一点应力状态概念及其表示方法
工程力学第1节 应力状态的概念
![工程力学第1节 应力状态的概念](https://img.taocdn.com/s3/m/2fd73a3caf45b307e87197d9.png)
单元体的上、下侧面和前、后侧面均无应力。
圆杆在扭转时 如图所示,对于其表面 上的 B 点,可以围绕该点以 杆的横截面和径向、周向纵 截面截取代表它的单元体进 行研究。横截面上在 B 点处 的切应力: 杆在周向截面上没有应力。 式中: 又由切应力互等定理可知, MT — 横截面上的扭矩; 杆在径向截面上 B 点处应该 WP — 抗扭截面系数, 有与相等的切应力。于是此 单元体各侧面上的应力如图 T — 扭矩。
工 字
钢
实 例
如图所示,设拉杆的任一斜截面m-m与其横截面 相交成 角。采用截面法研究此斜截面上的应力,取 左边部分研究,由平衡方程可得到斜截面上的内力为
F Fห้องสมุดไป่ตู้
设杆由许多纵向 纤维组成,杆拉伸时 伸长变形是均匀的, 因此斜截面上的分布 内力必然是均匀分布 的,即各点处的应力 相等,于是
MT T B max WP WP
三、主平面、主应力、应力状态的分类 主单元体:在一般情况下,表示一点处应力状态的 应力单元体在其各个表面上同时存在有正应力和切 应力。但是可以证明:在该点处以不同方式截取的 各个单元体中,必有一个特殊的单元体,在这个单 元体的侧面上只有正应力而没有切应力。这样的单 元体称为该点处的主应力单元体或主单元体。
F F p A A
式中:p—斜截面上任一点处的 总应力,其方向沿x 轴正向;
根据斜截面面积A与横截面面积A的几何关系得到:
F p 0 cos A / cos
杆横截面上的正应力 为研究方便,将分解为沿斜 截面m-m的法线分量和切线分 量,如图c所示。分解得:
0 F / A
1)单向应力状态 2)二向应力状态
弹性力学一点应力状态
![弹性力学一点应力状态](https://img.taocdn.com/s3/m/d0e33916302b3169a45177232f60ddccda38e62f.png)
有限元法
有限差分法
将物体离散化为有限个小的单元,然 后对每个单元进行应力分析,最后将 所有单元的应力结果进行汇总。
将物体离散化为有限个小的差分网格, 然后对每个差分网格进行应力分析, 最后将所有差分网格的应力结果进行 汇总。
边界元法
将物体表面离散化为有限个小的边界 元,然后对每个边界元进行应力分析, 最后将所有边界元的应力结果进行汇 总。
04
一点应力状态的测量和计 算
测量方法
直接测量法
通过在物体表面打孔或钻 孔,将应变片粘贴在孔内, 然后通过测量应变片的电 阻变化来计算应力。
光学干涉法
利用光学干涉原理,通过 测量物体表面的微小变形 量来计算应力。
声学法
利用声波在物体中的传播 特性,通过测量声波的传 播时间和速度来计算应力。
计算方法
我们还发现,在某些条件下, 一点应力状态会出现奇异行为 ,如应力集中、应变局部化等 现象。
对未来研究的展望
通过实验和数值模拟,深入研究不同材料在不 同条件下的应力状态特性,以揭示其与材料性
能和结构稳定性的关系。
此外,还可以将弹性力学一点应力状态的研究成果应 用于其他领域,如生物医学、地质工程等,以促进相
弹性力学一点应力状 态
目录
• 引言 • 弹性力学基础 • 一点应力状态的定义和分类 • 一点应力状态的测量和计算 • 一点应力状态的应用 • 结论
01
引言
主题简介
弹性力学
弹性力学是研究物体在力的作用 下产生的弹性变形的学科。
一点应力状态
一点应力状态是指在弹性力学中 ,选取一个点作为研究对象,分 析该点在各种应力作用下的状态 。
02
弹性力学基础
弹性力学简介
描述空间一点的应力状态需要的应力分量
![描述空间一点的应力状态需要的应力分量](https://img.taocdn.com/s3/m/e17481aa6aec0975f46527d3240c844769eaa027.png)
