩或002 0x y =⎧⎨=⎩(舍),所以l 与x 轴的交点为203⎛⎫ ⎪⎝⎭,; ②当l 的斜率存在时,设l 的方程为y kx b =+,联立2214y kx b x y =+⎧⎪⎨+=⎪⎩消元可得()222148440k x kbx b +++-=, ()()()222228414446416160kb k b k b ∆=-+-=-+>,所以2241k b >-, 由韦达定理122814kb x x k -+=+,21224414b x x k-=+, 则()()()()()222121212112121212()222224PB QBkx b k x x kb x x b y y kx b k k x x x x x x x x +++++⋅=⋅=⋅=-----++ ()()()()2222222222222244822414144484242241414b k b k b b k b k b k k k b kb k b k b k k ⋅⋅--+-+-++===--++-+++, 又因为20k b +≠,所以()21422b k b k -=-+,即23b k =-,所以22221143b k k ⎛⎫-=--< ⎪⎝⎭,所以23b k =-成立,所以2233y kx k k x ⎛⎫=-=- ⎪⎝⎭,当23x =时,0y =,所以l 过203⎛⎫⎪⎝⎭,, 综上所述,l 过定点203⎛⎫⎪⎝⎭,. 22.已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围;(3)证明:()*11111ln 312313n N n n n n n+++++>∈++-L . 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x -+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++-L 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-, 所以11111ln 312313n n n n n +++++>++-L .。
2020年高考数学(理)原创终极押题卷(新课标Ⅱ卷)(解析版)
再苦再累,只要坚持往前走,属于你的风景终会出现。
人生如烟花,不可能永远悬挂天际,只要曾经绚烂过,便不枉此生。
秘密★启用前 2020年全国普通高等学校招生考试终极押题卷(全国新课标Ⅱ)理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合,则A B ⋂=( )A. {}1,0-B. {}0,1C. {}1,0,1-D. {}1,2- 【答案】B 【解析】,,则,故选B.2.已知i 为虚数单位,复数1z i =+,则1z z-的实部与虚部之差为( )A . 1B .0C .21-D .2【答案】D 【解析】:复数1z i =+,∴111112,1,22,2---=21222i z z i z i z+==-∴-=-=--实部,虚部,实部虚部 【点睛】:该小题几乎考查了复数部分的所有概念,是一道优秀试题。
3.下图为国家统计局发布的2018年上半年全国居民消费价格指数(CPI )数据折线图,(注:同比是今年第n 个月与去年第n 个月之比,环比是现在的统计周期和上一个统计周期之比)下列说法错误的是( )A. 2018年6月CPI 环比下降0.1%,同比上涨1.9%B. 2018年3月CPI 环比下降1.1%,同比上涨2.1%C. 2018年2月CPI 环比上涨0.6%,同比上涨1.4%D. 2018年6月CPI 同比涨幅比上月略微扩大0.1个百分点 【答案】C【分析】对照表中数据逐项检验即可.【详解】观察表中数据知A,B,D 正确,对选项C ,2018年2月CPI 环比上涨2.9%,同比上涨1.2%,故C 错误,故选:C【点睛】本题考查折线图,准确识图读图理解题意是关键,是基础题.4. 我国古代数学名著《算法统宗》中有如下问题:“诸葛亮领八员将,每将又分八个营,每营里面排八阵,每阵先锋有八人,每人旗头俱八个,每个旗头八队成,每队更该八个甲,每个甲头八个兵.”则该问题中将官、先锋、旗头、队长、甲头、士兵共有( ) A .()71887-人 B .()91887-人 C .()718887+-人D .()9418887+-人 【答案】D【解析】由题意可得将官、营、阵、先锋、旗头、队长、甲头、士兵依次成等比数列,且首项为8,公比也是8,所以将官、先锋、旗头、队长、甲头、士兵共有:()()45456789481818888888888187-+++++=+=+--,故选D .再苦再累,只要坚持往前走,属于你的风景终会出现。
2020年浙江省高考数学压轴试卷(含答案解析)
2020年浙江省高考数学压轴试卷一、选择题(本大题共10小题,共40.0分)1.已知集合,集合0,1,2,,则A. B. 1, C. 0, D. 0,1,2.复数的共轭复数是A. B. C. D.3.记为等差数列的前n项和.若,,则的公差为A. 1B. 2C. 4D. 84.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是A.B. 8C.D.5.若实数x,y满足不等式组,则A. 有最大值,最小值B. 有最大值,最小值2C. 有最大值2,无最小值D. 有最小值,无最大值6.“”是“直线和直线互相垂直”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.函数其中e为自然对数的底数的图象大致为A. B.C. D.8.已知a,,且,则A. B. C. D.9.设是一个高为3,底面边长为2的正四棱锥,M为PC中点,过AM作平面AEMF与线段PB,PD分别交于点E,可以是线段端点,则四棱锥的体积的取值范围为A. B. C. D.10.若对圆上任意一点,的取值与x,y无关,则实数a的取值范围是A. B.C. 或D.二、填空题(本大题共7小题,共36.0分)11.九章算术中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺.12.二项式的展开式中常数项为______所有项的系数和为______.13.设双曲线的半焦距为c,直线l过,两点,已知原点到直线l的距离为,则双曲线的离心率为______;渐近线方程为______.14.已知函数,若,则实数______;若存在最小值,则实数a的取值范围为______.15.设向量,,满足,,,若,则的最大值是______.16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是______.17.已知函数,若在区间上方程只有一个解,则实数m的取值范围为______.三、解答题(本大题共5小题,共74.0分)18.已知函数.求的单调递增区间;当时,求的值域.19.如图,四棱柱的底面ABCD是菱形,,底面ABCD,.求证:平面平面;若,求OB与平面所成角的正弦值.20.等比数列的各项均为正数,且,.求数列的通项公式;设,求数列的前n项和.21.已知抛物线上的两个动点和,焦点为线段AB的中点为,且A,B两点到抛物线的焦点F的距离之和为8.求抛物线的标准方程;若线段AB的垂直平分线与x轴交于点C,求面积的最大值.22.已知函数.Ⅰ若函数在上单调递增,求实数a的取值范围;Ⅱ若函数有两个不同的零点,,求实数a的取值范围;求证:其中为的极小值点-------- 答案与解析 --------1.答案:C解析:【分析】本题考查交集的求法,解题时要认真审题,注意交集定义的合理运用,属基础题.先求出集合A和B,由此利用交集的定义能求出.【解答】解:集合,0,1,2,,0,.故选C.2.答案:A解析:解:复数的共轭复数.故选:A.利用复数的运算法则、共轭复数的定义即可得出.本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.答案:C解析:【分析】本题主要考查等差数列通项公式及等差数列求和的基本量运算,属于简单题.利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出的公差.【解答】解:为等差数列的前n项和,设公差为d,,,解得,,的公差为4.故选C.4.答案:C解析:解:根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2;画出图形,如图所示;所以该四棱锥的底面积为,高为;所以该四棱锥的体积是.故选:C.根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2;求出四棱锥的底面积和高,计算它的体积.本题考查了利用三视图求几何体体积的问题,是基础题.5.答案:C解析:解:画出不等式组表示的平面区域,如图阴影所示;设,则直线是一组平行线;当直线过点A时,z有最大值,由,得;所以z的最大值为,且z无最小值.故选:C.画出不等式组表示的平面区域,设,则直线是一组平行线,找出最优解,求出z有最大值,且z无最小值.本题考查了简单的线性规划应用问题,也考查了数形结合思想,是基础题.6.答案:C解析:解:“”时,直线为,和互相垂直,充分条件成立;“直线和直线互相垂直”,两线斜率乘积为,,所以“”,必要条件成立,因而是充分必要条件.故选:C.验证比较易,对于只须两线斜率乘积为即可.本题主要考查直线与直线垂直的判定,以及充要条件,是基础题目.7.答案:A解析:【分析】本题主要考查函数图象的识别和判断,利用特殊值法进行排除是解决本题的关键,属于基础题.根据函数值的符号是否对应,利用排除法进行求解即可.【解答】解:当时,,则;当时,,则,所以的图象恒在x轴下方,排除B,C,D,故选A.8.答案:C解析:解:设,由指数函数的性质知,函数为R上的减函数,又,故.故选:C.由不等式的性质及指数函数的图象及性质直接判断得解.本题考查不等式的性质及指数函数的图象及性质,属于基础题.9.答案:B解析:解:为了建立四棱锥的体积与原三棱锥的体积的关系,我们先引用下面的事实,如图设,,分别在三棱锥的侧棱SA,SB,SC上,又与的体积分别为和V,则事实上,设C,在平面SAB的射影分别为H,,则又所以下面回到原题:设,的体积,于是由上面的事实有:,得:,于是,而由,,得,则,又得,所以,当时,,V为减函数,当时,,V为增函数所以得:,又,得,故答案为,故选:B.由三棱锥被截四面体的体积与原四棱锥的体积的结论,转化到本题中,进而转化成函数求最值问题,求导分析单调性后即可求得最值,本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度较大10.答案:D解析:【分析】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于中档题.由题意可得可以看作点P到直线m:与直线l:距离之和的5倍,,根据点到直线的距离公式解得即可.【解答】解:设,故可以看作点P到直线m:与直线l:距离之和的5倍,取值与x,y无关,这个距离之和与P无关,如图所示:当圆在两直线之间时,P点与直线m,l的距离之和均为m,l的距离,此时与x,y的值无关,当直线m与圆相切时,,化简得,解得或舍去,.故选:D.11.答案:165解析:解:设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,设数列的前n项和为,则,解得,所以,.故答案为:,165.设该女子每天的织布数量为,由题可知数列为公比为2的等比数列,再利用等比数列的通项公式以及前n项和公式即可求解.本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题.12.