流体力学与传热学ppt课件
(流体力学与传热英文课件)Pressure drop and loss due to friction
The equation(1.4-10) is the equation usually used to calculate skin friction loss in straight pipe.
For laminar flow only, combining Eqs. (1.4-20 ) and (1.4-10) .gives
f 16 Re
64
Re
(1.4-22 )
It is not possible to predict theoretically the Fanning friction factor f for turbulent flow as was done for laminar flow.
1.4.3 Turbulent Flow in Pipes and Channels
Although the problem has not been completely solved, useful relationships are available.
• For turbulent flow the friction factor must be determined empirically, and it not only depends upon the Reynolds number but also on surface roughness of the pipe.
L R
Rearranging equation (1.4-2 ) gives
w
Rp 2L
Substituting from equation above into equation (1.4-7) gives
fV 2 w /2R V p 2//2 2 L4D L pf V 2 2
传热学(全套课件666P) ppt课件
§1-3 传热过程和传热系数
一、传热过程 1 、概念
热量由壁面一侧的流体通过壁面传到 另一侧流体中去的过程称传热过程。
2 、传热过程的组成 传热过程一般包括串联着的三个环节组成, 即:
① 热流体 → 壁面高温侧; ② 壁面高温侧 → 壁面低温侧; ③ 壁面低温侧 → 冷流体。 若是稳态过程则通过串联环节的热流量相同。
二、对流
1 、基本概念
1) 对流:是指由于流体的宏观运动,从而使 流体各部分之间发生相对位移,冷热流体 相互掺混所引起的热量传递过程。 对流仅发生在流体中,对流的同时必伴随 有导热现象。
2) 对流换热:流体流过一个物体表面时的 热量传递过程,称为对流换热。
2 、对流换热的分类
1)根据对流换热时是否发生相变分:有
第一章
绪
论
§1-0 概 述
一、基本概念
❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物物体。
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
t f1 tw1
Ah 1
tw1 tw2 A /
t w 2 t f 2 Ah 2
(d) (e) (f)
三式相加,整理可得:
A(t f 1 t f 2 )
1 1
h1 h2
也可以表示成:
(1-10)
A(tkf1tf2)A k t (1-11)
式中, k称为传热系数,单位为
。
W/ m2K
⑤热辐射现象仍是微观粒子性态的一种宏 观表象。
⑥ 物体的辐射能力与其温度性质有关。这 是热辐射区别于导热,对流的基本特点。
【流体力学与传热】3.1 颗粒沉降
As A ds2
As da2
as
As Vs
6 dv
as
As Vs
6 ds
as
As Vs
6 da
A V
As 1
A
As As V 6
A A V adv
As A
dv2
d
2 s
d d
v s
2
As As V 6 da da
A A V dv 6 dv
二、颗粒群的特性
1 粒度分布 泰勒标准筛、筛过量(物)、筛余(留)量
ut=
d
2 p
p 18m
g
u't ( d ' p )2 ( 0.05 )2 60%
ut
d p,min
0.0647
(3)若将上述降尘室用隔板分隔成2层(不考虑隔 板的厚度),如需完全除去的尘粒直径相同,则颗 粒的沉降速度不变,降尘室底面积为原来的2倍。