描述空间一点的应力状态需要的应力分量应力是描述物体内部受力状态的物理量,空间一点的应力状态包括三个主要应力分量:正应力、剪应力和法向应力。
正应力是指作用于物体某一截面上的垂直于该截面的应力。
在空间中的一点,正应力可以沿着三个坐标轴方向产生,分别称为x方向正应力、y方向正应力和z方向正应力。
这三个应力分量分别用σx、σy和σz表示。
正应力由两部分组成:一部分来自于物体外部对其的作用力,称为外应力或受载应力;另一部分来自于物体内部的分子间作用力,称为内应力或静力应力。
正应力可以使物体沿着这个方向产生形变,例如拉伸、压缩等。
剪应力是指作用于物体某一截面上的平行于该截面的应力。
在空间中的一点,剪应力可以沿着三个坐标轴方向产生,分别称为xy方向剪应力、yz方向剪应力和xz方向剪应力。
这三个应力分量分别用τxy、τyz和τxz表示。
剪应力是由物体外部力矩对其产生的,表现为物体的旋转和扭转。
法向应力是指作用于物体某一截面上的垂直于该截面的应力。
在空间中的一点,法向应力可以沿着各个方向产生,由于其方向多变,没有显式的表示方式。
法向应力可以使物体在垂直于该截面上产生形变,例如变形、弯曲等。
在空间一点的应力状态可以用应力张量来描述。
应力张量是一个二阶对称张量,它包含了全部的应力分量信息。
在直角坐标系下,应力张量的表示形式为:σ = [σx τxyτxz][τxy σy τyz][τxz τyz σz]其中,σx、σy和σz分别表示x方向、y方向和z方向的正应力分量;τxy、τyz和τxz分别表示剪应力的分量。
应力张量可以通过力学分析或实验测量得到。
在工程领域中,了解空间一点的应力状态对于设计和分析结构的强度和稳定性至关重要。
通过合理选择材料和结构形式,可以使结构在应力状态下具有足够的强度和抗变形能力。
因此,研究应力分量及其变化规律对于工程实践具有重要意义。
综上所述,空间一点的应力状态需要考虑正应力、剪应力和法向应力三个应力分量。
一点应力状态概念及其表示方法
![一点应力状态概念及其表示方法](https://img.taocdn.com/s3/m/a2c9c6c4f705cc1755270956.png)
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。
弹性力学一点应力状态01
![弹性力学一点应力状态01](https://img.taocdn.com/s3/m/9170276c580102020740be1e650e52ea5418ce50.png)
水坝
—— 近似认为无限长
(2) 外力特征
外力(体力、面力)平行于横截面作 用,且沿长度 z 方向不变化。
约束 —— 沿长度 z 方向不变化。
(3) 变形特征
滚柱
厚壁圆筒
如图建立坐标系:以任一横截面为 xy 面,任一纵线为 z 轴。
设 z方向为无限长,则 x, x, u, 沿 z 方向都不变化,
仅为 x,y 的函数。 任一横截面均可视为对称面
由 1 2 x y 得
2 y (1 x )
tan 2
xy 1
x
显然有 tan1 tan2 1
表明: σ1 与 σ2 互相垂直。
结论
任一点P,一定存在两 互相
垂直的主应力σ1 、 σ2 。
(3)σN 的主应力表示
O
x
2
1
P
dy
dx ds
A
y
N
N
B
sN
由 N l 2 x m2 y 2lm xy
P dx x dy ds
A XN
N lYN mX N
将式(2-3)(2-4)代入,并整理得: y
N l 2 x m2 y 2lm xy (2-5)
xy N
B YN
N sN
N lm( y x ) (l 2 m2 ) xy (2-6)—— 任意斜截面上应力计算公式
说明: (1)运用了剪应力互等定理: xy yx
剪应力互等定理
应力符号的意义:
z
zx
zy
z
y
yx xz
yz x zy
xy
zx
yz yx y
O
y z
x
xy
第1个下标 x 表示τ所在面的垂线线方向; 第2个下标 y 表示τ的方向.
