数学建模定性分析方法解析

合集下载

数学建模各种分析方法

数学建模各种分析方法

现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息.运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。

2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据。

(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。

(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。

主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。

2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。

3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。

因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific fact or)之间也不相关,共同因子和特殊因子之间也不相关.4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。

5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。

数学建模定性分析方法解析

数学建模定性分析方法解析

定性研究数据采集定量研究往往具有足够样本量支持,丰富的统计分析技术,可以得出具有一定代表性的结论,但对于某个问题消费者为何如此回答,其所给解释是否是其真实想法,这样的问题便显得有些束手无策了。

相对而言,定性技术对数理性的要求低一些,但对消费者动机的深层挖掘要求却更高,更具针对性,因而与定量研究形成互补。

常规定性研究的方法主要是个别深度访谈与座谈会访谈。

其中深度访谈是深层次地挖掘个体的表现特征与背后的原因,而座谈会是利用几个人一起进行头脑风暴(brainstorming)的优势,相互激发、相互启迪,从而挖掘出深层次的原因。

座谈会(FDG)座谈会的成功依赖于两个系统,一个是主持人培训系统,一个是被访者约访系统。

华通现代建立起专职主持人与研究员水平主持人两个体系。

一方面保持几个专职主持人,以利于他们不断提高公司在座谈会主持方面的技术水平,适应一些难度非常大的主持项目;另一方面又更鼓励一部分研究人员掌握主持技巧,完成常规项目中必须的座谈会需求。

专职主持人的特点是主持技巧水平较高,缺点是研究设计、分析能力弱。

必须要研究人员与主持人的高度配合才能够拿出高水平的研究报告。

研究员水平的主持人对于一些特别复杂的技巧没有专职主持人那么强,但由于自己完全参与项目设计、数据分析、报告撰写等过程,容易对消费者有特别深入的理解、对数据的理解也会有独到的方面,比较容易出好的研究报告。

深层访谈(In-depth Interview)深访是一种无结构的、直接的、一对一的访问,在访问过程中,由掌握高级访谈技巧的调查员对调查对象进行深入的访谈,用以揭示对某一问题的潜在动机、态度和情感,此方法最适合于做探测性调查。

深层访谈的优点是更能深入地了解被调查者的内心想法和态度;便于对一些保密性、敏感性问题进行调查;能够自由地交换信息,常常会取得一些意外的资料。

缺点是调查的无结构性使得这种方法首调查员自身素质高低的影响很大;深层访谈结果的数据常难以解释和分析;这种访问的时间长,需要的经费较多,使该法在实际应用中受到一定的限制。

MathematicalModeling理论建模及实际应用

MathematicalModeling理论建模及实际应用

MathematicalModeling理论建模及实际应用数学建模(Mathematical Modeling)是一种将实际问题转化为数学问题,并通过数学方法对问题进行分析和解决的方法。