dmin
18m Vs g s A0
100%去除——室顶到室底
所需沉降时间=H/u0
在室内停留时间=L/u 分离满足的条件:
HL
u0 u
分离所需最低沉降速度
u0
Hu L
HBu LB
Vs A0
最低沉降速度~能被分离的最小粒径(设在Stokes区)
u0
gdm2 in s 18m
Vs A0
dmin
18m Vs g s A0
②横截面大——操作气速低不被卷起 底面积大——分离效率高
③体积庞大,属于低效设备,适用分离粗颗粒(一 般分离粒径大于75mm的颗粒),或作为预分离设 备。 ④气体在降尘室的均匀分布,气速不宜过高,不超 过1.5m·s-1。
传热学基本知识PPT课件
Qt1t2t3 t1t4
R1R2R3
R
通过各层的导热量相同, 各层导热所遵循的规律相同
2021
29
传热学基本知识
热传导
4、导热计算 3)单层圆筒壁的稳定热传导
特点:单层圆筒壁的导热面积不是常量,随圆
筒半径而变、同时温度也只是随半径而变。
Q t1 t2 R
t
A均
A均=2πr均L
r均
r2 r1 ln r2
导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
2021
23
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
导热动力 导热阻力
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
2021
36
蒸汽冷凝时的对流传热
蒸汽冷凝的对流传热
蒸汽是工业上最常用的热源,在锅炉内利用煤燃烧 时产生的热量将水加热汽化,使之产生蒸汽。蒸汽在饱 和温度下冷凝成同温度的冷凝水时,放出冷凝潜热,供 冷流体加热。
2021
37
蒸汽冷凝时的对流传热
(1) 蒸汽冷凝的方式
t t1t2 l n t1 t2 2021
当⊿t1/⊿t2<2时
⊿t=(⊿t1+⊿t2)/2
15
(2)双侧变温时的平均温度差
并流
逆流
错流
折流
①并流时的(对数)平均温度差
(完整PPT)传热学
温度对导热系数的影响因材料而异,一般情况下,随着温度的升高 ,导热系数会增加。
压力
对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程
稳态导热
物体内部各点温度不随时间变化而变化的导热过程。在稳态导热过程中,热流 密度和温度分布保持恒定。
非稳态导热
物体内部各点温度随时间变化而变化的导热过程。在非稳态导热过程中,热流 密度和温度分布会发生变化,通常需要考虑时间因素对导热过程的影响。
辐射换热计算方法
辐射换热量计算
通过斯蒂芬-玻尔兹曼定律计算两 个物体之间的辐射换热量,需要 考虑物体的发射率、温度以及物 体间的角系数等因素。
角系数计算
角系数表示一个表面对另一个表 面辐射能量的相对大小,可以通 过几何方法或数值方法计算得到 。
辐射换热网络模型
对于多个物体之间的复杂辐射换 热问题,可以建立辐射换热网络 模型,通过求解线性方程组得到 各个物体之间的辐射换热量。
06 传热学实验技术 与设备
实验测量技术与方法
温度测量
使用热电偶、热电阻等 温度传感器,配合数据 采集系统,实现温度的
精确测量。
热量测量
采用量热计、热流计等 设备,测量传热过程中
的热量变化。
热阻测量
通过测量传热设备两侧 温差和传热量,计算得
到热阻。
热流密度测量
利用热流计等设备,测 量单位面积上的热量传
(完整PPT)传热学
contents
目录
• 传热学基本概念与原理 • 导热现象与规律 • 对流换热原理及应用 • 辐射换热基础与特性 • 传热过程数值计算方法 • 传热学实验技术与设备 • 传热学在工程领域应用案例
01 传热学基本概念 与原理
1_流体力学与传热学
P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n
流体静压强的方向与受 压面垂直并指向受压面
Y X 0
作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强
静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.
