云南省昭通市中考数学模拟试卷

合集下载

2024年云南省昭通市昭阳区九年级中考一模数学试题

2024年云南省昭通市昭阳区九年级中考一模数学试题

2024年云南省昭通市昭阳区九年级中考一模数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.若气温上升2C ︒记作2C +︒,则气温下降3C ︒记作( )A .2C -︒B .2C +︒ C .3C -︒D .3C +︒ 2.2024年昭通市人民政府继续为群众办好“十件民生实事”,为全市群众送上“民生大礼包”.其中,脱贫人口劳动力转移就业稳定在83.6万人以上,把83.6万用科学记数法表示为( )A .483.610⨯B .48.3610⨯C .58.3610⨯D .68.3610⨯ 3.如图,已知,,160a b c d ∠=︒∥∥,则2∠=( )A .120︒B .150︒C .30︒D .60︒4.下列运算结果正确的是( )A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .222642ab ab ab -= 5.母亲节马上就到了(5月的第二个星期天),娜娜同学准备送给母亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A .长方体B .三棱锥C .圆柱D .正方体6.函数y x 的取值范围为( )A .4x >B .4x ≥C .4x <D .4x ≤ 7.水平社区卫生所在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后7天,卫生所每天定时为张奶奶测量血压,测得数据如下表:对收缩压,舒张压两组数据分别进行统计分析,其中错误的是( )A .收缩压的中位数为139B .舒张压的众数为88C .收缩压的平均数为142D .舒张压的方差为8878.不等式组215{3112x x x -<-+≥的解集在数轴上表示正确的是【 】 A . B .C .D .9.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AO B 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称10.关于x 的方程220x px +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根111的值应在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间12.为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A :篮球,B :排球,C :足球;D :羽毛球,E :乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目D 的扇形圆心角是72︒C .选科目A 的人数占体育社团人数的一半D .选科目B 的扇形圆心角比选科目D 的扇形圆心角的度数少21.6︒13.如图,,D E 是ABC V 边,AB AC 边上的两点,且DE BC ∥,若:1:16ADE ABC S S =△△,则ADE V 与ABC V 的周长之比为( )A .1:2B .1:4C .1:5D .1:1614.如图,A ,B ,C 为O e 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BOC ∠的度数是( )A .20︒B .30︒C .15︒D .60︒15.一组数:2,1,5,x ,17,y ,65,满足“前两个数依次为a 、b ,紧随其后的第三个数是2a b +”,例如这组数中的第三个数“5”是由“221?”得到的,那么这组数中y 表示的数为( )A .27B .11C .31D .41二、填空题16.分解因式:22ab ab a -+= .17.如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为 .18.若点(3,2)P -关于原点的对称点在反比例函数k y x=的图象上,则该反比例函数的解析式为 . 19.如图,ABC V 中,6AB =,24∠︒=C ,以AB 为直径的O e 交BC 于点D ,D 为BC 的中点,则图中阴影部分的面积为 .三、解答题20.计算:()201326tan 302π-⎛⎫----︒ ⎪⎝⎭ 21.如图,在ABC V 中,D 、E 是边BC 上两点,且ADB AEC B C ∠=∠∠=∠,.求证:BD CE =.22.某中学在五四青年节来临之际用4800元购进A 、B 两种运动衫共88件.已知购买A 种运动衫与购买B 种运动衫的费用相同(各为2400元),B 种运动衫的单价是A 种运动衫单价的1.2倍.求A 、B 两种运动衫的单价各是多少元?23.为弘扬中国传统文化,某校举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗,B .宋词,C .论语,D .三字经.比赛形式为“单人组”和“双人组”.(1)小颖参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“论语”的概率为___________;(2)若“双人组”比赛规则是:同一小组的两名成员的比赛项目不能相同,且每人只能随机抽取一次,则小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率是多少?请用画树状图或列表的方法进行说明.24.如图,D 为线段BC 中点,连接AB AC 、,AB AC =,过A 作AE BC ∥且AE DC =,连接BE .(1)求证:四边形AEBD 是矩形.(2)连接CE 交AB 于点F ,若602ACB AE ∠=︒=,,求CF 的长.25.新能源汽车作为一个新兴产业,摆脱了汽车对石油的依赖,而且没有废气排放,发展新能源是保障国家环境安全及能源安全重要措施.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0150x ≤≤时,求1千瓦时的电量汽车能行驶的路程,(2)当150200x ≤≤时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.26.已知点(,0)A m -和(3,0)B m 在二次函数24y ax bx =++(a ,b 是常数,0a ≠)的图象上,该图象与y 轴交于点C .(1)当2m =-时,求a 和b 的值;(2)若二次函数的图象经过点(,4)N n 且点N 不在坐标轴上,当11m -<<时,求n 的取值范围.27.已知Rt ABC △中,90,20C AB ∠=︒=,且4c o s 5A =,M 为线段AB 的中点,作DM AB ⊥,点P 在线段CB 上,点Q 在线段AC 上,以PQ 为直径的O e 始终过点M ,且PQ 交线段DM 于点E .(1)求线段AD 的长度;(2)求tan PQM ∠的值;(提示:连接CM )(3)当△MPE 是等腰三角形时,求出线段AQ 的长.。

2023年云南省昭通市中考数学仿真训练卷

2023年云南省昭通市中考数学仿真训练卷

2023年云南省昭通市中考数学仿真训练卷数学 试题卷(全卷三个大题,共24个小题,满分120分,考试用时120分钟)注意事项:1.本卷为试题卷,考生必须在答题卡上解题作答,答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共12小题,每小题只有一个正确选项,每小题4分,共48分)1.据资料显示,某河面积约为36000平方千米,请用科学记数法表示河面面积约为多少平方米( ) A .33610⨯ B .43.610⨯ C .50.3610⨯ D .103.610⨯2.挂起来的水银温度计上,水银柱从0℃位置升高一段距离后温度为+5℃,则水银柱从0℃位置下降相同距离后温度为( )A .-5℃B .-10℃C .0℃D .+10℃3.如图,已知 AB ∥CD ,∠1=47°,则∠2 的度数是( )A .43°B .147°C .47°D .133°4.反比例函数6y x=−的图像大致是( ) A . B .C .D .5.已知ABC DEF :△△,AG 和DH 是它们的对应边上的高,若4AG =,6DH =,则ABC 与DEF 的面积比是( )A .23:B .49:C .32:D .94:6.某年2月22日春城飘雪,低温挡不住昆明人对雪的热情.21日至27日一周昆明每天的最低气温(单位:℃)分别为:2,1−,1,3,5,5,6,则下列关于这组数据说法错误的是( ).A .平均数是3B .方差是237C .中位数是3D .众数是57.某几何体的三视图如图所示,那么该几何体的形状是( ).A .三棱柱B .圆柱体C .立方体D .长方体8.探索规律:观察下面的一列单项式:x 、22x −、34x 、48x −、516x 、…,根据其中的规律得出的第9个单项式是( )A .9256x −B .9256xC .9512x −D .9512x9.如图,在O 中,弦AB 的长为16cm ,若圆心O 到AB 的距离OC 为6cm ,则O 的半径为( )cm .A .4B .6C .8D .1010.下列运算正确的是( )A .4312x x x ⋅=B .()()32641a a ÷=C .()2349a a a ⋅=D .()()3224ab ab ab ÷−=−11.如图,D , E 分别是AB , AC 边上的点,BDC CEB ∠=∠,若添加下列一个条件后,仍不能证明BDF CEF △≌△的是( )A .AB AC = B .BF CF = C .DF EF =D .B C ∠=∠12.同学聚餐预定的酒席价格为2400元,但有两位同学因时间冲突缺席,若总费用由实际参加的人平均分摊,则每人比原来多支付40元,设原来有x 人参加聚餐,由题意可列方程( )A .24002400402x x =++ B .24002400402+=+x x C .24002400402x x =+− D .24002400402x x +=−二、填空题(本大题共6小题,每小题4分,共24分)13.当x _____在实数范围内有意义.14.已知点()43P −,和点()4Q n −,关于原点对称,则n =______. 15.计算()2a b −()224a b =−16.一个直角三角形的两条边长是方程27120x x −+=的两个根,则此直角三角形的外接圆的直径为_____.17.已知扇形的面积为15πcm 2,弧长为5πcm ,则该扇形的圆心角是______度.18.一个正五边形和正六边形如图放置,则∠ABC 的度数为 ______.三、(本大题共6小题,共48分。

2024年云南省昭通市昭阳区九年级中考一模数学试题(解析版)

2024年云南省昭通市昭阳区九年级中考一模数学试题(解析版)

