3 第3讲 平面向量的数量积及应用举例

合集下载

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

平面向量的数量积PPT课件

平面向量的数量积PPT课件

运算律
向量与标量乘法结合律
对于任意向量$mathbf{a}$和标量$k$,有$kmathbf{a} cdot mathbf{b} = (kmathbf{a}) cdot mathbf{b} = k(mathbf{a} cdot mathbf{b})$。
向量与标量乘法交换律
对于任意向量$mathbf{a}$和标量$k$,有$mathbf{a} cdot kmathbf{b} = k(mathbf{a} cdot mathbf{b}) = (kmathbf{b}) cdot mathbf{a}$。
向量数量积的性质
向量数量积满足交换律和结合 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积满足分配律,即 (a+b)·c=a·c+b·c。
向量数量积满足正弦律,即 a·b=|a||b|sinθ,其中θ为向量a 和b之间的夹角。
02 平面向量的数量积的运算
计算公式
定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为 $mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是向量 $mathbf{a}$和$mathbf{b}$之间的夹角。
交换律
平面向量的数量积满足交换律,即$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$。
分配律
平面向量的数量积满足分配律,即$(mathbf{a} + mathbf{b}) cdot mathbf{c} = mathbf{a} cdot mathbf{c} + mathbf{b} cdot mathbf{c}$。

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例-高考状元之路

第三节 平面向量的数量积及平面向量应用举例预习设计 基础备考知识梳理1.平面向量的数量积 若两个 向量a 与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作规定:零向量与任一向量的数量积为两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是2.平面向量数量积的几何意义数量积a ·b 等于a 的长度∣a ∣与b 在a 方向上的投影 的乘积.3.平面向量数量积的重要性质=⋅=⋅e a a e )1((2)非零向量⇔⊥b a b a ,,(3)当a 与b 同向时,=⋅b a当a 与b 反向时,=⋅b a =⋅a a , =||a=θcos )4(||)5(b a ⋅.|||b a4.平面向量数量积满足的运算律=⋅b a )1( (交换律);=⋅=⋅)())(2(b a b a λλ (A 为实数);=+c b a ).)(3(5.平面向量数量积有关性质的坐标表示设向量),,(),,(2211y x b y x a ==则=⋅b a 由此得到:(1)若),,(y x a =则=2||a ,或=||a(2)设),,(),,(2211y x B y x A 则A ,B 两点间的距离=||AB =||(3)设),,(),,(2211y x b y x a ==则⇔⊥b a典题热身1.下列四个命题中真命题的个数为 ( )①若,0=⋅b a 则;b a ⊥②若,c b b a ⋅=⋅且,0=/b 则⋅=c a);().(C b a c b a ⋅⋅=⋅③.)(222b a b a ⋅=⋅④4.A 2.B 0.c 3.D答案:C2.在△ABC 中,,10,2,3===BC AC AB 则=⋅. ( )23.-A 32.-B 32.c 23.D 答案:D3.已知平面向量b a b a +-=-=λ),2,4(),3,1(与a 垂直,则=λ( )1.-A 1.B2.-c 2.D答案:A4.已知),7,4(),3,2(-==b a 则a 在b 上的投影为( )13.A 513.B 565.c 65.D答案:C5.已知,2)(,6||,1||=-⋅==a b a b a 则向量a 与b 的夹角是( )6π⋅A 4π⋅B 3π⋅c 2π⋅D 答案:C课堂设计 方法备考题型一 平面向量的数量积运算和向量的模【例1】已知向量),2sin ,2(cos ),23sin ,23(cos x x b x x a -==且⋅-∈]4,3[ππx (1)求b a ⋅及|;|b a +(2)若|,|)(b a b a x f +-⋅=求)(x f 的最大值和最小值,题型二 利用向量的数量积求其夹角【例2】已知,21)()(,21,1||=+⋅-=⋅=b a b a b a a 求 (l)a 与b 的夹角;(2)a-b 与a+b 的夹角的余弦值.题型三 利用向量的数量积解决平行与垂直问题【例3】设向量,(cos ),cos 4,(sin ),sin ,cos 4(βββαα===c b a ).sin 4β-(1)若a 与b-2c 垂直,求)tan(βα+的值;(2)求||c b +的最大值;(3)若,16tan tan =βα求证:.//b a题型四 平面向量数量积的应用【例4】已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量),,(b a m =),sin ,(sin A B n = ).2,2(--=a b p(1)若,//n m 求证:△ABC 为等腰三角形;(2)若,p m ⊥边长,2=c 角,3π⋅=C 求△ABC 的面积.技法巧点1.向量数量积性质的应用 向量数量积的性质⇔=⋅⋅=⋅=0,||||cos ,||b a b a b a a a a θ,b a ⊥因此,用平面向量数量积可以解决有关长度、角度、垂直的问题.2.证明直线平行、直线、线段相等等问题的基本方法(1)要证,CD AB =可转化证明22CD =或.||||=(2)要证两线段,//CD AB 只要证存在一实数,0=/λ使等式λ=成立即可.(3)要证两线段,CD AB ⊥只需证.0..= 失误防范1.数量积a ·b 中间的符号“.”不能省略,也不能用“×”来替代.0.2=⋅b a 不能推出0=a ,或.0=b 因为0=⋅b a 时,有可能.b a ⊥)0(.3=/⋅=⋅a c a b a 不能推出.c b =4.一般地,,).()(a c b c b a =/⋅即乘法的结合律不成立.因b a ⋅是一个数量,所以c b a )(⋅表示一个与c 共线的向量,同理右边a c b )(⋅表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下.)()(a C b c b a ⋅=/⋅5.向量夹角的概念要领会,比如正三角形ABC 中,><,应为,120 而不是.60随堂反馈1.(2011.清远调研)在△ABC 中,已知a ,b ,c 成等比数列,且,43cos ,3==+B c a 则⋅等于 ( ) 23.A 23.-B 3.c 3.-D答案:B2.(2011,台州一模)已知向量a ,b 的夹角为,1||,120=a ,5||=b 则|3|b a -等于( )7.A 6.B 5.C 4.D答案:A3.(2011.湖北高考)若向量),1,1(),2,1(-==b a 则b a +2与b a -的夹角等于( )4.π-A 6π⋅B 4π⋅c 43.πD 答案:C4.(2011.全国卷)设向量a ,b 满足=⋅==b a b a ,1||||,21-则=+|2|b a ( ) 2.A 3.B 5.c 7.D答案:B5.(2011.江苏高考)已知21,e e 是夹角为32π的两个单位向量,⋅+=-=2121,2e ke b e e a 若,0=⋅b a 则实数k 的值为 答案:45 高效作业 技能备考一、选择题1.(2010.安徽高考)若向量),21,21(),0,1(==b a 则下列结论中正确的是( ) ||||.b a A = 22.=⋅b a B b a c -.与b 垂直 b a D //. 答案:C2.(2010.重庆高考)若向量a ,b 满足===⋅||,1||,0b a b a ,2则=-|2|b a ( )0.A 22.B 4.C 8.D答案:B3.(2010.四川高考)设点M 是线段BC 的中点,点A 在直线BC 外,如果BC -=+=162那么||等于 ( ) 8.A 4.B 2.C 1.D答案:C4.(2010.辽宁高考)平面上O ,A ,B 三点不共线,若,a =,b =则△OAB 的面积等于( )222)(|.|.b a b a A ⋅- |222)(|.b a b a B ⋅+⋅222)(||||21.b a b a c ⋅-⋅ 222)(21.b a b a D ⋅+⋅ 答案:C5.(2010.杭州质检)向量.2),1,(),2,1(b a c x b a +===,2b a d -=若,//d c 则实数x 的值等于( )21.A 21.-B 61.c 61.-D 答案:A6.(2011.汕头模拟)如图所示,在△ABC 中,=∠==ABC BC AB ,4,30 AD 是边BC 上的高,则. 的值等于( )0.A 4.B 8.c 4.-D答案:B二、填空题7.(2011.天津高考)已知直线梯形ABCD 中,,//BC AD ,90 =∠ADC ,2=AD P BC ,1=是腰DC 上的动点,则|3|+的最小值为答案:58.(2010.浙江高考)若平面向量),0(,b a a b a =/=/满足=||b ,1且a 与b-a 的夹角为,120则||a 的取值范围是答案:)332,0(9.(2011.浙江高考)若平面向量βα、满足,1||,1||≤=βα且以向量βα、为邻边的平行四边形的面积为,21则βα和的夹角θ的取值范围是 答案:]65,6[ππ三、解答题10.(2010.江苏高考)在平面直角坐标系xOy 中,已知点).1,2(),3,2()2,1(----C rB A(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足,0)(=⋅-t 求t 的值.11.(2011.湖南高考)已知向量).2,1(),sin 2cos ,(sin =-=b a θθθ(1)若a∥b,求θtan 的值;(2)若,00|,|||π<<=b a 求θ的值.12.(2011.江苏高考)已知向量]).0,[)(sin ,(cos πααα-∈=OA 向量),5,0(),1,2(-==n m 且).(n OA m -⊥(1)求向量;(2)若,0,102)cos(πβπβ<<=-求).2cos(βα-。

2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析

2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析

2021高三统考北师大版数学一轮学案:第5章第3讲平面向量的数量积及应用含解析第3讲平面向量的数量积及应用基础知识整合1.向量的夹角定义图示范围共线与垂直已知两个非零向量a和b,作错误!=a,错误!=b,则错误!∠AOB就是a与b 的夹角设θ是a与b的夹角,则θ的取值范围是020°≤θ≤180°错误!θ=0°或θ=180°⇔a∥b,错误!θ=90°⇔a⊥b2.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量错误!|a||b|·cosθ叫做a与b的数量积,记作a·b投影错误!|a|cosθ叫做向量a在b方向上的投影,错误!|b|cosθ叫做向量b在a方向上的投影几何意义数量积a·b等于错误!a的长度|a|与错误!b在a的方向上的投影|b|cosθ的乘积3.向量数量积的运算律交换律a·b=错误!b·a分配律(a+b)·c错误!a·c+b·c数乘结合律(λa)·b=λ(a·b)=12a·(λb)4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论几何表示坐标表示模|a|=错误!|a|=错误!错误!夹角cosθ=错误!cosθ=错误!错误!a⊥b的充要条件a·b=0错误!x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤错误!1.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0)不能得出b=c,两边不能约去一个向量.2.数量积不满足结合律,即(a ·b)·c≠a·(b·c).3.当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,特别地,a·a=a2或|a|=错误!.4.有关向量夹角的两个结论:(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为a与b夹角为0时也有a·b>0).(2)两个向量a与b的夹角为钝角,则有a·b〈0,反之不成立(因为a与b夹角为π时也有a·b〈0).1.(2019·重庆模拟)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a -3b)⊥c,则实数k=()A.-错误!B.0C.3 D.错误!答案C解析因为2a-3b=(2k-3,-6),(2a-3b)⊥c,所以(2a -3b)·c=2(2k-3)-6=0,解得k=3.选C.2.(2019·全国卷Ⅱ)已知向量a=(2,3),b=(3,2),则|a-b|=()A.错误!B.2C.5 2 D.50答案A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|=错误!=错误!.故选A。