答案:5 32解析:解:展开式的通项为:,令,解得,所以展开式中的常数项为:.令,得到所有项的系数和为.故答案为:5,32.利用展开式的通项公式可得展开式中的常数项;令,得到所有项的系数和.本题考查了二项式的展开式的通项公式及其性质、方程的解法、转化法,考查了推理能力与计算能力,属于基础题.13.答案:2解析:解:由题可设直线l方程为:,即,则原点到直线的距离,解得,两式同时平方可得,又,代换可得,展开得:,同时除以得:,整理得,解得或4,又,所以,所以;,所以渐近线方程为:.故答案为:2;.利用已知条件结合点到直线的距离,求出a,b,c关系,然后求解离心率,然后求解渐近线方程.本题考查双曲线的简单性质的应用,是基本知识的考查,考查计算能力.14.答案:解析:解:,,,.易知时,;又时,递增,故,要使函数存在最小值,只需,解得:.故答案为:,.根据题意列出关于a的方程即可;在每一段上求出其函数值域,然后小中取小,能取到即可.本题考查分段函数的值域的求法.分段函数问题本着先分段研究,再综合的原则解决问题,属于基础题.15.答案:解析:解:,,,,不妨设,,,,,,表示线段上的点到圆的距离,在直角坐标系中画出线段线段和圆,如下:由图象知当.故答案为:.不妨设,,,则,表示线段上的点到圆的距离,然后求出最大距离即可.本题考查了平面向量的坐标运算和向量模的几何意义,考查了转化思想与数形结合思想,属中档题.16.答案:36解析:解:把“参观工厂”与“环保宣讲”这两个项目当做一个整体,共有种方法,其中,把“民俗调查”安排在周一,有种方法,满足条件的不同安排方法的种数为,故答案为:36.利用“捆绑法”、“间接法”及排列组合的计算公式即可得出结果.本题主要考查排列组合、两个基本原理的应用,熟练掌握排列组合的意义及其计算公式是解题的关键.对于相邻问题经常使用“捆绑法”对于排除不符合条件的选法可用排除法,属于中档题.17.答案:或解析:解:当时,由,得到,即:,当时,由,得到:,令函数,转换为:与函数的图象在区间上有且只有一个交点.在同一坐标系内画出,与函数的图象,结合函数的图象,即,由于函数的图象只有一个交点,如图所示:故:,解得:.故函数有一个交点,则:m的取值范围是:或故答案为:或利用分类讨论思想对函数的关系式进行应用,进一步利用函数的图象的应用求出参数的取值范围.本题考查的知识要点:函数的图象的应用,函数的图象的交点的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.答案:解:函数,令,求得,故函数的增区间为;若,则,故当时,函数取得最小值为;当时,函数取得最大值为,所以函数的值域为.解析:直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出结果.利用函数的定义域的应用求出函数的值域.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.答案:证明:由底面ABCD可得,又底面ABCD是菱形,所以,因为,所以平面,因为平面,所以平面平面D.解:因为底面ABCD,以O为原点,,,为x,y,z轴建立如图所示空间直角坐标系,则0,,,,0,,,,设平面的一个法向量为,由,即,取得,又,所以,所以OB与平面所成角的正弦值为.解析:证明,,推出平面,然后证明平面平面D.以O为原点,,,为x,y,z轴建立如图所示空间直角坐标系,求出平面的一个法向量,结合,利用空间向量的数量积求解OB与平面所成角的正弦值即可.本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力,是中档题.20.答案:解:设数列的公比为q,由.得.所以.由条件可知,故.由,得,所以.故数列的通项式为..故,数列的前n项和:.所以数列的前n项和为:.解析:本题考查数列求和以及通项公式的求法,考查转化思想以及计算能力,为中档题.利用已知条件求出数列的公比与首项,然后求数列的通项公式.利用对数运算法则化简,然后化简数列的通项公式,利用裂项相消法求和即可.21.答案:解:由题意可知,则,,抛物线的标准方程为:;设直线AB的方程为:,联立方程,消去x得:,,,即,即,,设AB的中垂线方程方程为:,即,可得点C的坐标为,直线AB的方程为:,即,点C到直线AB的距离,,令,则,,令,,令得,,在上,,函数单调递增;在上,,函数单调递减,当,即时,.解析:利用抛物线的定义可得,求出p的值,从而得到抛物线的方程;设直线AB的方程为:,与抛物线方程联立,利用韦达定理和弦长公式可得,利用AB的中垂线方程可得点C的坐标,再利用点到直线距离公式求出点C到直线AB的距离d,所以,令,则,利用导数得到当,即时,.本题主要考查了抛物线的定义,以及直线与抛物线的位置关系,是中档题.22.答案:解:Ⅰ由,得,设,;则;由,解得,所以在上单调递减,在上单调递增,所以函数在上单调递增,,所以;所以,实数a的取值范围是:Ⅱ因为函数有两个不同的零点,不单调,所以.因此有两个根,设为,,且,所以在上单调递增,在上单调递减,在上单调递增;又,,当x充分大时,取值为正,因此要使得有两个不同的零点,则必须有,即;又因为;所以:,解得,所以;因此当函数有两个不同的零点时,实数a的取值范围是.先证明不等式,若,,,则.证明:不妨设,即证,设,,只需证且;因为,,所以在上单调递减,在上单调递增,所以,,从而不等式得证.再证原命题.由得;所以,两边取对数得:;即.因为,所以,因此,要证.只需证;因为在上单调递增,,所以只需证,只需证,即证,其中;设,,只需证;计算得;.由在上单调递增,得,所以;即在上单调递减,所以:;即在上单调递增,所以成立,即原命题得证.解析:Ⅰ先求其导函数,转化为,即求的最小值即可;Ⅱ结合第一问的结论得不单调,故;设有两个根,设为,,且,可得原函数的单调性,把问题转化为,即可求解结论.转化为先证明不等式,若,,,则再把原结论成立转化为证;构造函数一步步推其成立即可.本题考查了导数的综合应用,同时考查了不等式的证明,是对导数知识的综合考查,属于难题.。
2020届浙江省高三下学期高考压轴卷数学试题(解析版)
2020届浙江省高三下学期高考压轴卷数学试题一、单选题1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =A .{0,1}B .{0,1,2}C .{1,0,1}-D .{1,0,1,2}-【答案】C【解析】试题分析:由,得,选C.【考点】集合的交集运算.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集. 2.复数(为虚数单位)的共轭复数是( )A .B .C .D .【答案】C【解析】先化简复数为代数形式,再根据共轭复数概念求解. 【详解】 因为,所以其共轭复数是,选C.【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基本题. 3.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.4.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是( )A .43B .8C .433D .83【答案】C【解析】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2,求出四棱锥的底面积和高,计算它的体积. 【详解】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2, 画出图形,如图所示;所以该四棱锥的底面积为224S ==,高为22213h -=;所以该四棱锥的体积是114343333V Sh==⨯⨯=.故选:C.【点睛】本题考查了利用三视图求几何体体积的问题,属于中档题.5.若实数,x y满足不等式组2222yx yx y⎧⎪-⎨⎪-⎩,则3x y-( )A.有最大值2-,最小值83-B.有最大值83,最小值2C.有最大值2,无最小值D.有最小值2-,无最大值【答案】C【解析】画出不等式组表示的平面区域,设3z x y=-,则直线30x y z--=是一组平行线,找出最优解,求出z有最大值,且z无最小值.【详解】画出不等式组2222yx yx y⎧⎪-⎨⎪-≥⎩表示的平面区域,如图阴影所示;设3z x y=-,则直线30x y z--=是一组平行线;当直线过点A时,z有最大值,由22yx y=⎧⎨-=⎩,得(2,0)A;所以z的最大值为3202x y-=-=,且z无最小值.故选:C.【点睛】本题考查了简单的线性规划应用问题,也考查了数形结合思想,是中档题.6.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】直线0x y +=和直线0x ay -=互相垂直的充要条件是1()110a ⨯-+⨯=,即1a =,故选C7.函数()()11x x e f x x e+=-(其中e 为自然对数的底数)的图象大致为( )A .B .C .D .【答案】A【解析】求得f (x )的奇偶性及f (1)的值即可得出答案. 【详解】∵f (﹣x )()()()111111x x x x x xe e e x e x e x e--+++====-----f (x ), ∴f (x )是偶函数,故f (x )图形关于y 轴对称,排除C ,D ; 又x=1时,()e 111ef +=-<0, ∴排除B , 故选A . 【点睛】本题考查了函数图像的识别,经常利用函数的奇偶性,单调性及特殊函数值对选项进行排除,属于基础题.8.已知a 、b R ∈,且a b >,则( )A .11a b<B .sin sin a b >C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .22a b >【答案】C【解析】利用特殊值法和函数单调性可判断出各选项中不等式的正误.【详解】对于A 选项,取1a =,1b =-,则a b >成立,但11a b>,A 选项错误;对于B 选项,取a π=,0b =,则a b >成立,但sin sin0π=,即sin sin a b =,B 选项错误;对于C 选项,由于指数函数13x y ⎛⎫= ⎪⎝⎭在R 上单调递减,若a b >,则1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,C选项正确;对于D 选项,取1a =,2b =-,则a b >,但22a b <,D 选项错误. 故选:C. 【点睛】本题考查不等式正误的判断,常用特殊值法、函数单调性与不等式的性质来进行判断,考查推理能力,属于中等题.9.设P ABCD -是一个高为3,底面边长为2的正四棱锥,M 为PC 中点,过AM 作平面AEMF 与线段PB ,PD 分别交于点E ,F (可以是线段端点),则四棱锥P AEMF -的体积的取值范围为( )A .4,23⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .[]1,2【答案】B【解析】设出比例关系,PE PFx y PB PD==,利用比例关系表示所求锥体体积,利用函数单调性即可求解. 【详解】首先证明一个结论:在三棱锥S ABC -中,棱,,SA SB SC 上取点111,,A B C则111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角θ,11111111111111sin sin3211sin sin32S A B C B SA CS ABC B SACSA SC ASC SBV V SA SB SCV V SA SB SCSA SC ASC SBθθ----⨯⋅⋅∠⋅⋅⋅⋅===⋅⋅⨯⋅⋅∠⋅⋅,证毕. 