传热学课件课件
传热学课件引言传热学是研究热量传递规律的学科,是工程热力学和流体力学的重要分支。
在实际工程应用中,传热问题无处不在,如能源转换、化工生产、建筑环境等领域。
因此,掌握传热学的基本原理和方法,对于工程技术人员来说具有重要意义。
本文将简要介绍传热学的基本概念、原理和方法,并探讨其在工程实际中的应用。
一、传热学基本概念1.热量传递方式热量传递方式主要包括三种:导热、对流和辐射。
(1)导热:热量通过固体、液体或气体的分子碰撞传递,其传递速率与物体的导热系数、温度差和物体厚度有关。
(2)对流:热量通过流体的宏观运动传递,其传递速率与流体的流速、密度、比热容和温度差有关。
(3)辐射:热量以电磁波的形式传递,其传递速率与物体表面的温度、发射率和距离有关。
2.传热方程传热方程是描述热量传递规律的数学表达式,主要包括傅里叶定律、牛顿冷却公式和斯蒂芬-玻尔兹曼定律。
(1)傅里叶定律:描述导热过程中热量传递的规律,公式为Q=-kA(dT/dx),其中Q表示热量传递速率,k表示导热系数,A表示传热面积,dT/dx表示温度梯度。
(2)牛顿冷却公式:描述对流过程中热量传递的规律,公式为Q=hA(TwTf),其中Q表示热量传递速率,h表示对流换热系数,Tw 表示固体表面温度,Tf表示流体温度。
(3)斯蒂芬-玻尔兹曼定律:描述辐射过程中热量传递的规律,公式为Q=εσA(T^4T^4),其中Q表示热量传递速率,ε表示发射率,σ表示斯蒂芬-玻尔兹曼常数,T表示物体表面温度。
二、传热学原理和方法1.传热问题的分类传热问题可分为稳态传热和非稳态传热两大类。
(1)稳态传热:系统内各部分温度不随时间变化,热量传递速率恒定。
(2)非稳态传热:系统内各部分温度随时间变化,热量传递速率随时间变化。
2.传热分析方法(1)解析法:通过对传热方程的求解,得到温度分布和热量传递速率。
适用于简单几何形状和边界条件的问题。
(2)数值法:采用数值离散化方法求解传热方程,适用于复杂几何形状和边界条件的问题。
流体力学与传热学详解
/ m2
30
传热学
两个思考题
热量到底是怎么流动的? 怎样使热量流得快(慢)一点?
32
0.绪论
本节内容主要讲述热能传递的基本理论知识; 概述
研究热量传递规律的科学,主要有热量传递 的机理、 规律、计算和测试方法
热力学第二定律: 热量可以自发地由高温热源传给低温热源 有温差就会有传热, 温差是热量传递的动力
(c) 圆角 0.2
(d) 流线形 0.04 22
管道出口损失系数ζ
1.0
23
管道变截面结构损失系数
管道突扩结构损 失系数ζ
管道突缩结构损 失系数ζ
24
90o 弯头损失系数ζ
25
4. 复合管系
串联管系:
Q1 Q2 Q3
hw,AB hw1 hw2 hw3
1.沿程阻力——沿程损失(长度损失、摩擦损失)
hf
l d
v2 2g
p f
l d
v2 2
λ——沿程阻力系数
2.局部阻力——局部损失
hj
v2 2g
pj
v2 2
达西-魏斯巴赫公式
ζ——局部阻力系数
6
沿程阻力
沿程阻力系数跟黏性有关—— 牛顿粘性实验
gz2
hw
he ws
hw u2 u1 q 0
管道流动损失 hw hf hj
hf : 直管中沿程流动损失(J/kg) hj : 附加管件损失(J/kg)
hf
l de
V2 2
4A de U
《流体力学与传热学》课件
04
传热学应用实例
建筑节能是传热学的重要应用领域,通过合理利用传热学原理,可以有效降低建筑能耗,提高能源利用效率。
建筑设计时,利用传热学原理,合理设计建筑物的保温、隔热、通风等系统,可以有效降低建筑物的热量损失和冷热负荷,从而减少能源消耗。例如,利用保温材料和密封技术减少墙体热传导,利用自然通风和热压差通风降低室内温度等。
流体静力学的基本概念、原理和应用
详细描述
流体静力学是研究流体在静止状态下力学行为的一门学科。主要研究流体内部的压力分布、液体对容器壁的侧压力等,在工程实际中有广泛应用。
总结词
流体动力学的基本概念、原理和应用
详细描述
流体动力学是研究流体在运动状态下力学行为的一门学科。主要研究流体的速度、压力、密度等物理量的变化规律,以及流体与固体壁面的相互作用等,在航空航天、交通运输等领域有重要应用。
随着计算机技术的不断发展,数值模拟与仿真技术在流体力学与传热学中发挥着越来越重要的作用。这些技术可以对流体流动和传热过程进行精确模拟和预测,为实验研究和工程应用提供有力支持。
数值模拟与仿真技术在流体力学与传热学中广泛应用于各种领域。例如,在能源领域,通过对流体流动和传热的数值模拟,优化核能、风能等可再生能源的开发和利用。在环境领域,通过对污染物扩散的数值模拟,评估环境治理措施的有效性。在生物医学领域,通过对生物体内的流体流动和传热的数值模拟,揭示生理过程和疾病机制,为诊断和治疗提供依据。
THANKS
感谢观看
总结词
新能源技术是未来能源发展的方向,传热学在新能源技术的开发和利用中发挥着重要作用。
要点一
要点二
详细描述
太阳能、风能等新能源的开发和利用过程中,传热学原理被广泛应用于设备的热回收、热利用和热控制等方面。例如,太阳能热水器利用传热学原理将太阳能转化为热能,风力发电设备的散热系统和热回收系统也涉及到传热学的知识。
第一章流体力学导论(讲义).