它既是数学的一种应用,也是一种研究问题并解决问题的工具。

数学建模在各个领域都有广泛的应用,如物理学、经济学、生物学、环境科学等等。

本文将从理论建模和实际应用两个方面来介绍数学建模的基本概念、方法以及一些实际应用案例。

在数学建模中,理论建模是首要的一步。

理论建模是指对实际问题进行分析和抽象,从中提取出数学模型的基本要素和关系。

对于一个复杂的实际问题,我们需要通过对问题的认识和理解,找出其中的关键因素和变量,并确定它们之间的数学关系。

这些关系可以是线性的、非线性的、离散的或连续的,可以用代数方程、微分方程、差分方程或概率统计等形式来表示。

理论建模需要深入地了解问题的背景和相关领域的知识,同时还需要灵活运用数学方法和工具来描述问题和解决问题。

数学建模的方法主要包括定性分析、定量分析和验证分析。

定性分析是指通过观察和分析问题的特征和特性,对问题进行描述和理解,找出问题的关键因素和变量,并确定它们之间的关系。

定量分析是指通过运用数学方法和工具,对问题进行计算和求解,得出问题的数值结果和解决方案。

验证分析是指对数学模型的有效性和可靠性进行检验和验证,通过与实际数据进行对比和比较,评估模型的拟合程度和预测能力。

这些方法相互补充和支持,共同构建了一个完整的数学建模流程。

数学建模在实际应用中有着广泛的应用。

以物理学为例,物理学中的很多问题都可以通过数学建模来解决。

比如,天体物理学中的行星运动、星系演化等问题可以通过数学建模来描述行星和星系的位置、速度和质量等参数,进而研究它们的运动规律和相互作用。

在经济学中,数学建模可以用来描述和分析经济系统中的供需关系、利润最大化、成本最小化等问题,从而指导经济政策和决策。

在生物学中,数学建模可以用来描述生物种群的增长、遗传变异、物种竞争等问题,为生态保护和资源管理提供科学依据。

数学建模常用各种检验方法

数学建模常用各种检验方法

数学建模常用各种检验方法数学建模是利用数学方法解决实际问题的过程。

在进行数学建模时,需要对模型的合理性进行检验,以确保模型的可靠性和准确性。

本文将介绍数学建模中常用的各种检验方法。

1.残差分析方法残差(residual)是指观测值与模型预测值之间的差异。

残差分析可以通过比较残差的大小、分布和形态,来检验模型的合理性。

常用的残差分析方法包括:正态性检验、稳定性检验、独立性检验和同方差性检验。

2.敏感性分析方法敏感性分析(sensitivity analysis)用于分析参数对模型结果的影响程度。

通过改变参数的值,并观察输出结果的变化,可以评估参数对模型的敏感性。

常用的敏感性分析方法包括:单参数敏感性分析、多参数敏感性分析和全局敏感性分析。

3.假设检验方法假设检验(hypothesis testing)用于判断模型的假设是否成立。

通过对模型的假设进行检验,可以评估模型的合理性和拟合优度。

常用的假设检验方法包括:t检验、F检验和卡方检验。

4.误差分析方法误差分析(error analysis)用于评估模型的误差水平。

通过比较实际观测值与模型预测值之间的误差,可以评估模型的准确性和精度。

常用的误差分析方法包括:平均绝对误差(MAE)、均方根误差(RMSE)和平均百分比误差(MAPE)。

5.稳定性分析方法稳定性分析(stability analysis)用于评估模型的稳定性和鲁棒性。

通过对模型进行参数扰动或输入扰动,并观察输出结果的变化,可以评估模型的稳定性和可靠性。

常用的稳定性分析方法包括:参数扰动分析、输入扰动分析和鲁棒性分析。

6.验证方法验证(validation)用于评估模型的预测能力和适用范围。

通过对模型进行验证,可以判断模型在不同情况下的预测效果和适用性。

常用的验证方法包括:留一验证(leave-one-out validation)、交叉验证(cross-validation)和外部验证(external validation)。

数学建模的相关问题求解方法

数学建模的相关问题求解方法

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

2011全国大学生数学建模竞赛A题题目及参考答案

2011全国大学生数学建模竞赛A题题目及参考答案

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题目A题城市表层土壤重金属污染分析摘要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

数学建模评价类问题如何确定评价系统的指标权重?

数学建模评价类问题如何确定评价系统的指标权重?

数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。

今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。

指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。

而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。

在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。

1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。

这类方法中,非常具有代表性的就是层次分析法。

另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。

评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。

在这类方法中,应用比较广泛的有变异系数法和熵值法。

2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。

在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。

比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。

数学建模常见模型的解法

数学建模常见模型的解法

一、权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。

权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重。

按照权重的表现形式的不同,可分为绝对数权重和相对数权重。

相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。

按照权重的形成方式划分,可分为人工权重和自然权重。

自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。

人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重。

按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。

如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。

按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。

独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。

相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。

相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。

比如评估环境质量多采用“变权综合”模型。

确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。

(一) 统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重。

其基本步骤是:第一步,确定专家。

一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模方法

数学建模方法




原理关键词: 随机 分布 模拟
建模方法:
方法1 利用理论分布,基于对问题的实际、合理的假设,选择 适当的理论分布模拟随机变量,
方法2 基于实际数据的频率作近似模拟,
随机性存储模型是研究不确定性因素下随机库存模 型中的多时期存储控制系统,着重分析连续存盘的存储控 制系统在不同情况下确定的安全库存量的最优采购策略, 可分为需求为离散型随机变量的存储模型和需求为连续 型随机变量的存储模型,
模糊综合评判方法: 1. 模糊综合评判提点法击添加文本 2. 确定因素集、评判集、模糊评判矩阵
点击添加文本
线性规划是数学规划的一个重要组成部分,它
起源于工业生产组织管理的决策问题,在数学上它
用来确定多变量线性函数在变量满足线性约束条
线
件下的最优值,





原理关键词: 多变量 线性函数 最优值
一般线性规划的数学模型:
式说明层次的递阶结构与因素的从属关系, 2. 构造判断矩阵 3. 当相互比较因素的重要性能够用具有实际意义的比
值说明时,判断矩阵相应的值则可以取这个比值, 3. 层次单排序及其一致性检验 4. 通过判断矩阵的特征根得到特征向量,经过一系列归
化后即为同一层次相关因素对于上一层次某因素相对重 要性的排序权值,然后进行一致性检验, 4. 层次总排序 5. 计算同一层次所有因素对于最高层相对重要性的排 序, 5. 层次总排序的一致性检验 6. 这一步骤也是从高到低逐层进行的,
设P x 为顾客对煤炭需求量xkg的概率,显然
0 P(x)dx1
供应部门收益的期望值:
Q
g ( Q ) E [ y ( x ) ] 0 ( 1 x 4 9 Q ) P ( x ) d Q x ( 1 Q 5 1 x ) P 0 ( x ) dx