四棱锥P ABCD-中,设,PE PFx yPB PD==,212343P ABCDV-=⨯⨯=12222P AEMF P AEF P MEF P AEF P MEF P AEF P MEFP ABCD P ABD P ABD P DBC P ABD P DBCV V V V V V VV V V V V V -------------⎛⎫+==+=+⎪⎝⎭111222PA PE PF PE PM PFxy xyPA PB PD PB PC PD⋅⋅⋅⋅⎛⎫⎛⎫=+=+⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以3P AEMFV xy-=又12222P AEMF P AEM P MAF P AEM P MAF P AEM P MAFP ABCD P ABC P ABC P DAC P ABC P DACV V V V V V VV V V V V V -------------⎛⎫+==+=+⎪⎝⎭11112222PA PE PM PA PM PFx yPA PB PC PA PC PD⋅⋅⋅⋅⎛⎫⎛⎫=+=+⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭所以P AEMFV x y-=+即3,31xx y xy yx+==-,又01,0131xx yx≤≤≤=≤-,解得112x≤≤所以体积2313,[,1]312xV xy xx==∈-,令131,[,2]2t x t=-∈2(1)111()(2),[,2]332tV t t tt t+==++∈根据对勾函数性质,()V t在1[,1]2t∈递减,在[1,2]t∈递增所以函数()V t最小值4(1)3V=,最大值13(2)()22V V==,四棱锥P AEMF-的体积的取值范围为43,32⎡⎤⎢⎥⎣⎦故选:B 【点睛】此题考查用平面截四棱锥形成新的锥体的体积问题,关键在于通过一种恰当的方式表示出所求锥体的体积,利用函数关系求解最值,此题涉及三棱锥体积的引理,需要在平常学习中多做积累.10.若对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,34349x y a x y -++--的取值与x ,y 无关, 则实数a 的取值范围是( ) A .4a ≤ B .46a -≤≤C .4a ≤或6a ≥D .6a ≥【答案】D【解析】根据点到直线距离公式,转化34349x y a x y -++--为点P 到两条平行直线的距离之和来求解实数a 的取值范围 【详解】依题意343493434955x y ax y x y a x y -+---++--=+表示(),P x y 到两条平行直线340x y a -+=和3490x y --=的距离之和与,x y 无关,故两条平行直线340x y a -+=和3490x y --=在圆22(1)(1)1x y -+-=的两侧,画出图像如下图所示,故圆心()1,1到直线340x y a -+=的距离3415ad -+=≥,解得6a ≥或4a ≤-(舍去) 故选:D.【点睛】本小题主要考查点到直线的距离公式,考查直线与圆的位置关系,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.二、双空题11.《九章算术》中有一题:“今有女子善织,日自倍,五日织五尺.”该女子第二日织______尺,若女子坚持日日织,十日能织______尺. 【答案】1031165 【解析】设该女子每天的织布数量为n a ,转化条件得数列{}n a 为公比为2的等比数列,利用等比数列的通项公式和前n 项和公式求得1531a =后即可得解. 【详解】设该女子每天的织布数量为n a ,由题可知数列{}n a 为公比为2的等比数列, 设数列{}n a 的前n 项和为n S ,则()51512512a S -==-,解得1531a =, 所以2110231a a ==,()10105123116512S -==-.故答案为:1031,165. 【点睛】本题考查了等比数列的应用,关键是对于题目条件的转化,属于基础题.12.二项式521)x 的展开式中常数项为__________.所有项的系数和为__________. 【答案】5 32【解析】分析:利用二项展开式的通项公式求出531)x展开式的通项,令x 的指数为0,求出r 的值,将r 的值代入通项求出展开式的常数项,令1x =,得到所有项的系数和.详解:展开式的通项为5552215521()r r rr r r T C C xx--+==, 令55022r -=,解得1r =, 所以展开式中的常数项为1255T C ==,令1x =,得到所有项的系数和为5232=,得到结果.点睛:该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中的特定项以及展开式中的系数和,所用到的方法就是先写出展开式的通项,令其幂指数等于相应的值,求得r ,代入求得结果,对于求系数和,应用赋值法即可求得结果.13.设双曲线()222210x y b a a b-=>>的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l ,则双曲线的离心率为____;渐近线方程为_________.【答案】2 y =【解析】可设过(a ,0),(0,b )两点的直线方程为1x ya b+=,结合点到直线距离公式可得24ab =,两式同时平方后,通过222c a b =+代换可转化为关于2e 的一元二次方程,即可求解 【详解】由题可设直线l 方程为:1x ya b+=,即0bx ay ab ,则原点到直线的距离4ab d c ===,解得24ab =,两式同时平方可得224163a b c =,又222b c a =-,代换可得()2224163a c a c -=,展开得:224416162a c a c -=,同时除以4a 得:2416163e e -=,整理得()()223440e e --=,解得243e =或4,又0b a >>,所以2222222222b a c a a c a e >⇒->⇒>⇒>,所以24,2ce e a===;b a ===b y x a =±=故答案为:2;y = 【点睛】本题考查由直线与双曲线的位置关系求解离心率,渐近线,点到直线距离公式的应用,属于中档题14.已知函数22,0()log (),0x x f x x a x ⎧<=⎨-≥⎩,若(1)(1)f f -=,则实数a =_____;若()y f x =存在最小值,则实数a 的取值范围为_____.【答案】1 [1,0)-【解析】()1根据题意列出关于a 的方程即可;()2在每一段上求出其函数值域,然后小中取小,能取到即可.【详解】(1)(1)f f -=,122log (1)a -∴=-,1212a ∴-=,1a ∴=-易知0x <时,()2(0,1)xf x =∈;又0x 时,2()log ()f x x a =-递增,故2()(0)log ()f x f a =-, 要使函数()f x 存在最小值,只需2()0a log a ->⎧⎨-⎩,解得:10a -<.故答案为:1,[1,0)-. 【点睛】本题考查分段函数的值域的求法.分段函数问题本着先分段研究,再综合的原则解决问题,属于中档题.三、填空题15.设向量,,a b c 满足1a =,||2b =,3c =,0b c ⋅=.若12λ-≤≤,则(1)a b c λλ++-的最大值是________.【答案】101+【解析】令()1n b c λλ=+-,计算出n 模的最大值即可,当n 与a 同向时a n +的模最大. 【详解】令()1n b c λλ=+-,则()2211318n b c λλλλ⎡⎤=+-=-⎣⎦12λ-≤≤,所以当1λ=-,max 13n ==,因此当n 与a 同向时a n +的模最大,max 2101a n a n +=+=+ 【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析. 16.某班同学准备参加学校在假期里组织的“社区服务”、“进敬老院”、“参观工厂”、“民俗调查”、“环保宣传”五个项目的社会实践活动,每天只安排一项活动,并要求在周一至周五内完成.其中“参观工厂”与“环保宣讲”两项活动必须安排在相邻两天,“民俗调查”活动不能安排在周一.则不同安排方法的种数是________. 【答案】36【解析】把“参观工厂”与“环保宣讲”当做一个整体,共有4242A A 48=种,把“民俗调查”安排在周一,有3232A A 12⋅=,作差即可求解【详解】把“参观工厂”与“环保宣讲”当做一个整体,共有4242A A 48=种,把“民俗调查”安排在周一,有3232A A 12⋅=,∴满足条件的不同安排方法的种数为481236-=, 故答案为:36. 【点睛】本题考查了简单排列应用问题,熟练掌握排列组合的意义及其计算公式是解题的关键,对于相邻问题经常使用“捆绑法”,注意“直接法”“间接法”的灵活选用,属于基础题.17.已知函数()2122,01()2,10x x x m x f x x m x +⎧+≤≤⎪=⎨---≤<⎪⎩若在区间[1,1]-上方程()1f x =只有一个解,则实数m 的取值范围为______. 【答案】1|12m m ⎧-≤<-⎨⎩或1}m = 【解析】令11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则方程()1f x =等价于()2g x x m =+有且只有一个实数根,在同一平面直角坐标系中画出函数()g x 的图像和()2h x x m =+的图像,动态平移()h x 的图像可得实数m 的取值范围. 【详解】当01x ≤≤时,由()1f x =,得()221xx m +=,即212xx m ⎛⎫=+ ⎪⎝⎭;当10x -≤<时,由()1f x =,得1221x x m +--=,即1221x x m +-=+.令函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩,则问题转化为函数11,01()221,10x x x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与函数()h x =2x m +的图像在区间[1,1]-上有且仅有一个交点.在同一平面直角坐标系中画出函数11,01()221,10xx x g x x +⎧⎛⎫≤≤⎪ ⎪=⎨⎝⎭⎪--≤<⎩与2y x m =+在区间函数[1,1]-上的大致图象如下图所示:结合图象可知:当(0)1h =,即1m =时,两个函数的图象只有一个交点;当(1)(1),11(1)(1)2h g m h g <⎧⇒-≤<-⎨-≥-⎩时,两个函数的图象也只有一个交点,故所求实数m 的取值范围是1|112m m m ⎧⎫-≤<-=⎨⎬⎩⎭或.【点睛】已知方程的解的个数求参数的取值范围时,要根据方程的特点去判断零点的分布情况(特别是对于分段函数对应的方程),也可以参变分离,把方程的解的问题归结为不同函数的交点的个数问题.四、解答题18.已知函数()()23sin 22cos 1x R f x x x =-+∈.(1)求()f x 的单调递增区间; (2)当,64x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的值域. 【答案】(1),()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)3⎡-⎣. 