备考2025届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式

备考2025届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式

极化恒等式例6 (1)[2024北京高考]在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ 的取值范围是( D ) A.[-5, 3]B.[-3,5]C.[-6,4]D.[-4,6]解析 解法一(极化恒等式) 设AB 的中点为M ,CM⃗⃗⃗⃗⃗⃗ 与CP ⃗⃗⃗⃗⃗ 的夹角为θ,由极化恒等式得PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =PM ⃗⃗⃗⃗⃗⃗ 2-14AB ⃗⃗⃗⃗⃗ 2=(CM ⃗⃗⃗⃗⃗⃗ -CP ⃗⃗⃗⃗⃗ )2-254=CM ⃗⃗⃗⃗⃗⃗ 2+CP ⃗⃗⃗⃗⃗ 2-2CM ⃗⃗⃗⃗⃗⃗ ·CP ⃗⃗⃗⃗⃗ cos θ-254=254+1-5cos θ-254=1-5cos θ,因为cos θ∈[-1,1],所以PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6]. 解法二 以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴建立平面直角坐标系,则 A (3,0),B (0,4),设P (x ,y ),则x 2+y 2=1,PA⃗⃗⃗⃗⃗ =(3-x ,-y ),PB ⃗⃗⃗⃗⃗ = (-x ,4-y ),所以PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =x 2-3x +y 2-4y =(x -32)2+(y -2)2-254,又(x -32)2+(y -2)2表示圆x 2+y 2=1上一点到点(32,2)距离的平方,圆心(0,0)到点(32,2)的距离为52,所以PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ∈[(52-1)2-254,(52+1)2-254],即PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6],故选D. 解法三 以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴建立平面直角坐标系,则 A (3,0),B (0,4),因为PC =1,所以P 在以(0,0)为圆心,1为半径的圆上,所以设点P 坐标为(cos α,sin α),则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =(3-cos α,-sin α)·(-cos α,4-sin α)=1-3cos α-4sin α=1-5sin (α+φ)(其中tan φ=34).因为sin (α+φ)∈[-1,1],所以PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6]. (2)[全国卷Ⅱ]已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )的最小值是( B ) A.-2B.-32C.-43D.-1解析 解法一 如图,取BC 的中点D ,则PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =2PD ⃗⃗⃗⃗⃗ ,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=2PA ⃗⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗⃗ .在△PAD 中,取AD 的中点O ,则2PA ⃗⃗⃗⃗⃗ ·PD⃗⃗⃗⃗⃗ =2|PO ⃗⃗⃗⃗⃗ |2-12|AD ⃗⃗⃗⃗⃗ |2=2|PO⃗⃗⃗⃗⃗ |2-32. 由于点P 在平面内是随意的,因此当且仅当点P ,O 重合时,|PO ⃗⃗⃗⃗⃗ |取得最小值,即2PA ⃗⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗⃗ 取得最小值-32.故选B. 解法二 如图,以等边三角形ABC 的底边BC 的中点O 为坐标原点,BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,√3),B (-1,0),C (1,0).设P (x ,y ),则PA⃗⃗⃗⃗⃗ =(-x ,√3-y ),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y ),PC ⃗⃗⃗⃗⃗ =(1-x ,-y ),所以PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=(-x ,√3-y )·(-2x ,-2y )=2x 2+2(y -√32)2-32,易知当x =0,y =√32时,PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )取得最小值,最小值为-32.故选B.方法技巧极化恒等式:a ·b =14[(a +b )2-(a -b )2].几何意义:向量a ,b 的数量积等于以这组向量所对应的线段为邻边的平行四边形的“和对角线长”与“差对角线长”的平方差的14.应用:(1)在▱ABCD 中,O 为AC ,BD 的交点,则有AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =14(4|AO ⃗⃗⃗⃗⃗ |2-4|OB ⃗⃗⃗⃗⃗ |2)=|AO⃗⃗⃗⃗⃗ |2-|OB ⃗⃗⃗⃗⃗ |2. (2)如图,在△ABC 中,若M 是BC 的中点,则AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ 2-14BC⃗⃗⃗⃗⃗ 2. 训练4 [2024山东青岛二中5月模拟]如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ =-32,则实数λ的值为 16,若M ,N 是线段BC 上的动点,且 |MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗⃗ 的最小值为 132.解析 依题意得AD ∥BC ,∠BAD =120°,由AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |·cos ∠BAD = -32|AD ⃗⃗⃗⃗⃗ |=-32,得|AD ⃗⃗⃗⃗⃗ |=1,因此λ=|AD⃗⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |=16.取MN 的中点E ,连接DE ,则DM⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =2DE ⃗⃗⃗⃗⃗ ,DM ⃗⃗⃗⃗⃗⃗ ·DN ⃗⃗⃗⃗⃗⃗ =14[(DM ⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ )2-(DM ⃗⃗⃗⃗⃗⃗ -DN ⃗⃗⃗⃗⃗⃗ )2]=DE ⃗⃗⃗⃗⃗ 2-14NM ⃗⃗⃗⃗⃗⃗⃗ 2=DE ⃗⃗⃗⃗⃗ 2-14.留意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin B =3√32,因此DE ⃗⃗⃗⃗⃗ 2-14的最小值为(3√32)2-14=132,即DM ⃗⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗⃗ 的最小值为132.思维帮·提升思维 快速解题三角形“四心”的向量表示与运用角度1 垂心的向量表示与运用例7 [2024山西朔州模拟]已知H 为△ABC 的垂心,若AH⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,则sin ∠BAC = √63.解析 如图,连接BH ,CH ,因为AH ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,所以BH ⃗⃗⃗⃗⃗⃗ =BA⃗⃗⃗⃗⃗ +AH ⃗⃗⃗⃗⃗⃗ = -23AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AH ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ -35AC ⃗⃗⃗⃗⃗ .由H 为△ABC 的垂心,得BH ⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,即(-23AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ )·AC⃗⃗⃗⃗⃗ =0,可知25|AC ⃗⃗⃗⃗⃗ |2=23|AC ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |cos ∠BAC ,即cos ∠BAC =3|AC⃗⃗⃗⃗⃗ |5|AB⃗⃗⃗⃗⃗ | ①,同理有CH ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,即(13AB ⃗⃗⃗⃗⃗ -35AC ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =0,可知13|AB ⃗⃗⃗⃗⃗ |2=35|AC ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |cos ∠BAC ,即cos ∠BAC =5|AB ⃗⃗⃗⃗⃗ |9|AC ⃗⃗⃗⃗⃗ |②,①×②得cos 2∠BAC =13,得sin 2∠BAC =1-cos 2∠BAC =1-13=23,又sin ∠BAC >0,所以sin ∠BAC =√63. 方法技巧1.垂心的定义:三角形三条高的交点称为该三角形的垂心.2.垂心的性质:设O 是△ABC 的垂心,P 为△ABC 所在平面内随意一点,则有(1)OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ;(2)|OA ⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=|OB ⃗⃗⃗⃗⃗ |2+|CA ⃗⃗⃗⃗⃗ |2=|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2; (3)动点P 满意AP⃗⃗⃗⃗⃗ =λ(AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cos∠ABC +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cos∠ACB )或OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cos∠ABC +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cos∠ACB ),λ∈R 时,动点P 的轨迹经过△ABC 的垂心.角度2 重心的向量表示与运用例8 [2024广州一中诊断]如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 分别交于M ,N 两点,AM ⃗⃗⃗⃗⃗⃗ =x AB⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =y AC ⃗⃗⃗⃗⃗ ,则xy x +y= 13 .解析 由M ,G ,N 三点共线得,存在实数λ使得AG ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +(1-λ)AN ⃗⃗⃗⃗⃗⃗ =x λAB ⃗⃗⃗⃗⃗ +y (1-λ)AC⃗⃗⃗⃗⃗ ,且0<λ<1. 因为G 是△ABC 的重心,所以AG ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),所以{xλ=13,y (1-λ)=13,则{x =13λ,y =13(1-λ),故xy =19λ(1-λ),x +y =13λ(1-λ),则xy x +y =19λ(1-λ)×3λ(1-λ)=13.方法技巧1.重心的定义:三角形三条中线的交点称为该三角形的重心.2.重心的性质:设O 是△ABC 的重心,P 为平面内随意一点,则有(1)OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0;(2)PO⃗⃗⃗⃗⃗ =13(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ );(3)动点P 满意AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ + λ(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),λ∈[0,+∞)时,动点P 的轨迹经过△ABC 的重心. 角度3 外心的向量表示与运用例9 [2024湖北荆门模拟]已知点O 为△ABC 所在平面内一点,在△ABC 中,满意2AB ⃗⃗⃗⃗⃗ ·AO ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |2,2AC ⃗⃗⃗⃗⃗ ·AO ⃗⃗⃗⃗⃗ =|AC ⃗⃗⃗⃗⃗ |2,则点O 为该三角形的( B ) A.内心B.外心C.垂心D.重心解析 因为2AB ⃗⃗⃗⃗⃗ ·AO⃗⃗⃗⃗⃗ =2|AB ⃗⃗⃗⃗⃗ ||AO ⃗⃗⃗⃗⃗ |cos ∠OAB =|AB ⃗⃗⃗⃗⃗ |2,所以|AO ⃗⃗⃗⃗⃗ |cos ∠OAB = 12|AB ⃗⃗⃗⃗⃗ |,则向量AO ⃗⃗⃗⃗⃗ 在向量AB⃗⃗⃗⃗⃗ 上的投影向量的长度为|AB ⃗⃗⃗⃗⃗ |的一半,所以点O 在边AB 的中垂线上,同理,点O 在边AC 的中垂线上,所以点O 为该三角形的外心,故选B. 方法技巧1.外心的定义:三角形三边垂直平分线的交点称为该三角形的外心.2.外心的性质:若O 是△ABC 的外心,则有(1)|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |; (2)(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·AC ⃗⃗⃗⃗⃗ =(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =0. 角度4 内心的向量表示与运用例10 [2024四川南充阶段测试]已知O 是△ABC 所在平面内一点,且点O 满意OA ⃗⃗⃗⃗⃗ ·(AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |-AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)=OB ⃗⃗⃗⃗⃗ ·(BA ⃗⃗⃗⃗⃗ |BA ⃗⃗⃗⃗⃗ |-BC ⃗⃗⃗⃗⃗ |BC ⃗⃗⃗⃗⃗ |)=OC ⃗⃗⃗⃗⃗ ·(CA ⃗⃗⃗⃗⃗ |CA ⃗⃗⃗⃗⃗ |-CB⃗⃗⃗⃗⃗ |CB ⃗⃗⃗⃗⃗ |)=0,则点O 为△ABC 的( C ) A.外心 B.重心C.内心D.垂心解析 解法一AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |,AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |分别是与AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 方向相同的单位向量,可令AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |=AD ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=AE ⃗⃗⃗⃗⃗ ,连接ED ,则△ADE 为腰长是1的等腰三角形,AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |-AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=ED ⃗⃗⃗⃗⃗ ,所以OA ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0,所以AO 为∠CAB 的平分线,同理BO 为∠ABC 的平分线,CO 为∠ACB 的平分线,所以O 为△ABC 的内心.故选C. 解法二 OA ⃗⃗⃗⃗⃗ ·(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |-AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)=0,即OA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |=OA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,即|OA ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ ||AB⃗⃗⃗⃗⃗ |cos (π-∠OAB )=|OA ⃗⃗⃗⃗⃗ |·|AC ⃗⃗⃗⃗⃗||AC ⃗⃗⃗⃗⃗|·cos (π-∠OAC ),所以∠OAB =∠OAC ,即AO 是∠BAC 的平分线,同理可得BO 为∠ABC 的平分线,CO 为∠ACB 的平分线,所以O 为△ABC 的内心. 方法技巧1.内心的定义:三角形三条内角平分线的交点称为该三角形的内心.2.内心的性质:若O 是△ABC 的内心,P 为平面内随意一点,则有(1)a OA ⃗⃗⃗⃗⃗ +b OB ⃗⃗⃗⃗⃗ +c OC ⃗⃗⃗⃗⃗ =0(a ,b ,c 分别是△ABC 的三边BC ,AC ,AB 的长);(2)动点P 满意AP ⃗⃗⃗⃗⃗ =λ(AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |),λ∈[0,+∞)时,动点P 的轨迹经过△ABC 的内心.训练5 (1)[2024长春模拟]点O 是平面α上确定点,点P 是平面α上一动点,A ,B ,C 是平面α上△ABC 的三个顶点(点O ,P ,A ,B ,C 均不重合),以下命题正确的是 ①②③④ .①动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,则△ABC 的重心确定在满意条件的P 点的集合中; ②动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)(λ>0),则△ABC 的内心确定在满意条件的P 点的集合中;③动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )(λ>0),则△ABC 的重心确定在满意条件的P 点的集合中;④动点P 满意OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cosB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC ) (λ∈R ),则△ABC 的垂心确定在满意条件的P 点的集合中.解析 对于①,OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,移项得-OA ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,即PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0,则点P 是△ABC 的重心,故①正确. 对于②,因为动点P 满意OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)(λ>0),移项得AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |)(λ>0),所以AP ⃗⃗⃗⃗⃗ 与∠BAC 的平分线对应的向量共线,所以P 在∠BAC 的平分线上,所以△ABC 的内心在满意条件的P 点的集合中,②正确. 对于③,OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )(λ>0),即AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |sinC ),过点A 作AD ⊥BC ,垂足为D ,则|AB⃗⃗⃗⃗⃗ |sin B =|AC ⃗⃗⃗⃗⃗ |sin C =AD ,AP ⃗⃗⃗⃗⃗ =λAD(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),设M 为BC 的中点,则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AM ⃗⃗⃗⃗⃗⃗ ,则AP ⃗⃗⃗⃗⃗ =2λAD AM ⃗⃗⃗⃗⃗⃗ ,所以P 在BC 的中线上,所以△ABC 的重心确定在满意条件的P 点的集合中,③正确. 对于④,OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC )(λ∈R ),即AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC ),所以AP ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC)=λ(-|BC ⃗⃗⃗⃗⃗ |+|BC ⃗⃗⃗⃗⃗ |)=0,所以AP⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以P 在边BC 上的高所在的直线上,所以△ABC 的垂心确定在满意条件的P 点的集合中,④正确.故正确的命题是①②③④.(2)[多选/2024安徽淮北师大附中模拟]数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的重心、垂心和外心共线.这条线就是三角形的欧拉线.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,则下列四个选项中正确的是( ABD ) A.GH =2OG B.GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 C.AH =ODD.S △ABG =S △BCG =S △ACG解析 依据题意画出图形,如图所示.对于B ,连接GD ,由重心的性质可得G 为AD 的三等分点,且GA ⃗⃗⃗⃗⃗ =-2GD ⃗⃗⃗⃗⃗ ,又D 为BC 的中点,所以GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =2GD ⃗⃗⃗⃗⃗ ,所以GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =-2GD ⃗⃗⃗⃗⃗ +2GD ⃗⃗⃗⃗⃗ =0,故B 正确.对于A ,C ,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,所以△AHG ∽△DOG ,所以GHOG =AHOD =AGDG =2,即GH =2OG ,AH =2OD ,故A 正确,C 不正确.对于D,延长AH交BC于N,过点G作GE⊥BC,垂足为E,则△DEG∽△DNA,所以GEAN=DGDA =13,所以S△BGC=12×BC×GE=12×BC×13×AN=13S△ABC,同理,S△AGC=S△AGB=13S△ABC,所以S△ABG=S△BCG=S△ACG,故D正确.故选ABD.。

高考数学一轮复习第五章平面向量数系的扩充与复数的引入3平面向量的数量积与平面向量的应用课件新人教A版

高考数学一轮复习第五章平面向量数系的扩充与复数的引入3平面向量的数量积与平面向量的应用课件新人教A版
=3 2 × 1 × -
1
2
-1 =-6.
(3)设 a,b 的夹角为 θ.∵|a|=1,|b|= 2,且 a⊥(a-b),
2
∴a·
(a-b)=a2-a·
b=1-1× 2×cos θ=0,∴cos θ= ,
2
2
∴向量 a 在向量 b 方向上的投影为|a|cos θ= .
2
-24考点1
考点2
考点3
考点 2
但对于向量a,b却有|a·b|≤|a|·|b|;若a·b=a·c(a≠0),则b=c不一定成立,
原因是a·b=|a||b|cos θ,当cos θ=0时,b与c不一定相等.
4.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于
a·(b·c),这是由于(a·b)·c表示一个与c共线的向量,而a·(b·c)表示一
当 α=2kπ,k∈Z 时,2cos α+4 取得最大值,最大值为 6.
故 ·的最大值为 6.
(方法 2)设 P(x,y),x2+y2=1,-1≤x≤1,=(2,0),
=(x+2,y), ·=2x+4,故 ·的最大值为 6.
-20考点1
考点2
考点3
解题心得1.求两个向量的数量积有三种方法:
(2)已知点 P 在圆 x2+y2=1 上,点 A 的坐标为(-2,0),O 为原点,则 ·
6
的最大值为
.
思考求向量数量积的运算有几种形式?
-17考点1
考点2
考点3
解析:(1)法一(基向量法):
如图所示,选取, 为基底,则 = + + = +
1
1
1

平面向量的数量积及平面向量的应用举例

平面向量的数量积及平面向量的应用举例

3.求向量模的常用方法:利用公式 |a|2=a2,将模的运算转化为向量数量 积的运算.
失误防范
1.零向量:(1)0 与实数 0 的区别,不可 写错:0a=0≠0,a+(-a)=0≠0,a·= 0 0≠0;(2)0 的方向是任意的,并非没有方 向,0 与任何向量平行,我们只定义了非 零向量的垂直关系.
课前热身
1.若向量a,b,c满足a∥b 且a⊥c,则c· (a+2b)=( )
A.4
C.2
B.3
D.0
答案:D
2.已知向量 a,b 满足 a· b=0,|a|=1, |b|=2,则|2a-b|=( A.0 C.4 ) B.2 2 D.8
答案:B
3. (2011· 高考大纲全国卷)已知抛物线 C: y2=4x 的焦点为 F,直线 y=2x-4 与 C 交于 A,B 两点,则 cos∠AFB=( 4 3 A. B. 5 5 3 4 C.- D.- 5 5 )
a· b 2 则 cosθ= = = , |a||b| 2 2 1× 2 π 又 θ∈[0,π],∴θ= . 4 π 即 a 与 b 的夹角为 . 4
1 2
(2)∵(a-b)2=a2-2a· 2 b+b 1 1 1 =1-2× + = , 2 2 2 2 ∴|a-b|= , 2 ∵(a+b)2=a2+2a· 2 b+b 1 1 5 =1+2× + = , 2 2 2
量积等于0说明两向量的夹角为直角,
数量积小于0且两向量不共线时两向量
的夹角是钝角.
考点3 两向量的平行与垂直关系
向量的平行、垂直都是两向量关系中 的特殊情况,判断两向量垂直可以借 助数量积公式.如果已知两向量平行 或垂直可以根据公式列方程(组)求解
例3
已知|a|=4,|b|=8,a与b的夹角

高考数学考点专题:平面向量:平面向量的数量积及应用举例

高考数学考点专题:平面向量:平面向量的数量积及应用举例

平面向量的数量积及应用举例【考点梳理】1.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0. 2.平面向量数量积的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积. 3.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【教材改编】1.(必修4 P 104例1改编)已知|a |=5,|b |=4,a 与b 的夹角为120°,则a·b 为( ) A .10 3 B .-10 3 C .10 D .-10[答案] D[解析] a ·b =|a |·|b |cos 120°=5×4×cos 120°=20×⎝ ⎛⎭⎪⎫-12=-10.故选D.2.(必修4 P 107例6改编)设a =(5,-7),b =(-6,t ),若a ·b =-2,则t 的值为( )A .-4B .4 C.327 D .-327 [答案] A[解析] 由a ·b =-2,得5×(-6)+(-7)t =-2, -7t =28,∴t =-4,故选A.3.(必修4 P 108A 组T 6改编)已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ为( )A.π6B.π3C.2π3D.5π6[答案] D[解析] cos θ=a ·b |a|·|b |=-632×6=-32. 又∵0≤θ≤π,∴θ=5π6,故选D.4.(必修4 P 107练习T 2改编)设x ∈R ,向量a =(1,x ),b =(2,-4),且a ∥b ,则a ·b =( )A .-6 B.10 C. 5 D .10 [答案] D[解析] ∵a =(1,x ),b =(2,-4)且a ∥b ,∴-4-2x =0,x =-2,∴a =(1,-2),a ·b =10,故选D.5.(必修4 P 119A 组T 10改编)已知△ABC 的三个顶点A (1,2),B (2,3),C (-2,5),则最小角的余弦值为( )A.1010 B.31010C.13D.105 [答案] B[解析] 由图可知,显然C 为△ABC 的最小角,∵CA →=(3,-3),CB →=(4,-2),∴cos 〈CA →,CB →〉=CA →·CB →|CA →||CB →|=1832·25=31010.6.(必修4 P 105例3改编)已知|a |=3,|b |=2,(a +2b )·(a -3b )=-18,则a 与b 的夹角为( )A .30°B .60°C .120°D .150°[答案] B[解析] (a +2b )·(a -3b )=-18, ∴a 2-6b 2-a ·b =-18,∵|a |=3,|b |=2,∴9-24-a ·b =-18, ∴a ·b =3,∴cos 〈a ,b 〉=a ·b |a ||b |=36=12, ∴〈a ,b 〉=60°.7.(必修4 P 110例2改编)△ABC 中,∠BAC =2π3,AB =2,AC =1,DC→=2BD →,则AD →·BC→=________. [答案] -83[解析] 由DC →=2BD →得AD →=13()AC →+2AB →. ∴AD →·BC →=13()AC →+2AB →·(AC →-AB →)=13()AC →2+AC →·AB→-2AB →2=13⎣⎢⎡⎦⎥⎤12+1×2×⎝⎛⎭⎪⎫-12-2×22=-83.8.(必修4 P106练习T3改编)若a,b,c均为单位向量,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的最大值为________.[答案] 1[解析] 由(a-c)·(b-c)≤0,得a·b-a·c-b·c+c2≤0,又a·b=0,且a,b,c均为单位向量,得-a·c-b·c≤-1,|a+b-c|2=(a+b-c)2=a2+b2+c2+2(a·b-a·c-b·c)=3+2(-a·c-b·c)≤3-2=1,故|a+b-c|的最大值为1.9.(必修4 P108A组T3改编)已知|a|=2,|b|=5,|a+b|=7,则a·b=________.[答案] 10[解析] ∵|a+b|2=(a+b)2=a2+2a·b+b2=22+2a·b+52=29+2a·b∴29+2a·b=49,∴a·b=10.10.(必修4 P113A组T4改编)平面上三个力F1,F2,F3作用于一点且处于平衡状态,已知|F1|=1 N,|F2|= 2 N,F1与F2的夹角为45°,则F3的大小为________.[答案] 5 N[解析] 根据物理中力的平衡原理有F3+F1+F2=0,∴|F3|2=|F1|2+|F2|2+2F1·F2=12+(2)2+2×1×2×cos 45°=5.∴|F3|= 5.11.(必修4 P119B组T1(5)改编)若e1,e2是夹角为60°的两个单位向量,求a=2e 1+e 2,b =-3e 1+2e 2的夹角.[解析] ∵|e 1|=|e 2|=1,且夹角θ=60°, ∴|a |2=(2e 1+e 2)2=4e 21+4e 1·e 2+e 22 =4×12+4×1×1×cos 60°+12=7. ∴|a |=7.|b |2=(-3e 1+2e 2)2=9e 21-12e 1·e 2+4e 22 =9×12-12×1×1×cos 60°+4×12=7, ∴|b |=7.a ·b =(2e 1+e 2)·(-3e 1+2e 2) =-6e 21+e 1·e 2+2e 22=-6×12+1×1×cos 60°+2×12=-72, ∴cos θ=a ·b |a |·|b |=-727×7=-12. 又0≤θ≤π,∴θ=2π3.故a 与b 的夹角为23π.。