等温压缩率物理意义:衡量流体可压缩性,表示 在一定温度下压强增加一个单位时流体密度的相对增 加率。 由于 v 1 ,所以等温压缩率还可以表示为:
1 v T v p T
等温压缩率另一种物理意义:在一定温度下,压 强增加一个单位时流体体积的相对缩小率。
3)、辐射机理
电磁波范围极广,通常把波长为0.4~40μm范围 的电磁波称为热射线。热射线产生于物质的原子内部, 而引起这种运动的基本原因是物体本身温度。
4)、产生辐射传热的条件 当两个物体温度都在绝对零度以上而且有温差时, 高温物体辐射给低温物体的能量大于低温物体辐射给高 温物体的能量。总的效果是高温物体辐射给低温物体能 量。实验证明:只有当物体的温度大于400℃时,因辐 射而传递的能量才比较显著。
20世纪以来,数学与计算机科学的发展,为 通过仿真研究传热学和流体力学奠定了基础。例如: 利用分析软件分析航天器热量分布,从而为航天器 的隔热设计奠定了理论基础。利用仿真软件分析潜 器形状与受到流体阻力的关系,指导潜器等水下平 台的设计。
第二节 传热学与流体力学的理论基础
一、传热学的理论基础
1、热量传递三种基本形式:
v
v
1
表1.2
4)、流体可压缩性与热膨胀性 (1)可压缩性 : 在外力作用下,体积或密度可以改变的性 质。 (2)热膨胀性:温度改变时流体体积或密度可以改变的性 质。 对于单一组分的流体,密度随压强、温度的改变:
d dp dT T dp dT p T 1 T — 等温压缩率 p T
•
传热学的主要研究内容
传热学是研究热量传递规律的科学
传热学完整课件PPT课件
凡是物体中各点温度不随时间而变的热传递 过程均称稳态传热过程。) 凡是物体中各点温度随时间的变化而变化
的热传递过程均称非稳态传热过程。 各种热力设备在持续不变的工况下运行时
的热传递过程属稳态传热过程;而在启动、停 机、工况改变时的传热过程则属 非稳态传热 过程。
.
❖ 3 )教育思想发生了本质性的变化 ❖ 传热学课程教学内容的组织和表达方
面从以往单纯的为后续专业课学习服务转 变到重点培养学生综合素质和能力方面, 这是传热学课程理论联系实际的核心。从 实际工程问题中、科学研究中提炼出综合 分析题,对培养学生解决分析综合问题的 能力起到积极的作用。
.
❖ 2 、研究对象
第一章
绪
论
.
§1-0 概 述
一、基本概念 ❖ 1 、传热学 ❖ 传热学是研究热量传递规律的学科。 ❖ 1)物体内只要存在温差,就有热量从物
体的高温部分传向低温部分; ❖ 2)物体之间存在温差时,热量就会自发
的从高温物体传向低温物体。
.
2 、热量传递过程 根据物体温度与时间的关系,热量传递过程 可分为两类:
❖ ( 3 )非导电固体:导热是通过晶格结构 的振动所产生的弹性波来实现的,即原子、 分子在其平衡位置附近的振动来实现的。
.