【解析】(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性,求得函数()f x 的增区间;(2)由题意利用正弦函数的定义域和值域,求得()f x 的最大值和最小值. 【详解】(1) 函数()2322cos 1322226f x x sin x cos x in x x s π⎛⎫⎪=⎝=-+-=⎭-,令222()262πππππ-≤-≤+∈k x k k Z ,求得()63k x k k Z ππππ-≤≤+∈,故函数f (x )的增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)若,64x ππ⎡⎤∈-⎢⎥⎣⎦,则2,623x πππ⎡⎤-∈-⎢⎥⎣⎦,故当262x ππ-=-时,函数f (x )取得最小值为−2;当263x ππ-=时,函数f (x )取得最大值为3,所以函数的值域为2,3⎡⎤-⎣⎦. 【点睛】本题考查三角恒等变换,考查正弦型函数的性质,考查运算能力,属于常考题. 19.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形AC BD O =,1A O ⊥底面ABCD ,12AA AB ==.(1)求证:平面1ACO ⊥平面11BB D D ; (2)若60BAD ∠=︒,求OB 与平面11A B C 所成角的正弦值.【答案】(1)证明见解析(221【解析】(1)由线面垂直的性质可得1AO BD ⊥,由菱形的性质可得CO BD ⊥,由线面垂直的判定可得BD ⊥平面1A CO ,再由面面垂直的判定即可得证;(2)建立空间直角坐标系,求出各点坐标后,再求出平面11A B C 的一个法向量为m ,OB 的方向向量OB ,由cos ,||||OB mOB m OB m ⋅=即可得解.【详解】(1)证明:由1A O ⊥底面ABCD 可得1AO BD ⊥, 又底面ABCD 是菱形,所以CO BD ⊥, 因为1AO CO O ⋂=,所以BD ⊥平面1A CO ,因为BD ⊂平面11BB D D ,所以平面1ACO ⊥平面11BB D D . (2)因为1A O ⊥底面ABCD ,以O 为原点,OB ,OC ,1OA 为x ,y ,z 轴建立如图所示空间直角坐标系O xyz -,则(1,0,0)B ,3,0)C ,(0,3,0)A ,1(0,0,1)A ,11(1,3,0)A B AB ==,()10,3,1AC =-, 设平面11A B C 的一个法向量为(,,)m x y z =,由111030030m A B x m ACz ⎧⋅=⇒+=⎪⎨⋅=⇒-=⎪⎩,取1x =得31,13m ⎛⎫=-- ⎪⎝⎭, 又(1,0,0)OB =,所以21cos ,7||||123OB mOB m OB m ⋅===+,所以OB 与平面11A B C 21. 【点睛】本题考查了面面垂直的证明以及利用空间向量求线面角,考查了空间思维能力,属于中档题.20.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式; (2)设 31323log log ......log nn b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)13n n a =(2)21n n -+【解析】试题分析:(Ⅰ)设出等比数列的公比q ,由23269a a a =,利用等比数列的通项公式化简后得到关于q 的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简12231a a +=,把求出的q 的值代入即可求出等比数列的首项,根据首项和求出的公比q 写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设b n =log 3a 1+log 3a 2+…+log 3a n ,利用对数的运算性质及等差数列的前n 项和的公式化简后,即可得到bn 的通项公式,求出倒数即为1nb 的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{1nb }的前n项和试题解析:(Ⅰ)设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n .(Ⅱ)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+ 【考点】等比数列的通项公式;数列的求和21.已知抛物线22y px =(0p >)上的两个动点()11,A x y 和()22,B x y ,焦点为F .线段AB 的中点为()03,M y ,且A ,B 两点到抛物线的焦点F 的距离之和为8.(1)求抛物线的标准方程;(2)若线段AB 的垂直平分线与x 轴交于点C ,求ABC 面积的最大值. 【答案】(1)24y x =;(2)39. 【解析】(1)利用抛物线的定义可得12||||68AF BF x x p p +=++=+=,求出p 的值,从而得到抛物线的方程;(2)设直线AB 的方程为:x my n =+,与抛物线方程联立,利用韦达定理和弦长公式可得22||413AB m m =+-AB 的中垂线方程可得点C 的坐标,再利用点到直线距离公式求出点C 到直线AB 的距离d ,所以()221||4132S AB d m m =⋅=+-23t m -()244S t t =-⋅,利用导数可得最值. 【详解】(1)由题意知126x x +=,则12||||68AF BF x x p p +=++=+=, ∴2p =,∴抛物线的标准方程为24y x =; (2)设直线:AB x my n =+(0m ≠) 由24x my n y x=+⎧⎨=⎩,得2440y my n --=, ∴124y y m +=,∴()121224226x y x y m n n m =+++=+=,即232n m =-,即()21221216304812m y y m y y m ⎧∆=->⎪⎪+=⎨⎪⋅=-⎪⎩,∴12||AB y y =-=设AB 的中垂线方程为:2(3)y m m x -=--,即(5)y m x =--, 可得点C 的坐标为(5,0),∵直线2:32AB x my m =+-,即2230x my m -+-=,∴点C 到直线AB的距离d ==,∴()21||412S AB d m =⋅=+令t =223(0m t t =-<<,()244S t t ∴=-⋅令()2()44f t tt =-⋅,∴()2()443f t t'=-,令()0f t '=,则t =,在⎛ ⎝⎭上()0f t '>;在⎝上()0f t '<, 故()f t在0,3⎛ ⎝⎭单调递增,3⎛⎝单调递减,∴当3t =,即3m =±max 9S =. 【点睛】本题主要考查了抛物线的定义,以及直线与抛物线的位置关系,是中档题. 22.已知函数2()(1)(0)x f x x e ax x =+->.(1)若函数()f x 在(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个不同的零点12,x x . (ⅰ)求实数a 的取值范围;(ⅱ)求证:12011111x x t +->+.(其中0t 为()f x 的极小值点)【答案】(1)⎛-∞ ⎝⎭;(2)(ⅰ)12⎛⎫⋅+∞ ⎪ ⎪⎝⎭;(ⅱ)证明见解析.【解析】(1)先求其导函数,转化为()'0f x ≥,即求()22xx g x e a x+=⋅-的最小值即可;(2())ⅰ结合第一问的结论得()f x不单调,故(122a +⋅>;设()'0f x =有两个根,设为1t ,0t,且1001t t <<<,可得原函数的单调性,把问题转化为()00f t <,即可求解结论.()ⅱ转化为先证明不等式,若1x ,()20,x ∈+∞,12x x ≠,则211221.2x x x xlnx lnx -+<<-再把原结论成立转化为证1202x x t +<;构造函数()()()00r x f t x f t x =+--一步步推其成立即可.【详解】(1)由2()(1)x f x x e ax =+-,得2()2x x f x x e a x +⎛⎫'=-⎪⎝⎭,设2()x x g x e x +=⋅,(0)x >;则2222()xx x g x e x +-'=⋅; 由()0g x ',解得1x ≥-,所以()g x在1)上单调递减,在1,)+∞上单调递增,所以1min ()1)(2==⋅g x g因为函数()f x 在(0,)+∞上单调递增,所以()0f x '在(0,)+∞恒成立所以1(22⋅≥a ;所以,实数a的取值范围是:⎛-∞ ⎝⎭. (2)(i )因为函数()f x 有两个不同的零点,()f x不单调,所以a >.因此()0f x '=有两个根,设为10,t t,且1001t t <<<,所以()f x 在()10,t 上单调递增,在()10,t t 上单调递减,在()0,t +∞上单调递增; 又()1(0)1f t f >=,()22()(1)(1)xxxf x x e ax a e xx a e =+-=-++-⋅,当x 充分大时,()f x 取值为正,因此要使得()f x 有两个不同的零点,则必须有()00f t <,即()200010t t e a t +-⋅<; 又因为()()0000220tf t t e at '=+-=;所以:()()000002202ttt t e t e +-⋅+<,解得0t >所以1122+>=a g 因此当函数()f x 有两个不同的零点时,实数a的取值范围是12⎛⎫⋅+∞ ⎪⎪⎝⎭. (ⅱ)先证明不等式,若12,(0,)x x ∈+∞,12x x ≠211221112x x x xnx nx -+<<-.证明:不妨设210x x >>,即证2212211211ln 1x x x x x x x ⎛⎫-- ⎪⎝⎭<<+,设211x t x =>,()ln g t t =-2(1)()ln 1t h t t t -=-+,只需证()0g t <且()0h t >;因为2()0g t '=<,22(1)()0(1)t h t t t -'=>+, 所以()g t 在(1,)+∞上单调递减,()h t 在(1,)+∞上单调递增, 所以()(1)0g t g <=,()(1)0h t h >=,从而不等式得证.再证原命题12011111x x t +->+. 由()()1200f x f x ⎧=⎪⎨=⎪⎩得()()122112221010x x x e ax x e ax ⎧+-=⎪⎨+-=⎪⎩; 所以()()2212221211xx x e x e xx++=,两边取对数得:()()()2121212ln ln ln 1ln 1x x x x x x ⎡⎤--+-+=-⎣⎦;第 21 页 共 21 页 即()()()()()212121212ln ln ln 1ln 1111x x x x x x x x -+-+-=-+-+. 因为()()()()()()()2121212112211111121111nx nx n x n x x x x x x x -+-+-<--+-++++,所以121221112x x x x +<<+++, 因此,要证12011111x x t +->+. 只需证1202x x t +<;因为()f x 在()0,t +∞上单调递增,1020x t x <<<,所以只需证()()2022f x f t x <-, 只需证()()1012f x f t x <-,即证()()00f t x f t x +<-,其中()0,0x t ∈-; 设()()00()r x f t x f t x =+--,00t x -<<,只需证()0r x <;计算得()()00000()224t tr x x t e x x t e x at '=++++-++--; ()()2000()33t x r x e x x t e x t ''⎡⎤=-+++--⎣⎦.由()()20033x y x t ex t =+++--在()0,0t -上单调递增, 得()()0003030y t e t <++--=,所以()0r x ''<;即()r x '在()0,0t -上单调递减,所以:()0()(0)20r x r f t '''>==;即()r x 在()0,0t -上单调递增,所以()(0)0r x r <=成立,即原命题得证.【点睛】本题考查了导数的综合应用,同时考查了不等式的证明,是对导数知识的综合考查,属于难题.。