2024年昭阳区第一次初中毕业诊断性检测九年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 若气温上升记作,则气温下降记作( )A. B. C. D. 【答案】C【解析】【分析】本题考查了正负数的应用.解题的关键在于熟练掌握正数与负数表示意义相反的两种量.根据用正负数来表示具有相反的意义量:上升记为正,则下降记为负,直接得出结论即可.【详解】解:若气温上升记作,则气温下降记作,故选:C .2. 2024年昭通市人民政府继续为群众办好“十件民生实事”,为全市群众送上“民生大礼包”.其中,脱贫人口劳动力转移就业稳定在万人以上,把万用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的定义,关键是理解运用科学记数法.利用科学记数法的定义解决.科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:万.故选:C .3. 如图,已知,则( )2C ︒2C +︒3C ︒2C-︒2C +︒3C -︒3C+︒2C ︒2C +︒3C ︒3C -︒83.683.6483.610⨯48.3610⨯58.3610⨯68.3610⨯10n a ⨯110a ≤<83.658360008.3610==⨯,,160a b c d ∠=︒∥∥2∠=A. B. C. D. 【答案】D【解析】【分析】根据可得,根据可得.【详解】解:如图,,,,,故选:D .【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行、同位角相等.4. 下列运算结果正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了整式的运算,根据同底数幂的乘法、合并同类项法则、积的乘方、幂的乘方分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项正确,符合题意;故选:.120︒150︒30︒60︒a b ∥3160∠=∠=︒c d ∥2360∠=∠=︒ a b ∥∴3160∠=∠=︒ c d ∥∴2360∠=∠=︒339x x x ⋅=336235x x x +=()32626x x =222642ab ab ab -=A 336x x x ⋅=B 333235x x x +=C ()32628x x =D 222642ab ab ab -=D5. 母亲节马上就到了(5月的第二个星期天),娜娜同学准备送给母亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A. 长方体B. 三棱锥C. 圆柱D. 正方体【答案】B【解析】【分析】本题考查的是简单几何体的主视图,熟记简单几何体的三种视图是解本题的关键.【详解】解:∵长方体,正方体,圆柱的主视图是长方形,而三棱锥的主视图是三角形,∴该礼物的外包装不可能是三棱锥,∴A ,D ,C 不符合题意, B 符合题意;故选:B .6. 函数的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,,解得.故选:B .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7. 水平社区卫生所在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后天,卫生所每天定时为张奶奶测量血压,测得数据如下表:测量时间第天第天第天第天第天第天第天收缩压(毫米汞柱)y =x 4x >4x ≥4x <4x ≤40x -≥4x ≥71234567151148140139140136140舒张压(毫米汞柱)对收缩压,舒张压两组数据分别进行统计分析,其中错误的是()A. 收缩压的中位数为 B. 舒张压的众数为C. 收缩压的平均数为 D.舒张压的方差为【答案】A【解析】【分析】本题考查的是众数,中位数,平均数,方差的含义,熟记众数,中位数,平均数与方差的求解方法是解本题的关键.把数据按照大小排序后再确定中位数,即可判断,出现的次数最多的数为众数,可判断再利用所有数据的和除以数据总个数可得平均数,可判断,先算出来舒张压的平均数,再根据方差公式计算可判断,从而可得答案.【详解】、把收缩压的数据按照从小到大的顺序排列为:,,,,,,,收缩压的数据排在最中间的数据是,可得中位数为,故A不符合题意;、舒张压中出现的次数最多,故舒张压的众数为,故符合题意;、收缩压的平均数为:,故符合题意;、舒张压的平均数为:,则舒张压的方差为:,故符合题意;故选.8. 不等式组的解集在数轴上表示正确的是【】A. B.C. D.【答案】A【解析】9092888890808813988142887A BC DA136139140140140148 151140140B8888BC()113613914031481511427++⨯++=CD()190928839080887++⨯++=()()()()22222188290889288388888908877S⎡⎤=⨯-+-+⨯-+-=⎣⎦DA215{3112xxx-<-+≥【分析】先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)【详解】解 ①得,x<3解②得,x -1不等式的解集为:-1x<3在数轴上表示为:故选A9. 如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D为圆心,大于CD 的长为半径画弧,两弧在∠AO B 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是A. 射线OE 是∠AOB 的平分线B. △COD 是等腰三角形C. C 、D 两点关于OE 所在直线对称D. O 、E 两点关于CD 所在直线对称【答案】D【解析】【详解】解:A 、连接CE 、DE ,根据作图得到OC =OD ,CE =DE .∵在△EO C 与△EOD 中,OC =OD ,CE =DE ,OE =OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE =∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC =OD ,∴△COD 是等腰三角形,正确,不符合题意.2153112x x x -<⎧⎪⎨-+≥⎪⎩①②≥∴≤12C 、根据作图得到OC =OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 垂直平分OE ,∴CD 不是OE 的垂直平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选:D .10. 关于x 的方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】根据方程各项系数结合根的判别式△=b 2-4ac ,找出方程根的判别式的符号,由此即可得出结论.【详解】方程的判别式为△=-4ac==+80,所以该方程有两个不相等的实数根.故选A.【点睛】本题考查一元二次方程根的判别式.11.的值应在( )A. 4和5之间 B. 5和6之间 C. 6和7之间 D. 7和8之间【答案】A【解析】的大小.解题的关键利用夹逼的大小.,则,的220x px +-=220xpx +-=2b 2412p -⨯⨯-()2p >1-1<<56<<∴,的值应在4和5之间,故选:A .12. 为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有::篮球,:排球,:足球;:羽毛球,:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A. 选科目的有5人B. 选科目的扇形圆心角是C. 选科目的人数占体育社团人数的一半D. 选科目的扇形圆心角比选科目的扇形圆心角的度数少【答案】C【解析】【分析】本题考查了条形统计图与扇形统计图信息关联, A 选项先求出调查的学生人数,再求选科目的人数来判定,B 选项利用选科目所占的比例判定即可,C 选项中求出的人数即可判定,D 选项利用选科目的人数减选科目,再除以总人数乘求解即可判定.【详解】解:由题意得:调查的学生人数为:(人),选科目的人数为:(人),故A 选项正确,选科目的扇形圆心角是,故B 选项正确,选科目的人数为,总人数为50人,所以选科目的人数占体育社团人数的一半错误,故C 选项不正确,选科目的扇形圆心角比选科目的扇形圆心角的度数.故D 选项正确,故选:C .13. 如图,是边边上的两点,且,若,则与415<-<1-A B C D E E D 72︒A B D 21.6︒E D 360⨯︒B C D ,,B D 360︒1224%50÷=E 5010%5⨯=D 103607250⨯︒=︒B C D ,,7121029++=A B D 336021.650⨯︒=︒,D E ABC ,AB AC DE BC ∥:1:16ADE ABC S S =△△ADE V的周长之比为( )A. B. C. D. 【答案】B【解析】【分析】由平行易证,由面积比等于相似比的平方,周长比等于相似比求解.【详解】∵∴,∴∵∴与周长之比为,故选B .【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形性质是解题的关键.14. 如图,A ,B ,C 为上的三个点,,若,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了圆周角定理,根据同圆中同弧所对的圆周角度数是圆心角度数的一半得到,再根据即可得到答案.【详解】解:∵,∴,∵,ABC 1:21:41:51:16ADE ABC DE BC∥ADE B ∠=∠ADE ABC:1:16ADE ABC S S =△△ADE V ABC 1:4O 4AOB BOC ∠=∠60ACB ∠=︒BOC ∠20︒30︒15︒60︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠60ACB ∠=︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠∴,故选:B .15. 一组数:2,1,5,x ,17,y ,65,满足“前两个数依次为a 、b ,紧随其后的第三个数是”,例如这组数中的第三个数“5”是由“”得到的,那么这组数中y 表示的数为( )A. 27B. 11C. 31D. 41【答案】C【解析】【分析】本题考查了规律型中数字的变化类,根据数列中数的变化,代入数据求出x 值是解题的关键.根据数列中数的规律即可得出,再求出y 的值即可.【详解】解:依题意,得,,故选:C .二、填空题(本大题共4小题,每小题2分,共8分)16. 分解因式:_____.【答案】【解析】【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:,故答案为:.【点睛】本题主要考查了分解因式,熟知分解因式方法是解题的关键.17. 如图,图中网格由边长为1的小正方形组成,点为网格线的交点.若线段绕原点顺时针旋转90°后,端点的坐标变为______.的30BOC ∠=︒2a b +221´+215x =⨯+2157x =⨯+=271731y =⨯+=22ab ab a -+=()21a b -22ab ab a -+()221a b b =-+()21a b =-()21a b -A OA O A【答案】【解析】【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.18. 若点关于原点的对称点在反比例函数的图象上,则该反比例函数的解析式为___________.【答案】【解析】【分析】本题考查反比例函数图象上点的坐标特征和关于原点对称坐标的特征;先求出点关于原点的对称点,再代入反比例函数即可求解.【详解】点关于原点的对称点是()2,2-(3,2)P -k y x =6y x =-(3,2)P -k y x =(3,2)P -(3,2)-把代入得:∴该反比例函数的解析式为故答案为:.19. 如图,中,,,以为直径的交于点,为的中点,则图中阴影部分的面积为___________.【答案】【解析】【分析】本题考查了圆周角定理及其推论、等腰三角形的判定和性质以及扇形的面积公式,证明是等腰三角形,求出的度数是解题的关键.首先证明是等腰三角形,求出,然后根据圆周角定理求出,再利用扇形的面积公式计算即可.【详解】解:连接,如图所示,是直径,,即,为的中线,是等腰三角形,,,,半径,为(3,2)-k y x=6k =-6y x =-6y x=-ABC 6AB =24∠︒=C AB O BC D D BC 6π5ABC AOD ∠ABC 24B C ∠=∠=︒AOD ∠AD AB 90ADB ∴∠=︒AD BC ⊥AD BC ABC ∴ 24B C ∴∠=∠=︒248AOD B ∴∠=∠=︒=6AB ∴3,故答案为:.三、解答题(本大题共8小题,共62分)20.【答案】【解析】【分析】先将二次根式化简、分别得出零指数幂、负指数幂、特殊角的三角函数值,然后根据实数的运算法则求得计算结果即可.【详解】解:原式【点睛】本题主要考查二次根式化简、零指数幂、负指数幂、特殊角的三角函数值,熟练掌握二次根式化简、零指数幂、负指数幂、特殊角的三角函数值的化简计算是解决本题的关键.21. 如图,在中,D 、E 是边BC 上两点,且.求证:.【答案】见解析【解析】【分析】本题主要考查对全等三角形判定定理的理解和掌握,先由等角对等边证,再在利用即可证明,即可证得结论.熟练掌握全等三角形的判定定理并灵活运用.【详解】证明:,,在与中,248π36π3605S ∴= 阴影=6π5()20126tan 302π-⎛⎫+---︒ ⎪⎝⎭03146=++--0=ABC ADB AEC B C ∠=∠∠=∠,BD CE =AB AC =AAS ABD ACE △△≌B C ∠=∠ AB AC ∴=ABD △ACE △ADB AEC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE ∴ ≌.22. 某中学在五四青年节来临之际用元购进、两种运动衫共件.已知购买种运动衫与购买种运动衫的费用相同(各为元),种运动衫的单价是种运动衫单价的倍.求、两种运动衫的单价各是多少元?【答案】、两种运动衫的单价各是元、元【解析】【分析】本题考查了分式方程的实际应用,解题的关键是找准等量关系,正确列出分式方程.设种运动衫单价为元,种运动衫单价为元,故种运动衫购买数量为元,种运动衫购买数量为元,即可得出关于的分式方程,解之经检验后,即可得出结果 .【详解】解:设种运动衫单价为元,种运动衫单价为元.则由题意可列: ,解得,,经检验,是所列方程的解,(元),答:、两种运动衫的单价各是元、元.23. 为弘扬中国传统文化,某校举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗,B .宋词,C .论语,D .三字经.比赛形式为“单人组”和“双人组”.(1)小颖参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“论语”的概率为___________;(2)若“双人组”比赛规则是:同一小组的两名成员的比赛项目不能相同,且每人只能随机抽取一次,则小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1) (2);见解析【解析】【分析】本题主要考查树状图法或列表法求概率:(1)直接利用概率公式求解;(2)先画树状图展示所有等可能的结果数,再找出恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数,然后根据概率公式求解.BD CE ∴=4800A B 88A B 2400B A 1.2A B A B 5060A x B 1.2x A 2400x B 24001.2xx A x B 1.2x 24002400881.2x x+=50x =50x =1.2 1.25060x =⨯=A B 50601416【小问1详解】解:小颖从4个项目中随机抽取一个比赛项目,恰好抽中“论语”的概率为,故答案为:;【小问2详解】解:画树状图如下:共有12种等可能的结果数,其中小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数为2,所以恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率.24. 如图,D 为线段中点,连接,,过A 作且,连接.(1)求证:四边形是矩形.(2)连接交于点F ,若,求的长.【答案】(1)见解析(2【解析】【分析】(1)由题意得,,由,可证四边形是平行四边形,由且D 为线段中点,可得,即,进而结论得证;(2)由(1)知:,则,可知,证明,则,即141421126=BC AB AC 、AB AC =AE BC ∥AE DC =BE AEBD CE AB 602ACB AE ∠=︒=,CF AE BD =AE BC ∥AEBD AB AC =BC AD BC ⊥90ADB ∠=︒2AE BD CD ===4BC =tan 60AD CD =⋅︒=AEBD BE AD ==CE =AEF BCF ∽EF AE CF BC=,计算求解即可.【小问1详解】证明:∵D 为线段中点,∴,∵,∴,又∵,四边形是平行四边形,∵且D 为线段中点,∴,即,四边形矩形;【小问2详解】解:由(1)知:,∴,∵,,∴由矩形可知,由勾股定理得,,∵,∴,∴,∴,解得,,∴.【点睛】本题考查了矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质等知识.熟练掌握矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质是解题的关是12=BC BD DC =AE DC =AE BD =AE BC ∥∴AEBD AB AC =BC AD BC ⊥90ADB ∠=︒∴AEBD 2AE BD CD ===4BC =90ADC ∠=︒602ACB CD ∠=︒=,tan 60AD CD =⋅︒=AEBD BE AD ==CE ==AE BC ∥EAB ABC AEC ECB ∠=∠∠=∠,AEF BCF ∽EF AE CF BC =12=CF =CF键.25. 新能源汽车作为一个新兴产业,摆脱了汽车对石油的依赖,而且没有废气排放,发展新能源是保障国家环境安全及能源安全重要措施.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当时,求1千瓦时的电量汽车能行驶的路程,(2)当时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【答案】(1)150千米;6千米(2);20千瓦时【解析】【分析】本题考查的是一次函数的实际应用,掌握利用待定系数法求解函数的解析式是解本题的关键;(1)直接利用函数图象可得答案;(2)设当时, y 关于x 的函数表达式为.把代入求解解析式即可,再求解当时的函数值即可.【小问1详解】解:由图可知,蓄电池剩余电量为35千瓦时时汽车已行驶的路程为150千米.当时,(千米/千瓦时)千瓦时的电量汽车能行驶的路程6千米.0150x ≤≤150200x ≤≤11102y x =-+150200x ≤≤y kx b =+(150,35),(200,10)180x =0150x ≤≤15066035=-1∴.【小问2详解】设当时, y 关于x 的函数表达式为.把代入,得,解得 当时,即蓄电池的剩余电量为20千瓦时26. 已知点和在二次函数(a ,b 是常数,)的图象上,该图象与y 轴交于点C .(1)当时,求a 和b 的值;(2)若二次函数的图象经过点且点N 不在坐标轴上,当时,求n 的取值范围.【答案】(1) (2)且【解析】【分析】本题主要考查二次函数图像上点的坐标特征,熟练掌握二次函数图像上点的坐标特征是解题的关键.(1)用待定系数法求出函数解析式即可得到答案;(2)先求出对称轴为,再根据图象经过点且点不在坐标轴上,得到即可得到答案.【小问1详解】解:当时,二次函数的图象过150200x ≤≤y kx b =+(150,35),(200,10)1503520010k b k b +=⎧⎨+=⎩12110k b ⎧=-⎪⎨⎪=⎩1110,(150200)2y x x ∴=-+≤≤180x =1180110202y =-⨯+=(,0)A m -(3,0)B m 24y ax bx =++0a ≠2m =-(,4)N n 11m -<<14,33a b =-=-22n -<<0n ≠x m =(,4)N n N 2n m =2m =-24y ax bx =++(2,0),(6,0)A B -,解得,即:;【小问2详解】图象过点∴其对称轴为 又的图象过点,即,则, ,有点N 不在坐标轴上且,且.27. 已知中,,且,M 为线段的中点,作,点P 在线段上,点Q 在线段上,以为直径的始终过点M ,且交线段于点E .(1)求线段的长度;(2)求的值;(提示:连接)(3)当是等腰三角形时,求出线段的长.【答案】(1) (2) 的424036640a b a b ++=⎧∴⎨-+=⎩1343a b ⎧=-⎪⎪⎨⎪=-⎪⎩14,33a b =-=-24y ax bx =++ (,0),(3,0)A mB m -32m m x m -+==24y ax bx =++ (,4),(0,4)n 02n m +∴=2n m =2n m =11m -<< 112n -<< 112n ∴-<<0n ≠22n ∴-<<0n ≠Rt ABC △90,20C AB ∠=︒=4cos 5A =AB DM AB ⊥CB AC PQ O PQ DM AD tan PQM ∠CM △MPE AQ 25243(3)或【解析】【分析】(1)中点求出的长,锐角三角函数求出的长即可;(2)连接,斜边上的中线,推出,圆周角定理,推出,,进而得到,进行求解即可;(3)先证明,得到为等腰三角形,分三种情况进行讨论求解即可.【小问1详解】解:为中点,在中,即:,;【小问2详解】连接,是斜边上的中点,,∴,,,是的直径,,,,;10254AM AD CM A ACM ∠=∠A MPQ ∠=∠90ACB PMQ ∠=∠=︒PQM ABC ∠=∠AMO PME △△∽AMQ △M AB 20AB =1102AM AB ∴==DM AB ⊥ Rt ADM 4cos 5AM A AD ==1045AD =252AD ∴=CM M Rt ABC △12CM AB AM BM ∴===A ACM ∠=∠B BCM∠=∠MPQ ACM ∠=∠ A MPQ ∴∠=∠QP O 90ACB PMQ ∴∠=∠=︒PQM ABC BCM ∴∠=∠=∠4cos ,205AC A AB AB === 16,12AC BC ∴===164tan tan 123AC PQM ABC BC ∠=∠===;【小问3详解】由(1)知.,当是等腰三角形时,有为等腰三角形,当时,,当时,,而,所以这种情况不存在;当时,,而由(1)知,可得;或.【点睛】本题考查圆周角定理,解直角三角形,斜边上的中线,相似三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,是解题的关键.4tan 3PQM ∴∠=90,90QMA QMD DMP QMD ∠+∠=︒∠+∠=︒QMA DMP∴∠=∠A MPQ ∠=∠AMO PME ∴∽△△PME △AMQ △AM AQ =10AQ =AM MQ =A AQM ACM ∠=∠=∠AQM ACM ∠>∠AQ MQ =A QMA ∠=∠9090A ADM QMA DMQ ∠+∠=︒∠+∠=︒,ADM DMQ∴∠=∠12QD QM AQ AD ∴===252AD =254AQ =10AQ ∴=254。