数学建模的主要建模方法

数学建模的主要建模方法

主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。

量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。

3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。

图论是研究由线连成的点集的理论。

一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

工作报告的定量和定性数据分析方法

工作报告的定量和定性数据分析方法

工作报告的定量和定性数据分析方法工作报告是组织机构或个人对工作进展和成果的总结和展示,它承载着实际工作的数据和信息。

为了更好地评估和分析工作报告,人们常常采用定量和定性数据分析方法。

本文将探讨工作报告中的定量和定性数据分析方法,并介绍它们的应用。

一、定量数据分析方法定量数据是指可以用数值来表示的数据,如销售额、利润、生产数量等。

定量数据分析方法主要包括统计分析和数学建模。

1. 统计分析统计分析是通过对数据进行收集、整理和分析,得出结论和推断的方法。

常用的统计分析方法包括描述统计、推断统计和回归分析。

描述统计是对数据进行总结和描述的方法,可以通过计算平均值、中位数、标准差等指标来了解数据的分布情况。

推断统计是通过对样本数据进行分析,推断总体数据的特征和差异。

回归分析是通过建立数学模型,研究自变量和因变量之间的关系。

2. 数学建模数学建模是将实际问题转化为数学模型,通过数学方法求解问题的过程。

在工作报告中,数学建模可以用于预测、优化和决策等方面。

例如,可以使用线性规划模型来优化资源配置,使用时间序列模型来预测销售趋势。

二、定性数据分析方法定性数据是指无法用数值来表示的数据,如用户反馈、市场调研结果、专家评价等。

定性数据分析方法主要包括内容分析和主题分析。

1. 内容分析内容分析是对文本、图像或音频等内容进行分析和解释的方法。

在工作报告中,可以通过对文字描述、图片和图表等进行内容分析,了解工作进展和成果。

内容分析可以通过编码和分类的方式进行,以获取有关主题、情感、观点等方面的信息。

2. 主题分析主题分析是对定性数据中的主题和模式进行识别和分析的方法。

主题分析可以通过文本挖掘、机器学习等技术实现。

在工作报告中,可以通过主题分析方法来挖掘用户需求、市场趋势等关键信息,为工作决策提供支持。

三、定量和定性数据分析方法的应用定量和定性数据分析方法在工作报告中有着广泛的应用。

通过定量数据分析方法,可以对工作报告中的数字数据进行统计和推断,了解工作的实际情况和趋势。

数学建模和模型

数学建模和模型

常用的计算公式 k年后人口
今年人口 x0, 年增长率 r
xk x0 (1 r )
k
指数增长模型——马尔萨斯提出 (1798)
基本假设 : 人口(相对)增长率 r 是常数 x(t) ~时刻t的人口
dx rx, x(0) x0 dt
x(t t ) x(t ) rt
x(t ) x0 (e ) x0 (1 r )
r t
t
随着时间增加,人口按指数规律无限增长
如何预报人口的增长
指数增长模型的应用及局限性
• 与19世纪以前欧洲一些地区人口统计数据吻合 • 适用于19世纪后迁往加拿大的欧洲移民后代
• 可用于短期人口增长预测
• 不符合19世纪后多数地区人口增长规律 • 不能预测较长期的人口增长过程
18:31
数学建模实例二

假设 汽车在两个相邻减速带之间一直做等加速运动和 等减速运动 需要得到汽车的加速度和减速度 方法一 查阅资料
速度(km/h) 时间(s) 0 0

方法二:进行测试 加速行驶的测试数
10 1.6 20 3.2 30 4.0 40 5.0
减速行驶的测试数
速度(km/h) 40 时间(s) 0 30 2.2 20 4.0 10 5.5 0 6.8
18:31
数学建模实例一
18:31
数学建模实例一


通常,1kg面,1kg馅,包100个饺子(汤圆)
现在1kg面不变,馅比1kg多了,问应多包几个 (每个小一点),还是少包几个(每个大一点)? … S ( 共 n个 ) S S S S

V

v
v
v
v
定性分析

数学建模的分析方法

数学建模的分析方法

数学建模的分析方法
数学建模的分析方法可以分为以下几个方面:
1. 归纳法:通过观察问题的特征和规律,找出问题中的一般性质和规律,并结合数学工具对其进行证明。

2. 推理法:通过逻辑推理和数学推导,从已知条件出发,通过合理的推理和演绎,推导出与问题相关的数学模型和结论。

3. 分析法:通过定性和定量的分析方法,对问题进行综合分析,明确问题的目标和限制条件,并从中提取出相关的数学关系,建立数学模型。

4. 统计法:通过收集、整理和分析实际数据,运用统计学原理和方法,揭示数据的规律性和相关性,并运用统计模型对问题进行预测和决策。

5. 微积分方法:通过微积分的知识和技巧,对问题中的变化趋势、极值、积分等进行分析和计算,并建立相应的数学模型。

6. 优化方法:通过优化理论和方法,对问题中的最大值、最小值、最优解等进行求解和优化,达到最优的目标。

7. 随机过程方法:对于具有不确定性和随机性的问题,可以采用随机过程的方
法,建立相应的数学模型,并对问题进行分析、估计和决策。

以上仅是数学建模分析方法的一部分,实际上,数学建模并不局限于以上方法,具体分析方法的选择应根据问题的特点和要求来确定。

同时,数学建模中的分析方法往往需要综合运用多种数学工具和技术,结合实际问题进行分析和求解。

数学建模综合评价方法(定)

数学建模综合评价方法(定)