点应力状态概念及其表示方法
![点应力状态概念及其表示方法](https://img.taocdn.com/s3/m/1d114f3c7e21af45b307a8ae.png)
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。
材料力学 第八章:应力状态分析
![材料力学 第八章:应力状态分析](https://img.taocdn.com/s3/m/9b9883f584254b35eefd34be.png)
2 )2
材料力学
整理可得:
(
x
2
y
)2
2
(
x
2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标
(
x
y
,0)
横坐标为平均应力
2
半径
(
x
2
y
)2
2 x
为最大剪应力
材料力学
x x
y
x y
2
(
x
2
y
)2
2 x
材料力学
方法一:
27.5
x
2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5
x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF
、纵坐标
y
FDy
y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y
x
y
x
x
y
F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)
应力状态-材料力学 经典
![应力状态-材料力学 经典](https://img.taocdn.com/s3/m/f8fdb96c0b1c59eef8c7b4e5.png)
将0值代入,得:
一点的应力状态
x y x - y 2 2 ( ) xy 2 2 x y x - y 2 2 - ( ) xy 2 2
应力状态/应力圆
主应力排序:
12 3
a
o 2
d
c
2qp
1
3 o
应力状态/应力圆
利用应力圆确定主应力
y
D
xy
A
x
a
yx
o B1 d
c
2q p
A 1
x y x - y 2 2 0c cA ( ) xy oA 1 1 2 2 x y x - y 2 2 oB1 0c - cB1 - ( ) xy 2 2 一点的应力状态
x
-
yx
xy
y
即又一次证明了剪应力的互等定理。
一点的应力状态
应力状态/应力圆
三、应 力 圆
(Mohr’s Circle for Stresses)
1、应力圆方程
x y x - y cos 2 - xy sin 2 2 2
5 4
FP 2
S平面
5 4 3 2
1
3
2 1
Mz x1 Wz
FP l Mz 4
2
3
x2
2
1
2
3
一点的应力状态
应力状态/应力状态的概念及其描述
主平面:单元体上剪应力为零的平面
主应力:主平面上的正应力
通过任意的受力构件中任意一点,总可以找到三个
一点应力状态概念及其表示方法
![一点应力状态概念及其表示方法](https://img.taocdn.com/s3/m/80ec5633650e52ea551898df.png)
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。
过一点所方向面上应力的集合,称为这一点的应力状态
![过一点所方向面上应力的集合,称为这一点的应力状态](https://img.taocdn.com/s3/m/2b5e6c4417fc700abb68a98271fe910ef12daefa.png)
应力是指物体内部受到的力的作用,它可以通过单位面积上的力来描述。
在工程力学中,应力是非常重要的物理量,它与物体的形状、材料特性和外部力的作用密切相关。
本文将围绕应力的概念展开讨论,针对其在材料力学中的应用进行深入分析。
一、应力的定义和分类1.1 应力的概念应力是单位面积上的力,常用符号表示为σ,其计算公式为力F除以面积A,即σ=F/A。
在物体内部,由于外部力的作用,各处都会受到应力的作用,这种应力称为内应力。
而外部施加在物体表面上的力也会导致应力的产生,这种应力称为外部应力。
1.2 应力的分类根据应力的作用方向和大小,可以将应力分为正应力、剪切应力和法向应力三种类型。
正应力是垂直于物体截面的应力,常用符号表示为σn。
而沿着截面方向的应力称为剪切应力,常用符号表示为τ。
另外,法向应力是指作用在物体某一点上的应力。
二、应力状态的描述2.1 应力张量在三维空间中,一个点的应力状态可以由一个3x3的对称矩阵来描述,这个对称矩阵称为应力张量。
应力张量的分量代表了在不同方向上的应力情况,可以通过数学方法进行求解和分析。
2.2 应力状态的表示一个点处的应力状态可以通过应力张量的特征值和特征向量来表示。
特征值代表了应力状态的大小,特征向量则代表了应力作用的方向。
通过对特征值和特征向量的分析,可以判断物体处于何种应力状态,从而进行相应的力学分析和设计。
三、应力的应用3.1 工程材料的性能应力是描述物体受力情况的重要参数,它直接影响着材料的强度、刚度和韧性等性能。
在工程中,通过对材料的应力状态进行分析,可以评估材料的可靠性和安全性,为工程设计提供参考依据。
3.2 结构的稳定性对结构件的受力状态进行分析,可以判断结构在外部载荷作用下的稳定性。
通过对结构的应力分布和应力集中区域的分析,可以预测结构是否会发生破坏或失稳现象,为结构设计和改进提供重要参考。
3.3 力学设计在工程实践中,需要根据实际的力学要求来设计各种零部件和结构件。
一点应力状态概念及其表示方法.