云南省昭通市数学中考模拟试卷(1)

云南省昭通市数学中考模拟试卷(1)

云南省昭通市数学中考模拟试卷(1)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法错误的是()A . 存在着最小的自然数B . 存在着最小的正有理数C . 不存在最大的正有理数D . 不存在最大的负有理数2. (2分)(2017·宾县模拟) 将一个正方体如图放置在一个长方体上,则所构成的几何体的左视图可能是()A .B .C .D .3. (2分) (2016七上·黑龙江期中) 如图,a∥b,若∠1=50°,则∠2的度数为()A . 50°B . 120°C . 130°D . 140°4. (2分)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5 ,其中做对的一道题的序号是()A . ①B . ②C . ③D . ④5. (2分) 2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,捐款达308.76亿元.把308.76亿元用科学记数法表示为()A . 30.876×109元B . 3.0876×1010元C . 0.30876×1011元D . 3.0876×1011元6. (2分)如果一个多边形的内角和等于720度,那么这个多边形的边数为()A . 4B . 5C . 6D . 77. (2分) (2019八下·九江期中) 不等式的解集是()A .B .C .D .8. (2分) (2017九上·泰州开学考) 下列调查中,不适合做普查的是()A . 准确了解全国人口状况B . 调查你班每位同学穿鞋的尺码C . 学校招聘教师,对应聘人员面试D . 调查一批灯泡的使用寿命9. (2分)(2017·南开模拟) 已知抛物线和直线l在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x=﹣1,P1(x1 , y1),P2(x2 , y2)是抛物线上的点,P3(x3 , y3)是直线l上的点,且x3<﹣1<x1<x2 ,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y3<y1C . y3<y1<y2D . y2<y1<y310. (2分) (2015七下·杭州期中) 如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A . β=α+γB . α+β+γ=180°C . α+β﹣γ=90°D . β+γ﹣α=180°11. (2分)(2017·和平模拟) 已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A . y3<y1<y2B . y1<y2<y3C . y2<y1<y3D . y3<y2<y112. (2分)观察下列钢管横截面图,则第13个图中钢管的个数是()A . 271B . 269C . 273D . 267二、填空题 (共6题;共6分)13. (1分)因式分解:x4﹣16=________.14. (1分)长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是________.15. (1分)在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .16. (1分) (2017七下·抚宁期末) 在足球联赛前9场比赛中,红星队保持不败记录,共积23分.按竞赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.17. (1分)(2018·秀洲模拟) 已知,则代数式的值是________18. (1分)如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x的代数式表示y).三、解答题 (共9题;共87分)19. (10分)(2017·薛城模拟) 计算题(1)解方程:2x2﹣4x+1=0(2)计算:.20. (10分) (2017九下·台州期中) 计算下列各题:(1)计算:(2)解方程21. (5分)(2018·无锡模拟) 如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22. (15分)(2019·莲湖模拟) 为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?23. (5分)(2017·江西模拟) 太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)24. (7分) (2016九上·吴中期末) 2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ________ ;扇形统计图中的圆心角α等于 ________ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.25. (10分)(2018·盘锦) 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?26. (10分)(2016·黄冈) 如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.27. (15分)(2019·潍坊模拟) 如图,在平面直角坐标系中,为坐标原点,点,点,的中线与轴交于点,且经过,,三点.(1)求圆心的坐标;(2)若直线与相切于点,交轴于点,求直线的函数表达式;(3)在过点且以圆心为顶点的抛物线上有一动点,过点作轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共87分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。