2020年高考数学预测卷 浙江卷(二)(详解)
绝密★启用前2020年高考数学精优预测卷 浙江卷(二)学校:___________姓名:___________班级:___________考号:___________ 注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、选择题1.i 是虚数单位,复数11iz i-=+,则1z +=( )A .1B .CD .22.命题“()0000,,ln 1x x x ∃∈+∞=+”的否定是( ) A .()0000,,ln 1x x x ∃∈+∞≠+ B .()00,,ln 1x x x ∀∉+∞≠+ C .()00,,ln 1x x x ∀∈+∞≠+D .()0000,,ln 1x x x ∃∉+∞≠+3.如果1cos(π)2A +=-,那么πsin()2A -等于( )A.12-B.12C.2-D.24.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这截面把圆锥母线分成的两段的比是( ) A. 1:3B. )1:1C. 1:925.某市教育局准备举办三期高中数学新教材培训,某校共有5名新高一数学老师参加此培训,每期至多派送2名 参加,且学校准备随机派送,则甲老师不参加第一期培训的概率为( ) A.13B.25 C.35D.236.若变量,x y 满足2,239,0,x y x y x +≤-≤≥⎧⎪⎨⎪⎩则22x y +的最大值是( )A.4B.9C.10D.127.若双曲线的中心为原点, (3,0)F 是双曲线的焦点,过F 的直线l 与双曲线相交于P , Q 两点,且P Q 、的中点为(12,15)M --,则双曲线的方程为( )A.22136x y -= B.22154x y -= C.22163x y -= D.22145x y -= 8.已知1234,,,a a a a 成等比数列,且()1234123ln a a a a a a a +++=++,若11a >,则( ) A. 1324,a a a a << B. 1324,a a a a >< C. 1324,a a a a <>D. 1324,a a a a >>9.如图,过抛物线24y x =的焦点F 作直线l ,交抛物线于,P Q 两点,以 线 段PQ 为直径的圆M 交x 轴,A B 两点.交y 轴于,C D 两点,则22AB CD的最小值为( )A.114 B. 5210.已知函数()2cos x x f x e e x -=++,其中e 为自然对数的底数,则对任意a ∈R ,下列不等式一定成立的是( ) A.()()212f a f a +≥ B.()()212f a f a +≤ C.()()211f a f a +≥+D.()()21f a f a +≤11.已知0a >且1a ≠,函数1,0()1log ,0a x f x x x x ⎧≤⎪=-⎨⎪>⎩若(0)(2)0f f +=,则a =_________,1(())2f f =_________. 二、填空题12.若集合l {}g |A y y x ==,{|B x y ==,则A B =__________.13.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是__________2cm ,体积是__________3cm .14.已知随机变量X 的分布列如下表所示,且14,,p q 成等差数列,则()E X =________,()D X =________.15.已知01234567(1)(12)x x x a a x a x a x a x a x a x a x +++=+++++++,则3a =___________,127a a a +++=_________.16.设,R x y ∈,向量(,2),(1,),(2,6)a x b y c ===-,且,//a c b c ⊥,则a b -=________.17.在ABC △中,,,a b c 分别是角,,A B C 的对边,若()(),a b c a b c ab c +-++=b a 取得最大值时,S ABC △=________. 三、解答题18.设函数()sin sin 62f x x x ωωππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其中03ω<<.已知06f π⎛⎫= ⎪⎝⎭. (1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3,44ππ⎡⎤-⎢⎥⎣⎦上的最小值. 19.如图,在四棱锥B ACDE -中,已知,AB AC EA ⊥⊥平面ABC ,CD ⊥平面ABC ,3332AB AC EA CD ===(1)试在BD 上确定点F 的位置,使得直线//EF 平面ABC (2)在(1)的条件下,求直线AF 与平面BED 所成角的正弦值.20.已知数列{}n a 满足1231,2,3a a a ===,且对任意的正整数,m n ,都有222m n m n a a a m n ++=+- (1)证明数列22{}n n a a +-是等差数列,并求数列{}n a 的通项公式 (2)若211n n n b a b ++=,n S 是数列{}n b 的前n 项和,求证*2112,N 1n n n n n n b S ++≤+<+∈+ 21.已知直线1x y +=过椭圆()222210x y a b a b+=>>的右焦点,且交椭圆于A,B 两点,线段AB 的中点是21,33M ⎛⎫⎪⎝⎭,(1)求椭圆的方程;(2)过原点的直线l 与线段AB 相交(不含端点)且交椭圆于C ,D 两点,求四边形ACBD 面积的最大值.22.已知函数e 1()(0)x f x x x-=>(1)若函数()y f x =的图象与直线y x m =+相切,求m 的值(2)求证,对任意0,()e2>≥+-恒成立x f x x参考答案1.答案:B解析: 1=1iz i i-=-+,11z i +=-=2.答案:C解析:命题“()0000,,ln 1x x x ∃∈+∞=+”的否定为“()00,,ln 1x x x ∀∈+∞≠+” 3.答案:B解析:因为1cos(π)2A +=-,所以1cos 2A =,所以π1sin()cos 22A A -==. 4.答案:B解析:如图,由题意,可知圆锥1PO 与圆锥PO 的侧面积之比为1:3, 即1111,3O A PA A PA π⋅⋅=π⋅O ⋅因为111111,,O A PA PO PO A POA OA PA PO∆∆∴== 11111,3PO O A PA PO OA PA 2⋅∴()==⋅111PO PO PO O O ∴=∴=故选B. 5.答案:D解析:解法一 5名新高一数学老师参加此培训,且每期至多派送2名参加,其派送方法有2235332290C C A A ⨯=(种),其中甲老师不参加第一期培训的派送方法有两种:(1)第一期培训派送1名时有122442C C C 种方法,(2)第一期培训派送2名时,有222432C C A 种方法.所 以甲老师不参加第一期培训的派送方法共 12222244243260C C C C C A +=(种).所以所求概率602903P ==,故选D. 解法二5名新高一数学老师参加此培训,且每期至多派送2名参加,其派送方法有2235332290C C A A ⨯= (种),其中甲老师参加第—期培训的派送方法有两种:(1)第一期培训派送1名时,有2242C C 种方法. (2)第一期培训派送2名时,有12114343C C C C +种方法.所以甲老师参加第一期培训的派送方法共有22121142434330C C C C C C ++=(种).所以所求概率90302903P -==,故选D. 6.答案:C解析:画出可行域如图所示,点 ()3,1A -到原点距离最大,所以22max ()10x y +=,选C.7.答案:D解析:由题意可设双曲线方程为22221(0,0)x y a b a b -=>>,()3,0F 是双曲线的焦点,所以3c =229,a b ∴+=设1122(,),(,)P x y Q x y ,2211221,(1)x y a b -=2222221,(2)x y a b-= (1)-(2)得:2121221212()()y y b x x x x a y y -+=-+P Q 、的中点为M (-12,-15), 21221245y y b x x a-=-,又P Q 、的斜率是1501123--=--22415b a=,即2245b a =,将2245b a =代入229,a b +=可得224,?5a b ==所以双曲线的标准方程为22145x y -=,答案为D 8.答案:B解析:令 ()ln 1f x x x =--则1'()1f x x=-,令'()0f x =得1x =,所以当1x >时, '()0f x >,当01x <<时, '()0f x <,因此()(1)0,f x f ≥=所以: ln 1x x ≥+,若公比0q >,则1234123123ln()a a a a a a a a a a +++>++>++,不合题意;若公比1a ≤-,则212341(1)(1)0a a a a a q q +++=++≤但212311ln()ln[(1)]ln 0a a a a q q a ++=++>>,即12341230ln(+a )a a a a a a +++≤<+,不合题意;因此210,(0,1)q q -<<∈,所以22113224,0a a q a a a q a >=<=<,选B. 9.答案:D解析:由 题 意 知()1,0F ,设直线l 的方程为1x my =+,代入24y x =,并 消去x ,得2440y my --=,设()()1122,,,P x y Q x y ,则12124,4y y m y y +==-,()221,2M m m +,圆M的半径2121222r PQ y m ==-+. 过M 点作MG AB ⊥ 于点G, MH CD ⊥于点H .则()()()()()222222222244[2221]443AB AG r MGm m m ==-=+-+=+.令243m t +=,则3t ≥,234t m -=,)22422223311213113144442143442t t AB m m t t t m t t t CD--⎛⎫++ ⎪++-+⎛⎫⎝⎭=⨯=⨯==+-≥ ⎪+⎝⎭,故当13t t =,即t =2m =时,22AB CD取 得 最 小 值10.