2020年高考数学专题复习平面向量的数量积及应用举例

2020年高考数学专题复习平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例1.向量的夹角2.平面向量的数量积3.向量数量积的运算律(1)a·b=b·a;(2)(λa)·b=λ(a·b)=a·(λb);(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×在边长为1的等边△ABC 中,设BC →=a ,CA →=b ,AB →=c ,则a ·b +b ·c +c ·a =( ) A .-32B .0C .32D .3解析:选A.依题意有a ·b +b ·c +c ·a =⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-12=-32,故选A. 已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°解析:选A.由两向量的夹角公式,可得cos ∠ABC =BA →·BC →|BA →|·|BC →|=12×32+32×121×1=32,则∠ABC =30°.(2019·温州市高考模拟)已知向量a ,b 满足|b |=4,a 在b 方向上的投影是12,则a ·b=________.解析:a 在b 方向上的投影是12,设θ为a 与b 的夹角,则|a |·cos θ=12,a ·b =|a|·|b |·cos θ=2.答案:2(2017·高考浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.解析:法一:(|a +b |+|a -b |)2=(a +b )2+(a -b )2+2|a +b |·|a -b |=2a 2+2b 2+2|a+b |·|a -b |=10+2|a +b |·|a -b |,而|a +b |·|a -b |≥|(a +b )·(a -b )|=|a 2-b 2|=3,所以(|a +b |+|a -b |)2≥16,即|a +b |+|a -b |≥4,即|a +b |+|a -b |的最小值为4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.法二:由向量三角不等式得,|a +b |+|a -b |≥|(a +b )-(a -b )|=|2b |=4.又|a +b |+|a -b |2≤(a +b )2+(a -b )22=a 2+b 2=5,所以|a +b |+|a -b |的最大值为2 5.答案:4 2 5平面向量数量积的运算(1)(2017·高考浙江卷) 如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3 < I 1<I 2D .I 2<I 1<I 3(2)(2017·高考全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA →·(PB →+PC →)的最小值是( )A .-2B .-32C .-43D .-1【解析】 (1) 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,所以∠AOB 与∠COD 为钝角,∠AOD 与∠BOC 为锐角.根据题意,I 1-I 2=OA →·OB →-OB →·OC →=OB →·(OA →-OC →)=OB →·CA →=|OB →|·|CA →|·cos ∠AOB <0,所以I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于G ,又AB =AD ,所以OB <BG =GD <OD ,而OA <AF =FC <OC ,所以|OA →|·|OB →|<|OC →|·|OD →|,而cos ∠AOB =cos ∠COD <0,所以OA →·OB →>OC →·OD →,即I 1>I 3.所以I 3<I 1<I 2.(2) 如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y ),所以PA →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y )=2x 2+2(y -32)2-32,当x =0,y =32时,PA →·(PB →+PC →)取得最小值,为-32,选择B.【答案】 (1)C (2)B在本例(2)的条件下,若D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD →·AE →等于________.解析:法一:(通性通法)因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =23,在△ABD 中,AD 2=BD 2+AB2-2BD ·AB ·cos 60°=⎝ ⎛⎭⎪⎫232+22-2×23×2×12=289,即AD =273,同理可得AE =273,在△ADE 中,由余弦定理得cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=289+289-⎝ ⎛⎭⎪⎫2322×273×273=1314,所以AD →·AE →=|AD→|·|AE →|cos ∠DAE =273×273×1314=269.法二:(光速解法)如图,建立平面直角坐标系,由正三角形的性质易得A (0,3),D ⎝ ⎛⎭⎪⎫-13,0,E ⎝ ⎛⎭⎪⎫13,0,所以AD →=⎝ ⎛⎭⎪⎫-13,-3,AE →=⎝ ⎛⎭⎪⎫13,-3,所以AD →·AE →=⎝ ⎛⎭⎪⎫-13,-3·⎝ ⎛⎭⎪⎫13,-3=269.答案:269(1)向量数量积的两种运算方法①当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. ②当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(2)数量积在平面几何中的应用解决涉及几何图形的向量的数量积运算问题时,常利用解析法,巧妙构造坐标系,利用坐标求解.1.(2019·杭州中学高三月考)若A ,B ,C 三点不共线,|AB →|=2,|CA →|=3|CB →|,则CA →·CB →的取值范围是( )A .⎝ ⎛⎭⎪⎫13,3B .⎝ ⎛⎭⎪⎫-13,3C .⎝ ⎛⎭⎪⎫34,3 D .⎝ ⎛⎭⎪⎫-34,3 解析:选D.设|CB →|=x ,则|CA →|=3|CB →|=3x ,由于A ,B ,C 三点不共线,能构成三角形,如图:由三角形三边的性质得,⎩⎪⎨⎪⎧x +3x >23x +2>x x +2>3x,解得12<x <1,由余弦定理的推论得,cos C =AC 2+BC 2-AB 22AC ·BC =x 2+9x 2-46x 2=10x 2-46x2, 所以CA →·CB →=|CA →||CB →|cos C =3x 2×10x 2-46x2=5x 2-2, 由12<x <1得,-34<5x 2-2<3, 故选D.2.已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________.解析:由题意,令e =(1,0),a =(cos α,sin α),b =(2cos β,2sin β),则由|a ·e |+|b ·e |≤6,可得|cos α|+2|cos β|≤ 6.①令sin α+2sin β=m ,②①2+②2得4[|cos αcos β|+sin αsin β]≤1+m 2对一切实数α,β恒成立,所以4[|cos αcos β|+sin αsin β]≤1,故a ·b =2(cos αcos β+sin αsin β)≤2[|cos αcos β|+sin αsin β]≤12.答案:12平面向量的夹角与模(高频考点)平面向量的夹角与模是高考的热点,题型多为选择题、填空题,难度适中,属中档题.主要命题角度有:(1)求两向量的夹角; (2)求向量的模; (3)两向量垂直问题;(4)求参数值或范围.角度一 求两向量的夹角(2019·绍兴一中高三期中)若|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为( )A .π6B .π3C .2π3D .5π6【解析】 因为|a +b |=|a -b |=2|a |, 所以|a +b |2=|a -b |2,两边平方 可得a 2+2a ·b +b 2=a 2-2a ·b +b 2, 化简可得a ·b =0,设向量a +b 与a 的夹角为θ,则可得cos θ=(a +b )·a |a +b ||a |=a 2+a ·b|a +b ||a |=|a |22|a |2=12,又θ∈[0,π],故θ=π3. 【答案】 B角度二 求向量的模(2018·高考浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e的夹角为π3,向量b 满足b 2-4e ·b +3=0,则|a -b |的最小值是( )A .3-1B .3+1C .2D .2- 3【解析】 法一:设O 为坐标原点,a =OA →,b =OB →=(x ,y ),e =(1,0),由b 2-4e ·b +3=0得x 2+y 2-4x +3=0,即(x -2)2+y 2=1,所以点B 的轨迹是以C (2,0)为圆心,1为半径的圆.因为a 与e 的夹角为π3,所以不妨令点A 在射线y =3x (x >0)上,如图,数形结合可知|a -b |min =|CA →|-|CB →|=3-1.故选A.法二:由b 2-4e ·b +3=0得b 2-4e ·b +3e 2=(b -e )·(b -3e )=0.设b =OB →,e =OE →,3e =OF →,所以b -e =EB →,b -3e =FB →,所以EB →·FB →=0,取EF 的中点为C ,则B 在以C 为圆心,EF 为直径的圆上,如图.设a =OA →,作射线OA ,使得∠AOE =π3,所以|a -b |=|(a -2e )+(2e -b )|≥|a -2e |-|2e -b |=|CA →|-|BC →|≥3-1.故选A.【答案】 A角度三 两向量垂直问题已知|a |=4,|b |=8,a 与b 的夹角是120°.求k 为何值时,(a +2b )⊥(k a -b )?【解】 由已知得,a ·b =4×8×⎝ ⎛⎭⎪⎫-12=-16.因为(a +2b )⊥(k a -b ), 所以(a +2b )·(k a -b )=0,k a 2+(2k -1)a ·b -2b 2=0,即16k -16(2k -1)-2×64=0. 所以k =-7.即k =-7时,a +2b 与k a -b 垂直.角度四 求参数值或范围已知△ABC 是正三角形,若AC →-λAB →与向量AC →的夹角大于90°,则实数λ的取值范围是________.【解析】 因为AC →-λAB →与向量AC →的夹角大于90°,所以(AC →-λAB →)·AC →<0,即|AC →|2-λ|AC →|·|AB →|cos 60°<0,解得λ>2.故填(2,+∞).【答案】 (2,+∞)(1)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a ||b |,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系;②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=;(2)求向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量模的运算转化为数量积运算.②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.1.(2019·浙江新高考研究联盟)已知向量a ,b ,c 满足|a |=1,|b |=k ,|c |=2-k 且a +b +c =0,则b 与c 夹角的余弦值的取值范围是________.解析:设b 与c 的夹角为θ,由题b +c =-a , 所以b 2+c 2+2b ·c =1.即cos θ=2k 2-4k +32k 2-4k =1+32(k -1)2-2. 因为|a |=|b +c |≥|b -c |,所以|2k -2|≤1. 所以12≤k ≤32.所以-1≤cos θ≤-12.答案:⎣⎢⎡⎦⎥⎤-1,-12 2.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.解析:因为AP →⊥BC →,所以AP →·BC →=0. 又AP →=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×(-12)-9λ+4=0.解得λ=712.答案:712向量数量积的综合应用(2019·金华十校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m=(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 【解】 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA →在BC →方向上的投影为 |BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =⎝⎛⎭⎪⎫sin A2,cos A 2,n =⎝⎛⎭⎪⎫cos A 2,-cos A 2,且2m ·n +|m |=22,则∠A =________.解析:因为2m ·n =2sin A 2cos A 2-2cos 2 A 2=sin A -(cos A +1)=2sin ⎝⎛⎭⎪⎫A -π4-1,又|m |=1,所以2m ·n +|m |=2sin ⎝⎛⎭⎪⎫A -π4=22,即sin ⎝⎛⎭⎪⎫A -π4=12.因为0<A <π,所以-π4<A -π4<3π4,所以A -π4=π6,即A =5π12.答案:5π122.(2017·高考江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解:(1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0. 于是tan x =-33. 又x ∈[0,π], 所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.平面向量中的最值范围问题(1)(2019·杭州市高三模拟)在△ABC 中,∠C =90°,AC =4,BC =3,D 是AB 的中点,E ,F 分别是边BC 、AC 上的动点,且EF =1,则DE →·DF →的最小值等于( )A .54B .154C .174D .174(2)(2019·浙江新高考研究联盟联考)已知向量a ,b 满足|a +b |=4,|a -b |=3,则|a |+|b |的取值范围是( )A .[3,5]B .[4,5]C .[3,4]D .[4,7]【解析】 (1)以三角形的直角边为坐标轴建立平面直角坐标系,如图所示:则A (0,4),B (3,0),C (0,0),D ⎝ ⎛⎭⎪⎫32,2.设E (x ,0),则F (0,1-x 2),0≤x ≤1. 所以DE →=⎝ ⎛⎭⎪⎫x -32,-2,DF →=⎝ ⎛⎭⎪⎫-32,1-x 2-2.所以DE →·DF →=94-32x +4-21-x 2=254-3x 2-21-x 2.令f (x )=254-3x 2-21-x 2,当x ≠1时,则f ′(x )=-32+2x1-x 2. 令f ′(x )=0得x =35.当0≤x <35时,f ′(x )<0,当35<x <1时,f ′(x )>0.所以当x =35时,f (x )取得最小值f ⎝ ⎛⎭⎪⎫35=154.当x =1时,f (1)=254-32=194>154,故选B.(2)|a |+|b |≥max{|a +b |,|a -b |}=4,(|a |+|b |)2≤|a +b |2+|a -b |2=25,所以|a |+|b |≤5.【答案】 (1)B (2)B求解向量数量积最值问题的两种思路(1)直接利用数量积公式得出代数式,依据代数式求最值.(2)建立平面直角坐标系,通过坐标运算得出函数式,转化为求函数的最值. 1.已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1,若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是__________.解析:由a ·b =1,|a |=1,|b |=2可得两向量的夹角为60°,建立平面直角坐标系,可设a =(1,0),b =(1,3),e =(cos θ,sin θ),则|a ·e |+|b ·e |=|cos θ|+|cosθ+3sin θ|≤|cos θ|+|cos θ|+3|sin θ|=3|sin θ|+2|cos θ|≤7,所以|a ·e |+|b ·e |的最大值为7.答案:72.(2019·金华十校高考模拟)若非零向量a ,b 满足:a 2=(5a -4b )·b ,则cos 〈a ,b 〉的最小值为________.解析:非零向量a ,b 满足:a 2=(5a -4b )·b ,可得a ·b =15(a 2+4b 2)=15(|a |2+4|b |2)≥15·2|a |2·4|b |2=45|a |·|b |,即有cos 〈a ,b 〉=a ·b |a |·|b |≥45·|a |·|b ||a |·|b |=45,当且仅当|a |=2|b |,取得最小值45.答案:45求向量模的常用方法利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之也不成立.易错防范(1)a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . (2)a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立. [基础达标]1.已知A ,B ,C 为平面上不共线的三点,若向量AB →=(1,1),n =(1,-1),且n ·AC →=2,则n ·BC →等于( )A .-2B .2C .0D .2或-2解析:选B.n ·BC →=n ·(BA →+AC →)=n ·BA →+n ·AC →=(1,-1)·(-1,-1)+2=0+2=2.2.(2019·温州市十校联合体期初)设正方形ABCD 的边长为1,则|AB →-BC →+AC →|等于( )A .0B . 2C .2D .2 2解析:选C.正方形ABCD 的边长为1,则|AB →-BC →+AC →|2=|DB →+AC →|2=|DB →|2+|AC →|2+2DB →·AC →=12+12+12+12=4,所以|AB →-BC →+AC →|=2,故选C.3.(2019·温州市十校联合体期初)已知平面向量a ,b ,c 满足c =x a +y b (x ,y ∈R ),且a ·c >0,b ·c >0.( )A .若a ·b <0则x >0,y >0B .若a ·b <0则x <0,y <0C .若a ·b >0则x <0,y <0D .若a ·b >0则x >0,y >0解析:选A.由a ·c >0,b ·c >0,若a ·b <0, 可举a =(1,1),b =(-2,1),c =(0,1), 则a ·c =1>0,b ·c =1>0,a ·b =-1<0, 由c =x a +y b ,即有0=x -2y ,1=x +y , 解得x =23,y =13,则可排除B ;若a ·b >0,可举a =(1,0),b =(2,1),c =(1,1),则a ·c =1>0,b ·c =3>0,a ·b =2>0,由c =x a +y b ,即有1=x +2y ,1=y ,解得x =-1,y =1, 则可排除C ,D.故选A.4.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形解析:选C.由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,所以2AC →·BA →=0,所以AC →⊥AB →.所以∠A =90°,又因为根据条件不能得到|AB →|=|AC →|.故选C.5.已知正方形ABCD 的边长为2,点F 是AB 的中点,点E 是对角线AC 上的动点,则DE →·FC →的最大值为( )A .1B .2C .3D .4解析:选B.以A 为坐标原点,AB →、AD →方向分别为x 轴、y 轴的正方向建立平面直角坐标系(图略),则F (1,0),C (2,2),D (0,2),设E (λ,λ)(0≤λ≤2),则DE →=(λ,λ-2),FC →=(1,2),所以DE →·FC →=3λ-4≤2.所以DE →·FC →的最大值为2.故选B.6.(2019·金华市东阳二中高三月考)若a ,b 是两个非零向量,且|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1,则b 与a -b 的夹角的取值范围是( ) A .⎣⎢⎡⎦⎥⎤π3,2π3B .⎣⎢⎡⎦⎥⎤2π3,5π6C .⎣⎢⎡⎭⎪⎫2π3,πD .⎣⎢⎡⎭⎪⎫5π6,π 解析:选B.因为|a |=|b |=λ|a +b |,λ∈⎣⎢⎡⎦⎥⎤33,1, 不妨设|a +b |=1,则|a |=|b |=λ.令OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB ,则平行四边形OACB 为菱形.故有△OAB 为等腰三角形,故有∠OAB =∠OBA =θ, 且0<θ<π2.而由题意可得,b 与a -b 的夹角, 即OB →与BA →的夹角,等于π-θ,△OAC 中,由余弦定理可得|OC |2=1=|OA |2+|AC |2-2|OA |·|AC |·cos 2θ=λ2+λ2-2·λ·λcos 2θ,解得cos 2θ=1-12λ2.再由33≤λ≤1,可得12≤12λ2≤32,所以-12≤cos 2θ≤12,所以π3≤2θ≤2π3,所以π6≤θ≤π3,故2π3≤π-θ≤5π6,即b 与a -b 的夹角π-θ的取值范围是⎣⎢⎡⎦⎥⎤2π3,5π6.7.(2019·温州市十校联合体期初)已知平面向量a 与b 的夹角为120°,且|a |=|b |=4,那么|a -2b |=________.解析:因为平面向量a 与b 的夹角为120°,且|a |=|b |=4,所以a ·b =4·4·cos 120°=-8,所以|a -2b |=(a -2b )2=a 2-4a ·b +4b 2=16-4·(-8)+4·16=112=47.答案:478.(2019·嘉兴一中高考适应性考试)设e 1,e 2为单位向量,其中a =2e 1+e 2,b =e 2,且a 在b 上的投影为2,则a ·b =________,e 1与e 2的夹角为________.解析:设e 1,e 2的夹角为θ,因为a 在b 上的投影为2, 所以a ·b |b |=(2e 1+e 2)·e 2|e 2|=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2,解得cos θ=12,则θ=π3. a ·b =(2e 1+e 2)·e 2=2e 1·e 2+|e 2|2=2|e 1|·|e 2|cos θ+1=2. 答案:2π39. 如图,在边长为2的正方形ABCD 中,点Q 为边CD 上一个动点,CQ →=λQD →,点P 为线段BQ (含端点)上一个动点.若λ=1,则PA →·PD →的取值范围为________.解析:当λ=1时,Q 为CD 的中点. 设AB →=m ,AD →=n ,BP →=μBQ →(0≤μ≤1).易知BQ →=-12m +n ,AP →=AB →+BP →=m +μ⎝ ⎛⎭⎪⎫-12m +n =⎝ ⎛⎭⎪⎫1-12μm +μn , DP →=AP →-AD →=⎝⎛⎭⎪⎫1-12μm +μn -n =⎝⎛⎭⎪⎫1-12μm +(μ-1)n ,所以PA →·PD →=AP →·DP →=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +μn ·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12μm +(μ-1)n =4⎝ ⎛⎭⎪⎫1-12μ2+4μ(μ-1)=5μ2-8μ+4.根据二次函数性质可知,当μ=45时上式取得最小值45;当μ=0时上式取得最大值4.所以PA →·PD →的取值范围为⎣⎢⎡⎦⎥⎤45,4.答案:⎣⎢⎡⎦⎥⎤45,4 10.(2019·温州市十五校联合体联考)已知坐标平面上的凸四边形ABCD 满足AC →=(1,3),BD →=(-3,1),则凸四边形ABCD 的面积为________;AB →·CD →的取值范围是________. 解析:由AC →=(1,3),BD →=(-3,1)得AC →⊥BD →,且|AC →|=2,|BD →|=2,所以凸四边形ABCD 的面积为12×2×2=2;因为ABCD 为凸四边形,所以AC 与BD 交于四边形内一点,记为M ,则AB →·CD →=(MB →-MA →)·(MD →-MC →)=MB →·MD →+MA →·MC →-MB →·MC →-MA →·MD →,设AM →=λAC →,BM →=μBD →,则λ,μ∈(0,1),且MA →=-λAC →,MC →=(1-λ)AC →, MB →=-μBD →,MD →=(1-μ)BD →,所以AB →·CD →=-4μ(1-μ)-4λ(1-λ)∈[-2,0),所以有λ=μ=12时,AB →·CD →取到最小值-2.答案:2 [-2,0)11.已知m =⎝ ⎛⎭⎪⎫sin ⎝⎛⎭⎪⎫x -π6,1,n =(cos x ,1).(1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎪⎫x -π6-cos x =0,展开变形可得,sin x =3cos x , 即tan x = 3.(2)f (x )=m ·n =12sin ⎝⎛⎭⎪⎫2x -π6+34,由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z 得,-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π.12.(2019·金华市东阳二中高三月考)设O 是△ABC 的三边中垂线的交点,a ,b ,c 分别为角A ,B ,C 对应的边,已知b 2-2b +c 2=0,求BC →·AO →的取值范围.解:因为O 是△ABC 的三边中垂线的交点,故O 是三角形外接圆的圆心, 如图所示,延长AO 交外接圆于点D .因为AD 是⊙O 的直径,所以∠ACD =∠ABD =90°. 所以cos ∠CAD =ACAD ,cos ∠BAD =AB AD. 所以AO →·BC →=12AD →·(AC →-AB →)=12AD →·AC →-12AD →·AB → =12|AD →||AC →|·cos ∠CAD -12|AD →||AB →|· cos ∠BAD =12|AC →|2-12|AB →|2=12b 2-12c 2=12b 2-12(2b -b 2)(因为c 2=2b -b 2) =b 2-b =⎝ ⎛⎭⎪⎫b -122-14.因为c 2=2b -b 2>0,解得0<b <2.令f (b )=⎝ ⎛⎭⎪⎫b -122-14.所以当b =12时,f (b )取得最小值-14.又f (0)=0,f (2)=2. 所以-14≤f (b )<2.即AO →·BC →的取值范围是⎣⎢⎡⎭⎪⎫-14,2.[能力提升]1.(2019·嘉兴市高考模拟)已知平面向量a 、b 满足|a |=|b |=1,a ·b =12,若向量c满足|a -b +c |≤1,则|c |的最大值为( )A .1B . 2C . 3D .2解析:选D.由平面向量a 、b 满足|a |=|b |=1,a ·b =12,可得|a|·|b |·cos 〈a ,b 〉=1·1·cos 〈a ,b 〉=12,由0≤〈a ,b 〉≤π,可得〈a ,b 〉=π3,设a =(1,0),b =⎝ ⎛⎭⎪⎫12,32,c =(x ,y ),则|a -b +c |≤1,即有⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫12+x ,y -32≤1,即为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322≤1,故|a -b +c |≤1的几何意义是在以⎝ ⎛⎭⎪⎫-12,32为圆心,半径等于1的圆上和圆内部分,|c |的几何意义是表示向量c 的终点与原点的距离,而原点在圆上,则最大值为圆的直径,即为2.2.(2019·温州市高考模拟)记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,已知向量a ,b ,c 满足|a |=1,|b |=2,a ·b =0,c =λa +μb (λ,μ≥0,且λ+μ=1),则当max{c ·a ,c ·b }取最小值时,|c |= ( )A .255B .223C .1D .52解析:选A.如图,设OA →=a ,OB →=b ,则a =(1,0),b =(0,2),因为λ,μ≥0,λ+μ=1,所以0≤λ≤1.又c =λa +μb ,所以c ·a =(λa +b -λb )·a =λ;c ·b =(λa +b -λb )·b =4-4λ.由λ=4-4λ,得λ=45.所以max{c ·a ,c ·b }=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.令f (λ)=⎩⎪⎨⎪⎧λ,45≤λ≤14-4λ,0≤λ<45.则f (λ)∈⎣⎢⎡⎦⎥⎤45,1.所以f (λ)min =45,此时λ=45,μ=15,所以c =45a +15b =⎝ ⎛⎭⎪⎫45,25. 所以|c |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255.故选A.3.(2019·瑞安市龙翔高中高三月考)向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①若m ∥n ,则tan x =________;②若m 与n 的夹角为π3,则x =________.解析:m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈(0,π),①由m ∥n ,得22cos x +22sin x =0,即sin ⎝⎛⎭⎪⎫x +π4=0,因为0<x <π,所以π4<x +π4<5π4,则x +π4=π,x =34π.所以tan x =-1.②由m 与n 的夹角为π3,得cos π3=22sin x -22cos x ⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫-222·sin 2x +cos 2x =sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π,所以-π4<x -π4<3π4,则x -π4=π6,x =5π12. 答案:①-1 ②5π124.(2019·宁波市余姚中学高三期中)已知向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,OP →=λOA →+μOB →.若λ+3μ=2,则|OP →|的最小值是________,此时OP →,OA →夹角的大小为________.解析:向量OA →,OB →的夹角为60°,|OA →|=2,|OB →|=23,即有OA →·OB →=|OA →|·|OB →|·cos 60°=2×23×12=23,若λ+3μ=2,可得λ=2-3μ,则|OP →|=|λOA →+μOB →|=λ2OA →2+μ2OB →2+2λμOA →·OB →=4λ2+12μ2+43λμ=4(λ+3μ)2-43λμ =16-43(2-3μ)μ=12⎝ ⎛⎭⎪⎫μ-332+12≥23, 当μ=33,λ=1时,|OP →|的最小值为2 3. 由OP →=OA →+33OB →, 可得OP →·OA →=OA →2+33OA →·OB →=4+33·23=6, 则cos 〈OP →,OA →〉=OP →·OA →|OP →|·|OA →|=623·2=32, 由0°≤〈OP →,OA →〉≤180°,可得〈OP →,OA →〉=30°.答案:2 3 30°5.(2019·绍兴市柯桥区高三期中检测)已知平面向量a ,b ,c 满足|a |=4,|b |=3,|c |=2,b ·c =3,求(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值.解:设OA →=a ,OB →=b ,OC →=c ,a -b 与a -c 所成夹角为θ,则(a -b )2(a -c )2-[(a -b )·(a -c )]2=|AB |2|AC |2-|AB |2|AC |2cos 2θ=|AB |2|AC |2sin 2θ=|AB |2|AC |2sin 2∠CAB =4S 2△ABC ,因为|b |=3,|c |=2,b ·c =3,所以b ,c 的夹角为60°,设B (3,0),C (1,3),则|BC |=7,所以S △OBC =12×3×2×sin 60°=332, 设O 到BC 的距离为h ,则12·BC ·h =S △OBC =332,所以h =3217, 因为|a |=4,所以A 点落在以O 为圆心,以4为半径的圆上,所以A 到BC 的距离最大值为4+h =4+3217. 所以S △ABC 的最大值为12×7×⎝⎛⎭⎪⎫4+3217=27+332, 所以(a -b )2(a -c )2-[(a -b )·(a -c )]2的最大值为4⎝ ⎛⎭⎪⎫27+3322=(47+33)2.6. 在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1),由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC →+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝ ⎛⎭⎪⎫t -222+12, 所以当t =22时,|OC →+OD →|最小,为22. (2)由题意得C (cos θ,sin θ),m =BC →=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4, 因为θ∈⎣⎢⎡⎦⎥⎤0,π2, 所以π4≤2θ+π4≤5π4, 所以当2θ+π4=π2, 即θ=π8时,sin ⎝⎛⎭⎪⎫2θ+π4取得最大值1. 所以m ·n 的最小值为1-2,此时θ=π8.。