云南省昭通市数学中考模拟试卷

云南省昭通市数学中考模拟试卷

云南省昭通市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分)1. (4分) (2018七上·碑林月考) 2018的倒数是()A . 2018B .C .D . ﹣20182. (4分)(2019·涡阳模拟) 首届中国国际进口博览会于2018年11月5日至10日在上海国家会展中心举行.据新华社电,此次进博会交易采购成果丰硕,按一年计累计,意向成交57830000000美元,其中57830000000用科学记数法表示应为()A . 5783×107B . 57.83×109C . 5.783×1010D . 5.783×10113. (4分)(2018·北部湾模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2017·徐汇模拟) 如图,AB∥CD,BE平分∠ABC,∠C=36°,那么∠ABE的大小是()A . 18°B . 24°C . 36°D . 54°.5. (4分) (2019九上·射阳期末) 人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)(2017·南宁模拟) 小张抛掷两枚质地均匀的硬币,出现两枚硬币全部正面朝上的概率是()A .B .C .D . 17. (4分)(2018·毕节模拟) 如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A . 2对B . 4对C . 6对D . 8对8. (4分)若方程x2-6x+m=0有两个同号不相等的实数根,则m的取值范围是()A . m<9B . m>0C . 0<m<9D . 0<m≤99. (2分)如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠a=75°,则b的值为()A . 3B .C . 4D .10. (4分) (2019九上·台安月考) 如图,为等边三角形,点从A出发,沿作匀速运动,则线段的长度y与运动时间x之间的函数关系大致是()A .B .C .D .二、填空题(共6小题,满分30分,每小题5分) (共6题;共27分)11. (5分)(2016·乐山) 因式分解:a3﹣ab2=________.12. (5分)(2019·靖远模拟) 如图,的外接圆O的半径为3,,则劣弧的长是________ 结果保留13. (5分) (2019七上·高台期中) 对正有理数a,b定义运算★如下:a★b=,则3★4=________.14. (5分)如图,直线l1∥l2∥l3 ,已知AG=0.6cm,BG=1.2cm,CD=1.5cm,CH= ________ cm.15. (2分)如图,在▱ABCD中,AB=, AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE 的长为________.16. (5分)一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是________ 米.三、解答题(共8小题,满分80分) (共8题;共58分)17. (2分)已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.18. (8分)(2017·威海模拟) 解不等式组并写出它的所有非负整数解.19. (2分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)20. (8分) (2018九上·皇姑期末) 如图,在平面直角坐标系中,点在反比例函数的图象上,,轴于点C.(1)求反比例函数的表达式;(2)求的面积;(3)若将绕点B按逆时针方向旋转得到点O、A的对应点分别为、,点是否在反比例函数的图象上?若在请直接写出该点坐标,若不在请说明理由.21. (10.0分) (2018九上·兴义期末) 黔西南州勤智学校九年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)的成绩优秀,现要从这六名同学中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.22. (12分) (2017九下·无锡期中) 如图,在平面直角坐标系中,已知A(-3,0),B(0,),点D 与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时①t为何值时,⊙P与y轴相切?②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?23. (2分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24. (14分) (2020九上·桂林期末) 在矩形中,,,是边上的中点,动点在边上,连接,过点作分别交射线、射线于点、 .(1)如图1,当点与点重合时,求的长;(2)如图2,当点在线段上(不与,重合)且时,求的长;(3)线段将矩形分成两个部分,设较小部分的面积为,长为,求与的函数关系式.参考答案一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6小题,满分30分,每小题5分) (共6题;共27分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共8小题,满分80分) (共8题;共58分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

云南省昭通市绥江县2024届九年级下学期中考模拟预测数学试卷(含答案)

云南省昭通市绥江县2024届九年级下学期中考模拟预测数学试卷(含答案)

绥江县2024年初中学业水平考试模拟卷数学试题卷(全卷共三个大题,27个小题,共8页;满分100分,考试时间120分钟)注意事项:1. 本卷为试题卷,答题前请在答题卡指定位置填写学校、班级、姓名等信息.答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效.2. 考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 中国是最早认识和应用负数的国家,在我国古代著名的数学著作《九章算术》中首次引入了负数.若适宜某物品保存的最高温度是,最低温度是,则适宜保存该物品温度的温差是()A. B. C. D.2. 如图,直线c与直线a、b都相交,若,,则()A. B. C. D.3. 近日,云南省人民政府印发了《2024年进一步推动经济稳进提质政策措施》.其中在生产性服务业方面,该文件中指出,鼓励省级园区对园区内年营业收入50000000元以上的贸易、物流及供应链、销售企业,在标准化厂房租金、水费、网费等方面依规予以支持.数据50000000用科学记数法可以表示为()A. B. C. D.4. 如图所示是我们生活中常见的一种漏斗的示意图,从正面观察这个图形,看到的是()A. B. C. D.5. 反比例函数的图象位于()A. 第一、三象限B. 第一、四象限C. 第二、三象限D. 第二、四象限6. 下列数学符号中,是中心对称图形,但不是轴对称图形的是()A. B. C. D.7. 若分式有意义,则x的取值范围是()A. B. C. D. 且8. 如图,在中,,若,,,则DE的长为()A. B. C. D.9. 在数轴上有三个点,其中两个点分别表示和,点A在这两个点之间,则点A表示的整数可能是()A. 4B. 5C. 6D. 710. 下列运算正确的是()A. B.C. D.11. 为保护人类赖以生存的生态环境,我国将每年的3月12日定为中国植树节.在植树节当天,某校组织各班级进行植树活动,事后统计了各班级种植树木的数量,绘制成如下频数分布直方图(每组含前一个数值,不含后一个数值):根据统计结果,下列说法错误的是()A. 共有24个班级参加植树活动B. 频数分布直方图的组距为5C. 有的班级种植树木的数量少于35棵D. 有3个班级都种了45棵树12. 按一定规律排列的多项式:,,,,,…,第n个多项式是()A. B. C. D.13. 如图,在中,为直角,先以点A为圆心,任意长为半径画弧,分别交AC、AB于点D、E,再分别以点D、E为圆心,大于的长为半径画弧,两弧在内部相交于点F,作射线AF交BC于点G,P为AC上的一个动点,连接PG,若,则PG的最小值为()A. 15B. 10C. 5D. 2.514. 如图,在一块长为36米,宽为25米的矩形空地上修建三条宽均为x米的笔直小道,其余部分(即图中阴影部分)改造为草坪进行绿化,若草坪的面积为840平方米,求x的值.根据题意,下列方程正确的是()A. B.C. D.15. 如图,在四边形ABCD中,为直角,,,对角线AC、BD相交于点O,,,则四边形ABCD的面积为()A. 240B. 192C. 120D. 96二、填空题(本大题共4小题,每小题2分,共8分)16. 分解因式:______.17. 一个多边形的内角和为,这个多边形是______边形.18. 在一次科技创新大赛中,各参赛学生的成绩统计如下表所示:成绩(分)80859095100人数(人)11141295参赛学生成绩的中位数是______分.19. 将一个底面半径为4cm的圆锥沿任意一条母线剪开,它的侧面展开图是一个圆心角为的扇形,这个圆锥的母线长是______cm.三、解答题(本大题共8小题,共62分)20.(7分)计算:.21.(6分)如图,,,,求证:.22.(7分)某工厂引进甲、乙两种型号的机器人用来搬运生产原料,甲型机器人比乙型机器人每小时少搬运20千克,甲型机器人搬运600千克所用时间与乙型机器人搬运800千克所用时间相同,两种机器人每小时分别搬运多少千克生产原料?23.(6分)2024年2月27日,第31届中国兰花博览会在云南省维西傈僳族自治县开幕.开幕式当天,数千盆或端庄俊秀、或淡雅高洁的珍品兰花竞相绽放,吸引了不少市民及兰花爱好者前来赏兰、品兰、购兰,小智和小刚二人都想去这次博览会开开眼界,但只有一张门票,所以二人决定通过抽卡游戏确定谁去参会.在一个不透明的盒子中装四张完全相同的卡片,把它们分别标号为1,2,3,4.小智先随机取出一张卡片记录下号码后不放回,小刚再随机取出一张卡片记录下号码,然后比较两人各自记录下的号码,谁的号码大就由谁去参会.(1)请用列表法或画树状图法中的一种方法,求两人取卡的所有可能出现的结果总数;(2)请通过计算判断这个游戏是否公平,并说明理由.24.(8分)如图,在平行四边形ABCD中,BE平分交AD于点E,点F在BC上,,连接AF交BE于点O,连接EF.(1)求证:四边形ABFE是菱形;(2)若E、F分别为AD、BC的中点,,,求点D到AB的距离.25.(8分)阅读名著,感受经典,丰富内涵,品味人生.某书店售卖的《儒林外史》和《水浒传》两本名著的单本进价和售价如表所示:进价(元/本)售价(元/本)《儒林外史》a30《水浒传》b60已知该书店购进10本《儒林外史》和8本《水浒传》共需560元;购进15本《儒林外史》和5本《水浒传》共需525元.(1)求a、b的值;(2)该书店一次购进《儒林外史》和《水浒传》共100本,其中购进《儒林外史》的数量不少于《水浒传》的,销售完这100本书获得的总利润为w元,要使获得的总利润最大,应怎样购进《儒林外史》和《水浒传》?总利润最大是多少元?26.(8分)在平面直角坐标系中,设抛物线,其中.(1)若抛物线的对称轴为,求抛物线的解析式;(2)若,点与点是抛物线上两个不同的点,且,求证:.27.(12分)如图,在中,AB是的直径,点M是直径AB上的一个动点,过点M的弦,交于点C、D,连接BC,点F为BC的中点,连接DF并延长,交AB于点E,交于点G.图1 图2 备用图(1)如图1,连接CG,过点G的直线交DC的延长线于点P.当点M与圆心O重合时,若,求证:PG是的切线;(2)在点M运动的过程中,(k为常数),求k的值;(3)如图2,连接BG、OF、MF,当是等腰三角形时,求的正切值.绥江县2024年初中学业水平考试模拟卷数学参考答案一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)题号123456789101112131415答案C B B A D B A A C C D A C D B 二、填空题(本大题共4小题,每小题2分,共8分)16. 17. 九18. 90 19. 9三、解答题(本大题共8小题,共62分)20.(7分)解:原式.……(7分)21.(6分)证明:∵,∴,即,在和中,,.……(6分)22.(7分)解:设甲型机器人每小时搬运x千克生产原料,则乙型机器人每小时搬运千克生产原料.由题意得,解得:,经检验,是原分式方程的解,则.∴甲型机器人每小时搬运60千克生产原料,乙型机器人每小时搬运80千克生产原料.……(7分)23.(6分)解:(1)由题意列表如下:小刚1234小智1234如表所示,两人取卡共12种等可能出现的结果.……(4分)(2)由(1)中表可知,共有12种等可能的结果,其中小智的号码大于小刚的号码的情况为,,,,,共6种结果,∴概率;同理,小智的号码小于小刚的号码的情况为,,,,,共6种结果,∴概率;∵,∴这个游戏是公平的.……(6分)24.(8分)(1)证明:在中,,∴,∵BE平分,∴,∴,∴,∵,∴,∴四边形ABFE是平行四边形,∵,∴四边形ABFE是菱形.……(4分)(2)解:由(1)知四边形ABFE是菱形,AF、BE是它的对角线,∴,∵,∴,∵F为BC的中点,,∴,在中,,∴,∴,∵在中,E、F分别为AD、BC的中点,∴.∵,∴,点D到AB的距离即为的AB边上的高,∴设点D到AB的距离为h,则,∴.即点D到AB的距离为.……(8分)25.(8分)解:(1)由题意得,解得,∴a的值为20,b的值为45.……(4分)(2)设购m本《儒林外史》,则购进本《水浒传》.由题意得,解得.由题意得,∵,∴w随m的增大而减小,∴当时,w取得最大值,此时,.∴当购进40本《儒林外史》,60本《水浒传》时总利润最大,为1300元.(8分)26.(8分)解:(1)∵抛物线的对称轴为,∴,解得:,∴抛物线的解析式为.……(3分)(2)将点与点分别代入抛物线解析式得,,∴,∵,∴,,∴,整理得:,∵点A与点B是抛物线上两个不同的点,,∴,∴,∵,∴,即.……(8分)27.(12分)(1)证明:如图1,连接OG,则,∴,当点M与圆心O重合时,CD是的直径,∴,即,∵,∴,∴,即,∵OG是的半径,∴PG是的切线.……(3分)(2)解:如图1,过点F作,垂足为H,则,∵点F为BC的中点,∴FH是的中位线,∴,∵AB是的直径,弦,∴,∴,∵,,∴,∵,∴,∴.……(7分)图1(3)解:如图2,当点M在圆心O的左侧时,,连接CO,∵点F为BC的中点,∴,在和中,,∴,∴.在中,点F为BC的中点,∴,∴,∴是等边三角形,∴,∴,∴;图2如图3,当点M在圆心O的右侧时,,,∵点F为BC的中点,∴,∴,∴,,∴,∴,在中,点F为BC的中点,∴,∴,∴是等边三角形,∴,∴,∴,∴.综上所述,的正切值为或.……(12分)图3。