❖( 4 )液体的导热机理:存在两种不同的 观点:第一种观点类似于气体,只是复杂些, 因液体分子的间距较近,分子间的作用力对 碰撞的影响比气体大;第二种观点类似于非 导电固体,主要依靠弹性波(晶格的振动, 原子、分子在其平衡位置附近的振动产生的) 的作用。
.
b 微电子: 电子芯片冷却 c 生物医学:肿瘤高温热疗;生物芯片;组 织与器官的冷冻保存 d 军 事:飞机、坦克;激光武器;弹药贮 存 e 制 冷:跨临界二氧化碳汽车空调/热泵; 高温水源热泵 f 新能源:太阳能;燃料电池
流体力学完整版课件全套ppt教程最新
取一微元正交六面体。
左侧面压力: 右侧面压力:
( p 1 p dx)dydz 2 x
( p 1 p dx)dydz 2 x
y
p 1 p dx 2 x
z
p 1 p dx 2 x
x
再考虑 x 轴方向的质量力,可列出 x 轴方向的平衡方程:
(p
1 2
p x
dx)dydz ( p
1 2
p x
ν× 106/ m2/s
1.792 1.007 0.661 0.477 0.367 0.296
空气
μ × 106/ Pa·s
ν× 106/ m2/s
17.09 18.08 19.04 19.97 20.88 21.75
13.20 15.00 16.90 18.80 20.90 23.00
§1.3 流体的物理性质
➢ 牛顿流体与非牛顿流体
牛顿流体; 塑性体; 伪塑性体; 宾汉体。
du dy
(du)n dy
du dy
(du)n
dy
0
du dy
➢ 粘性流体与理想流体
实际流体都具有粘性。理想流体就是忽略流体的粘性。
§1.3 流体的物理性质
1.3.4 液体的表面张力
➢ 表面ห้องสมุดไป่ตู้力现象演示
肥皂薄膜对棉线作用一个拉力。
温度/ K
291 291 293
σ× 103/ N/m
73 490 472
§1.3 流体的物理性质
➢ 表面张力产生的压差
由表面张力引起的液体自由表面两边 的附加压力差为:
p ( 1 1 ) R1 R2
➢ 毛细现象
当液体与固体接触时,如果液体分子 间的吸引力(内聚力)大于液体分子 和固体分子间的引力(附着力),则 液体抱成团与固体不浸润;当液体分 子内聚力小于附着力时,则液体就能 浸润固体表面。
第一章 流体力学基础ppt课件(共105张PPT)
原
力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为
理
ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:
子
课
件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述
安
交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用
安
交
大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1
课
R
件
A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用
安
交 大
•
2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•
理
电•
子•
课
件
又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回
安
交 大
•
1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3) 时间条件 稳态对流换热过程不需要时间条件—与时间无关
4) 边界条件 第一类边界条件:已知任一瞬间对流换热过程边界上的温度值 第二类边界条件:已知任一瞬间对流换热过程边界上的热流密度值
§8.3 边界层概念及边界层换热微分方程组
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;
比拟法 数值法
通过研究动量传递及热量传递的共性或类似特性,以建立起表 面传热系数见的相互关系的方法。
近20年内得到迅速发展,并将会日益显示出其重要的作用。
7、如何从解得的温度场来计算对流传热系数
当粘性流体在壁面上流动时,由于粘性的作 用,流体的流速在靠近壁面处随离壁面的距 离的缩短而逐渐降低;
在贴壁处被滞止,处于无滑移状态(即:y=0, u=0) 在这极薄的贴壁流体层中,热量只能以导热方式传递