平面向量的数量积及平面向量的应用

平面向量的数量积及平面向量的应用

解析 建立平面直角坐标系如图所示,则A(2,0),
设P(0,y),C(0,b),则B(1,b),且0≤y≤b.
所以 PA

+3 PB
=(2,-y)+3(1,b-y)=(5,3b-4y),
所以| PA

+3 PB
|= 25

(3b

4
y)2
(0≤y≤b),
所以当y= 3 b时,| PA

+3 PB
§5.2 平面向量的数量积及平面向量的应用
知识清单
考点一 向量数量积的定义及长度、角度问题 1.两向量夹角的定义和范围
2.两向量的夹角分别是锐角与钝角的充要条件
3.平面向量的数量积
4.向量数量积的性质 设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则 (1)e·a=a·e=⑤ |a|·cos θ . (2)a⊥b⇔⑥ a·b=0 . (3)当a与b同向时,⑦ a·b=|a||b| ;当a与b反向时,⑧ a·b=-|a||b| . 特别地,a·a=⑨ |a|2 .
解析 因为a⊥(2a+b),所以a·(2a+b)=0,
所以a·b=-2|a|2,设a与b的夹角为θ,则cos
θ= a b
| a || b |
=
2 4|
| a |2 a |2
=- 1 ,又0≤θ≤π,
2
所以θ= 2 ,故选C.
3
例4 (2017江西七校联考,13)已知向量a=(1, 3 ),b=(3,m),且b在a的方向