云南省昭通市数学中考模拟试卷

云南省昭通市数学中考模拟试卷

云南省昭通市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2020·攀枝花) 中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为.该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为的形式,则为().A . -8B . -7C . 7D . 82. (2分)函数中自变量x的取值范围是()A . x>2B . x≥2C . x≤2D . x<23. (2分)如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .4. (2分)李刚同学在黑板上做了四个简单的分式题:①(-3)0=1;②a2÷a2=a;③(-a5)÷(-a)3=a2;④4m-2= .其中做对的题的个数有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2015九上·福田期末) 已知反比例函数y= ,下列各点不在该函数图象上的是()A . (2,3)B . (﹣2,﹣3)C . (2,﹣3)D . (1,6)6. (2分)某公司10名职工3月份工资统计如下,该公司10名职工3月份工资的中位数是()工资(元)3000320034003600人数(人)3331A . 3100元B . 3200元C . 3300元D . 3400元7. (2分) (2020九上·北京月考) 下列四个图案中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .8. (2分)(2018·东营模拟) 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2),延长CB交x轴于点A1 ,作正方形A1B1C1C,延长C1B1交x轴于点A2 ,作正方形A2B2C2C1,………按这样的规律进行下去,正方形A2018B2018C2018C2017的面积为()A .B .C .D .二、填空题 (共6题;共10分)9. (1分) (2019七上·海口期中) ________的相反数是25;-0.125的绝对值是________;________的倒数是3;10. (1分) (2020九下·沈阳月考) 如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=85°,则∠1等于________°.11. (1分)(2019·岳阳模拟) 分解因式:a3b-2a2b+ab=________.12. (1分)(2019·本溪) 如果关于x的一元二次方程x2﹣4x+k=0有实数根,那么k的取值范围是________.13. (1分)(2020·永嘉模拟) 已知扇形的弧长为8π,圆心角为60°,则它的半径为________.14. (5分)(2017·南宁) 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为________.三、解答题 (共9题;共79分)15. (5分)(2017·营口) 先化简,再求值:(﹣)÷(1﹣),其中x=()﹣1﹣(2017﹣)0 , y= sin60°.16. (5分)(2019·五华模拟) 如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达点B,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,则渔船继续向东追赶鱼群有无触礁危险?(参考数据:≈1.414,≈1.732)17. (11分)(2016·河池) 某校八年级学生在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).分数(分)人数(人)68478780388590109661005(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?18. (3分) (2019八上·包河期中) 甲、乙两人驾车都从Р地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人到达Q地后均停止,已知P、Q两地相距200 km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发________h.图中线段BC所在直线的函数解析式为________;(2)设甲的速度为,求出的值;(3)根据题目信息补全函数图象(不需要写出分析过程,但必须标明关键点的坐标);并直接写出当甲、乙两人相距32 km时t的值.19. (10分) (2019九上·九龙坡期末) “高新九龙坡,美丽山水城”,九龙坡区的创卫工作己进入最后阶段.某小区准备购买一些清洁用品,改善小区清洁,提升小区品质,增强居民的归属感.现拟购买户外垃圾桶和除草机共100件,且垃圾桶的数量不少于除草机的4倍.(1)该小区最多可以购买除草机多少个?(2)该小区计划以(1)中购买最多除草机的方案采购清洁用品.某商场里,户外垃圾桶每个200元,除草机每台800元.该商场抓住商机,与小区物管协商,将户外垃圾桶的单价降低了m%(m>0),每台除草机的单价降低了50元.于是,该小区购买垃圾桶的数量将在原计划的基础上增加了2m%,除草机的数量不变,总共用去31000元,求m的值.20. (10分)(2019·银川模拟) 如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD 至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tanE=,求CF的长.21. (10分) (2019九上·鹿城月考) 在不透明的袋子中装有5个球,2个红球和3个黄球,每个球除颜色外都相同,(1)从中任意摸出一个球,恰好摸到红球的概率是多少?(2)小明从袋子中摸出一个红球后,小慧再从袋子里剩余的球中摸两个球(不放回),则小慧摸到的球刚好是两个黄球的概率是多少?(要求画树状图或列表)22. (10分)(2018·无锡模拟) 如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为________ cm.23. (15分) (2018九上·嘉兴月考) 如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线经过点A、B和D(4, ).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共79分)15-1、16-1、17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

云南省昭通市数学中考模拟考试试卷

云南省昭通市数学中考模拟考试试卷

云南省昭通市数学中考模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分) (2018七上·鄂城期中) 下列说法正确的个数有()①若|a|=|b|,则a=b;②若a≠b,则a2≠b2;③若a>b,则a2>b2;④a2>a.A . 0个B . 1个C . 2个D . 3个2. (2分)(2020·灌阳模拟) 下列运算正确的是()A . (﹣a4)5=a9B . 2a2+3a2=6a4C . 2a2•a5=2a10D . (﹣)2=3. (2分) (2020七下·武城期末) 已知关于x的不等式组有3个整数解,则m的取值范围是()A . 3<m≤4B . m≤4C . 3≤m<4 E.m≥34. (2分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A . 菱形B . 矩形C . 等腰梯形D . 正五边形5. (2分)(2018·金华模拟) 如图所示物体的俯视图是()A .B .C .D .6. (2分)(2017·天津模拟) 化简的结果是()A .B .C . x+1D . x﹣17. (2分)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A . y=-2x+24(0<x<12)B . y=- x+12(0<x<24)C . y=2x-24(0<x<12)D . y= x-12(0<x<24)8. (2分)(2014·宿迁) 一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A .B .C .D .9. (2分) PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A . 2.5×B . 0.25×C . 25×D . 2.5×10. (2分) (2017八上·三明期末) 一组数据1、2、4、4、3的众数为4,则这组数据的中位数是()A . 1B . 2C . 3D . 411. (2分)如图,将边长为3的等边△ABC沿着平移,则BC′的长为()A . ;B . 2;C . 3;D . 4.12. (2分)如图,过y轴上一个动点M作x轴的平行线,交双曲线y=于点A,交双曲线y=于点B,点C、点D在x轴上运动,且始终保持DC=AB,则平行四边形ABCD的面积是()A . 7B . 10C . 14D . 2813. (2分)(2020·马龙模拟) 如图,在△ABC中,AB=4,若将ABC绕点B顺时针旋转60°,点A的对应点为点A′,点C的对应点为点C′,点D为A′B的中点,连接AD则点A的运动路径AB与线段AD、A′D围成的阴影部分的面积是()A . ﹣2B . ﹣4C . ﹣2D . ﹣414. (2分)同一圆中,对于下列命题:①顶点在圆周上的角是圆周角;②圆周角的度数是圆心角度数的一半;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等。

精品解析:2023年云南省昭通市昭阳区中考数学二模模拟试题(原卷版)

精品解析:2023年云南省昭通市昭阳区中考数学二模模拟试题(原卷版)