![一点应力状态概念及其表示方法.](https://img.taocdn.com/s3/m/73a2b0c919e8b8f67c1cb943.png)
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。
一点应力状态描述
![一点应力状态描述](https://img.taocdn.com/s3/m/7c43204c33687e21af45a91d.png)
一点应力状态与材料强度关系研究1一点应力状态1.1 应力当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变就称为应变(Strain)。
材料发生形变时其内部产生了大小相等但方向相反的反作用力抵抗外力,把分布内力在一点的集度称为应力(Stress),应力与微面积的乘积即为内力,或物体由于外因(受力、温度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
1.1.1一点应力状态1.一点应力状态的定义同一截面,点的应力状态不同;即使同一截面,点的应力状态也可能不同。
通过物体内一点可以作出无数个不同取向的截面,其中一定可以选出三个互相垂直的截面,在它上面只有正应力作用,剪应力等于零,用这三个截面表达的某点上的应力,即称为此点的应力状态研究杆件受力后各点处,特别是危险点处的应力状态可以,了解材料发生破坏的力学上的原因,从而研究一点应力状态有重要意义。
2.一点应力状态的表示一点应力状态的表示可以围绕该点截取微单元体三对相互垂直微面上的应力表示,即单元体上给面应力来表示。
3.一点应力状态的研究方法a.选取一个单元体(含几个应力已知的特殊面),这个过程常称为一点应力状态的描述。
b.研究通过一点的不同截面上的应力变化情况,就是应力状态分析。
1.1.2材料强度结构杆件所用材料在规定的荷载作用下,材料发生破坏时的应力称为强度,要求不破坏的要求,称为强度要求。
根据外力作用方式不同,材料的抗拉强度、抗压强度、抗剪强度等。
对有屈服点的钢材还有屈服强度和极限强度的区别。
2 应力状态分类及对比研究应力状态的几个概念:主平面:切应力为零的平面;主应力:过一点主平面上的正应力;主方向:主平面的法线方向;可以证明,过一点某单元体上各面的应力已知,则过该点其它面上应力也就完全确定了。
1.根据应力状态分类a.单项应力:只有一个主应力不等于零,另外两个主应力等于零的状态。
一点处的应力状态
![一点处的应力状态](https://img.taocdn.com/s3/m/43c7c784970590c69ec3d5bbfd0a79563d1ed472.png)
一点处的应力状态应力是物体内部的分子间相互作用力,是物体内部的一种力学性质。
在物体内部的每一点都存在着应力,不同位置的应力状态会随着外界力的作用而发生变化。
本文将以一点处的应力状态为标题,探讨应力的概念与分类,旨在对读者提供对应力的更深入的了解。
一、应力的概念应力是物体内部的分子间相互作用力,揭示了物体内部各部分之间的相互作用关系。
应力是一个矢量,通常用希腊字母σ表示,单位是帕斯卡(Pa)。
在物体内部的每个点处,都存在着不同方向和大小的应力。
二、应力的分类根据作用力的方向和作用面的不同,可以将应力分为三类:正应力、剪应力和体积应力。
1. 正应力正应力是与物体表面垂直的应力,分为拉应力和压应力。
拉应力是物体表面上的单元面积上的拉力与该单元面积的比值,压应力则是物体表面上的单元面积上的压力与该单元面积的比值。
2. 剪应力剪应力是与物体表面平行的应力,是物体内部各部分相对于彼此的相对移动所产生的内部作用力。
剪应力是切线方向的应力,是物体内部各部分相对位移所引起的内部摩擦力。
3. 体积应力体积应力是物体内部的各部分之间的相互作用力,是物体内部各部分由于受到外界压力而产生的内应力。
体积应力是一种力的均匀分布状态,作用于物体的各个方向。