答案:A解析:依题意可知,()()2cos x xf x e e x f x -=++=-,所以()f x 是偶函数,()2sin x xf x e e x -'=--,且()00f '=,令()()h x f x '=,则()2cos x xh x e e x -'=+-,当)0x ∈+∞[,时,()2cos 0x x h x e e x -'=+-≥恒成立, 所以()2sin x xf x e e x -'=--在)0+∞[,上单调递增,所以()0f x '≥在)0x ∈+∞[,上恒成立, 所以()f x 在)0+∞[,上单调递增, 又函数()f x 是偶函数,()()222221410a a a +-=-≥,所以()()212f a f a +≥,故选A.11.答案:2,12-解析:易知(0)1f =-,因为(0)(2)0f f +=,所以(2)1f =,即log 21a =,得2a =,所以函数21,0()1log ,0x f x x x x ⎧≤⎪=-⎨⎪>⎩所以211()log 122f ==-,111(())(1)2112f f f =-==---12.答案:{|}0x x ≥解析:0[{|}{|}]0A B x x A B x x ≥⋂≥R =,=,则= 13.答案:80; 40解析:由三视图知该组合体是一个长方体上面放置了一个小正方体,222=62+24+42422=80S ⨯⨯⨯⨯-⨯表.3244240V =+⨯⨯=.14.答案:123;636解析:由分布列的性质及等差数列的性质知,114124p q p q⎧++=⎪⎪⎨⎪=+⎪⎩解得15,312p q ==,所以151()4126E X =-+=,22211111523()(1)(0)(1)646361236D X =--⨯+-⨯+-⨯=15.答案:19,80解析: 2323(1)[(1)]x x x x ++=++,所以23(1)x x ++的展开式中3x 的系数为11033233617C C C C +=+=,23(1)x x ++的展开式中2x 的系数为100232336C C C C +=所以372619a =+⨯=,对于23(1)x x ++,23456701234567(12)x a a x a x a x a x a x a x a x +=+++++++令0x =,得01a =,令1x =,得012781a a a a ++++=,所以12781180a a a +++=-=16.答案:解析:根据题意,向量(,2),(1,),(2,6)a x b y c ===-, 由a c ⊥,得2260x -⨯=, 解得6x =,即(6,2)a =. 又由//b c ,得21(6)y =⨯-, 解得3y =-,即(1,3)b =-, 所以(5,5)a b -=,所以25a b -=+=17.解析:因为()()222b c b c b b c b a a a a a +-++=+-=-,,所以1cos 2c =-,所以sin c =,由余弦定理得222b b 3b a a a =++≥,即b 1a ≤,当且仅当b 1a ==时等号成立,所以S ABC =△ 18.答案:(1)因为()sin sin 62f x x x ωωππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,所以1()cos cos 2f x x x x ωωω=--31cos sin 22x x x x ωωωω⎫=-=-⎪⎪⎭3x ωπ⎛⎫=- ⎪⎝⎭.由题设知06f π⎛⎫= ⎪⎝⎭,所以,Z 63k k ωππ-=π∈.故62,Z k k ω=+∈.又03ω<<,所以2ω=.(2)由(1)得()23f x x π⎛⎫=- ⎪⎝⎭,所以()4312g x x x πππ⎛⎫⎛⎫=+-=- ⎪ ⎪⎝⎭⎝⎭.因为3,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以2,1233x πππ⎡⎤-∈-⎢⎥⎣⎦.当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 解析:19.答案: (1) 如图,过点F 作//FH CD 交BC 于点H,连接AH ,易知//AE CD ,所以//FH AE 因为//EF 平面ABC ,平面AEFH ⋂平面ABC AH =,所以//EF AH所以四边形AEFH 是平行四边形,所以FH AE =,又32EA CD =,所以32FH CD = 所以23BF FH BD CD ==,即点F 在线段BD 上靠近点D 的三等分点处.(2)连接AD ,令33326AB AC EA CD ====,则2,3AB AC EA CD ==== 所以12222ADE S =⨯⨯=△因为EA ⊥平面ABC ,AB ⊂平面ABC ,所以EA AB ⊥ 又,AB AC AC AE A ⊥⋂=,所以AB ⊥平面ACDE 所以三棱锥B ADE -的体积11433ADE V S AB =⨯=△易知BE ED BC BD ==所以1cos 10BED ∠==-,所以sin BED ∠=所以132BDE S =⨯=△ 设点A 到平面BED 的距离为h则三棱锥A BDE -的体积213BDE V S h h =⨯=△因为12V V =,所以43h =过点A 作AN BC ⊥于点N,则AN NH ==所以EF AH ==,所以AF = 设直线AF 与平面BED 所成的角为θ则4sin h AF θ===,即直线AF 与平面BED解析:20.答案: (1)令2m n =+,得2422222n n n a a a +++=+从而2422222()()2n n n n a a a a +++---= 令1,2m n ==,得24321a a a +=+,解得45a = 则423a a -=所以数列222{}n n a a +-是以3为首项,2为公差的等差数列 所以22221n n a a n +-=+所以22222222442()()()n n n n n a a a a a a a a ++--=-+-++-(21)(23)3n n =-+-++2(1)(22)12n n n -+==-所以221n a n =+令1m n =+,得2222221n n n a a a +++=+ 所以222221112n n n a a a n n +++-==++又11a =,所以221,43,4n n n a n n ⎧+⎪⎪=⎨+⎪⎪⎩为偶数为奇数(2)由211n n n b a b ++=知,2111111n n b a n n +==--+ 则1111111(1)()()()2233411n nS n nn =-+-+-++-=++ 1n ==+记211n n n T n b S =++ 则22(21)(3)31211n n n n n n nT n n n ++++=⨯==+++一方面22233211(1)(1)0111n n n n n n n n T n n n n n ++-----+=-+==≥+++所以1n T n ≥+,当且仅当1n =时等号成立另一方面22233322(2)(2)0111n n n n n n n T n n n n n ++----+=-+==-<+++,所以2n T n <+故*2112,N 1n n n n n n b S ++≤+<+∈+ 解析:21.答案:(1)直线1x y +=与x 轴交于点(1,0),所以椭圆右焦点的坐标为(1,0),故1c =. 设()()1122,,,A x y B x y ,则121242,33x x y y +=+=,21211y y x x -=--, 又2222112222221,1x y x y a b a b +=+=,所以22222121220x x y y a b--+=, 则()()()()21212121220x x x x y y y y ab-+-++=,得222a b =又222,1a b c c =+=, 所以222,1a b ==,因此椭圆的方程为2212x y +=.(2)联立方程,得22121x y x y ⎧+=⎪⎨⎪+=⎩,解得01x y =⎧⎨=⎩或4313x y ⎧=⎪⎪⎨⎪=-⎪⎩.不妨令()410,1,,33A B ⎛⎫- ⎪⎝⎭,易知直线l 的斜率存在,设直线:l y kx =,代入2212x y +=,得()22212k x+=,则x =或,设()()3344,,,C x y D x y ,则34x x =-则34C x D -,()410,1,,33A B ⎛⎫- ⎪⎝⎭到直线y kx =的距离分别是12d d =, 由于直线l 与线段AB (不含端点)相交,所以()4101033k k ⎛⎫⨯-+< ⎪⎝⎭,即14k >-,所以()124441k k d d +++==, 四边形ACBD 的面积()1212111222S CD d CD d CD d d =⋅+⋅=+=, 令1k t +=,则34t >,2221243k t t +=-+,S ==,当123t =,即12k =时,min S =符合题意,因此四边形ACBD. 解析:22.答案:(1)由题意知2e e 1'()x x x f x x -+=,设切点坐标为()00,x y ,则000000200e e 1e 1'(),()x x x x f x f x x x -+-==,所以函数()y f x =的图像在点()00,x y 处的切线方程为()00000200e e 1e 1x x x x y x x x x -+--=-,即000000200e e 12e e 2x x x x x x y x x x -+--=+.所以000002000e e 112e e 2x x x x x x x m x ⎧-+=⎪⎪⎨--⎪=⎪⎩, 由0002e e 11x x x x -+=,得00200e e 1x x x x -+=,即()()0001e 10x x x ---=. 令()e 1x g x x =--,则()'e 1x g x =-,当0x >时,()'0g x >,所以()g x 在()0,+∞上单调递增, 因此0x >时,()0g x >,即00e 10x x -->,故由()()0001e 10x x x ---=,得01x =,因此e 2m =-. (2)令()()e 1e 2x h x x x =--+-,则()'e 22e x h x x =-+-, 令()e 22e x H x x =-+-,则()'e 2x H x =-, 令()'0H x <,则ln 2x <,令()'0H x >,则ln 2x >, 因此()'h x 在()0,ln 2上单调递减,在()ln 2,+∞上单调递增.因为()'03e 0h =->,'(1)0h =,所以()'ln 222ln 22e 4e 2ln 20h =-+-=--<, 所以存在10ln 2x <<,使得()1'0h x =,所以当10x x <<时,()'0h x >,当11x x <<时,()'0h x <,当1x >时,()'0h x > ,即()h x 在()10,x ,()1,+∞上单调递增,在()1,1x 上单调递减. 又()00h =,()10h =,所以当0x >时,()0h x ≥,当1x =时,等号成立,即当0x >时,()e 1e 20xx x --+-≥,e 1e 2x x x-≥+-,于是()e 2f x x ≥+-,当1x =时,等号成立. 解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由全国各地一线教师精心编制《高考终极预测押题卷》对近十年全国各地高考试题的全方位精确分析,把握命题规律,找出命题趋势。