2023年云南省昭通市昭阳区中考数学二模试卷一、选择题(本大题共12小题,共36分.在每小题列出的选项中,选出符合题目的一项)1. 若收入3元记为+3,则支出2元记为( )A. 1B. -1C. 2D. -22. 我国是世界人口大国,中央高度重视粮食安全,要求坚决守住1 800 000 000亩耕地红线.将数据1 800 000 000用科学记数法表示为( )A. B. C. D. 3. 如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=40°时,∠1的度数为( )A. 40°B. 45°C. 50°D. 55°4. 以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A B. C. D.5. 在中,,,,点,,分别为边,,的中点,则的周长为( )A. B. C. D. 6. 下列各运算中,计算正确的是( )A. B. C. D. 7. 若点在反比例函数的图象上,则代数式的值为( )A B. C. D. 8. 一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是( )A. 正方形B. 正六边形C. 正八边形D. 正十边形9. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小..81810⨯91.810⨯100.1810⨯101.810⨯ABC 16AB =8BC =10AC =D E F AB AC BC DEF 2018171522422a a a ⋅=824x x x ÷=222()x y x xy y -=-+()32639x x -=-(),A m n 5y x =1mn -3-345圆圈的个数为( )A 21 B. 24 C. 27 D. 3010. 如图,弦,垂足点,连接,若,,则等于( )A. B. C. D. 11. “爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3x km/h ,则依题意可列方程为( )A. B. C. D. 12. 已知二次函数的图象与x 轴的一个交点为,如图所示,有下列5个结论:①;②;③;④;⑤其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共4小题,共8.0分)13.的取值范围是______ .14. 分解因式:=____..为AB OC ⊥C OA 8OC =12AB =sin A 45353:46110334x x+=6102034x x +=6101343x x -=6102034x x -=()20y ax bx c a =++≠()1,0-0abc >b a c =+32b c =24ac b <()a b m am b >++()1m ≠x 3x 9x -15. 已知圆锥的底面圆半径为,侧面展开图扇形的圆心角为,则它的侧面展开图面积为______ .16. 如图,在中,按以下步骤作图:①分别以点B 和C为圆心,以大于的长为半径作弧,两弧相交于点M 和N ;②作直线交边于点E .若,,,则的长为______.三、解答题(本大题共8小题,共56.0分.解答应写出文字说明,证明过程或演算步骤)17. 先化简,再求值:,其中.18. 已知:如图,点E 、C 在线段BF 上,BE =CF ,AB ∥DE,AC ∥DF .求证:△ABC ≌△DEF .19. 为了解某地区中学生一周课外阅读时长情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2-4小时(含2小时),4-6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了______名中学生,其中课外阅读时长“2~4小时”的有______人;(2)扇形统计图中,课外阅读时长“4-6小时”对应的圆心角度数为______;(3)若该地区共有15000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.20. 某校在“庆祝建党100周年”系列活动中举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛.九年级某班“班级党史知识竞赛”中,有A ,B ,C ,D 四名同学的竞赛成绩为满的10120︒ABC 12BC MN AB 10AC =8BE =45B ∠=︒AB 211122x x x x -⎛⎫+÷ ⎪+--⎝⎭1x =分.(1)若该班要随机从4名满分同学中选取1名同学参加学校的党史知识竞赛,A 同学被选中的概率是______;(2)该班4位满分同学中A 和B 是女生,C 和D 是男生,若要从4名满分同学中随机抽取两名同学参加学校的党史知识竞赛,请用画树状图或列表的方法求出恰好抽到一名男生一名女生的概率.21. 在中,,以边上一点为圆心,为半径的圆与相切于点分别交、于点,.(1)如图,连接,若,求的大小;(2)如图,若点为的中点,的半径为,求的长.22. 某地区为打造乡村振兴示范区.实行大面积机械化种植,今年共计种植某作物700亩,预计租用10台作物收割机在一天之内完成该作物的收割。

云南省昭通市重点中学2024届中考数学五模试卷含解析

云南省昭通市重点中学2024届中考数学五模试卷含解析

云南省昭通市重点中学2024届中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1122.下列安全标志图中,是中心对称图形的是( )A .B .C .D .3.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°4.如图,点F 是ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A .18B .22C .24D .465.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是266.已知下列命题:①对顶角相等;②若a>b>0,则1a<1b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A.15B.25C.35D.457.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近8.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C9.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9610.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C.32D.33二、填空题(本大题共6个小题,每小题3分,共18分)11.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.12.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.13.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.14.一个凸边形的内角和为720°,则这个多边形的边数是__________________15.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.16.如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD.则△AED的周长为____cm.三、解答题(共8题,共72分)17.(8分)计算:18.(8分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.19.(8分)先化简,再求值:2569122x x x x -+⎛⎫-÷⎪++⎝⎭,其中x =-5 20.(8分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m +-的解集(请直接写出答案).21.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y (米)与小张出发后的时间x (分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y 与x 之间的函数表达式;求小张与小李相遇时x 的值.22.(10分)已知,如图1,直线y=34x+3与x 轴、y 轴分别交于A 、C 两点,点B 在x 轴上,点B 的横坐标为94,抛物线经过A 、B 、C 三点.点D 是直线AC 上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P 为线段AC 上一点,且S △PCD =2S △PAD ,求点P 的坐标;(3)如图2,连接OD ,过点A 、C 分别作AM ⊥OD ,CN ⊥OD ,垂足分别为M 、N .当AM+CN 的值最大时,求点D 的坐标.23.(12分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到C 处有生命迹象.已知A 、B 两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C 的深度.(精确到0.1米,参考数据:2 1.41,?3 1.73≈≈)24.如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.参考答案一、选择题(共10小题,每小题3分,共30分) 1、C 【解题分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可. 【题目详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为136, 故选C. 【题目点拨】本题考查的是概率的求法.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形. 2、B 【解题分析】试题分析:A .不是中心对称图形,故此选项不合题意; B .是中心对称图形,故此选项符合题意; C .不是中心对称图形,故此选项不符合题意; D .不是中心对称图形,故此选项不合题意; 故选B .考点:中心对称图形. 3、C 【解题分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数. 【题目详解】∵//AB CD ,40ABF ︒∠=, ∴180140CFB B ︒︒∠=-∠=, ∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=, 故选C . 【题目点拨】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等. 4、B 【解题分析】连接FC ,先证明△AEF ∽△BEC ,得出AE ∶EC=1∶3,所以S △EFC =3S △AEF ,在根据点F 是□ABCD 的边AD 上的三等分点得出S △FCD =2S △AFC ,四边形CDFE 的面积=S △FCD + S △EFC ,再代入△AEF 的面积为2即可求出四边形CDFE 的面积. 【题目详解】 解:∵AD ∥BC ,∴∠EAF=∠ACB,∠AFE=∠FBC ; ∵∠AEF=∠BEC , ∴△AEF ∽△BEC , ∴AF BC =AE EC =13, ∵△AEF 与△EFC 高相等, ∴S △EFC =3S △AEF ,∵点F 是□ABCD 的边AD 上的三等分点, ∴S △FCD =2S △AFC , ∵△AEF 的面积为2,∴四边形CDFE 的面积=S △FCD + S △EFC =16+6=22. 故选B. 【题目点拨】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.5、C【解题分析】根据众数、中位数、平均数以及方差的概念求解.【题目详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【题目点拨】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.6、B【解题分析】∵①对顶角相等,故此选项正确;②若a>b>0,则1a<1b,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:25.故选:B.7、D【解题分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【题目详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【题目点拨】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8、A【解题分析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.9、C【解题分析】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.10、B【解题分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【题目详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN ∥OB , ∴∠POM =∠OPN ,∴∠PNE =∠PON+∠OPN =∠PON+∠POM =∠AOB =45°,∴PM PN =2. 故选:B . 【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分) 11、3004x - ﹣300x=1. 【解题分析】原有的同学每人分担的车费应该为3004x -,而实际每人分担的车费为300x ,方程应该表示为:3004x -﹣300x=1. 故答案是:3004x -﹣300x=1. 12、12. 【解题分析】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12. 考点:概率公式. 13、m≤1 【解题分析】根据一元二次方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可. 【题目详解】解:由题意知,△=4﹣4(m ﹣1)≥0, ∴m≤1, 故答案为:m≤1. 【题目点拨】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键. 14、1【解题分析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可.【题目详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=.故答案为:1.【题目点拨】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.15、2﹣1【解题分析】连接DB ,若Q 点落在BD 上,此时和最短,且为2,设AP =x ,则PD =1﹣x ,PQ =x .解直角三角形得到AP =2﹣1,根据三角函数的定义即可得到结论.【题目详解】如图:连接DB ,若Q 点落在BD 2,设AP =x ,则PD =1﹣x ,PQ =x .∵∠PDQ =45°,∴PD 2PQ ,即1﹣x 2,∴x 2﹣1,∴AP 2﹣1,∴tan ∠ABP =AP AB21, 21.【题目点拨】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.16、7【解题分析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周长=AC+AE.【题目详解】∵折叠这个三角形点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案为:7.【题目点拨】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等.三、解答题(共8题,共72分)17、-1【解题分析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.【题目详解】原式=1﹣4﹣+1﹣=﹣1.【题目点拨】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.18、(1)见解析;(2)1 3 .【解题分析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【题目详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D为BC的中点,∴OF⊥BC,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF为⊙O的切线;(2)过D作DH⊥AB于H,∵AO=OB,CD=DB,∴OD=12 AC,∵四边形ACFD是平行四边形,∴DF=AC,设OD=x,∴AC=DF=2x,∵∠OCF=90°,CD⊥OF,∴CD2=OD•DF=2x2,∴2x,∴2x,∴,∵OD=x ,x ,∴x ,∴DH=3CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【题目点拨】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.19、13x -,-18【解题分析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算. 详解:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭()23223x x x x -+=⨯+- 13x =-. 当5x =-时,原式18=-. 点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.20、(1)y=﹣8x ,y=﹣x ﹣2(2)3(3)﹣4<x <0或x >2 【解题分析】试题分析:(1)将B 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;将A 坐标代入反比例解析式求出n 的值,确定出A 的坐标,将A 与B 坐标代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式;(2)对于直线AB ,令y=0求出x 的值,即可确定出C 坐标,三角形AOB 面积=三角形AOC 面积+三角形BOC 面积,求出即可;(3)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集.试题解析:(1)∵B (2,﹣4)在y=m x上, ∴m=﹣1.∴反比例函数的解析式为y=﹣8x . ∵点A (﹣4,n )在y=﹣8x上, ∴n=2.∴A (﹣4,2). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩. ∴一次函数的解析式为y=﹣x ﹣2.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0m kx b x+-<的解集为:﹣4<x <0或x >2. 21、(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解题分析】(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【题目详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间: 24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【题目点拨】 考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.22、(1)y=﹣13x 2﹣712x+3;(2)点P 的坐标为(﹣83,1);(3)当AM+CN 的值最大时,点D 的坐标为9373-,3732-). 【解题分析】(1)利用一次函数图象上点的坐标特征可求出点A 、C 的坐标,由点B 所在的位置结合点B 的横坐标可得出点B 的坐标,根据点A 、B 、C 的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P 作PE ⊥x 轴,垂足为点E ,则△APE ∽△ACO ,由△PCD 、△PAD 有相同的高且S △PCD =2S △PAD ,可得出CP=2AP ,利用相似三角形的性质即可求出AE 、PE 的长度,进而可得出点P 的坐标;(3)连接AC 交OD 于点F ,由点到直线垂线段最短可找出当AC ⊥OD 时AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,根据相似三角形的性质可设点D 的坐标为(﹣3t ,4t ),利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之取其负值即可得出t 值,再将其代入点D 的坐标即可得出结论.【题目详解】(1)∵直线y=34x+3与x 轴、y 轴分别交于A 、C 两点, ∴点A 的坐标为(﹣4,0),点C 的坐标为(0,3).∵点B 在x 轴上,点B 的横坐标为94, ∴点B 的坐标为(94,0), 设抛物线的函数关系式为y=ax 2+bx+c (a≠0), 将A (﹣4,0)、B (94,0)、C (0,3)代入y=ax 2+bx+c ,得: 164081901643a b c a b c c -+=⎧⎪⎪++=⎨⎪=⎪⎩,解得:137123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的函数关系式为y=﹣13x 2﹣712x+3; (2)如图1,过点P 作PE ⊥x 轴,垂足为点E ,∵△PCD 、△PAD 有相同的高,且S △PCD =2S △PAD ,∴CP=2AP ,∵PE ⊥x 轴,CO ⊥x 轴,∴△APE ∽△ACO ,∴13AE PE AP AO CO AC ===, ∴AE=13AO=43,PE=13CO=1, ∴OE=OA ﹣AE=83, ∴点P 的坐标为(﹣83,1); (3)如图2,连接AC 交OD 于点F ,∵AM ⊥OD ,CN ⊥OD ,∴AF≥AM ,CF≥CN ,∴当点M 、N 、F 重合时,AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,∴34OQ CO DQ AO ==,∴设点D的坐标为(﹣3t,4t).∵点D在抛物线y=﹣13x2﹣712x+3上,∴4t=﹣3t2+74t+3,解得:t1=﹣3738+(不合题意,舍去),t2=3738-+,∴点D的坐标为(93738-,3732-+),故当AM+CN的值最大时,点D的坐标为(93738-,3732-+).【题目点拨】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).23、5.5米【解题分析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【题目详解】解:过点C作CD⊥AB于点D,设CD=x,在Rt △ACD 中,∠CAD=30°,则AD=3CD=3x. 在Rt △BCD 中,∠CBD=45°,则BD=CD=x. 由题意得,3x ﹣x=4,解得:()4x 231 5.531==+≈-. 答:生命所在点C 的深度为5.5米.24、(1)255y x x =-+.;(2)点G 坐标为()13,1G -;2931767317,44G ⎛⎫+- ⎪ ⎪⎝⎭.(3)2613k =-+. 【解题分析】分析:(1)根据已知列出方程组求解即可;(2)作AM ⊥x 轴,BN ⊥x 轴,垂足分别为M ,N ,求出直线l 的解析式,再分两种情况分别求出G 点坐标即可; (3)根据题意分析得出以AB 为直径的圆与x 轴只有一个交点,且P 为切点,P 为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =. ∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ =,2NQ ∴=,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪∴⎨+=⎪⎩,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x ∴=+,102D ,⎛⎫ ⎪⎝⎭. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x ∴-+=-+,即22990x x -+=,123,32x x ∴==. 52x >,3x ∴=,()3,1G ∴-. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x ∴=-+,21195522x x x ∴-+=-+,22990x x ∴--=. 52x >,x ∴=G ∴⎝⎭. 综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴ ⎪⎝⎭. AMP PNB ∆∆∽,AM PN PM BN∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>. 0k >,1k ∴==-+点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.。