所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值.例如,旅游景区质量等级有5A 、4A 、3A 、2A 和1A 之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类: (1)极大型指标(又称为效益型指标)是指标值越大越好的指标; (2)极小型指标(又称为成本型指标)是指标值越小越好的指标; (3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标; (4) 区间型指标是指标值取在某个区间内为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是(10%,5%)-+×标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标.投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4 评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标对极小型指标j x ,将其转化为极大型指标时,只需对指标j x 取倒数:1j jx x '=,或做平移变换:j j j x M x '=-,其中1 max{}j ij i nM x ≤≤=,即n 个评价对象第j 项指标值ij x 最大者.(2) 居中型指标化为极大型指标对居中型指标j x ,令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=,取2(),;2 2(),.2j j j j j j j j j j j j j j jj j x m M m m x M m x M x M m x M M m -+⎧≤≤⎪-⎪'=⎨-+⎪≤≤⎪-⎩就可以将j x 转化为极大型指标.(3) 区间型指标化为极大型指标对区间型指标j x ,j x 是取值介于区间[,]j j a b 内时为最好,指标值离该区间越远就越差.令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=, max{,},j j j j j c a m M b =--取1,;1, ; 1,.j jj j j j j j j j jj j j a x x a c x a x b x bx b c -⎧-<⎪⎪⎪'=≤≤⎨⎪-⎪->⎪⎩就可以将区间型指标j x 转化为极大型指标.类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规范化,是通过数学变换来消除原始指标的单位及其数值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n 个评价对象12,,,n S S S L ,每个评价对象有m 个指标,其观测值分别为(1,2,,;1,2,,)ij x i n j m ==L L .(1) 标准样本变换法 令* (1,1).ij jij jx x x i n j m s -=≤≤≤≤其中样本均值11n j ij i x x n ==∑,样本均方差j s =*ij x 称为标准观测值. 特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(0j s =)的情况不适用;对于要求指标评价值*0ij x >的评价方法(如熵值法、几何加权平均法等)不适用.(2) 线性比例变换法 对于极大型指标,令*11 (max 0, 1, 1).max ij ij ij i niji nx x x i n j m x ≤≤≤≤=≠≤≤≤≤对极小型指标,令*1min (1,1).iji nijijx x i n j m x ≤≤=≤≤≤≤或*111 (max 0, 1, 1).max ij ijij i niji nx x x i n j m x ≤≤≤≤=-≠≤≤≤≤该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的*1ij x =和*0ij x =不一定同时出现.特点:当0ij x ≥时,*[0,1]ij x ∈;计算简便,并保留了相对排序关系.(3) 向量归一化法 对于极大型指标,令* (1,1).ij x x i n j m =≤≤≤≤对于极小型指标,令*1,1).ij x x i n j m =≤≤≤≤优点:当0ij x ≥时,*[0,1]ijx ∈,即*21()1nij i x ==∑.该方法使*01ij x ≤≤,且变换前后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令*111min (1, 1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=≤≤≤≤-对于极小型指标,令*111max (1, 1).max min ij iji nijij iji ni nx x x i m j n x x ≤≤≤≤≤≤-=≤≤≤≤-其优点为经过极差变换后,均有*01ij x ≤≤,且最优指标值*1ij x =,最劣指标值*0ij x =.该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(0j s =)的情况不适用.(5) 功效系数法 令*111min (1,1).max min ij iji nijij iji ni nx x x c d i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-其中,c d 均为确定的常数.c 表示“平移量”,表示指标实际基础值,d 表示“旋转量”,即表示“放大”或“缩小”倍数,则*[,]ij x c c d ∈+.通常取60,40c d ==,即*111min 6040 (1,1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-则*ij x 实际基础值为60,最大值为100,即*[60,100]ij x ∈.特点:该方法可以看成更普遍意义下的一种极值处理法,取值范围确定,最小值为c ,最大值为c d +.3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等.对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化.一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0.对极大型和极小型定性指标常按以下方式赋值.(1) 极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-2所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.图8-2 极大型定性指标量化方法(2) 极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种内在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法. .隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴ 模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.① 以年龄为论域X ,在论域X 中取一固定样本点027x =.② 设*A 为论域X 上随机变动的普通集合,°A 是青年人在X 上以*A 为弹性边界的模糊集,对*A 的变动具有制约作用.其中°0x A ∈,或°0x A ∉,使得0x 对°A 的隶属关系具有不确定性.然后进行模糊统计试验,若n 次试验中覆盖0x 的次数为n m ,则称nm n为0x 对于°A 的隶属频率.