标→求 AF · BC
解析 解法一:如图,

AF · BC

=( AD

平面向量的数量积和叉积的应用举例

平面向量的数量积和叉积的应用举例

平面向量的数量积和叉积的应用举例平面向量是向量的一种特殊形式,它的位移方向限制在二维平面上。

数量积和叉积是平面向量的两个重要运算,它们在数学和物理中有着广泛的应用。

本文将通过举例,介绍平面向量的数量积和叉积在实际问题中的应用。

一、数量积的应用1. 力的分解和合成假设有一物体施加力F,在平面上有两个方向的分量F1和F2,它们的夹角为θ。

我们可以通过数量积的运算来求解F1和F2的数值。

具体的计算公式为:F = F1 + F2 = |F1|cosθ + |F2|cosθ通过这个公式,我们可以将一个力分解为两个力的和,从而更好地理解力的作用机制。

2. 工作和功当一个物体受力并且发生位移时,力做功。

工作是力在位移方向上的数量积。

对于平面向量而言,工作的计算公式为:W = F·s = |F||s|cosθ其中,W表示工作的大小,F表示力的大小,s表示位移的大小,θ表示力和位移之间的夹角。

3. 判断垂直关系两个向量垂直的充要条件是它们的数量积为零。

因此在实际问题中,通过计算向量的数量积可以判断两个向量是否垂直。

例如,我们可以通过数量积来判断一个物体在斜坡上向上滚动时的加速度是否与斜坡垂直。

二、叉积的应用1. 面积计算对于平面上的两个向量a和b,它们的叉积a×b的大小等于这两个向量所围成的平行四边形的面积。

具体的计算公式为:|a×b| = |a||b|sinθ其中,|a×b|表示叉积的大小,|a|和|b|分别表示向量a和b的大小,θ表示这两个向量之间的夹角。

通过叉积的运算,我们可以直接计算出平行四边形的面积,这在几何学和物理学中有着重要的应用。

2. 判断向量的方向叉积不仅可以计算大小,还可以确定向量的方向。

叉积的结果是一个新的向量,它垂直于原来的两个向量,其方向遵循右手定则。

这一性质在物理学中经常被用来确定电流和磁场之间的方向关系,并被应用于电磁学的研究中。

3. 力矩计算力矩是与平面向量的叉积有关的重要概念,表示力对物体的转动效果。

第四章 第三节 平面向量的数量积及平面向量应用举例

第四章  第三节  平面向量的数量积及平面向量应用举例
平面向量的数量积及平面向量应用举例
1. 理解平面向量数量积的含义及其物理意义. 理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. .了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式,会进行平面向量数量 .掌握数量积的坐标表达式, 积的运算. 积的运算. 4.能运用数量积表示两个向量的夹角,会用数量积 .能运用数量积表示两个向量的夹角, 判断两个平面向量的垂直关系. 判断两个平面向量的垂直关系. 5.会用向量方法解决某些简单的平面几何问题. .会用向量方法解决某些简单的平面几何问题. 6.会用向量方法解决简单的力学问题与其他一些实 . 际问题. 际问题.
(2)法一:a-2b=(3,- -2(2,1)=(-1,- , 法一: - = ,- ,-4)- ,-6), 法一 = - ,- 2a+3b=2(3,- +3(2,1)=(12,- , + = ,- ,-4)+ ,-5), = ,- (a-2b)·(2a+3b)=(-1)×12+(-6)×(-5)=18. - + =- × +- ×- = 法二: - 法二:(a-2b)·(2a+3b)=2a2-a·b-6b2 + = - =2[32+(-4)2]-[3×2+(-4)×1]-6(22+12)=18. - - +- - =
三、向量数量积的性质 〈 , 〉 1.如果e是单位向量,则a·e=e·a= |a|cos〈a,e〉. .如果 是单位向量 是单位向量, = = = 2.a⊥b⇒ a·b=0 且a·b=0⇒ a⊥b. . ⊥ ⇒ = ⇒ ⊥ 3.a·a= |a| ,|a|= a·a . . = = 4.cos〈a,b〉= . 〈 , 〉 5.|a·b| ≤ |a||b|. .
[题组自测 题组自测] 题组自测 1.已知下列结论:①|a|2=a2;②(a·b)2=a2·b2;③(a- .已知下列结论: - b)2=a2-2a·b+b2;④若a2=a·b,则a=b,其中正确 + , = , 的个数有 A.1 . C.3 . 答案: 答案:B B.2 . D.4 . ( )

第3节 平面向量的数量积及平面向量的应用

第3节 平面向量的数量积及平面向量的应用

第3节 平面向量的数量积及平面向量的应用知识梳理1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则a 与b 的数量积(或内积)a ·b =|a ||b |cos__θ.规定:零向量与任一向量的数量积为0,即0·a =0. (3)数量积的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.(2)模:|a |=a ·a =x 21+y 21.(3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.3.平面向量数量积的运算律 (1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律). (3)(a +b )·c =a ·c +b ·c (分配律). 4.平面几何中的向量方法三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系; (3)把运算结果“翻译”成几何关系.1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.3.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0),不能得出b =c ,两边不能约去同一个向量.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(2)向量在另一个向量方向上的投影为数量,而不是向量.( )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(4)若a ·b =a ·c (a ≠0),则b =c .( ) 答案 (1)× (2)√ (3)√ (4)× 解析 (1)两个向量夹角的范围是[0,π].(4)由a ·b =a ·c (a ≠0)得|a ||b |·cos 〈a ,b 〉=|a ||c |·cos 〈a ,c 〉,所以向量b 和c 不一定相等.2.已知向量a =(1,1),b =(2,4),则(a -b )·a =( ) A.-14 B.-4C.4D.14答案 B解析 由题意得a -b =(-1,-3),则(a -b )·a =-1-3=-4. 3.设a ,b 是非零向量,则“a ·b =|a ||b |”是“a ∥b ”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析 设a 与b 的夹角为θ.因为a ·b =|a |·|b |cos θ=|a |·|b |,所以cos θ=1,即a 与b 的夹角为0°,故a ∥b .当a ∥b 时,a 与b 的夹角为0°或180°, 所以a ·b =|a |·|b |cos θ=±|a |·|b |,所以“a ·b =|a |·|b |”是“a ∥b ”的充分而不必要条件.4.(2020·湘潭模拟)已知平面向量a ,b ,满足|a |=|b |=1,若(2a -b )·b =0,则向量a ,b 的夹角为( ) A.π6 B.π4C.π3D.2π3答案 C解析 由(2a -b )·b =0,可得a ·b =12b 2=12,设向量a 、b 的夹角为θ, 则cos θ=a ·b |a ||b |=12,又θ∈[0,π],所以向量a 、b 的夹角为π3.5.(多选题)(2021·青岛统检)已知向量a +b =(1,1),a -b =(-3,1),c =(1,1),设a ,b 的夹角为θ,则( ) A.|a |=|b | B.a ⊥c C.b ∥cD.θ=135°答案 BD解析 由a +b =(1,1),a -b =(-3,1),得a =(-1,1),b =(2,0),则|a |=2,|b |=2,故A 不正确;a ·c =-1×1+1×1=0,故B 正确; 不存在λ∈R ,使b =λc 成立,故C 不正确;cos θ=a ·b |a |·|b |=-22×2=-22,所以θ=135°,故D 正确.综上知选BD.6.(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________. 答案 22解析 由题意知(k a -b )·a =0,即k a 2-b ·a =0. 因为a ,b 为单位向量,且夹角为45°,所以k ×12-1×1×22=0,解得k =22.考点一 平面向量的数量积运算1.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A.4 B.3C.2D.0答案 B解析 a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.2.(2020·北京卷)已知正方形ABCD 的边长为2,点P 满足AP →=12()AB →+AC →,则|PD→|=__________;PB →·PD →=__________. 答案5 -1解析 法一 ∵AP→=12(AB →+AC →),∴P 为BC 的中点.以A 为原点,建立如图所示的平面直角坐标系,由题意知A (0,0),B (2,0),C (2,2),D (0,2),P (2,1),∴|PD →|=(2-0)2+(1-2)2= 5. 易得PB→=(0,-1),PD →=(-2,1). ∴PB→·PD →=(0,-1)·(-2,1)=-1.法二 如图,在正方形ABCD 中,由AP→=12(AB →+AC →)得点P 为BC的中点,∴|PD→|=12+22= 5. PB→·PD →=PB →·(PC →+CD →)=PB →·PC →+PB →·CD → =-PB→2+0=-1. 3.在四边形ABCD 中,AD ∥BC ,AB =23,AD =5,∠A =30°,点E 在线段CB的延长线上,且AE =BE ,则BD →·AE →=________. 答案 -1解析 如图,在等腰△ABE 中, 易得∠BAE =∠ABE =30°,故BE =2. 则BD→·AE →=(AD →-AB →)·(AB →+BE →) =AD→·AB →+AD →·BE →-AB →2-AB →·BE → =5×23×cos 30°+5×2×cos 180°-12-23×2×cos 150° =15-10-12+6=-1.4.(2020·新高考山东卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP→·AB →的取值范围是( ) A.(-2,6) B.(-6,2)C.(-2,4)D.(-4,6)答案 A解析 法一 如图,取A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则A (0,0),B (2,0),C (3,3),F (-1,3).设P (x ,y ),则AP→=(x ,y ),AB →=(2,0),且-1<x <3.所以AP →·AB →=(x ,y )·(2,0)=2x ∈(-2,6). 故选A.法二 AP→·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP→|cos ∠P AB 表示AP →在AB →方向上的投影. 结合几何图形,当点P 与F 重合时投影最小,当P 与点C 重合时,投影最大, 又AC→·AB →=23×2×cos 30°=6,AF →·AB →=2×2cos 120°=-2, 故当点P 在正六边形ABCDEF 内时,-2<AP →·AB →<6.感悟升华 1.计算平面向量的数量积主要方法: (1)利用定义:a ·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. (3)活用平面向量数量积的几何意义.2.解决涉及几何图形的向量的数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简后再运算.但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补.考点二向量数量积的性质及应用角度1夹角与垂直【例1】(1)(2020·全国Ⅱ卷)已知单位向量a,b的夹角为60°,则在下列向量中,与b垂直的是()A.a+2bB.2a+bC.a-2bD.2a-b(2)(2021·新高考8省联考)已知单位向量a,b满足a·b=0,若向量c=7a+2b,则sin〈a,c〉等于()A.73 B.23 C.79 D.29答案(1)D(2) B解析(1)易知a·b=|a||b|cos 60°=1 2,则b·(a+2b)=52≠0,b·(2a+b)=2≠0,b·(a-2b)=a·b-2b2=-32≠0,b·(2a-b)=0.因此b⊥(2a-b).(2)法一设a=(1,0),b=(0,1),则c=(7,2),∴sin〈a,c〉=2 3.法二a·c=a·(7a+2b)=7a2+2a·b=7,|c|=(7a+2b)2=7a2+2b2+214a·b=7+2=3,∴cos〈a,c〉=a·c|a||c|=71×3=73,∴sin〈a,c〉=2 3.角度2平面向量的模【例2】(1)(2020·南昌模拟)设x,y∈R,a=(x,1),b=(2,y),c=(-2,2),且a⊥c,b∥c,则|2a+3b-c|=()A.234B.26C.12D.210(2)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值是________.答案 (1)A (2)2+1解析 (1)因为a ⊥c ,所以a ·c =-2x +2=0,解得x =1,则a =(1,1), 因为b ∥c ,所以4+2y =0,解得y =-2,则b =(2,-2). 所以2a +3b -c =(10,-6),则|2a +3b -c |=234. (2)法一 由a ·b =0,得a ⊥b .如图所示,分别作OA→=a ,OB →=b ,作OC →=a +b ,则四边形OACB 是边长为1的正方形,所以|OC →|= 2.作OP→=c ,则|c -a -b |=|OP →-OC →|=|CP →|=1. 所以点P 在以C 为圆心,1为半径的圆上.由图可知,当点O ,C ,P 三点共线且点P 在点P 1处时,|OP →|取得最大值2+1.故|c |的最大值是2+1. 法二 由a ·b =0,得a ⊥b .建立如图所示的平面直角坐标系,则OA →=a =(1,0),OB →=b=(0,1).设c =OC →=(x ,y ), 由|c -a -b |=1, 得(x -1)2+(y -1)2=1,所以点C 在以(1,1)为圆心,1为半径的圆上. 所以|c |max =2+1.法三 易知|a +b |=2,|c -a -b |=|c -(a +b )| ≥||c |-|a +b ||=||c |-2|, 由已知得||c |-2|≤1,所以|c |≤1+2,故|c |max =2+1.感悟升华 1.两个向量垂直的充要条件是两向量的数量积为0,若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.若题目给出向量的坐标,可直接运用公式cos θ=x1x2+y1y2x21+y21·x22+y22求解.没有坐标时可用公式cos θ=a·b|a||b|.研究向量夹角应注意“共起点”,注意取值范围是[0,π].3.向量模的计算主要利用a2=|a|2,把向量模的运算转化为数量积运算,有时借助几何图形的直观性,数形结合,提高解题效率.【训练1】(1)(多选题)(2021·湖南三校联考)已知a,b是单位向量,且a+b=(1,-1),则()A.|a+b|=2B.a与b垂直C.a与a-b的夹角为π4 D.|a-b|=1(2)已知单位向量a,b的夹角为θ,且tan θ=12,若向量m=5a-3b,则|m|=()A.2B.3C.26D.2或26答案(1)BC(2)A解析(1)|a+b|=12+(-1)2=2,故A错误;因为a,b是单位向量,所以|a|2+|b|2+2a·b=1+1+2a·b=2,得a·b=0,a与b 垂直,故B正确;|a-b|2=a2+b2-2a·b=2,|a-b|=2,故D错误;cos〈a,a-b〉=a·(a-b)|a||a-b|=a2-a·b1×2=22,所以a与a-b的夹角为π4,故C正确.故选BC.(2)依题意|a|=|b|=1,又θ为a,b的夹角,且tan θ=1 2,∴θ为锐角,且cos θ=2sin θ,又sin2θ+cos2θ=1,从而cos θ=25 5.由m=5a-3b,∴m2=(5a-3b)2=5a2+9b2-65a·b=2,因此|m|= 2.考点三 平面向量的综合应用【例3】 (1)(2020·天津卷)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD→=λBC →,AD →·AB →=-32,则实数λ的值为__________;若M ,N 是线段BC 上的动点,且|MN→|=1,则DM →·DN →的最小值为__________.答案 16 132解析 因为AD→=λBC →,所以AD ∥BC ,则∠BAD =120°,所以AD→·AB →=|AD →|·|AB →|·cos 120°=-32, 解得|AD→|=1. 因为AD→,BC →同向,且BC =6, 所以AD→=16BC →,即λ=16. 在四边形ABCD 中,作AO ⊥BC 于点O ,则BO =AB ·cos 60°=32,AO =AB ·sin 60°=332.以O 为坐标原点,以BC 和AO 所在直线分别为x ,y 轴建立平面直角坐标系. 如图,设M (a ,0),不妨设点N 在点M 右侧, 则N (a +1,0),且-32≤a ≤72.又D ⎝ ⎛⎭⎪⎫1,332,所以DM →=⎝ ⎛⎭⎪⎫a -1,-332, DN→=⎝⎛⎭⎪⎫a ,-332, 所以DM→·DN →=a 2-a +274=⎝ ⎛⎭⎪⎫a -122+132. 所以当a =12时,DM→·DN →取得最小值132.(2)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C . ①求角C 的大小;②若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 ①m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C ,所以m ·n =sin C ,又m ·n =sin 2C , 所以sin 2C =sin C ,cos C =12. 又因为C ∈(0,π),故C =π3.②由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA→·(AB →-AC →)=18,所以CA →·CB →=18, 即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36,所以c =6.感悟升华 1.以平面几何为载体的向量问题有两种基本解法:(1)基向量法:恰当选择基底,结合共线定理、平面向量的基本定理进行向量运算.(2)坐标法:如果图形比较规则,可建立平面坐标系,把有关点与向量用坐标表示,从而使问题得到解决.2.解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题.【训练2】 (1)(2020·全国Ⅲ卷)在平面内,A ,B 是两个定点,C 是动点.若AC →·BC →=1,则点C 的轨迹为( ) A.圆B.椭圆C.抛物线D.直线(2)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若AB →·AC →=6AO →·EC →,则AB AC 的值是________. 答案 (1)A (2)3解析 (1)以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系,设点A ,B 分别为(-a ,0),(a ,0)(a >0),点C 为(x ,y ),则AC→=(x +a ,y ),BC→=(x -a ,y ),所以AC →·BC →=(x -a )(x +a )+y ·y =x 2+y 2-a 2=1,整理得x 2+y 2=a 2+1.因此点C 的轨迹为圆.故选A.(2)法一 如图,过点D 作DF ∥CE 交AB 于点F ,由D 是BC 的中点,可知F 为BE 的中点.又BE =2EA ,则知EF =EA ,从而可得AO =OD ,则有AO→=12AD →=14(AB →+AC →),EC →=AC →-AE →=AC →-13AB →,所以6AO →·EC →=32(AB →+AC →)·⎝ ⎛⎭⎪⎫AC →-13AB →=32AC →2-12AB →2+AB →·AC →=AB→·AC →,整理可得AB →2=3AC →2,所以AB AC= 3.法二 以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.设E (1,0),C (a ,b ),则B (3,0),D ⎝ ⎛⎭⎪⎫a +32,b 2.⎭⎪⎬⎪⎫l AD :y =ba +3x ,l CE :y =ba -1(x -1)⇒O ⎝ ⎛⎭⎪⎫a +34,b 4. ∵AB→·AC →=6AO →·EC →, ∴(3,0)·(a ,b )=6⎝ ⎛⎭⎪⎫a +34,b 4·(a -1,b ),即3a =6⎣⎢⎡⎦⎥⎤(a +3)(a -1)4+b 24,∴a 2+b 2=3,∴AC = 3.∴AB AC =33= 3.平面向量与三角形的“四心”向量具有数形二重性,借助几何直观研究向量,优化解题过程,进而提高解题效率.设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA→|=|OB →|=|OC →|=a 2sin A .(2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA→·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0.一、平面向量与三角形的“重心”【例1】已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( ) A.△ABC 的内心B.△ABC 的垂心C.△ABC 的重心D.AB 边的中点答案 C解析 取AB 的中点D ,则2OD→=OA →+OB →,∵OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心. 二、平面向量与三角形的“内心”问题【例2】在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063 B.1463 C.43D.62答案 B解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则 12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 三、平面向量与三角形的“外心”问题【例3】(2020·安庆质检)在△ABC 中,O 为其外心,OA →·OC →=3,且3OA →+7OB →+OC →=0,则边AC 的长是________. 答案3-1解析 设△ABC 外接圆的半径为R , ∵O 为△ABC 的外心, ∴|OA→|=|OB →|=|OC →|=R , 又3OA→+7OB →+OC →=0, 则3OA→+OC →=-7OB →, ∴3OA→2+OC →2+23OA →·OC →=7OB →2, 从而OA→·OC →=32R 2, 又OA→·OC →=3,所以R 2=2, 又OA→·OC →=|OA →||OC →|cos ∠AOC =R 2cos ∠AOC =3, ∴cos ∠AOC =32,∴∠AOC =π6, 在△AOC 中,由余弦定理得 AC 2=OA 2+OC 2-2OA ·OC ·cos ∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-2 3. 所以AC =3-1.四、平面向量与三角形的“垂心”问题【例4】已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A.重心 B.垂心C.外心D.内心答案 B解析 因为OP→=OA →+λ(AB →|AB →|cos B +AC→|AC →|cos C),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以BC→·AP →=BC →·λ(AB →|AB →|cos B +AC→|AC →|cos C)=λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.A 级 基础巩固一、选择题1.已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0C.3D.152答案 C解析 因为2a -3b =(2k -3,-6),(2a -3b )⊥c ,所以(2a -3b )·c =2(2k -3)-6=0,解得k =3,选C.2.(2020·新乡质检)已知向量a =(0,2),b =(23,x ),且a 与b 的夹角为π3,则x =( ) A.-2B.2C.1D.-1答案 B解析 由题意得a ·b |a ||b |=2x 2·12+x 2=12, 则2x =12+x 2,解之得x =2,x =-2(舍去).3.(2021·长沙调研)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE→=-7DE →,3BF →=FC →,则AF →·BE →=( )A.11B.10C.-10D.-11答案 D解析 以A 为坐标原点,建立直角坐标系如图.则A (0,0),B (4,0),E (1,4),F (5,1),所以AF →=(5,1),BE→=(-3,4),则AF →·BE →=-15+4=-11. 4.若两个非零向量a ,b 满足|a +b |=|a -b |=2|b |,则向量a +b 与a 的夹角为( ) A.π3 B.2π3C.5π6D.π6答案 D解析 设|b |=1,则|a +b |=|a -b |=2. 由|a +b |=|a -b |,得a ·b =0,故以a 、b 为邻边的平行四边形是矩形,且|a |=3, 设向量a +b 与a 的夹角为θ,则cos θ=a ·(a +b )|a |·|a +b |=a 2+a ·b |a |·|a +b |=|a ||a +b |=32,又0≤θ≤π,所以θ=π6.5.(多选题)(2021·武汉调研)如图,点A ,B 在圆C 上,则AB →·AC →的值( )A.与圆C 的半径有关B.与圆C 的半径无关C.与弦AB 的长度有关D.与点A ,B 的位置有关 答案 BC解析 如图,连接AB ,过C 作CD ⊥AB 交AB 于D ,则D 是AB 的中点,故AB →·AC →=|AB →|·|AC →|·cos ∠CAD =|AB →|·|AC →|·12|AB →||AC →|=12|AB →|2,故AB→·AC →的值与圆C 的半径无关,只与弦AB 的长度有关,故选BC. 6.(多选题)(2020·青岛调研)在Rt △ABC 中,CD 是斜边AB 上的高,如图,则下列等式成立的是( ) A.|AC→|2=AC →·AB → B.|BC→|2=BA →·BC → C.|AB→|2=AC →·CD → D.|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2答案 ABD解析 因为AC→·AB →=|AC →||AB →|cos A =|AC →||AC →|=|AC →|2,选项A 正确;因为BA→·BC →=|BA →||BC →|cos B =|BC →||BC →|=|BC →|2,选项B 正确; 由AC→·CD →=|AC →||CD →|·cos(π-∠ACD )<0,|AB →|2>0,知选项C 错误; 由题图可知Rt △ACD ∽Rt △ABC ,所以|AC→||BC →|=|AB →||CD →|,结合选项A ,B 可得|CD →|2=(AC →·AB →)×(BA →·BC →)|AB →|2,选项D 正确.故选ABD.二、填空题7.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉=________. 答案 23解析 由题意,得cos 〈a ,c 〉=a ·(2a -5b )|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23.8.(2020·全国Ⅰ卷)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 如图,设OA →=a ,OB →=b ,利用平行四边形法则得OC →=a +b ,∵|a |=|b |=|a +b |=1,∴△OAC 为正三角形,∴|BA →|=|a -b |=2×32×|a |= 3.9.已知四边形ABCD 中,AD ∥BC ,∠BAD =90°,AD =1,BC =2,M 是AB 边上的动点,则|MC →+MD →|的最小值为________.答案 3解析 以BC 所在直线为x 轴,BA 所在直线为y 轴建立如图所示的平面直角坐标系,设A (0,a ),M (0,b ),且0≤b ≤a ,由于BC =2,AD =1. ∴C (2,0),D (1,a ).则MC →=(2,-b ),MD →=(1,a -b ), ∴MC→+MD →=(3,a -2b ). 因此|MC→+MD →|=9+(a -2b )2, ∴当且仅当a =2b 时,|MC →+MD →|取得最小值3.三、解答题10.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0,于是tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a ·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝ ⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝ ⎛⎭⎪⎫x +π6≤32.于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.B 级 能力提升11.(2021·石家庄调研)已知向量a ,b 满足|a |=1,(a -b )⊥(3a -b ),则a 与b 的夹角的最大值为( ) A.π6 B.π3C.2π3D.5π6答案 A解析 设a 与b 的夹角为θ,θ∈[0,π]. 因为(a -b )⊥(3a -b ),所以(a -b )·(3a -b )=0. 整理可得3a 2-4a ·b +b 2=0, 即3|a |2-4a ·b +|b |2=0.将|a |=1代入3|a |2-4a ·b +|b |2=0, 可得3-4|b |cos θ+|b |2=0, 整理可得cos θ=34|b |+|b |4≥234|b |×|b |4=32,当且仅当34|b |=|b |4,即|b |=3时取等号, 故cos θ≥32,结合θ∈[0,π], 可知θ的最大值为π6.12.(2021·重庆联考)已知点O 为坐标原点,向量OA →=(1,2),OB →=(x ,y ),且OA→·OB →=10,则|OB →|的最小值为________. 答案 25解析 由题意知|OB→|=x 2+y 2,x +2y =10,∴点B 在直线x +2y -10=0上,∴|OB→|的最小值为点O 到直线x +2y -10=0的距离. 则|OB →|min=|0+0-10|12+22=105=2 5. 13.(2020·浙江卷)已知平面单位向量e 1,e 2满足|2e 1-e 2|≤ 2.设a =e 1+e 2,b =3e 1+e 2,向量a ,b 的夹角为θ,则cos 2θ的最小值是__________. 答案 2829解析 因为单位向量e 1,e 2满足|2e 1-e 2|≤2, 所以|2e 1-e 2|2=5-4e 1·e 2≤2,即e 1·e 2≥34. 因为a =e 1+e 2,b =3e 1+e 2,a ,b 的夹角为θ,所以cos 2θ=(a ·b )2|a |2|b |2=[(e 1+e 2)·(3e 1+e 2)]2|e 1+e 2|2·|3e 1+e 2|2=(4+4e 1·e 2)2(2+2e 1·e 2)(10+6e 1·e 2)=4+4e 1·e 25+3e 1·e 2. 不妨设t =e 1·e 2,则t ≥34,cos 2θ=4+4t 5+3t ,又y =4+4t 5+3t 在⎣⎢⎡⎭⎪⎫34,+∞上单调递增,所以cos 2θ≥4+35+94=2829, 所以cos 2θ的最小值为2829.14.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ), sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得a sin A =bsin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2·5c ·⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7(舍去),故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.。