c 数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速
2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流时的局部 表面摩擦系数推知局部表面传热系数
3)实验法 用相似理论指导
4、对流传热过程的单值性条件
完整数学描述:对流传热微分方程组+ 单值性条件
1) 几何条件 平板、圆管;竖直圆管、水平圆管;长度、直径等
能量守恒方程
惯性力
体积力 压力梯度 粘性力
t u x t v y t a x 2t2 y 2t2
能量变化 对流项
导热项
3、表面传热系数的确定方法
1)微分方程式的数学解法
a 精确解法(分析解): 根据边界层理论,得到边界层微分方程组常微分方程求解
b 近似积分法: 假设边界层内的速度分布和温度分布,解积分方程
2) 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 3) 由于流体的黏性和受壁面摩擦阻力的影响,紧贴壁面处会形成
速度梯度很大的边界层;
3、对流传热的基本计算式
牛顿 冷却公式
hA (twt)
q A h(tw t)
[W ] [W m 2 ]
注:h的大小反映了对流传热能力的强弱,而非物性参数。
4、表面传热系数(对流换热系数)
定义式: h[A(twt)]
只是对流传热系数h的一种定义方式,并未揭示出h与 影响它的各物理量之间的内在关系
对流传热的核心问题:如何确定h及增强换热的措施
5、影响对流传热系数h 的各种因素
流体流动起因 流体的流动状态 流体有无相变 换热表面的几何因素 流体的物理性质
1) 流动起因
h强制h自然
自然对流:流体因各部分温度不同
而引起的密度差异所产
生的流动
强制对流:由外力作用所产生的流
动(泵、风机等)
2) 流动状态
h紊流 h层流
层流运动:流体微团沿着主流方向做有规 则的分层运动
湍流运动:流体质点做复杂无规则的运动
3) 流体有无相变
h相变 h单相
单相换热:流体显热的变化实现对流换热中的热量
qw,x
t y
w,x
流体的热导 W(率 m C)
t yw,x—在坐(x标 ,0处 ) 流体的温度梯度
壁面与流体之间的对流传热量(根据牛顿冷却公式)
qw,xhx(tw- t)
h x— 壁x处 面局部表 W ( 面 m 2C 传 ) 热
1、流动边界层
1) 物理现象 当粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面处流速 逐渐减小,而在贴壁处流体将被滞止而处于无滑移状态
u
y
4) 流速不高,忽略粘性耗散(摩擦损失) ;
4个未知量:速度 u, v;温度 t;压力 p
需要4个方程
连续性方程 (1) 动量方程 (2) 能量方程 (1)
2、对流传热微分方程组
连续性方程
u v 0 x y
ቤተ መጻሕፍቲ ባይዱ
动量方程
uu u xv u yFx x p x 2u 2 y2u 2 vu x vv v yFy p y x2v2 y2v2
工程流体力学与传热学
信息学院·次英
第八章 对流传热的理论基础
§8.1 对流传热概说
1、对流传热概念
流体流经固体时流体与固体壁面之间的热量传递现象 对流传热与热对流不同,既有热对 流,也有导热;不是基本传热方式 实例:暖气管道;电子器件冷却等
2、对流传热的特点
1) 导热与热对流同时存在;(边界层 u=0)
在稳定的状态下 壁面与流体之间的对流传热量就等于贴壁处静止流体层的导热量
hx
tw
t
yt w,x
对流传热过程微分方程式
hx取决于流体热导率、温度差和贴壁的温度梯度
要求解一个对流换热问题,获得该问题的对流传热系数或交换的热流量
获得流场的温度分布,即温度场
确定壁面上的温度梯度
h f(v ,tw ,tf, ,c p , , ,,l)
对流传热分类树
6、对流传热的研究方法
分析法 对描写某一类对流换热问题的偏微分方程及相应的定解条件 进行数学求解,从而获得速度场和温度场的分析解的方法。
实验法
目前工程设计的主要依据。 为了减少实验次数,提高实验测定结果的通用性,实验测定应 当在相似原理指导下进行。
变换
相变换热:在有相变的换热过程中,流体相变热
(潜热)的释放或吸收常常其主要作用
4) 换热表面的几何因素
换热表面的形状,大小,换热表面与流体运动方向的相对位置以及换热表 面的状态(光滑或粗糙)
5) 流体的物理性质 流体的热物理性质对换热的影响很大: 热导率λ ;密度ρ;比热容c ; 动力粘度η ;运动粘度ν ;体胀系数β 综上所述,表面传热系数是众多因素的函数