云南省昭通市中考数学模拟试卷

云南省昭通市中考数学模拟试卷

云南省昭通市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017七上·启东期中) 甲乙丙三地海拔高度分别为20米,﹣15米,﹣10米,那么最高的地方比最低的地方高()A . 10米B . 25米C . 35米D . 5米2. (2分)(2017·全椒模拟) 下列算式中,结果等于a6的是()A . a4+a2B . (a2)2•a2C . a2•a3D . a2+a2+a23. (2分) (2019七上·宜昌期中) 地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A .B .C .D .4. (2分)(2019·石景山模拟) 下列图案中,是中心对称图形的为()A .B .C .D .5. (2分)(2018·河源模拟) 如图,小强自制了一个小孔成像装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛与纸筒的距离应该为()A . 60cmB . 65cmC . 70cmD . 75cm6. (2分)(2018·平南模拟) 由5个完全相同的小长方形搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A .B .C .D .二、填空题 (共8题;共8分)7. (1分)(2020·呼和浩特模拟) 因式分解:ax3y﹣axy3=________.8. (1分)sin45°的相反数是________.9. (1分)化简()的结果是________10. (1分) (2020八下·惠安期末) 某种数据方差的计算公式是,则该组数据的总和为________.11. (1分)(2012·成都) 一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为________ (结果保留π)12. (1分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为________.13. (1分) (2020七下·碑林期末) 如图,在Rt△ABC中,AC=6,BC=8,点P是AC边的中点,点D和E 分别是边BC和AB上的任意一点,则PD+DE的最小值为________.14. (1分)(2020·扬州模拟) 如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点C,经AB反射后,又照到竖立在y轴位置的镜面上的D点,最后经y轴再反射的光线恰好经过点A,则点C的坐标为________.三、解答题 (共10题;共110分)15. (5分)已知方程组的解满足x+y<0,求m的取值范围.16. (5分) (2020七下·青岛期中) 已知:AB∥CD , BE、CF分别是∠ABC、∠BCD的角平分线,O是BC中点,则线段BE与线段CF有怎样的关系?请说明理由.17. (10分)(2018·市中区模拟) 已知关于x的分式方程①和一元二次方程②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2 ,且m为整数,求方程②的整数根.18. (10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品应降价多少元?19. (15分) (2020八下·海勃湾期末) 甲、乙两支运动队各有10名队员,他们的年龄分布情况分别如图、表所示:甲、乙两队队员年龄统计表平均数(近似值)众数中位数甲队a①②乙队20③b解决下列问题:(1)求甲队队员的平均年龄a的值.(结果取整数)(2)补全统计表中的①②③三处.(3)阅读理解-----扇形图中求中位数的方法.[阅读与思考]小明同学在求乙队队员年龄的中位数b时,是这样思考的:因为中位数是将一组数据按大小排序后,排在中间位置的一个数或中间两个数的平均数,那就需要先找到数据按大小排序后,大致排在50%附近的数,再根据中位数的概念进行细化求解.图2这个扇形图中的数据18~21是按大小顺序旋转排列的,我们就可以像图3所示的这样,先找到最大数据“21”与最小数据“18”的分界半径OM,为找到排在50%附近的数,再作出直径MN,那么射线ON指向的数据就是中位数.王老师的评价:小明的这个方法是从中位数的概念出发,充分利用了扇形图的特性形象直观地解决问题.[理解与应用]请你利用小明的方法直接写出统计表中b的值.20. (15分)(2019·长春模拟) 如图,在 ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过点M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1).(1)当t为何值时,四边形AQDM是平行四边形?(2)求证:在P、Q运动的过程中,总有CQ=AM;(3)是否存在某一时刻,使四边形ANPM的面积是平行四边形ABCD的面积的一半?若存在,求出相应的t值;若不存在,说明理由。

云南省昭通市中考数学模拟试卷(5月份)

云南省昭通市中考数学模拟试卷(5月份)

云南省昭通市中考数学模拟试卷(5月份)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)一个数的倒数是最小的质数,这个数是()A . -B . -2C .D . 22. (2分) (2017九上·顺德月考) 下列图形中,不是中心对称图形是()A . 矩形B . 菱形C . 等边三角形D . 平行四边形3. (2分)(2017·河北模拟) 如图是由相同小正方体组成的立体图形,它的左视图为()A .B .C .D .4. (2分) (2017八上·深圳月考) 下列说法正确的是()A . 4的平方根是±2B . 8的立方根是±2C .D .5. (2分)(2017·七里河模拟) 下列说法中,正确的是()A . “打开电视,正在播放河南新闻节目”是必然事件B . 某种彩票中奖概率为10%是指买十张一定有一张中奖C . 神舟飞船发射前需要对零部件进行抽样调查D . 了解某种节能灯的使用寿命适合抽样调查6. (2分)(2018·泸州) 某校对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如下表:年龄1314151617人数12231则这些学生年龄的众数和中位数分别是()A . 16,15B . 16,14C . 15,15D . 14,157. (2分)如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE 的度数是()A . 110°B . 120°C . 140°D . 150°8. (2分) (2018九上·杭州期末) 如图,在⊙O中,∠ACB=50°,∠AOC=60°,则∠BAC的度数为()A . 95°B . 100°C . 105°D . 110°二、填空题 (共6题;共7分)9. (2分)函数y= 中,自变量x的取值范围是________;实数2﹣的倒数是________.10. (1分)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为________米.11. (1分) (2020九上·德城期末) 在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数y= (k>0)在第一象限内过点A,且与BC交于点F.当F为BC的中点,且S△AOF= 时,OA的长为________.12. (1分)(2016·温州) 如图,抛物线交轴于A、B两点,以AB为直径的圆交轴于C、D两点,则OC的长为________.13. (1分)(2017·大庆) 圆锥的底面半径为1,它的侧面展开图的圆心角为180°,则这个圆锥的侧面积为________.14. (1分) (2018九上·成都期中) 如图,在平面直角坐标系中,直角梯形OABC的边OA,OC分别在x轴和y轴上,反比例函数的图象经过AB的中点D,和BC相交于点E,连接OE,OD,DE,若,则________.三、解答题 (共8题;共70分)15. (5分) (2017七下·永春期末) 求不等式的非负整数解.16. (3分) (2019八下·镇江月考) 如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点0,将直线AC绕点0顺时针旋转°,分别交直线BC、AD于点E、F.(1)当 =________时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,① =________构造的四边形是菱形;②若构造的四边形是矩形,求出该矩形的面积.________17. (9分) (2018八下·江都月考) 某校在“6·26国际禁毒日”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作了频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:(1)表中=________,=________,并补全直方图________;(2)若用扇形统计图描述此成绩统计分布情况,则分数段80≤ <100对应扇形的圆心角度数是________;(3)请估计该年级分数在60≤ <70的学生有多少人?18. (10分) (2017九上·襄城期末) 如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD于G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15º,将弧CE沿弦CE翻折,交CD于点F,求图中阴影部分的面积.19. (5分) (2017九上·遂宁期末) 已知:如图,在山脚的C处测得山顶A的仰角为,沿着坡角为的斜坡前进400米到D处(即,米),测得山顶A的仰角为,求山的高度AB.20. (15分)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?(3)请写出函数关系式.21. (11分)在平面直角坐标系中,小方格都是边长为1的正方形,△ABC≌△DEF,其中点A、B、C、都在格点上,请你解答下列问题:(1)如图(a)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号为________.(2)画出△ABC关于y轴对称的△A1B1C1;画出△ABC绕点P(1,﹣1)顺时针旋转90°后的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称吗?若成中心对称请你求出对称中心的坐标;若不成,则说明理由.22. (12分)(2017·全椒模拟) 在平面直角坐标系xOy中,抛物线y=x2﹣(k+1)x+k与x轴相交于A、B 两点(点B位于点A的左侧),与y轴相交于点C.(1)如图1,若k=2,直接写出AB的长:AB=________.(2)若AB=2,则k的值为________.(3)如图2,若k=﹣3,①求直线BC的解析式;(4)如图3,若k<0,且△ABC是等腰三角形,求k的值.四、选择与填空 (共4题;共6分)23. (2分)(2016·海南) 某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是()A . 该村人均耕地面积随总人口的增多而增多B . 该村人均耕地面积y与总人口x成正比例C . 若该村人均耕地面积为2公顷,则总人口有100人D . 当该村总人口为50人时,人均耕地面积为1公顷24. (2分)(2017·高青模拟) 如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()A .B .C .D .25. (1分)(2018·盘锦) 如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是________.26. (1分)庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1 ,再过点C1作C1C2⊥BC 于点C2 ,又过点C2作C2C3⊥AB于点C3 ,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假设AC=2,这些三角形的面积和可以得到一个等式是________.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共8题;共70分)15-1、16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、22-4、四、选择与填空 (共4题;共6分) 23-1、24-1、25-1、26-1、。