第__3__讲___平面向量的数量积及平面向量应用举例

第__3__讲___平面向量的数量积及平面向量应用举例
第 3 讲 平面向量的数量积及平面向量应用举例
1.理解平面向量数量积的含义及其物理意义. .理解平面向量数量积的含义及其物理意义. 2.了解平面向量的数量积与向量投影的关系. .了解平面向量的数量积与向量投影的关系. 3.掌握数量积的坐标表达式,会进行平面向量数量积的运算. .掌握数量积的坐标表达式,会进行平面向量数量积的运算. 4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向 .能运用数量积表示两个向量的夹角, 量的垂直关系. 量的垂直关系. 5.会用向量方法解决某些简单的平面几何问题. .会用向量方法解决某些简单的平面几何问题. 6.会用向量方法解决简单的力学问题与其他一些实际问题. .会用向量方法解决简单的力学问题与其他一些实际问题.
迁移发散 2.在直角△ABC中,已知=(2,3),=(1,k),求k的值. .在直角△ 的值. 中 已知= , , , 的值
考向三 平面向量的夹角与模的问题
1 1 【例 3】 已知 = 1,a·b= , (a- b)·(a+b)= . 】 已知|a|= , = - + = 2 2 的夹角; 求: (1)a 与 b 的夹角; (2)a-b 与 a+b 的夹角的余弦值. - + 的夹角的余弦值. 1 1 解:(1)∵(a-b)·(a+b)= ,∴|a|2-|b|2= , 2 2 1 2 又∵|a|=1,∴|b|= |a|2- = . 2 2 设 a 与 b 的夹角为 θ, 1 a·b 2 2 则 cos θ= = = , |a||b| 2 2 1· 2 ∵0°≤θ≤180°,∴θ=45°.
解析: = , ,则有2a+ = + + = 解析:设b=(x,y),则有 +b=(8+x,6+y)=(3,18), , 解得b= - 解得 =(-5,12),故cos〈a,b〉= , 〈 , 〉 答案: 答案:C

平面向量的数量积及其应用

平面向量的数量积及其应用

解析 解法一:∵|a+b|+|a-b|≥|(a+b)+(a-b)|=2|a|=2,且|a+b|+|a-b|≥|(a+b)(a-b)|=2|b|=4, ∴|a+b|+|a-b|≥4,当且仅当a+b与a-b反向时取等号,此时|a+b|+|a-b|取最 小值4.
| a b |2 | a b |2 | a b| | a b| ∵ ≤ = a 2 b 2 = 5 , 2 2
2 2 x12 y12 ,|b|= x2 y2 (2)|a|= .
平面向量的长度问题
( x1 x2 ) 2 ( y1 y2 ) 2 . 2.若A(x1,y1),B(x2,y2),则| AB |=

考点三
平面向量的夹角、两向量垂直及数量积的应用
x1 x2 y1 y2
已知a=(x1,y1),b=(x2,y2). (1)若a与b的夹角为θ,则cos θ= . 2 (2)a⊥b⇔x1x2+y1y2=0.
∴|a+b|+|a-b|≤2 5 . 当且仅当|a+b|=|a-b|时取等号,此时a· b=0.
故当a⊥b时,|a+b|+|a-b|有最大值2 5 .
解法二:设x=|a+b|,由||a|-|b||≤|a+b|≤|a|+|b|, 得1≤x≤3.
设y=|a-b|,同理,1≤y≤3. 而x2+y2=2a2+2b2=10, 故可设x= 10 cos θ, ≤cos θ≤ , y= 10 sin θ, ≤sin θ≤ . 设α1,α2为锐角,且sin α1= ,sin α2= ,
方法 2 求向量夹角问题的方法