由于当试验次数n 不断增大时,隶属频率趋于某一确定的常数,该常数就是0x 属于°A 的隶属度,即 °0()lim .n An m x nμ→∞=比如在论域X 中取027x =,选择若干合适人选,请他们写出各自认为青年人最适宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n 次试验中覆盖27岁的年龄区间的次数为m ,则称mn为27岁对于青年人的隶属频率,表8-4是抽样调查统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到027x =属于模糊集°A 的隶属度°(27)0.78Aμ=.试验次数n 1020 30 40 50 60 70 80 90 100110 120 129 隶属次数m6 1423 31 39 47 53 62 6876 85 95 101隶属频率m n0.60 0.70 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78③ 在论域X 中适当的取若干个样本点12,,,n x x x L ,分别确定出其隶属度°()(1,2,,)i Ax i n μ=L ,建立适当坐标系,描点连线即可得到模糊集°A 的隶属函数曲线. 将论域X 分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.分组频数 隶属频率 分组 频数 隶属频率13.5~14.5 2 0.016 25.5~26.5 103 0.798 14.5~15.5 27 0.210 26.5~27.5 101 0.783 15.5~16.5 51 0.395 27.5~28.5 99 0.767 16.5~17.5 67 0.519 28.5~29.5 80 0.620 17.5~18.5 124 0.961 29.5~30.5 77 0.597 18.5~19.5 125 1.00 30.5~31.5 27 0.209 19.5~20.5 129 1.00 31.5~32.5 27 0.209 20.5~21.5 129 1.00 32.5~33.5 26 0.202 21.5~22.5 129 1.00 33.5~34.5 26 0.202 22.5~23.5 129 1.00 34.5~35.5 26 0.202 23.5~24.5 129 1.00 35.5~36.5 10.008 24.5~25.5128 0.992⑵ 三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法.例如建立矮个子°1A ,中等个子°2A ,高个子°3A 三个模糊概念的隶属函数.设3{}P =矮个子,中等个子,高个子,论域X 为身高的集合,取(0,3)X =(单位:m).每次模糊试验确定X 的一次划分,每次划分确定一对数(,)ξη,其中ξ为矮个子与中等个子的分界点,η为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(,)ξη看作二图8-5 年轻人的隶属函数曲线维随机变量,进行抽样调查,求得ξ、η的概率分布()P x ξ、()P x η后,再分别导出°1A 、°2A 和°3A 的隶属函数±1()A x μ、±2()A x μ和±3()Ax μ,相应的示意图如图8-6所示. ±1()(),A x x P t dt ξμ+∞=⎰ ±3()(),A xx P t dt ημ+∞=⎰±±±213()1()().A A A x x x μμμ=--通常ξ和η分别服从正态分布211(,)N a σ和222(,)N a σ,则°1A 、°2A 和°3A 的隶属函数分别为±111()1,Ax a x μσ⎛⎫-=-Φ ⎪⎝⎭±322()1,A x a x μσ⎛⎫-=-Φ ⎪⎝⎭ ±22121().Ax a x a x μσσ⎛⎫⎛⎫--=Φ-Φ ⎪ ⎪⎝⎭⎝⎭其中22().t xx dt -Φ=⎰⑶ 模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形.若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向. 偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为°1, ;()(),.Ax a x f x x a μ≤⎧=⎨>⎩偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为°0, ;()(),.Ax a x f x x a μ<⎧=⎨≥⎩中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.图8-6 由概率分布确定模糊集隶属函数①矩形(或半矩形)分布(a)偏小型(b)偏大型(c)中间型°1,; ()0,.Ax a xx aμ≤⎧=⎨>⎩°0,;()1,.Ax axx aμ<⎧=⎨≥⎩°0,;()1,;0,.Ax ax a x bx bμ<⎧⎪=≤≤⎨⎪>⎩此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图②梯形(或半梯形)分布(a)偏小型(b)偏大型(c)中间型°1,;(),;0,.Ax ab xx a x bb ax bμ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩°0,;(),;1,.Ax ax ax a x bb ax bμ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩°0,,;,;()1,;,;Ax a x dx aa x bb axb x cd xc x dd cμ<≥⎧⎪-⎪≤<⎪-=⎨≤<⎪⎪-≤<⎪-⎩梯形(或半梯形)分布的示意图如图8-8所示.③抛物形分布(a)偏小型(b)偏大型(c)中间型°1,;(),;0,.kAx ab xx a x bb ax bμ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩°0,;(),;1,.kAx ax ax a x bb ax bμ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩°0,,;,;()1,;,;kAkx a x dx aa x bb axb x cd xc x dd cμ<≥⎧⎪-⎛⎫⎪≤<⎪⎪-⎪⎝⎭=⎨≤<⎪⎪-⎛⎫⎪≤<⎪-⎪⎝⎭⎩抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型(a)偏小型(b)偏大型(c)中间型图8-8梯形(或半梯形)分布示意图④ 正态分布(a)偏小型(b)偏大型(c)中间型°21, ;(),.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭≤⎧⎪=⎨⎪>⎩°20, ;()1,.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭<⎧⎪=⎨⎪-≥⎩ °2().x a Ax e σμ-⎛⎫- ⎪⎝⎭=正态分布的示意图如图8-10所示.(a)偏小型(b)偏大型(c)中间型°1, ;()1,.1() (0,0)Ax a x x a x a βμααβ≤⎧⎪=⎨>⎪+-⎩>> °0, ;()1,.1() (0,0)Ax a x x a x a βμααβ-≤⎧⎪=⎨>⎪+-⎩>> °1(),1()(0,).Ax x a βμααβ=+->为正偶数柯西形分布的示意图如图8-11所示.(a)偏小型(b)偏大型(c)中间型°()1, ;(),.k x a Ax a x e x a μ--≤⎧=⎨>⎩°()0, ;()1,.k x a Ax a x ex a μ--≤⎧=⎨->⎩°()(),;()1, ;,.k x a Ak b x e x a x a x b ex b μ----⎧<⎪=≤<⎨⎪≥⎩ (a)偏小型 (b)偏大型 (c)中间型图8-9 抛物形分布示意图(a)偏小型 (b)偏大型 (c)中间型 图8-10 正态分布示意图 (a) 偏小型 (b)偏大型 (c)中间型 图8-11 柯西分布示意图k>.Γ型分布的示意图如图8-12所示.其中0(a) 偏小型(b)偏大型(c)中间型图8-12 Γ型分布示意图。