全网首发!百位名师呕血专研,只为高考最后一搏!浙江省高考数学(理)预测押题试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,0}考点:交集及其运算.专题:计算题.分析:求出集合N,然后直接求解M∩N即可.解答:解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.点评:本题考查集合的基本运算,考查计算能力,送分题.2.(5分)(•宁波二模)函数是()A.周期为π的偶函数B.周期为2π的偶函数C.周期为π的奇函数D.周期为2π的奇函数考点:两角和与差的余弦函数;三角函数的周期性及其求法;正弦函数的奇偶性;余弦函数的奇偶性.专题:三角函数的图像与性质.分析:利用两角和差的余弦公式化就爱你函数的解析式为f(x)=﹣sinx,由此可得函数的周期性和奇偶性.解答:解:函数=cosxcos﹣sinxsin﹣(cosxcos+sinxsin)=﹣2sinxsin=﹣sinx,它的周期为=2π,且是奇函数,故选D.点评:本题主要考查两角和差的余弦公式的应用,正弦函数的周期性和奇偶性,属于中档题.3.(5分)(•宁波二模)已知某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图,我们可以判断出几何体的形状,进而求出几何体的底面面积和高后,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图可得几何体是一个三棱锥,如图,即图中在长方体中红色的部分.知棱锥的底面是一个以4为底,以2为高的三角形,棱锥的高为2,故棱锥的体积V=•(4)•2•2=.故选A.点评:本题考查的知识点是由三视图求体积,其中根据已知判断出几何体的形状是解答本题的关键.4.(5分)(•宁波二模)已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)满足,则点M所构成的平面区域的面积是()A.12 B.16 C.32 D.64考点:简单线性规划;平面向量数量积的坐标表示、模、夹角.专题:不等式的解法及应用.分析:先根据向量的数量积化简约束条件,再画出约束条件表示的可行域,然后求出可行域的面积即可.解答:解:∵已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)∴=(3,3),=(3,﹣3),=(x,y).∴满足,即,它表示的可行域为:边长为4的正方形,则其围成的平面区域的面积为:4×4=32;故选C.点评:本题主要考查了两个知识点:平面向量的坐标运算以及平面区域,同时考查了阅读理解题意的能力以及简单的转化思想和数形结合的思想,属中档题.5.(5分)(•宁波二模)已知a,b∈R,条件p:“a>b”,条件q:“2a>2b﹣1”,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析::由条件p:“a>b”,再根据函数y=2x 是增函数,可得故条件q成立.但由条件q:“2a>2b﹣1”成立,不能推出条件p:“a>b”成立,从而得出结论.解答:解:由条件p:“a>b”,再根据函数y=2x 是增函数,可得2a>bb,∴2a>bb﹣1,故条件q:“2a>2b﹣1”成立,故充分性成立.但由条件q:“2a>2b﹣1”成立,不能推出条件p:“a>b”成立,例如由20>20﹣1 成立,不能推出0>0,故必要性不成立.故p是q的充分不必要条件,故选A.点评:本题主要考查充分条件、必要条件、充要条件的定义,函数y=2x 的单调性,通过举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.6.(5分)(•宁波二模)在“石头、剪刀、布”的游戏中,规定:“石头赢剪刀”、“剪刀赢布”、“布赢石头”.现有甲、乙两人玩这个游戏,共玩3局,每一局中每人等可能地独立选择一种手势.设甲赢乙的局数为ξ,则随机变量ξ的数学期望是()A.B.C.D.1考点:离散型随机变量的期望与方差.专题:概率与统计.分析:ξ的可能取值为:0、1、2、3,每一局中甲胜的概率为,进而可得ξ~B(3,),由二项分布的期望的求解可得答案.解答:解:由题意可得随机变量ξ的可能取值为:0、1、2、3,每一局中甲胜的概率为=,平的概率为,输的概率为,故P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,故ξ~B(3,),故Eξ==1故选D点评:本题考查离散型随机变量的期望的求解,得出ξ~B(3,)是解决问题的关键,属中档题.7.(5分)(•宁波二模)已知数列{an}是1为首项、2为公差的等差数列,{bn}是1为首项、2为公比的等比数列.设,Tn=c1+c2+…+cn(n∈N*),则当Tn>时,n的最小值是()A.7B.9C.10 D.11考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由题设知an=2n﹣1,bn=2n﹣1,所以由Tn=ab1+ab2+…+abn=a1+a2+a4+…+a=2n+1﹣n﹣2和Tn>,得2n+1﹣n﹣2>,由此能求出当Tn>时,n的最小值.解答:解:∵{an}是以1为首项,2为公差的等差数列,∴an=2n﹣1,∵{bn}是以1为首项,2为公比的等比数列,∴bn=2n﹣1,∴Tn=c1+c2+…+cn=ab1+ab2+…+abn=a1+a2+a4+…+a=(2×1﹣1)+(2×2﹣1)+(2×4﹣1)+…+(2×2n﹣1﹣1)=2(1+2+4+…+2n﹣1)﹣n=2×﹣n=2n+1﹣n﹣2,∵Tn>,∴2n+1﹣n﹣2>,解得n≥10.则当Tn>时,n的最小值是10.故选C.点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易出错.8.(5分)(•宁波二模)已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.考点:平面向量数量积的运算;三角形的面积公式.专题:平面向量及应用.分析:由向量的运算可得,,以及,代入夹角公式可得cos∠BOA,由平方关系可得sin∠BOA,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=()•()==6×12﹣12=,故cos∠BOA===,可得sin∠BOA==,所以△OAB的面积S===.故选B点评:本题考查平面向量的数量积和三角形面积的求解,熟练掌握公式是解决问题的关键,属中档题.9.(5分)(•宁波二模)设函数f(x)的导函数为f′(x),对任意x∈R都有f'(x)>f (x)成立,则()A.3f(ln2)>2f(ln3)B.3f(ln2)=2f(ln3)C.3f(ln2)<2f(ln3)D.3f(ln2)与2f(ln3)的大小不确定考点:利用导数研究函数的单调性;导数的运算.专题:综合题;导数的综合应用.分析:构造函数g(x)=,利用导数可判断g(x)的单调性,由单调性可得g(ln2)与g(ln3)的大小关系,整理即可得到答案.解答:解:令g(x)=,则=,因为对任意x∈R都有f'(x)>f(x),所以g′(x)>0,即g(x)在R上单调递增,又ln2<ln3,所以g(ln2)<g(ln3),即,所以,即3f(ln2)<2f(ln3),故选C.点评:本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.10.(5分)(•宁波二模)三个顶点均在椭圆上的三角形称为椭圆的内接三角形.已知点A是椭圆的一个短轴端点,如果以A为直角顶点的椭圆内接等腰直角三角形有且仅有三个,则椭圆的离心率的取值范围是()A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设椭圆的方程为,直线AB方程为y=kx+b(k>0),两方程联解得到B的横坐标为﹣,从而得|AB|=•,同理得到|AC|=•.根据|AB|=|AC|建立关于k、a、b的方程,化简整理得到(k ﹣1)[b2k2+(b2﹣a2)k+b2]=0,结合题意得该方程有三个不相等的实数根,根据一元二次方程根与系数的关系和根的判别式建立关于a、b的不等式,解之即得c2>2b2,由此结合a2=b2+c2即可解出该椭圆的离心率的取值范围.解答:解:设椭圆的方程为(a>b>0),根据BA、AC互相垂直,设直线AB方程为y=kx+b(k>0),AC方程为y=﹣x+b 由,消去y并化简得(a2k2+b2)x2+2ka2bx=0解之得x1=0,x2=﹣,可得B的横坐标为﹣,∴|AB|=|x1﹣x2|=•.同理可得,|AC|=•∵△ABC是以A为直角顶点的椭圆内接等腰直角三角形,∴|AB|=|AC|即•=•,化简整理,得b2k3﹣a2k2+a2k﹣b2=0,分解因式得:(k﹣1)[b2k2+(b2﹣a2)k+b2]=0…(*)方程(*)的一个解是k1=1,另两个解是方程b2k2+(b2﹣a2)k+b2=0的根∵k1=1不是方程b2k2+(b2﹣a2)k+b2=0的根,∴当方程b2k2+(b2﹣a2)k+b2=0有两个不相等的正数根时,方程(*)有3个不相等的实数根相应地,以A为直角顶点的椭圆内接等腰直角三角形也有三个.因此,△=(b2﹣a2)2﹣2b4>0且,化简得c2>2b2即3c2>2a2,两边都除以3a2得>,∴离心率e满足e2>,解之得e>,结合椭圆的离心率e<1,得<e<1故选:D点评:本题给出以椭圆上顶点为直角顶点的内接等腰直角三角形存在3个,求椭圆的离心率取值范围,着重考查了椭圆的标准方程、简单几何性质和直线与椭圆位置关系等知识点,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(•宁波二模)已知i是虚数单位,复数的虚部是.考点:复数代数形式的乘除运算;复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘除法法则求得z的值,即可求得它的虚部.解答:解:由于复数==,故它的虚部为,故答案为.点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.12.(4分)(•宁波二模)执行如图所示的程序框图,则输出的k值是3.考点:程序框图.专题:图表型.分析:计算三次循环的结果,与判断框条件比较,即可得到结论.解答:解:第一次循环,s=,i=1;第二次循环,s=,i=2;第三次循环,s=,i=3;此时>,退出循环,输出k=3.故答案为:3.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.13.(4分)(•宁波二模)的展开式的常数项是﹣12.考点:二项式系数的性质.专题:计算题.分析:(x2+2)(﹣1)5的展开式的常数项是第一个因式取x2,第二个因式取;第一个因式取2,第二个因式取(﹣1)5,可得结论.解答:解:第一个因式取x2,第二个因式取,可得=﹣10第一个因式取2,第二个因式取(﹣1)5,可得2×(﹣1)5=﹣2∴展开式的常数项是﹣10+(﹣2)=﹣12故答案为:﹣12点评:本题考查二项式定理的运用,解题的关键是确定展开式的常数项得到的途径.14.(4分)(•宁波二模)设函数f(x)=,若函数g(x)=f(x)﹣ax,x∈[﹣2,2]为偶函数,则实数a的值为.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:依题意,可求得g(x)=,依题意,g(﹣1)=g(1)即可求得实数a的值.解答:解:∵f(x)=,∴g(x)=f(x)﹣ax=,∵g(x)=为偶函数,∴g(﹣1)=g(1),即a﹣1=1﹣a﹣1=﹣a,∴2a=1,∴a=.故答案为:.点评:本题考查函数奇偶性的性质,求得g(x)的解析式后,利用特值法g(﹣1)=g(1)是解决问题的关键,属于中档题.15.(4分)(•宁波二模)从6名候选人中选派出3人参加A、B、C三项活动,且每项活动有且仅有1人参加,甲不参加A活动,则不同的选派方法有100种.