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

高考数学一轮复习3 第3讲 平面向量的数量积及应用举例

第3讲平面向量的数量积及应用举例最新考纲考向预测1.通过物理中的功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.2.通过几何直观,了解平面向量投影的概念以及投影向量的意义.3.会用数量积判断两个平面向量的垂直关系.命题趋势平面向量数量积的概念及运算,与长度、夹角、平行、垂直有关的问题,平面向量数量积的综合应用仍是高考考查的热点,题型仍是选择题与填空题.核心素养数学运算、逻辑推理1.向量的夹角(1)条件:平移两个非零向量a和b至同一起点,结论:∠AOB=θ(0°≤θ≤180°)叫做a与b的夹角.(2)范围:0°≤θ≤180°.特殊情况:当θ=0°时,a与b共线同向.当θ=180°时,a与b共线反向.当θ=90°时,a与b互相垂直.2.向量的数量积(1)条件:两个向量a与b,夹角θ,结论:数量|a||b|cos_θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos_θ.(2)数量积的几何意义条件:a的长度|a|,b在a方向上的投影|b|cos_θ(或b的长度|b|,a在b方向上的投影|a|cos_θ),结论:数量积a·b等于|a|与|b|cos_θ的乘积(或|b|与|a|cos_θ的乘积).3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),θ=a,b.结论几何表示坐标表示向量的模|a|=a·a |a|=x21+y21夹角余弦cos θ=a·b|a||b|cos θ=x1x2+y1y2x21+y21x2+y2a⊥b充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤x21+y21x22+y2常用结论1.求平面向量的模的公式(1)a2=a·a=|a|2或|a|=a·a=a2;(2)|a±b|=(a±b)2=a2±2a·b+b2;(3)若a=(x,y),则|a|=x2+y2.2.有关向量夹角的两个结论(1)两个向量a与b的夹角为锐角,则有a·b>0,反之不成立(因为夹角为0时不成立);(2)两个向量a与b的夹角为钝角,则有a·b<0,反之不成立(因为夹角为π时不成立).常见误区1.投影和两向量的数量积都是数量,不是向量.2.向量a在向量b方向上的投影与向量b在向量a方向上的投影不是一个概念,要加以区别.3.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于a·(b·c),这是由于(a ·b )·c 表示一个与c 共线的向量,而a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.1.判断正误(正确的打“√”,错误的打“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )(3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )·c =a ·(b ·c ).( )(5)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( )(6)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( ) 答案:(1)√ (2)√ (3)× (4)× (5)× (6)×2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33D .3解析:选B.a ·b =|a ||b |cos 135°=-122,所以|b |=-1224×⎝ ⎛⎭⎪⎫-22=6.3.(多选)已知向量a =(1,-2),b =(-2,4),则( ) A .a ∥b B .(a +b )·a =-5 C .b ⊥(a -b )D .2|a |=|b |解析:选ABD.因为1×4=-2×(-2),所以a ∥b ,又a +b =(-1,2),所以(a +b )·a =-5.a -b =(3,-6),b ·(a -b )≠0,所以C 错误,|a |=5,|b |=25,2|a |=|b |,故选ABD.4.已知|a |=2,|b |=6,a ·b =-63,则a 与b 的夹角θ=________. 解析:cos θ=a·b |a||b|=-632×6=-32,又因为0≤θ≤π,所以θ=5π6. 答案:5π65.已知向量a 与b 的夹角为π3,|a |=|b |=1,且a ⊥(a -λb ),则实数λ=________.解析:由题意,得a ·b =|a ||b |cos π3=12,因为a ⊥(a -λb ),所以a ·(a -λb )=|a |2-λa ·b =1-λ2=0,所以λ=2.答案:2平面向量数量积的运算(1)(2021·内蒙古赤峰二中、呼市二中月考)已知向量a ,b 的夹角为π3,若c =a |a|,d =b |b|,则c ·d =( ) A.14B .12 C.32 D .34(2)(多选)已知△ABC 的外接圆的圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB→|,下列结论正确的是( ) A.CA→在CB →方向上的投影长为- 3 B.OA →·AB →=OA →·AC →C.CA→在CB →方向上的投影长为 3 D.OB →·AB →=OC →·AC→ 【解析】 (1)c ·d =a |a|·b |b|=|a||b|cos a ,b |a||b|=cos π3=12.故选B.(2)由OA→+AB →+AC →=0得OB →=-AC →=CA →,所以四边形OBAC 为平行四边形.又O 为△ABC 外接圆的圆心,所以|OB→|=|OA →|,又|OA →|=|AB →|,所以△OAB 为正三角形.因为△ABC 的外接圆半径为2,所以四边形OBAC 是边长为2的菱形,所以∠ACB =π6,所以CA →在CB →上的投影为|CA →|cos π6=2×32=3,故C 正确.因为OA →·AB→=OA →·AC →=-2,OB →·AB →=OC →·AC→=2,故B ,D 正确.【答案】 (1)B (2)BCD计算向量数量积的三个角度(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.1.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( )A.55 B .-55 C .-255D .-355解析:选D.由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2,所以a ·b =-3,所以向量b 在a 方向上的投影为a·b |a|=-355.故选D.2.(2020·重庆第一中学月考)已知非零向量a ,b ,c 满足a +b +c =0,a ,b 的夹角为120°,且|b |=2|a |,则向量a ,c 的数量积为( )A .0B .-2a 2C .2a 2D .-a 2解析:选A.由非零向量a ,b ,c 满足a +b +c =0,可得c =-(a +b ),所以a ·c =a ·[-(a +b )]=-a 2-a ·b =-a 2-|a |·|b |·cosa ,b.由于a ,b 的夹角为120°,且|b |=2|a |,所以a ·c =-a 2-|a |·|b |cos 120°=-|a |2-2|a |2×⎝ ⎛⎭⎪⎫-12=0.故选A.3.(一题多解)(2020·武昌区高三调研)在等腰直角三角形ABC 中,∠ACB =π2,AC =BC =2,点P 是斜边AB 上一点,且BP =2P A ,那么CP →·CA →+CP →·CB→=( ) A .-4 B .-2 C .2D .4解析:选D.通解:由已知得|CA →|=|CB →|=2,CA →·CB→=0,AP →=13(CB →-CA →),所以CP →·CA →+CP →·CB →=(CA →+AP →)·CA →+(CA →+AP →)·CB →=|CA →|2+AP →·CA →+CA →·CB →+AP →·CB →=|CA →|2+13(CB →-CA →)·(CB→+CA →)=|CA →|2+13|CB →|2-13|CA →|2=22+13×22-13×22=4. 优解:由已知,建立如图所示的平面直角坐标系,则C (0,0),A (2,0),B (0,2),设P (x ,y ).因为BP =2P A ,所以BP →=2P A →,所以(x ,y -2)=2(2-x ,-y ),所以⎩⎪⎨⎪⎧x =43y =23,所以CP →·CA →+CP →·CB →=(43,23)·(2,0)+(43,23)·(0,2)=4.故选D.平面向量数量积的应用角度一 求两平面向量的夹角(1)(2020·高考全国卷Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos〈a ,a +b 〉=( )A .-3135B .-1935 C.1735D .1935(2)(2021·普通高等学校招生全国统一考试模拟)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉=( )A.73 B .23 C.79D .29【解析】 (1)由题意,得a ·(a +b )=a 2+a ·b =25-6=19,|a +b |=a2+2a·b +b2=25-12+36=7,所以cosa ,a +b=a·(a +b )|a||a +b|=195×7=1935,故选D.(2)因为a ,b 是单位向量,所以|a |=|b |=1.又因为a ·b =0,c =7a +2b ,所以|c |=(7a +2b )2=3,a ·c =a ·(7a +2b )=7, 所以cos 〈a ,c 〉=a·c |a||c|=73.因为〈a ,c 〉∈[0,π],所以sin 〈a ,c 〉=23.故选B. 【答案】 (1)D (2)B求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系.(2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x1x2+y1y2x21+y 21·x 2+y 2.角度二 求平面向量的模(2020·四川双流中学诊断)如图,在△ABC 中,M 为BC 的中点,若AB =1,AC =3,AB →与AC →的夹角为60°,则|MA→|=________.【解析】 因为M 为BC 的中点,所以AM→=12(AB →+AC →),所以|MA→|2=14(AB →+AC →)2 =14(|AB →|2+|AC →|2+2AB →·AC →) =14(1+9+2×1×3cos 60°)=134, 所以|MA→|=132. 【答案】 132求向量的模或其范围的方法(1)定义法:|a |=a2=a·a ,|a ±b |=(a±b )2=a2±2a·b +b2. (2)坐标法:设a =(x ,y ),则|a |=x2+y2.(3)几何法:利用向量加减法的平行四边形法则或三角形法则作出向量,再利用解三角形的相关知识求解.[提醒] (1)求形如m a +n b 的向量的模,可通过平方,转化为数量的运算. (2)用定义法和坐标法求模的范围时,一般把它表示成某个变量的函数,再利用函数的有关知识求解;用几何法求模的范围时,注意数形结合的思想,常用三角不等式进行最值的求解.角度三 两平面向量垂直问题已知向量AB →与AC →的夹角为120°,且|AB→|=3,|AC →|=2.若AP →=λAB →+AC →,且AP→⊥BC →,则实数λ的值为________.【解析】 因为AP →⊥BC →,所以AP →·BC →=0.又AP→=λAB →+AC →,BC →=AC →-AB →, 所以(λAB →+AC →)·(AC →-AB →)=0, 即(λ-1)AC →·AB →-λAB →2+AC →2=0, 所以(λ-1)|AC →||AB →|cos 120°-9λ+4=0.所以(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0.解得λ=712.【答案】 712有关平面向量垂直的两类题型根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.1.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |=( ) A .22 B .25 C.17D .15解析:选 C.因为a -b =(3,2),所以|a -b |=5,所以|a -b |2=|a |2-2a ·b +|b |2=5-2a ·b =5,则a ·b =0,所以|a +2b |2=|a |2+4a ·b +4|b |2=17,所以|a +2b |=17.故选C.2.(多选)设a ,b 是两个非零向量,则下列命题为假命题的是( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 解析:选ABD.对于A ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题; 对于C ,若|a +b |=|a |-|b |, 则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |, 得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题. 对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0, 因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |, 所以D 不正确. 故选ABD.3.(一题多解)已知正方形ABCD ,点E 在边BC 上,且满足2BE →=BC →,设向量AE→,BD →的夹角为θ,则cos θ=________. 解析:方法一:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,则|AE →|=5,|BD →|=22,AE →·BD →=⎝ ⎛⎭⎪⎫AB →+12AD →·(AD →-AB →)=12|AD →|2-|AB →|2+12AD →·AB →=12×22-22=-2,所以cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.方法二:因为2BE→=BC →,所以E 为BC 的中点.设正方形的边长为2,建立如图所示的平面直角坐标系xAy ,则点A (0,0),B (2,0),D (0,2),E (2,1),所以AE →=(2,1),BD →=(-2,2),所以AE →·BD →=2×(-2)+1×2=-2,故cos θ=AE →·BD →|AE →||BD →|=-25×22=-1010.答案:-1010向量数量积的综合应用在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.【解】 (1)由m·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35.因为0<A <π, 所以sin A =1-cos2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理a sin A =b sin B ,得sin B =bsin A a =5×4542=22,因为a >b ,所以A >B ,则B =π4,由余弦定理得()422=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1.故向量BA→在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.平面向量与三角函数的综合问题(1)题目条件给出的向量坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. K在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知向量m =(cos B ,2cos 2 C2-1),n =(c ,b -2a ),且m·n =0.(1)求∠C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积.解:(1)因为m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0,所以c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得sin C cos B +(sin B -2sin A )cos C =0,sin A =2sin A cos C ,又sin A ≠0,所以cos C =12,而∠C ∈(0,π),所以∠C =π3. (2)由AD→=DB →知,CD →-CA →=CB →-CD →, 所以2CD→=CA →+CB →, 两边平方得4|CD→|2=b 2+a 2+2ba cos ∠ACB =b 2+a 2+ba =28.①又c 2=a 2+b 2-2ab cos ∠ACB , 所以a 2+b 2-ab =12.②由①②得ab =8,所以S △ABC =12ab sin ∠ACB =23.核心素养系列4 逻辑推理——平面向量与三角形的“四心”三角形的“四心”:设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A . (2)O 为△ABC 的重心⇔OA→+OB →+OC →=0.(3)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(4)O 为△ABC 的内心⇔a OA→+b OB →+c OC →=0. 类型一 平面向量与三角形的“重心”问题已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP→=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC→],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点【解析】 取AB 的中点D ,则2OD→=OA →+OB →, 因为OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], 所以OP→=13[2(1-λ)OD →+(1+2λ)OC →] =2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,所以P ,C ,D 三点共线,所以点P 的轨迹一定经过△ABC 的重心. 【答案】 C类型二 平面向量与三角形的“内心”问题在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP→=xOB →+yOC→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( ) A.1063B .1463 C .43D .62【解析】 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263, 所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 【答案】 B类型三 平面向量与三角形的“垂心”问题已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P满足OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A .重心B .垂心C .外心D .内心【解析】 因为OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C ,所以AP →=OP →-OA →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 所以BC →·AP →=BC →·λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =λ(-|BC→|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.【答案】 B类型四 平面向量与三角形的“外心”问题已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO→=xAB →+yAC →,则有序实数对(x ,y )为( ) A.⎝⎛⎭⎪⎫45,35 B .⎝⎛⎭⎪⎫35,45C.⎝⎛⎭⎪⎫-45,35 D .⎝⎛⎭⎪⎫-35,45【解析】 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC→, OM →=AM →-AO →=12AB →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝ ⎛⎭⎪⎫12-y AC →-xAB→. 由OM →⊥AB →,得⎝⎛⎭⎪⎫12-x AB →2-yAC →·AB→=0,①由ON →⊥AC →,得⎝ ⎛⎭⎪⎫12-y AC →2-xAC →·AB→=0,② 又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB2→, 所以AC →·AB →=AC →2+AB →2-BC →22=-12,③把③代入①,②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝ ⎛⎭⎪⎫45,35.【答案】 A[A 级 基础练]1.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( ) A .-32 B .-53 C.53D .32解析:选A.c =a +k b =(1,2)+k (1,1)=(1+k ,2+k ),因为b ⊥c ,所以b ·c =0,b ·c =(1,1)·(1+k ,2+k )=1+k +2+k =3+2k =0,所以k =-32.2.若向量OF1→=(1,1),OF2→=(-3,-2)分别表示两个力F 1,F 2,则|F 1+F 2|为( )A.10 B .25 C.5D .15解析:选 C.由于F 1+F 2=(1,1)+(-3,-2)=(-2,-1),所以|F 1+F 2|=(-2)2+(-1)2=5.3.(2020·贵阳市第一学期监测考试)在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.109 B .259 C.269D .89解析:选A.方法一:因为|AB→+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即∠BAC =90°.所以AE →·AF →=⎣⎢⎡⎦⎥⎤AB →+13(AC →-AB →)·⎣⎢⎡⎦⎥⎤AC →-13(AC →-AB →)=⎝ ⎛⎭⎪⎫23AB→+13AC →·(23AC →+13AB →)=29AB →2+29AC →2=109,故选A.方法二:因为|AB →+AC →|=|AB →-AC →|,所以|AB →+AC →|2=|AB →-AC →|2,所以AB →·AC →=0,即AB→⊥AC →,以A 为坐标原点,AB ,AC 所在的直线分别为x 轴、y 轴建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (0,1),E (23,23),F (43,13),所以AE →·AF →=(23,23)·(43,13)=89+29=109,故选A.4.(多选)在△ABC 中,下列命题正确的是( ) A.AB→-AC →=BC →B.AB→+BC →+CA →=0 C .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形D .若AC→·AB →>0,则△ABC 为锐角三角形 解析:选BC.由向量的运算法则知AB →-AC →=CB →;AB →+BC →+CA →=0,故A 错,B对;因为(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=0, 所以|AB→|2=|AC →|2,即AB =AC , 所以△ABC 为等腰三角形,故C 对;因为AC →·AB →>0,所以角A 为锐角,但三角形不一定是锐角三角形.故选BC. 5.(2020·安徽示范高中名校月考)已知a ,b ,c 均为单位向量,a 与b 的夹角为60°,则(c +a )·(c -2b )的最大值为( )A.32 B .3 C .2D .3解析:选B.设c 与a -2b 的夹角为θ.因为|a -2b |2=a 2-4a ·b +4b 2=3,所以|a -2b |=3,所以(c +a )·(c -2b )=c 2+c ·(a -2b )-2a ·b =1+|c ||a -2b |cos θ-1=3cos θ,所以(c +a )·(c -2b )的最大值为3,此时cos θ=1.故选B.6.(2020·湖南、河南、江西3月联考)设非零向量a ,b 满足|a |=3|b |,cos a ,b=13,a ·(a -b )=16,则|b |=________. 解析:因为|a |=3|b |,cos a ,b=13,所以a ·(a -b )=9|b |2-|b |2=8|b |2=16,所以|b |=2.答案:27.若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________. 解析:因为|a |=|a +2b |, 所以|a |2=|a |2+4a ·b +4|b |2, 所以a ·b =-|b |2, 令a 与b 的夹角为θ.所以cos θ=a·b |a||b|=-|b|23|b||b|=-13. 答案:-138.(2020·新高考卷改编)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP →·AB→的取值范围是________. 解析:AP →·AB →=|AP →|·|AB →|·cos ∠P AB =2|AP →|·cos ∠P AB ,又|AP →|cos ∠P AB 表示AP →在AB →方向上的投影,所以结合图形可知,当P 与C 重合时投影最大,当P 与F 重合时投影最小.又AC →·AB →=23×2×cos 30°=6,AF →·AB →=2×2×cos 120°=-2,故当点P 在正六边形ABCDEF 内部运动时,AP →·AB→∈(-2,6).答案:(-2,6)9.已知向量a =(2,-1),b =(1,x ). (1)若a ⊥(a +b ),求|b |的值;(2)若a +2b =(4,-7),求向量a 与b 夹角的大小. 解:(1)由题意得a +b =(3,-1+x ). 由a ⊥(a +b ),可得6+1-x =0, 解得x =7,即b =(1,7), 所以|b |=50=52.(2)由题意得,a +2b =(4,2x -1)=(4,-7), 故x =-3,所以b =(1,-3),所以cos 〈a ,b 〉=a·b |a||b|=(2,-1)·(1,-3)5×10=22,因为〈a ,b 〉∈[0,π], 所以a 与b 的夹角是π4.10.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.解:(1)由题设知,AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=42. 故所求的两条对角线的长分别为42,210.(2)方法一:由题设知,OC→=(-2,-1),AB →-tOC →=(3+2t ,5+t ).由(AB →-tOC →)·OC →=0,得 (3+2t ,5+t )·(-2,-1)=0, 从而5t =-11, 所以t =-115.方法二:AB →·OC →=tOC →2,AB →=(3,5),t =AB →·OC →|OC →|2=-115. [B 级 综合练]11.(多选)(2020·山东九校联考)已知△ABC 是边长为2的等边三角形,D ,E 分别是AC ,AB 上的点,且AE →=EB →,AD →=2DC →,BD 与CE 交于点O ,则下列说法正确的是( )A.AB →·CE →=-1B.OE→+OC →=0 C .|OA→+OB →+OC →|=32 D.ED→在BC →方向上的投影为76 解析:选BCD.由题意知E 为AB 的中点,则CE ⊥AB ,以E 为原点,EA ,EC 所在直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,所以E (0,0),A (1,0),B (-1,0),C (0,3),D ⎝ ⎛⎭⎪⎫13,233, 设O (0,y ),y ∈(0,3),则BO→=(1,y ),DO →=⎝ ⎛⎭⎪⎫-13,y -233,因为BO →∥DO →,所以y -233=-13y , 解得y =32,即O 是CE 的中点,则OE→+OC →=0,所以选项B 正确;|OA→+OB →+OC →|=|2OE →+OC →|=|OE →|=32,所以选项C 正确; 因为CE ⊥AB ,所以AB →·CE →=0,所以选项A 错误;ED→=⎝ ⎛⎭⎪⎫13,233,BC →=(1,3). 故ED →在BC →方向上的投影为ED →·BC →|BC →|=13+22=76,所以选项D 正确.故选BCD.12.(2020·山东济宁一中月考)如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP→=m AC →+12AB →,若△ABC 的面积为23,则|AP →|的最小值为( )A. 2 B .43 C .3D . 3解析:选 D.令CP→=k CD →(0<k <1),则AP →=AC →+CP →=AC →+k CD →=AC →+k (AD →-AC →)=AC →+k ⎝ ⎛⎭⎪⎫23AB →-AC →=2k 3AB →+(1-k )AC→=m AC →+12AB →,所以1-k =m ,2k 3=12,所以m =14,因为△ABC 的面积为23,所以12|AC →|·|AB →|·32=23,所以|AC →|·|AB→|=8,所以|AP →|=116|AC →|2+14|AB →|2+18|AC →||AB →|=1+116|AC →|2+16|AC →|2≥3,当且仅当|AC→|=4时取“=”,所以|AP →|的最小值为 3.故选D.13.在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2.(1)若AB→⊥a ,且|AB →|=5|OA →|,求向量OB →; (2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.解:(1)由题设知AB→=(n -8,t ), 因为AB→⊥a ,所以8-n +2t =0. 又因为5|OA →|=|AB →|,所以5×64=(n -8)2+t 2=5t 2,得t =±8. 当t =8时,n =24;当t =-8时,n =-8, 所以OB→=(24,8)或OB →=(-8,-8). (2)由题设知AC→=(k sin θ-8,t ),因为AC→与a 共线,所以t =-2k sin θ+16, t sin θ=(-2k sin θ+16)sin θ=-2k ⎝ ⎛⎭⎪⎫sin θ-4k 2+32k . 因为k >4,所以0<4k <1,所以当sin θ=4k 时,t sin θ取得最大值32k , 由32k =4,得k =8,此时θ=π6,OC →=(4,8), 所以OA →·OC →=(8,0)·(4,8)=32.14.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC→|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=34π,设点D 为线段OA 上的动点,求|OC→+OD →|的最小值;(2)若θ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值.解:(1)设D (t ,0)(0≤t ≤1), 由题意知C ⎝ ⎛⎭⎪⎫-22,22, 所以OC→+OD →=⎝ ⎛⎭⎪⎫-22+t ,22, 所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝⎛⎭⎪⎫t -222+12(0≤t ≤1),所以当t =22时,|OC→+OD →|有最小值,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC→=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝ ⎛⎭⎪⎫2θ+π4,因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2θ+π4≤5π4,所以当2θ+π4=π2,即θ=π8时,sin ⎝ ⎛⎭⎪⎫2θ+π4取得最大值1. 所以当θ=π8时,m ·n 取得最小值,为1-2.[C 级 创新练]15.在Rt △ABC 中,∠C 是直角,CA =4,CB =3,△ABC 的内切圆与CA ,CB分别切于点D ,E ,点P 是图中阴影区域内的一点(不包含边界).若CP →=xCD →+yCE →,则x +y 的值可以是( )A .1B .2C .4D .8解析:选 B.设△ABC 内切圆的圆心为O ,半径为r ,连接OD ,OE ,则OD ⊥AC ,OE ⊥BC ,所以3-r +4-r =5,解得r =1,故CD =CE =1,连接DE ,则当x +y =1时,P 在线段DE 上,但线段DE 均不在阴影区域内,排除A ;在AC 上取点M ,在CB 上取点N ,使得CM =2CD ,CN =2CE ,连接MN ,所以CP→=x 2CM →+y2CN→,则当点P 在线段MN 上时,x 2+y 2=1,故x +y =2.同理,当x +y =4或x +y =8时,点P 不在△ABC 内部,排除C ,D ,故选B.16.定义两个平面向量的一种运算a ⊗b =|a |·|b |sin a ,b,则关于平面向量上述运算的以下结论中,①a ⊗b =b ⊗a ; ②λ(a ⊗b )=(λa )⊗b ; ③若a =λb ,则a ⊗b =0;④若a =λb 且λ>0,则(a +b )⊗c =(a ⊗c )+(b ⊗c ). 正确的序号是________.解析:①恒成立,②λ(a ⊗b )=λ|a |·|b |sin a ,b,(λa )⊗b =|λa |·|b |sina ,b,当λ<0时,λ(a ⊗b )=(λa )⊗b 不成立,③a =λb ,则sin a ,b=0,故a ⊗b =0恒成立,④a =λb ,且λ>0,则a+b=(1+λ)b,(a+b)⊗c=|1+λ||b|·|c|sin b,c,(a⊗c)+(b⊗c)=|λb|·|c|sin b,c+|b|·|c|sin b,c=|1+λ||b|·|c|sin b,c,故(a+b)⊗c=(a⊗c)+(b⊗c)恒成立.答案:①③④。