昭通市中考数学模拟试卷

昭通市中考数学模拟试卷

昭通市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果一个数的绝对值与这个数的商等于-1,则这个数是()A . 正数B . 负数C . 非正D . 非负2. (2分)(2016·长沙模拟) 下列运算正确的是()A . x2+x3=x5B . x8÷x2=x4C . 3x﹣2x=1D . (x2)3=x63. (2分)若函数y=(3m-2)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A . m>B . m<C . m=D . m=4. (2分)如图所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A . 互余B . 互补C . 相等D . 以上都不对5. (2分)(2017·江阴模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分) (2018八上·孟州期末) 已知P是反比例函数y=(k≠0)图象上一点,PA⊥x轴于A,若S△AOP =4,则这个反比例函数的解析式是()A . y=B . y=-C . y= 或y=-D . y= 或y=-7. (2分)已知P为⊙O外一点,PA,PB为⊙O的切线,A、B为切点,∠P=70°,C为⊙O上一个动点,且不与A、B重合,则∠BCA=()A . 35°、145°B . 110°、70°C . 55°、125°D . 110°8. (2分)在1、2、3三个数中任取两个组成两位数,则组成的两位数中是奇数的概率为()A .B .C .D .9. (2分)(2018·内江) 已知与相似,且相似比为,则与的面积比()A .B .C .D .10. (2分)西宁中心广场有各种音乐喷泉,其中一个喷水管的最大高度为3米,此时距喷水管的水平距离为米,在如图3所示的坐标系中,这个喷泉的函数关系式是A . y=-(x-)x2+3B . y=-3(x+)x2+3C . y=-12(x-)x2+3D . y=-12(x+)x2+3二、填空题 (共6题;共6分)11. (1分)分解因式m n -8=________.12. (1分)不等式组的解集为________.13. (1分)某坡面的坡角为60,则该坡面的坡度i=________ .14. (1分) (2017九上·合肥开学考) 一组数据2,4,a,7,7的平均数 =5,则方差S2=________.15. (1分)已知点M(1,4)在抛物线y=ax2﹣4ax+1上,如果点N和点M关于该抛物线的对称轴对称,那么点N的坐标是________ .16. (1分) (2018八下·乐清期末) 如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE= CF,且S四边形ABFD=20,则k=________.三、解答题 (共8题;共80分)17. (15分) (2018七上·竞秀期末)(1)计算:(﹣4)﹣(﹣1)+(﹣9)(2)计算:﹣12016+16÷(﹣2)3×|﹣3﹣1|(3)解方程:x﹣ =2﹣.18. (10分)(2018八上·兴义期末)(1)因式分解:(2)解分式方程:19. (6分)(2017·百色) 已知矩形ABCD的对角线相交于点O,M、N分别是OD、OC上异于O、C、D的点.(1)请你在下列条件①DM=CN,②OM=ON,③MN是△OCD的中位线,④MN∥AB中任选一个添加条件(或添加一个你认为更满意的其他条件),使四边形ABNM为等腰梯形,你添加的条件是________.(2)添加条件后,请证明四边形ABNM是等腰梯形.20. (7分)(2019·雁塔模拟) 某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是________个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有________人.21. (10分) (2018九上·顺义期末) 已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;(2)若tan∠BDE= , CF=3,求DF的长.22. (12分)(2017·椒江模拟) 神仙居景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x 人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=________,b=________;(2)直接写出y1、y2与x之间的函数关系式;(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到神仙居景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?23. (10分) (2017八下·阳信期中) 如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.24. (10分)(2017·安徽模拟) 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD= 时,求线段BG的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省昭通市中考数学模拟试卷
姓名:________ 班级:________ 成绩:________
一、选择题: (共16题;共32分)
1. (2分)如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()
A . ﹣3m
B . 3m
C . ﹣4m
D . 10m
2. (2分) (2020七下·高邑月考) 若,,则的值为()
A . 6
B . 5
C . 1
D . 1.5
3. (2分)(2012·桂林) 下面四个标志图是中心对称图形的是()
A .
B .
C .
D .
4. (2分) (2020八下·河源月考) 关于的方程的解为,则a=()
A . 1
B . 3
C . -1
D . -3
5. (2分)在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()
A .
B .
C .
D .
6. (2分) (2018·苏州模拟) 四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为的小正方形EFGH,已知AM为Rt△ABM较长直角边,AM= EF,则正方形ABCD的面积为()
A .
B .
C .
D .
7. (2分)下列各式中,一定是二次根式的有()个.
A . 2
B . 3
C . 4
D . 5
8. (2分)(2019·长春) 如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是()
A .
B .
C .
D .
9. (2分)如图所示,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,AD、CE相交于点O,下列结论不一定正确的是()
A . ∠AOC=120°
B . OE=OD
C . BE=BD
D . S△AEO+S△CDO=S△ACO
10. (2分) (2019八下·港南期中) 如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()
A . 7
B . 9
C . 11
D . 14
11. (2分)对于实数a、b,给出以下三个判断:
①若|a|=|b|,则.
②若|a|<|b|,则a<b.
③若a=-b,则(-a)2=b2 .其中正确的判断的个数是()
A . 3
B . 2
C . 1
D . 0
12. (2分)甲、乙两班共有88人,若从甲班调3人到乙班,那么两班人数正好相等,设甲班原有人数是x 人,可列出方程()
A . 88﹣x=x﹣3
B . (88﹣x)+3=x﹣3
C . 88+x=x﹣3
D . (88﹣x)+3=x
13. (2分)(2018·淮南模拟) 在下列网格中,小正方形的边长为1,点A,B,O都在格点上,则∠A的正弦值是()
A .
B .
C .
D .
14. (2分)若关于的方程没有实数根,则的取值范围是
A .
B .
C .
D .
15. (2分)(2017·陕西模拟) 如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()
A . 1个
B . 2个
C . 3个
D . 4个
16. (2分)(2020·天津) 已知抛物线(是常数,)经过点,其对称轴是直线.有下列结论:
① ;②关于x的方程有两个不等的实数根;③ .其中,正确结论的个数是()
A . 0
B . 1
C . 2
D . 3
二、填空题: (共2题;共3分)
17. (2分) (2020七下·下陆月考) 16的平方根是________,如果 =3,那么a=________.
18. (1分)分解因式:2a2-8b2=________.
三、计算题: (共2题;共20分)
19. (10分) (2020七上·南宁期末) 计算:
(1)
(2)
20. (10分) (2016七上·荔湾期末) 计算:
(1)﹣72+2×
(2)﹣14 .
四、解答题: (共5题;共52分)
21. (10分)(2018·驻马店模拟) 如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
22. (7分) (2019七下·包河期末) 如图,EF∥BC,∠B=∠1,∠BAD+∠2=180°.
说明:∠3=∠G.请完成如下解答:
解:因为EF∥BC(已知)
所以∠1=∠2________.
因为∠B=∠1(已知)
所以∠B=∠2________.
所以AB∥________.
所以∠BAD+∠D=________°.
因为∠BAD+∠2=180°(已知)
所以∠D=∠2________.
所以AD∥________.
所以∠3=∠G________.
23. (10分) (2016九上·武威期中) 某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多利润,商店决定提高销售价格.经试验发现,若按每件20元的价格销售时,每月能卖360件;若按每件25元的
价格销售时,每月能卖210件.假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少(总利润=总收入﹣总成本)?
24. (15分)(2018·马边模拟) 如图,在△ABC中,AB AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
25. (10分)(2017·夏津模拟) 抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x轴下方.
(1)若P(1,﹣3)、B(4,0),
①求该抛物线的解析式;
②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2)如图2,在(1)中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点,点点P 运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.
参考答案一、选择题: (共16题;共32分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
考点:
解析:
答案:11-1、考点:
解析:
考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、
考点:
解析:
二、填空题: (共2题;共3分)答案:17-1、
考点:
解析:
答案:18-1、
考点:
解析:
三、计算题: (共2题;共20分)答案:19-1、
答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、
考点:
解析:
四、解答题: (共5题;共52分)答案:21-1、
答案:21-2、
考点:
解析:
答案:22-1、考点:
解析:
答案:23-1、
答案:23-2、考点:
解析:
答案:24-1、
答案:24-2、
答案:24-3、考点:
解析:
答案:25-1、
答案:25-2

考点:
解析:
第21 页共21 页。

相关文档
最新文档