考点:排列、组合及简单计数问题.专题:计算题.分析:根据题意,分类讨论:若选的3人中选了甲,选的3人中不选甲两种情况分别求解即可解答:解:若选的3人中选了甲:共有=40种选法若选的3人中不选甲:共有=60种根据分类计数原理可知,共有40+60=100故答案为:100点评:本题考查排列、组合的综合运用,本题解题的关键是注意优先分析特殊的元素,同时需要区分排列与组合的意义.16.(4分)(•宁波二模)已知曲线C1:y=x2+4和C2:y=2x﹣x2,直线l1与C1、C2分别相切于点A、B,直线l2(不同于l1)与C1、C2分别相切于点C、D,则AB与CD交点的横坐标是.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:抛物线C1的方程是y=x2+4,和C2:y=2x﹣x2,由题意知曲线C2与C1关于AB与CD交点对称,得AB与CD交点即为两抛物线的对称中心.求出抛物线C1和抛物线C2的顶点坐标,再求出它们连线段的中点即可得出正确答案.解答:解:∵C1:y=x2+4和C2:y=2x﹣x2,分别由抛物线y=x2经过平移或对称变换而得,它们是全等的图形,从而具有对称中心,又直线l1与l2分别是它们的公切线,根据对称性知,直线l1与l2也关于对称中心对称,从而曲线C2与C1关于AB与CD交点对称,AB与CD交点即为两抛物线的对称中心.如图.由于抛物线C1和抛物线C2的顶点坐标分别为M(0,4),N(1,1),线段MN的中点的横坐标为x==.即两抛物线的对称中心的横坐标为.故答数为:.点评:本题考查曲线方程,考查曲线的对称性.解题时要认真审题,仔细解答,注意合理地进行等价转化.17.(4分)(•宁波二模)在直角坐标平面上,已知点A(0,2),B(0,1),D(t,0)(t>0).点M是线段AD上的动点,如果|AM|≤2|BM|恒成立,则正实数t的最小值是.考点:两点间的距离公式;基本不等式.专题:计算题.分析:设M(x,y),由题意可得y=,代入距离公式可得x2+(y﹣2)2≤4[x2+(y﹣1)2],消掉y可得(3t2+12)x2﹣16tx+4t2≥0恒成立,进而可得其△≤0,解此不等式可得t的范围,进而可得最小值.解答:解:设M(x,y),则由A、M、D三点共线可得,整理可得y=,由两点间的距离公式,结合|AM|≤2|BM|恒成立可得x2+(y﹣2)2≤4[x2+(y﹣1)2],整理可得3x2+3y2﹣4y≥0,代入y=化简可得(3t2+12)x2﹣16tx+4t2≥0恒成立,∵3t2+12>0,由二次函数的性质可得△=(﹣16t)2﹣4(3t2+12)•4t2≤0,整理可得3t4﹣4t2≥0,即,解得t≥,或t≤(因为t>0,故舍去)故正实数t的最小值是:故答案为:点评:本题考查两点间的距离公式,涉及不等式的解法,属中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(•宁波二模)在△ABC中,角A,B,C所对的边分别为a,b,c,设函数(x∈R).(Ⅰ)求函数f(x)的最小正周期和最大值;(Ⅱ)若函数f(x)在处取得最大值,求的值.两角和与差的余弦函数;二倍角的正弦;二倍角的余弦.考点:三角函数的图像与性质.专题:(Ⅰ)利用两角和差的正弦公式、余弦公式化简函数f(x)的解析式为分析:,由此可求它的最大值.(Ⅱ)由(I)知:由,求得A的值,再利用正弦定理及两角和差的正弦公式、余弦公式,化简要求的式子,求得结果.解答:解:(Ⅰ)依题意得…(2分)==,…(5分)所以T=π,.…(7分)(Ⅱ)由(I)知:由,得,所以.故==.…(14分)点评:本题主要考查两角和差的正弦公式、余弦公式,正弦定理以及二倍角公式的应用,属于中档题.19.(14分)(•宁波二模)设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,,n∈N*.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)设Cn=(Sn+1)(nbn﹣λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.考点:等差数列与等比数列的综合.专题:计算题;等差数列与等比数列.分析:(Ⅰ)利用a1=1,S4=5S2,求出数列的公比,即可求数列{an}的通项公式;通过,推出,利用累积法求解{bn}的通项公式.(Ⅱ)求出等比数列的前n项和,化简Cn=(Sn+1)(nbn﹣λ),推出Cn+1﹣Cn,利于基本不等式求出数列{Cn}是单调递减数列,求实数λ的取值范围.解答:(本题满分14分)解:(Ⅰ)由S4=5S2,q>0,得…(3分)又(n>1),则得所以,当n=1时也满足.…(7分)(Ⅱ)因为,所以,使数列{Cn}是单调递减数列,则对n∈N*都成立,…(10分)即,…(12分),当n=1或2时,,所以.…(14分)点评:本题考查等比数列与等差数列的综合应用,累积法的应用以及数列的函数的特征的应用,考查计算能力.20.(15分)(•宁波二模)如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.考点:用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.专题:空间角.分析:(I)取AB中点E,连PE、CE,由等腰三角形的性质可得PE⊥AB.再利用勾股定理的逆定理可得PE⊥CE.利用线面垂直的判定定理可得PE⊥平面ABCD.再利用面面垂直的判定定理即可证明.(II)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.解答:(Ⅰ)证明:如图1所示,取AB中点E,连PE、CE.则PE是等腰△PAB的底边上的中线,∴PE⊥AB.∵PE=1,CE=,PC=2,即PE2+CE2=PC2.由勾股定理的逆定理可得,PE⊥CE.又∵AB⊂平面ABCD,CE⊂平面ABCD,且AB∩CE=E,∴PE⊥平面ABCD.而PE⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z轴,建立如图所示的空间直角坐标系.则A(0,﹣1,0),C(,0,0),D(,﹣2,0),P(0,0,1),=(,1,0),=(,0,﹣1),=(0,2,0).设是平面PAC的一个法向量,则,即.取x1=1,可得,.设是平面PCD的一个法向量,则,即.取x2=1,可得,.故,即二面角A﹣PC﹣D的平面角的余弦值是.点评:熟练掌握等腰三角形的性质、勾股定理的逆定理、线面垂直的判定定理、面面垂直、通过建立空间直角坐标系并利用两个平面的法向量的夹角得到二面角的方法等是解题的关键.21.(15分)(•宁波二模)如图,已知椭圆E:的离心率是,P1、P2是椭圆E的长轴的两个端点(P2位于P1右侧),点F是椭圆E的右焦点.点Q是x轴上位于P2右侧的一点,且满足.(Ⅰ)求椭圆E的方程以及点Q的坐标;(Ⅱ)过点Q的动直线l交椭圆E于A、B两点,连结AF并延长交椭圆于点C,连结BF 并延长交椭圆于点D.①求证:B、C关于x轴对称;②当四边形ABCD的面积取得最大值时,求直线l的方程.考点:直线与圆锥曲线的关系;直线的一般式方程;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设点F(c,0),Q(x,0)(x>a),由,得,依题意|FQ|=1,即,再由离心率,联立即可解得a,b,c,及点Q坐标;(Ⅱ)①设直线l的方程为x=my+2,代入椭圆E的方程可得(2+m2)y2+4my+2=0,设A(x1,y1),B(x2,y2),点B关于x轴的对称点B1(x2,﹣y2),只需证明B1即为点C,可证A、F、B1三点共线,根据斜率相等及韦达定理即可证明;②由①得B、C关于x轴对称,同理A、D关于x轴对称,易知四边形ABCD是一个等腰梯形,从而四边形ABCD的面积S=|x1﹣x2|•(|y1|+|y2|)=|m|•|y1﹣y2|•|y1+y2|,代入韦达定理可得关于m的函数,通过换元借助导数可求得S的最大值及相应的m值,从而可得直线方程;解答:解:(Ⅰ)设点F(c,0),Q(x,0)(x>a).由,可得,解得.依题意|FQ|=1,即.又因为,所以.故椭圆的方程是,点Q的坐标是(2,0).(Ⅱ)①设直线l的方程为x=my+2,代入椭圆E的方程可得(2+m2)y2+4my+2=0,依题意,△=(4m)2﹣8(2+m2)=8(m2﹣2)>0,m2>2.设A(x1,y1),B(x2,y2),则,.(*)点B关于x轴的对称点B1(x2,﹣y2),则A、F、B1三点共线等价于,由(*)可知上述关系成立.因此,点C即是点B1,这说明B、C关于x轴对称.②由①得B、C关于x轴对称,同理,A、D关于x轴对称.所以,四边形ABCD是一个等腰梯形,则四边形ABCD的面积S=|x1﹣x2|•(|y1|+|y2|)=|m|•|y1﹣y2|•|y1+y2|=.设,则m2=t2+2,.求导可得,令S'=0,可得.由于S(t)在上单调增,在上单调减.所以,当即时,四边形ABCD的面积S取得最大值.此时,直线l的方程是.点评:本题考查直线与圆锥曲线的位置关系、椭圆方程及直线的方程,考查三点共线及直线斜率,考查学生综合运用所学知识分析解决问题的能力,本题综合性强,所用知识点繁多,对能力要求高.22.(14分)(•宁波二模)设函数f(x)=lnx+ax2﹣(3a+1)x+(2a+1),其中a∈R.(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:①对于任意实数x1,x2∈(0,1)且x1≠x2,恒成立;②对于任意实数x1,x2∈(1,+∞)且x1≠x2,恒成立.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)先求函数的定义域、导数f′(x),由题意f'(1)=0,解出可得a值,在定义域内解不等式f'(x)>0,f'(x)<0,可得f(x)的单调性,根据单调性可得其最大值;(Ⅱ)令=,由(Ⅰ)中的结论可得对任意x∈(0,1)∪(1,+∞),lnx<x﹣1(*)恒成立.(ⅰ)如果x1,x2∈(0,1),且x1≠x2,则.根据(*)可得,.由性质①转化为恒成立问题,可得a的范围;(ⅱ)如果x1,x2∈(1,+∞)且x1≠x2,则.再根据(*)进行放缩,由性质②可得恒成立问题,由此可得a的范围,综合(i)(ii)可得a的范围;解答:解:(Ⅰ)函数f(x)的定义域是(0,+∞),,依题意,f'(1)=1+2a﹣(3a+1)=0,解得a=0.此时,f(x)=lnx﹣x+1,.因为x∈(0,+∞),令f'(x)>0,可得x∈(0,1);令f'(x)<0,可得x∈(1,+∞).所以,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.因此,当x=1时,f(x)取得最大值f(1)=0.(Ⅱ)令==,由(Ⅰ)中的结论可知,lnx﹣x+1<0对任意x∈(0,1)∪(1,+∞)恒成立,即lnx <x﹣1(*)恒成立.(ⅰ)如果x1,x2∈(0,1),且x1≠x2,则.根据(*)可得,.若f(x)满足性质①,则恒成立,于是对任意x1,x2∈(0,1)且x1≠x2恒成立,所以.(ⅱ)如果x1,x2∈(1,+∞)且x1≠x2,则.根据(*)可得⇔,则F(x1,x2)<.若f (x )满足性质②,则恒成立.于是对任意x1,x2∈(1,+∞)且x1≠x2恒成立,所以a .综合(ⅰ)(ⅱ)可得,a=.点评:本题考查利用导数研究函数的极值、最值问题,考查恒成立问题,考查学生综合运用知识分析解决问题的能力,解决(Ⅱ)问的关键是借助(Ⅰ)中的结论得到恰当不等式.。