三、应力的影响与应用应力的大小和方向会直接影响物体的力学性质和变形行为。
根据材料的不同,应力会引起物体的弹性变形、塑性变形或破坏。
应力还广泛应用于工程领域,如材料的强度计算、结构设计以及材料的改性等。
结语应力是物体内部的一种力学性质,分为正应力、剪应力和体积应力。
正应力是与物体表面垂直的应力,剪应力是与物体表面平行的应力,体积应力则是物体内部各部分之间的相互作用力。
应力的大小和方向会直接影响物体的力学性质和变形行为,对材料的强度计算和工程设计具有重要意义。
通过对应力的概念和分类的探讨,希望读者能对应力有更深入的了解。
一 一点的应力状态与应力张量
![一 一点的应力状态与应力张量](https://img.taocdn.com/s3/m/a4be827d27284b73f242509d.png)
一 一点的应力状态与应力张量二 主应力与应力不变量对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为ij S σ==x xy xz yx y yz zx zy z στττστττσ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦如图1-1所示。
在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。
通常,我们称这种具有特定变换关系的一些量为张量。
式(1-1)就是应力张量,它是二阶张量。
因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。
已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。
在P 点处取出一无限小四面体oabc (图1-2)它的三个面分别与x,y,z 三个轴相垂直。
另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。
分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。
x y z dF ldF dF mdF dF ndF ⎫=⎪=⎬⎪=⎭(1.2)在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力N σ及切向剪应力N τ,即222N N N P στ=+N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ⎫=++⎪=++⎬⎪=++⎭求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5而剪应力则由式1-5得 2N τ=2N P -2N σ在空间应力状态下一点的应力张量有三个主方向,三个主应力。
第6章应力状态分析
![第6章应力状态分析](https://img.taocdn.com/s3/m/2b74e17c1eb91a37f1115c42.png)
解得:
x y x y cos 2 xy sin 2 2 2
x y sin 2 xy cos 2 2
因此
x y
即单元体两个相互垂直面上
x
的正应力之和是一个常数。
x
2
2
x
30MPa
50.6MPa
x
50.6MPa
60 0 60 0 cos(90 ) 20.6 sin(90 ) 2 2
45
x y
x
2 60 0 sin(90 ) 20.6 cos(90 ) 2 30MPa
y
y
y'
xy
yx
y x x y
y ''
y'
x'
x
x
yp
x ''
xp
x'
x-y坐标系
x'-y'坐标系
xp-yp坐标系
主应力单元体
重要应用实例
承受内压薄壁容器任意点的应力状态 (壁厚为t,内直径为d,t<<d,内压为p)
x
t
l
p
x
pπD2
x (p D)
第 6章
应力状态分析
§ 6.1 概述
一、一点的应力状态 应力的三个重要的概念:
1、应力的面的概念
2、应力的点的概念 3、应力状态的概念
轴向拉压
F
F A
横截面上的点应力:
F
斜截面上同一点:
简述应力状态的类型
![简述应力状态的类型](https://img.taocdn.com/s3/m/c225cde3370cba1aa8114431b90d6c85ec3a88da.png)
一、根据主单元体上三个主应力中有几个是非零的数值,可将应力状态分为三类:
1.单向应力状态只有一个主应力不等于零。
2.二向应力状态有两个主应力不等于零。
3.三向应力状态三个主应力都不等于零。
单向应力状态又称为简单应力状态,二向和三向应力状态统称为复杂应力状态。
单向及二向应力状态又称为平面应力状态。
二、一点的应力状态:通过受力构件内一点的所有截面上的应力情况称为一点的应力状态。
三、一点的应力状态的表示法—
单元体:围绕所研究的点,截取一个边长为无穷小的正六面体,用各面上的应力分量表示周围材料对其作用。
称为应力单元体。
特点:
1.单元体的尺寸无限小,每个面上的应力为均匀分布。
2.单元体表示一点处的应力,故相互平行截面上的应力相同。
四、主平面、主应力、主单元体:主平面单元体中剪应力等于零的平面。
主应力主平面上的正应力。
可以证明:受力构件内任一点,均存在三个互相垂直的主平面。
三个主应力用σl、σ2和σ3表示,且按代数值排列即σl>σ2>σ3。
主单元体用三对互相垂直的主平面取出的单元体。
弹性力学3-应力状态、几何方程
![弹性力学3-应力状态、几何方程](https://img.taocdn.com/s3/m/d1cf495084254b35effd3447.png)
s x ,s y ,t xy t yx
应力张量: tsyxx
t xy sy
t t
xz yz
t zx t zy s z
s x t xy
t yx
s
y
第二章 平面问题的基本理论 2.3 平面问题中一点的应力状态
一点的应力状态可以用以下三种方法表示:
用包围该点的微元体(微正六面体)表征 过该点的任意斜截面上的应力 用一点的主应力与主方向表征
2.1 平面应力与平面应变 2.2 平衡微分方程 2.3 一点的应力状态 2.4 几何方程 2.5 物理方程 2.6 边界条件 2.7 圣维南原理 2.8 按位移求解平面问题 2.9 按应力求解平面问题 2.10 常体力情况下的简化
第二章 平面问题的基本理论 2.4几何方程
几何方程:应变分量与位移分量之间的关系。
fx
dxdy 2
1 0
上式分别将dx、dy用ds 表达:
pxds
s xlds
t yxmds
fx
ldsmds 2
0
ds趋于零时
O
x
t yx s y
P
A
t t xy
Px
n
px ls x mt xy
(2-3a)
sx
微元体竖直静力平衡条件: Fy 0 可得:
Py s n n
B
y pyds 1 s ydx 1 t xydy 1
过P点的微小三角形,两个边分别 O
平行于坐标轴,当面积SAPB无限减小, 趋近于P点时,平面AB上的应力即成
x
t yx s y
P
A
为过P点斜面上的应力。
P点应力分量(直角坐标面上的应
力)已知:s x ,s y ,t xy t yx
材料力学之应力状态知识讲解
![材料力学之应力状态知识讲解](https://img.taocdn.com/s3/m/3d9e3709fe4733687e21aacd.png)
1
m main =xx 2y
(x 2y)2x2y=
26MPa 96MPa
1=26 MP , a2=0, 3=96 MPa
26
例题 5 图示单元体。
已知: x =-40MPa ,y =60MPa ,xy=-50MPa 。 试求: ef 截面上的应力情况及主应力和主单元体的方位。
(1) 求 ef 截面上的应力
P A
B
C
A A
A
B B C
C
C C
从A、B、C三点截取 7
例题 1 画出如图所示梁 S 截面的应力状态单元体.