数学建模评价模型方法

数学建模评价模型方法

数学建模评价模型方法目标评价方法是通过对建模目标进行分析和评价,从而确定模型的合理性和准确性。

常用的目标评价方法有以下几种:1.目标一致性评价:通过比较建模目标与实际需求的一致性,评估模型是否能够准确反映实际问题的特征。

可以通过专家访谈、问卷调查等方式,收集相关数据,然后通过定量或定性分析的方法来评价目标一致性。

2.目标完备性评价:评估模型是否能够完整地描述问题的各个方面。

可以通过检查模型的输入、输出和求解方法,判断是否包括了问题的所有关键要素,从而评价模型的完备性。

3.目标可行性评价:评估模型是否能够在给定的条件下实现。

通过对模型中所涉及的参数、约束条件和假设进行分析,判断模型是否符合实际操作的限制和要求。

效果评价方法是通过对模型的输出结果进行分析和评价,从而判断模型的有效性和可靠性。

常用的效果评价方法有以下几种:1.精度评价:评估模型的输出结果与实际观测值或已知数据之间的偏差程度。

可以采用各种统计指标,如均方根误差、平均绝对百分比误差等,来度量模型的精度。

2.稳定性评价:评估模型在不同条件下的输出结果是否稳定。

可以通过对输入条件的变化、参数的敏感性分析等方法,来评估模型的稳定性。

3.可行性评价:评估模型的输出结果是否满足实际的约束条件和要求。

可以通过比较模型的输出结果与给定的约束条件来判断模型的可行性。

在实际应用中,常常需要综合考虑目标评价和效果评价方法来对建模进行综合评价。

可以根据实际情况,确定评价指标的权重,并运用多指标综合评价方法来评价模型的综合效果。

总之,数学建模评价模型方法是评估模型合理性、准确性和可行性的重要手段。

通过目标评价和效果评价方法的综合应用,可以对建模过程和建模结果进行全面评估,为实际问题的求解提供科学的依据和方法。

数学建模综合评价方法

数学建模综合评价方法



方法 次序法来排序与 策者、多指标、 因素的对
评价
动态的对象

4.运筹 数据包 以相对效率为基 可以评价多输 只表明评 评价经济学中生产
学方法 络分析 础,按多指标投 入多输出的大 价单元的 函数的技术、规模有
(狭义) 模型 入和多指标产 系统,并可用 相对发展 效性,产业的效益评
出,对同类型单 “窗口”技术 指标,无法 价、教育部门的有效

on 法 告诉决策者来评
价结果。如果认
为已经满意则迭
代停止;否则再
根据决策者意见
进行修改和再计
算,直到满意为

9. 智能 基于 BP 模拟人脑智能化 网络具有自适 精度不高, 应用领域不断扩大, 化评价 人工神 处理过程的人工 应能力、可容 需要大量 涉及银行贷款项目、
方法 经网络 神经网络技术, 错性,能够处 的训练样 股票价格的评估、城
的评价 通过 BP 算法, 理非线形、非 本等
市发展综合水平的
学习或训练获取 局域性与非凸
评价等
方法类 方法名 方法描述
优点


知识,并存储在 性的大型复杂
神经元的权值
系统
中,通过联想把
相关信息复现。
能够“揣摩”“提
炼”评价对象本
身的客观规律,
进行对相同属性
评价对象的评价
缺点
适用对象
如表所示,各种方法都有自身的优缺点以及适用的范围。
等指标
的对象
经济分 通过可行性分
析法 析、可靠性评价