平面向量的数量积与几何意义

平面向量的数量积与几何意义

平面向量的数量积与几何意义平面向量是代表了平面上的位移和方向的量,而数量积则是用来衡量两个向量之间的关系的一种运算。

它不仅仅是一个数值结果,还有着重要的几何意义。

本文将探讨平面向量的数量积及其几何意义。

一、数量积的定义与性质数量积,也叫点积或内积,是指两个向量的乘积与两个向量夹角的余弦值的乘积。

设有向量a和向量b,其数量积记为a·b。

数量积的定义如下:a·b = |a|·|b|·cosθ其中,|a|表示向量a的模长,|b|表示向量b的模长,θ表示a与b之间的夹角。

根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积的模长:|a·b| = |a|·|b|·|cosθ|4. 垂直性:若a·b=0,则a和b垂直二、数量积的几何意义数量积不仅仅是一个数值结果,还蕴含着重要的几何意义。

下面我们将从两个方面来解释数量积的几何意义。

1. 夹角的余弦值在数量积的定义中,夹角的余弦值cosθ是数量积的一个因子。

夹角的大小可以通过夹角的余弦值来衡量。

当夹角为锐角时,cosθ大于0;当夹角为钝角时,cosθ小于0;而当夹角为直角时,cosθ等于0。

由此可以得到以下结论:- 若a·b > 0,夹角θ为锐角;- 若a·b < 0,夹角θ为钝角;- 若a·b = 0,夹角θ为直角。

2. 平行与垂直根据数量积的性质4,若a·b=0,则a和b垂直。

这个性质给出了判定两个向量是否垂直的方法。

另外,当两个向量的数量积大于0时,可以说明它们的方向相似,即平行;当数量积小于0时,可以说明它们的方向相反,即反平行。

这些几何意义使得数量积在解决几何问题中有着广泛的应用。

三、数量积的应用举例1. 判断两个向量的方向通过判断两个向量的数量积的正负,可以得知它们的方向关系。

2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)

2024届新高考一轮复习北师大版 第5章 第3节 平面向量的数量积及平面向量应用举例 课件(64张)

B.-1
C.-6
D.-18
D
由题意知 cos
〈a,b〉=sin
17π 3
=sin
6π-π3
=-sin
π 3


3 2
,所以 a·b=|a||b|cos 〈a,b〉=1×2
3
×-
3
2
=-3,b·(2a-b)
=2a·b-b2=-18.故选 D.
返回导航
3.在 Rt△ABC 中,∠ABC=60°,∠BAC=90°,则向量B→A 在向量
返回导航
[常用结论] 1.平面向量数量积运算的常用公式 ①(a+b)·(a-b)=a2-b2;②(a±b)2=a2±2a·b+b2; ③a2+b2=0⇒a=b=0. 2.有关向量夹角的两个结论 ①两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因为夹角 为 0 时不成立).
返回导航
规定 零向量与任一向量的数量积为 0
返回导航
(2)当 0°≤〈a,b〉<90°时,a·b>0;当〈a,b〉=90°时,a·b=0; 当 90°<〈a,b〉≤180°时,a·b<0;当〈a,b〉=0°时,a·b=|a||b|;当 〈a,b〉=180°时,a·b=-|a||b|.
返回导航
(3)投影向量
大一轮复习讲义 数学(BSD)
第五章 平面向量、复数 第三节 平面向量的数量积及平面向量应用举例
内 夯实·主干知识 容 探究·核心考点 索 引 课时精练
返回导航
【考试要求】 1.理解平面向量数量积的含义及其物理意义.2.了解平 面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平 面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判 断两个平面向量的垂直关系.5.会用向量方法解决某其他一些实际问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【答案】
(1)
2 3
(2)-∞,3
栏目 导引
第五章 平面向量
角度三 两向量垂直问题 已知向量A→B与A→C的夹角为 120°,且|A→B|=3,|A→C|=2.
若A→P=λA→B+A→C,且A→P⊥B→C,则实数 λ 的值为________.
【解析】 因为A→P⊥B→C,所以A→P·B→C=0. 又A→P=λA→B+A→C,B→C=A→C-A→B, 所以(λA→B+A→C)·(A→C-A→B)=0,
第五章 平面向量
栏目 导引
第五章 平面向量
4.平面向量数量积的有关结论
已知非零向量 a=(x1,y1),b=(x2,y2),a 与 b 的夹角为 θ.
结论
几何表示
坐标表示

|a|=___a_·_a__
|a|=__x_21_+__y21_
夹角
a⊥b 的充
要条件
a·b cosθ =__|a_|_|b_|__
栏目 导引
第五章 平面向量
判断正误(正确的打“√”,错误的打“×”)
(1)两个向量的夹角的范围是0,π2.(
)
(2)向量在另一个向量方向上的投影为数量,而不是向量.( )
(3)若 a·b>0,则 a 和 b 的夹角为锐角;若 a·b<0,则 a 和 b 的夹
角为钝角.( )
(4)a·b=a·c(a≠0),则 b=c.( )
(教材习题改编)已知|a|=2,|b|=6,a·b=-6 3,则 a 与 b 的夹角 θ=________. 解析:cosθ=|aa|··|bb|=-26×63=- 23. 又因为 0≤θ≤π,所以 θ=56π. 答案:56π
栏目 导引
第五章 平面向量
已知向量 a 与 b 的夹角为 30°,且|a|=1,|2a-b|=1,则|b| =________. 解析:因为|2a-b|=1,所以|2a-b|2=4a2+b2-4a·b=4+|b|2 -4|b|cos30°=1,即|b|2-2 3|b|+3=0,所以(|b|- 3)2=0, 所以|b|= 3. 答案: 3
栏目 导引
第五章 平面向量
【解析】 (1)设 a=(1,0),b=(0,1),则 c=(2,- 5),所
以 cos〈a,c〉=1× 24+5=23.
(2)因为 2a-3b 与 c 的夹角为钝角, 所以(2a-3b)·c<0,即(2k-3,-6)·(2,1)<0,
所以 4k-6-6<0,所以 k<3.
栏目 导引
法二:如图,建立平面直角坐标系 xAy.
第五章 平面向量
依题意,可设点 D(m,m),C(m+2,m),B(n,0),其中 m>0, n>0,则由A→B·A→C=2A→B·A→D,得(n,0)·(m+2,m)=2(n, 0)·(m,m),所以 n(m+2)=2nm,化简得 m=2.故A→D·A→C=(m, m)·(m+2,m)=2m2+2m=12. 【答案】 12
A.2
B.4
C.6
D.8
(3)已知在直角梯形 ABCD 中,AD∥BC,∠ADC=90°,AD
=2,BC=1,P 是腰 DC 上的动点,则|P→A+3P→B|的最小值为
__________.
栏目 导引
第五章 平面向量
【解析】 (1)法一:因为 a=(-1,2),所以 2a=(-2,4),因 为 b=(1,3),所以 2a-b=(-3,1),所以|2a -b|= 10,故选 C. 法二:在直角坐标系 xOy 中作出平面向量 a,2a, b,2a-b,如图所示,由图易得|2a-b|= 10, 故选 C.
栏目 导引
第五章 平面向量
2.(一题多解)(2019·云南省第一次统一检测)在▱ABCD 中, |A→B|=8,|A→D|=6,N 为 DC 的中点,B→M=2M→C,则A→M·N→M =________.






→ AM
·
→ NM

(
→ AB

→ BM
)·(
→ NC

→ CM
)

A→B+23A→D·12A→B-13A→D=12A→B2-29A→D2=12×82-29×62=24.
栏目 导引
第五章 平面向量
即(λ-1)A→C·A→B-λA→B2+A→C2=0, 所以(λ-1)|A→C||A→B|cos120°-9λ+4=0. 所以(λ-1)×3×2×(-12)-9λ+4=0.解得 λ=172.
【答案】
7 12
栏目 导引
第五章 平面向量
(1)求平面向量的夹角的方法 ①定义法:利用向量数量积的定义知,cosθ=|aa|·|bb|,其中两个 向量的夹角 θ 的范围为[0,π],求解时应求出三个量:a·b,|a|, |b|或者找出这三个量之间的关系; ②坐标法:若 a=(x1,y1),b=(x2,y2),则 cosθ= x21x+1xy221+·yx1y22+2 y22.
栏目 导引
第五章 平面向量
平面向量数量积的三种运算方法 (1)当已知向量的模和夹角时,可利用定义法求解,即 a·b= |a||b|cos〈a,b〉. (2)当已知向量的坐标时,可利用坐标法求解,即若 a=(x1,y1), b=(x2,y2),则 a·b=x1x2+y1y2. (3)利用数量积的几何意义求解.
栏目 导引
第五章 平面向量
角度二 平面向量的夹角 (1)(2019·高考全国卷Ⅲ)已知 a,b 为单位向量,且 a·b
=0,若 c=2a- 5b,则 cos〈a,c〉=________. (2)若向量 a=(k,3),b=(1,4),c=(2,1),已知 2a-3b 与 c 的夹角为钝角,则 k 的取值范围是________.
1.(2019·青岛模拟)已知向量|O→A|=3,|O→B|=2,O→C=mO→A+
nO→B,若O→A与O→B的夹角为 60°,且O→C⊥A→B,则实数mn 的值为
()
1
1
A. 6
B. 4
C.6
D.4
栏目 导引
第五章 平面向量
解析:选 A.因为向量|O→A|=3,|O→B|=2,O→C=mO→A+nO→B,O→A 与O→B夹角为 60°,所以O→A·O→B=3×2×cos60°=3, 所以A→B·O→C=(O→B-O→A)·(mO→A+nO→B) =(m-n)O→A·O→B-m|O→A|2+n|O→B|2 =3(m-n)-9m+4n=-6m+n=0,所以mn =16,故选 A.
第五章 平面向量
平面向量数量积的运算(师生共研)
(一题多解)如图,在梯形 ABCD
中,AB∥CD,CD=2,∠BAD=π4,若
→ AB
·
A→C =
2
→ AB
·
→ AD


→ AD
·
→ AC

________.
栏目 导引
第五章 平面向量
【解析】 法一:因为A→B·A→C=2A→B·A→D,所以A→B·A→C-A→B·A→D =A→B·A→D,所以A→B·D→C=A→B·A→D. 因为 AB∥CD,CD=2,∠BAD=π4,所以 2|A→B|=|A→B|·|A→D|cosπ4, 化简得|A→D|=2 2.故A→D·A→C=A→D·(A→D+D→C)=|A→D|2+A→D·D→C =(2 2)2+2 2×2cosπ4=12.
栏目 导引
第五章 平面向量
(2)求向量的模的方法 ①公式法:利用|a|= a·a及(a±b)2=|a|2±2a·b+|b|2,把向量模 的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量加、减法的平行 四边形法则或三角形法则作出向量,再利用余弦定理等方法求 解.
栏目 导引
第五章 平面向量
答案:(1)× (2)√ (3)× (4)×
栏目 导引
第五章 平面向量
(2018·高考全国卷Ⅱ)已知向量 a,b 满足|a|=1,a·b=-1,
则 a·(2a-b)=( )
A.4
B.3
C.2
D.0
解析:选 B.a·(2a-b)=2a2-a·b=2-(-1)=3,故选 B.
栏目 导引
第五章 平面向量
栏目 导引
第五章 平面向量
法二(特例图形):若▱ABCD 为矩形,建立如图所示坐标系,
则 N(4,6),M(8,4). 所以A→M=(8,4),N→M=(4,-2) 所以A→M·N→M=(8,4)·(4,-2)=32-8=24. 答案:24
栏目 导引
第五章 平面向量
平面向量数量积的应用(多维探究)
_a_·b_=__0__
x1cxo2s+θ y=1y2 __x_21_+__y_21 __x_22+__y_22_
__x_1x_2_+__y_1y_2_=__0__
栏目 导引
第五章 平面向量
导师提醒 1.记住平面向量数量积的三个常用公式 (1)(a+b)·(a-b)=a2-b2. (2)(a+b)2=a2+2a·b+b2. (3)(a-b)2=a2-2a·b+b2. 2.关注向量夹角的两个易错点 (1)两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因 为 a 与 b 夹角为 0 时不成立). (2)两个向量 a 与 b 的夹角为钝角,则有 a·b<0,反之不成立(因 为 a 与 b 夹角为π 时不成立).
栏目 导引
第五章 平面向量
(2)因为A→D=12(A→B+A→C)=12(2a+2b+2a-6b)=2a-2b,


|
→ AD
|2

4(a

b)2

4(a2

2b·a
相关文档
最新文档