F
S平面
l/2 l/2
5 4 3 2
1
8
5
S平面
5
4
4
3
3
2
2
1
1
x1
1
x1 x2
2
x2
2
2
3
3
3
9
例题2 画出如图所示梁的危险截面上, 危险点的应力状态
yy
单元体。
1
4
FS
2
z
3
z2 xT 3
45°
所以 0= -45°与 max 对应
1
(2)求主应力
m m= a in x x 2y(x 2y)2x 2= y
1 = , 2 = 0 , 3 = - 30
§8-3 平面应力状态分析-图解法
一.莫尔圆
将斜截面应力计算公式改写为
= xx 2 2yys=i2n x 2yxcycoo22 s sxysi2n
把上面两式等号两边平方, 然后相加便可消去 , 得
(x 2y)2 2=( x 2y)2x 2y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体任意一点取矩为顺时针者为正,反之为负。
2.平面一般应力状态斜截面上应力如图8-10所示,斜截面平行于轴且与面成倾角,由力的平衡条件:和可求得斜截面上应力,:(8-3a)(8-3b)注意到:1)图8-10b中应力均为正值,并规定倾角自轴开始逆时针转动者为正,反之为负。
2)式中均为面上剪应力,且已按剪应力互等定理将换成。
3.正应力极值——主应力根据(8-3a)式,由求极值条件,得即有(8-4a)为取极值时的角,应有,两个解。
将相应值,分别代入(8-3a),(8-3b)即得:(8-4b); (8-4c)说明:1)当倾角转到和面时,对应有,,其中有一个为极大值,另一个为极小值;而此时,均为零。
可见在正应力取极值的截面上剪应力为零(如图8-11a)。
2)定义:正应力取极值的面(或剪应力为零的面)为主平面,主平面的外法线方向称主方向,正应力的极值称主应力,对平面一般应力状态通常有两个非零主应力:,,故也称平面应力状态为二向应力状态。
4.剪应力极值——主剪应力根据(8-3b)式及取极值条件,可得:(8-5a)为取极值时的角,应有,两个解。
将相应值,分别代入(8-3b),(8-3a)即得:(8-5b) ;说明:1)当倾角转到和面时,对应有,,且二者大小均为,方向相反,体现了剪应力互等定理,而此两面上正应力大小均取平均值(如图8-11b)。
2)定义:剪应力取极值的面称主剪平面,该剪应力称主剪应力。
注意到:;或因而主剪平面与主平面成夹角。
平面一般应力状态分析——应力圆法1.应力圆方程由式(8-3a)和(8-3b)消去,得到(8-6)此为以,为变量的圆方程,以为横坐标轴,为纵坐标轴,则此圆圆心坐标为,半径为,此圆称应力圆或莫尔(Mohr)圆。
2.应力圆的作法应力圆法也称应力分析的图解法。
作图8-12a所示已知平面一般应力状态的应力圆及求倾角为的斜截面上应力,的步骤如下:1)根据已知应力,,值选取适当比例尺;2)在坐标平面上,由图8-12a中微元体的1-1,2-2面上已知应力作1(,),2(,-)两点;3)过1,2两点作直线交轴于点,以为圆心,为半径作应力圆;4)半径逆时针(与微元体上转向一致)转过圆心角得3点,则3点的横坐标值即为,纵坐标值即为。
3.微元体中面上应力与应力圆上点的坐标的对应关系1)=,= 的证明:=已知:;则,让,对照上式与式(8-3a),可知= 。
对照上式与式(8-3b),可知= 。
2)几个重要的对应关系;(即式(8-5b))主平面位置:应力圆上由1点顺时针转过到点。
,(即式(8-4a)),对应微元体从面顺时针转过角(面)。
应力圆上继续从点转过到,对应微元体上从面继续转过到面,此时(即式(8-4c))建议读者对,点(对应主剪应力)作同样讨论。
空间应力状态的主应力与最大剪应力1.主应力对于空间一般应力状态(如图8-9a),可以证明,总可将微元体转到某一方位,此时三对微面上只有正应力而无剪应力作用(如图8-13)。
此三对微面即主平面,三个正应力即主应力(正应力极值)。
空间一般应力状态一般具有三个非零的主应力,故也称三向应力状态。
约定:三个主应力按代数值从大到小排列,即。
例8-1 式(8-1a),(8-1b)所示薄壁圆筒为二向应力状态,有两个主应力,壁有压工程上略去不计,则有:,,。
例8-2 图8-7所示受弯曲与扭转组合作用圆轴中的1点,可用图8-14所示应力圆求其主应力:,二向应力状态。
所以,,2.主剪应力,最大剪应力若已知(或已求得)三个主应力,可求:1)平行方向的任意斜截面上应力(如图8-15a)。
由于不参加图8-15b 所示微元体的力平衡。
可利用式(8-3a)、(8-3b):;相应于图8-15c中,构成的应力圆,此时主剪应力:,(图8-15c上的点)。
2)平行方向斜截面上的主剪应力(见图8-16a,b,c)主剪应力:。
(见图8-15c中,构成的应力圆上点)。
3)求平行方向斜截面上的主剪应力(见图8-15c中点)。