3.多属 多属性 通过化多为少、 对评价对象描 刚性的评 优化系统的评价与
性决策 和多目 分层序列、直接 述比较精确, 价,无法涉 决策 ,应用领域广

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。

数学建模方法概述

数学建模方法概述

这一步骤也是从高到低逐层进行的。
层次分析法的应用:
企业合理利用资金问题; 填报志愿; 选择外出旅游的理想交通工具等
基本思想:
先将n个样本各自看成一类,共有n类,然后规定样本 之间的距离和类与类之间的距离。开始时,由于n个样本各 自成一类,故类与类之间的距离就是样本间的距离,将距 离最小的一对并成一个新类,计算新类与其他类的距离, 再将距离最近的类合并。
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
点击添加文本 2.模型的求解:可利用Lingo 软件进行求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会 发生变化。
点击添加文本
非线性规划问题可看作是线性规划问题的一 种自然推广,凡是目标函数和约束条件中包含有 非线性函数的数学规划问题都称为非线性规划问 题。主要分为有约束非线性规划和无约束线性规 划。
D(r, k ) min{d (r, k ) r Gr , k Gk , k r} min{d ( j, k ) j Gp Gq , k Gk , k j} min{min{d ( j, k ) j Gp , k Gk }, min{d ( j, k ) j Gq , k Gk }} min{D( p, k ), D(q, k )}
统 计 聚 类 模 型
原理关键词: 相似系数 距离
聚类步骤:
步骤1:定义样本间的距离(如取最简单的欧几里得距离)。开始 时,每个样本看作一类,有 d (i, j) D(i, j) 步骤2:选择 {D(i, j)} 中最小者设为 为一个新类,得新类 Gr Gp Gq 步骤3:计算新类与其他类的距离 点击添加文本
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定性研究数据采集定量研究往往具有足够样本量支持,丰富的统计分析技术,可以得出具有一定代表性的结论,但对于某个问题消费者为何如此回答,其所给解释是否是其真实想法,这样的问题便显得有些束手无策了。

相对而言,定性技术对数理性的要求低一些,但对消费者动机的深层挖掘要求却更高,更具针对性,因而与定量研究形成互补。

常规定性研究的方法主要是个别深度访谈与座谈会访谈。

其中深度访谈是深层次地挖掘个体的表现特征与背后的原因,而座谈会是利用几个人一起进行头脑风暴(brainstorming)的优势,相互激发、相互启迪,从而挖掘出深层次的原因。

座谈会(FDG)座谈会的成功依赖于两个系统,一个是主持人培训系统,一个是被访者约访系统。

华通现代建立起专职主持人与研究员水平主持人两个体系。

一方面保持几个专职主持人,以利于他们不断提高公司在座谈会主持方面的技术水平,适应一些难度非常大的主持项目;另一方面又更鼓励一部分研究人员掌握主持技巧,完成常规项目中必须的座谈会需求。

专职主持人的特点是主持技巧水平较高,缺点是研究设计、分析能力弱。

必须要研究人员与主持人的高度配合才能够拿出高水平的研究报告。

研究员水平的主持人对于一些特别复杂的技巧没有专职主持人那么强,但由于自己完全参与项目设计、数据分析、报告撰写等过程,容易对消费者有特别深入的理解、对数据的理解也会有独到的方面,比较容易出好的研究报告。

深层访谈(In-depth Interview)深访是一种无结构的、直接的、一对一的访问,在访问过程中,由掌握高级访谈技巧的调查员对调查对象进行深入的访谈,用以揭示对某一问题的潜在动机、态度和情感,此方法最适合于做探测性调查。

深层访谈的优点是更能深入地了解被调查者的内心想法和态度;便于对一些保密性、敏感性问题进行调查;能够自由地交换信息,常常会取得一些意外的资料。

缺点是调查的无结构性使得这种方法首调查员自身素质高低的影响很大;深层访谈结果的数据常难以解释和分析;这种访问的时间长,需要的经费较多,使该法在实际应用中受到一定的限制。

德尔非法(Delphi method)德尔非法也是专家调查法的一种,但是它与其他的专家调查法的区别在于:它是用背对背的判断来代替面对面的会议,即采用函询的方式,依靠调查机构反复征求每个专家的意见,经过客观分析和多次征询反复,使各种不同意见逐步趋向一致。

因此这种方法在一定程度上克服了畏惧权威及不愿听到不同意见等弊病,使专家能够充分发表意见,最后取得较为客观实际的调查结果。

神秘顾客访问“神秘顾客”是由经过严格培训的调查员,在规定或指定的时间里扮演成顾客,对事先设计的一系列问题逐一进行评估或评定的一种调查方式。

由于被检查或需要被评定的对象,事先无法识别或确认“神秘顾客”的身份,故该调查方式能真实、准确地反映客观存在的实际问题。

具体到窗口服务型行业而言,通过“神秘顾客”的调查可以对窗口服务型行业的营业环境,营业/服务人员的服务质量、规范进行评估和考核,以此达到改进内部服务管理、改善服务质量,提高顾客满意度的目的。

“神秘顾客”的优点是可以对窗口服务型行业中的各项服务项目进行质量控制;被调查者没有意识被调查,故反映的情况准确性、真实性较高;缺点是调查员的心理状态、综合素质以及对考核指标的理解等往往存在一定差异,可能会对考核结果产生一定的反面影响;调查同时无法做记录,难免有遗漏;无法观察到内在因素,有时需做长时间的观察。

这样,经验不足或者组织流程不严密紧凑时,会导致考核结果失偏,缺乏公正和准确性。

“神秘顾客”的适用于了解各种类型窗口服务型行业营业/服务的环境、服务人员的服务态度、业务素质和技能等情况,广泛应用到如电信、银行、超市、连锁店、医院等窗口服务性行业。

作为竞争对手调查,了解竞争对手商铺的销售货物商品的种类、品牌、价格、摆放情况等信息。

定量研究主要类型:使用习惯和态度研究、品牌/广告跟踪、概念测试、产品/口味测试、广告投放前测试、包装测试、价格测试等,主要研究方法包括:电话访问法:选取一个被调查者的样本,通过人工拨号,询问被访者一系列的问题,调查员记录被访者的答案,调查员被集中在某个场所或专门的电话访问间,在固定的时间内进行工作,督导现场管理。

电话调查适用于一些简单的访问,一般不超过10分钟。

计算机辅助电话访问:使用一份按计算机设计方法设计的问卷,用电话向被调查者进行访问。

计算机问卷可以利用大型机、微型机或个人用计算机来设计生成,调查员坐在终端(与总控计算机相联的带屏幕和键盘的终端设备)对面,头戴小型耳机式电话。

通过计算机拨打号码,电话接通之后,调查员就读出CRT屏幕上显示出的问答题并直接将被调查者的回答(用号码表示)用键盘记入计算机的记忆库之中。

定点电话访问:通过特定的电话设备进行访问。

这些设备允许督导在访问进行时监听访问,其中一些设备有宽带电话服务,可允许从一个地点抽取国际样本.利用电脑辅助设备来进行访问的这个比例正在增长,在这些指定地点,访问坐在附加主机或个人电脑前面,直接将问卷的答案输入电脑。

拦截访问法:是指在某个场所拦截在场的一些人进行面访调查,这种方法常用于商业性的消费者意向调查中。

拦截访问的优点在于效率高,但是无论怎样控制样本及调查的质量,收集的数据对总体的代表性都无法估计。

定点拦截(街访):在商场或其他人流量密集的地区对消费者进行访问,访问可能在定点的公共区域,或者将受访者带到指定的地点进行访问。

入户调查法:访问员到被访者的家中或工作单位访问,直接与被访者接触,然后利用结构式问卷访问,并记下被访者的答案。

这是国内目前最常用的方法。

调查的户或单位是随机抽样原则抽取的,入户访问的对象抽取也有一定的法则。

入户调查是概率抽样,样本对总体的代表性可以通过抽样误差来表示。

定点调查法:在人流集中的中心街区选择调查场地,把符合条件的被访问者邀到指定区域进行面访和产品实物测试。

这种方法是一般拦截调查的演变,调查代表性无法估计,但可以根据人口资料进行配额控制。

定点查已广泛应用于各类测试类研究,现场一般设有专门的甄别区、访问区和测试区。

神秘顾客法(Mystery Buyer):由经过严格培训的调查员,在规定或指定的时间里扮演成顾客,对事先设计的一系列问题逐一进行评估或评定的一种调查方式。

由于被检查或需要被评定的对象,事先无法识别或确认“神秘顾客”的身份,故该调查方式能真实、准确地反映客观存在的实际问题。

神秘顾客研究(Mystery Buyer Research)是顾客满意度调查的重要方法之一。

其做法是由对被调查企业所在行业有深刻了解的调查者以普通顾客的身份亲历被调查企业的服务产品,在真实的消费环境中以专业的视角感知企业与顾客接触的每一个真实时刻,并将其消费经历、感受、评价等以《顾客经历报告》的形式反馈给被调查企业。

层次分析法(重定向自)层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法[]什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家(T.L.Saaty)正式提出。

它是一种定性和定量相结合的、系统化、层次化的分析方法。

由于它在处理复杂的问题上的实用性和有效性,很快在世界范围得到重视。

它的应用已遍及经济和、能源政策和分配、、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。

不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。

其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C居住等条件较好等等。

最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。

[]层次分析法的基本步骤1、建立层次结构模型。

在深入分析实际问题的基础上,将有关的各个因素按照不同属性地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。

最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。

当准则过多时(譬如多于9个)应进一步分解出子准则层。

2、构造成对比较阵。

从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用和1—9比较尺度构造成对比较阵,直到最下层。

3、计算权向量并做一致性检验。

对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。

若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。

4、计算组合权向量并做组合一致性检验。

计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。

[]层次分析法的优点运用层次分析法有很多优点,其中最重要的一点就是简单明了。

层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。

也许层次分析法最大的优点是提出了层次本身,它使得买方能够认真地考虑和衡量指标的相对重要性。

[]建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

〔例1〕购物模型某一个选购电视机时,对正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型对三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人y1、y2、y3,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型[]构造成对比较矩阵比较第i 个元素与第j 个元素相对上一层某个因素的重要性时,使用数量化的相对a ij来描述。

设共有n 个元素参与比较,则称为成对比较矩阵。

成对比较矩阵中a ij的取值可参考Satty 的提议,按下述标度进行赋值。

a ij在1-9 及其倒数中间取值。

•a ij= 1,元素i 与元素j 对上一层次因素的重要性相同;•a ij = 3,元素i 比元素j 略重要;•a ij = 5,元素i 比元素j 重要;•a ij = 7,元素i 比元素j 重要得多;•a ij = 9,元素i 比元素j 的极其重要;•a ij = 2n,n=1,2,3,4,元素i 与j 的重要性介于a ij =2n− 1与a ij = 2n + 1之间;•,n=1,2,...,9,当且仅当a ji = n。

相关文档
最新文档