结论:在按约定排列的三个非零主应力,,作出的两两相切的三个应力圆中,可以找到三个相应的主剪应力,,,其中最大剪应力值为:处在与,作用面成的面上。
例8-1中:, 而非。
例8-2中:※3.任意斜截面上应力已知主应力,,,设斜截面法线的方向余弦为,,。
求任意斜截面上应力。
设斜面面积,则三个侧面面积:,,三个方向余弦满足关系:(a)由平衡条件,和有:,,(b)由总应力的三个分量可得总应力:(c)也可分解为法线方向的正应力和面上剪应力(图8-17c),则有(d)由式(d),(c)得:(e),,在斜面法线上投影之代数和为,注意到式(b),则有:(f)由式(a),(e),(f)可解得:(8-7)讨论:1)在以为横坐标,为纵坐标的坐标平面,以上三式分别表示三个应力圆,且交于一点,此点坐标即为斜截面上的应力(,)。
2)由于、、,在约定条件下,可由以上三式证明任意斜截面上应力均落在图8-14c所示三个主应力圆包围的阴影线面积。
3)当,式(8-7)第一式即为图8-14c中,组成的应力圆方程,在所有平行方向的斜截面中,与,成的斜面上具有主剪应力,同理,当,和时,对应有,及,组成的应力圆方程,分别可得主剪应力:和,可见,。
建立强度理论的基本思想1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。
例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限,铸铁破坏表现为脆性断裂失效,具有抗拉强度。
图9-1a,b2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。
例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。
图(9-2a,b)例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。
图(9-3a)例4 常温静载条件下,圆柱形石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。
图9-3b3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为。
建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是:1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设;2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。
3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。
关于脆性断裂的强度理论1.最大拉应力准则(第一强度理论)基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。
表达式:复杂应力状态,当,简单拉伸破坏试验中材料的正断抗力,最大拉应力脆断准则:(9-1a)相应的强度条件:(9-1b)适用围:虽然只突出而未考虑的影响,它与铸铁,工具钢,工业瓷等多数脆性材料的实验结果较符合。
特别适用于拉伸型应力状态(如),混合型应力状态中拉应力占优者(但)。
2.最大伸长线应变准则(第二强度理论)基本观点:材料中最大伸长线应变到达材料的脆断伸长线应变时,即产生脆性断裂。
表达式:。
复杂应力状态:,当;简单拉伸破坏试验中材料的脆断伸长线应变,,最大伸长线应变准则:(9-2a)相应的强度条件:(9-2b)适用围:虽然考虑了,的影响,它只与石料、混凝土等少数脆性材料的实验结果较符合(如图9-4所示),铸铁在混合型压应力占优应力状态下()的实验结果也较符合,但上述材料的脆断实验不支持本理论描写的,对材料强度的影响规律。
关于塑性屈服的强度理论1.最大剪应力准则(第三强度理论)基本观点:材料中的最大剪应力到达该材料的剪切抗力时,即产生塑性屈服。
表达式:复杂应力状态,简单拉伸屈服试验中的剪切抗力,,最大剪应力屈服准则:(9-3a)相应的强度条件:(9-3b)适用围:虽然只考虑了最大主剪应力,而未考虑其它两个主剪应力,的影响,但与低碳钢、铜、软铝等塑性较好材料的屈服试验结果符合较好;并可用于像硬铝那样塑性变形较小,无颈缩材料的剪切破坏,此准则也称特雷斯卡(Tresca)屈服准则。
2.形状改变比能准则(第四强度理论)基本观点:材料中形状改变比能到达该材料的临界值时,即产生塑性屈服。
表达式:复杂应力状态,简单拉伸屈服试验中的相应临界值,,形状改变比能准则:(9-4a)相应的强度条件:(9-4b)适用围:它既突出了最大主剪应力对塑性屈服的作用,又适当考虑了其它两个主剪应力的影响,它与塑性较好材料的试验结果比第三强度理论符合得更好。