简单的线性规划测试
高考数学总复习 7-3 简单的线性规划问题但因为测试 新人教B版
高考数学总复习 7-3 简单的线性规划问题但因为测试新人教B版1.(文)(2010·北京东城区)在平面直角坐标系中,若点(-2,t)在直线x-2y+4=0的上方,则t的取值范围是()A.(-∞,1)B.(1,+∞)C.(-1,+∞) D.(0,1)[答案] B[解析]∵点O(0,0)使x-2y+4>0成立,且点O在直线下方,故点(-2,t)在直线x-2y+4=0的上方⇔-2-2t+4<0,∴t>1.[点评]可用B值判断法来求解,令d=B(Ax0+By0+C),则d>0⇔点P(x0,y0)在直线Ax+By+C=0的上方;d<0⇔点P在直线下方.由题意-2(-2-2t+4)>0,∴t>1.(理)(2010·惠州市模拟)若2m+2n<4,则点(m,n)必在()A.直线x+y-2=0的左下方B.直线x+y-2=0的右上方C.直线x+2y-2=0的右上方D.直线x+2y-2=0的左下方[答案] A[解析]∵2m+2n≥22m+n,由条件2m+2n<4知,22m+n<4,∴m+n<2,即m+n-2<0,故选A.2.(2010·四川广元市质检)在直角坐标系xOy中,已知△AOB的三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即坐标均为整数的点)的总数为()A.95B.91C.88D.75[答案] B[解析]由2x+3y=30知,y=0时,0≤x≤15,有16个;y =1时,0≤x≤13;y =2时,0≤x≤12; y =3时,0≤x≤10;y =4时,0≤x≤9; y =5时,0≤x≤7;y =6时,0≤x≤6; y =7时,0≤x≤4;y =8时,0≤x≤3; y =9时,0≤x≤1,y =10时,x =0.∴共有16+14+13+11+10+8+7+5+4+2+1=91个. 3.(2011·天津文,2)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y的最大值为( )A .-4B .0 C.43 D .4[答案] D [解析]该线性约束条件所代表的平面区域如上图,易解得A(1,3),B(1,53),C(2,2),由z =3x-y 得y =3x -z ,由图可知当x =2,y =2时,z 取得最大值,即z 最大=3×2-2=4.故选D.4.(文)(2011·安徽示范高中皖北协作区联考)已知x ,y 满足不等式组⎩⎪⎨⎪⎧x +y≤2,y -x≥0,x≥0.目标函数z =ax +y 只在点(1,1)处取最小值,则有( )A .a>1B .a>-1C .a<1D .a<-1[答案] D[解析] 作出可行域如下图阴影部分所示.由z =ax +y ,得y =-ax +z.只在点(1,1)处z 取得最小值,则斜率-a>1, 故a<-1,故选D.(理)(2011·宝鸡质检)已知约束条件⎩⎪⎨⎪⎧x -3y +4≥0x +2y -1≥03x +y -8≤0,若目标函数z =x +ay(a≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为( )A .0<a<13B .a≥13C .a>13D .0<a<12[答案] C[解析] 作出可行域如下图,∵目标函数z =x +ay 恰好在点A(2,2)处取得最大值,故-1a >-3,∴a>13.5.(2011·泉州质检)设不等式组⎩⎪⎨⎪⎧0≤x≤20≤y≤3x +2y -2≥0所表示的平面区域为S ,若A 、B 为区域S 内的两个动点,则|AB|的最大值为( )A .2 5 B.13 C .3 D. 5 [答案] B[解析] 在直角坐标平面内画出题中的不等式组表示的平面区域,结合下图观察不难得知,位于该平面区域内的两个动点中,其间的距离最远的两个点是(0,3)与(2,0),因此|AB|的最大值是13,选B.6.(2011·兰州模拟)设O 为坐标原点,点M 的坐标为(2,1),若点N(x ,y)满足不等式组⎩⎪⎨⎪⎧x -4y +3≤02x +y -12≤0x≥1,则使OM →·ON →取得最大值的点N 的个数是( ) A .1 B .2 C .3 D .无数个[答案] D[分析] 点N(x ,y)在不等式表示的平面区域之内,U =OM →·ON →为x ,y 的一次表达式,则问题即是当点N 在平面区域内变化时,求U 取到最大值时,点N 的个数.[解析] 如下图所示,可行域为图中阴影部分,而OM →·ON →=2x +y ,所以目标函数为z =2x +y ,作出直线l :2x +y =0,显然它与直线2x +y -12=0平行,平移直线l 到直线2x +y -12=0的位置时目标函数取得最大值,故2x +y -12=0上每一点都能使目标函数取得最大值,故选D.7.如下图,若由不等式组⎩⎪⎨⎪⎧x≤my +n x -3y≥0y≥0(n>0)确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m =________.[答案] -33[解析] 根据题意,三角形的外接圆圆心在x 轴上, ∴OA 为外接圆的直径,∴直线x =my +n 与x -3y =0垂直, ∴1m ×13=-1,即m =-33. 8.(2011·浏阳模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥-1x +y≥13x -y≤3,则目标函数z =4x +y 的最大值为________.[答案] 11[解析] 如下图,满足条件的可行域为三角形区域(图中阴影部分),故z =4x +y 在P(2,3)处取得最大值,最大值为11.9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:2(),则购买铁矿石的最少费用为________(百万元).[答案] 15[解析] 设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x≥0y≥00.5x +0.7y≥1.9x +0.5y≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取得最小值,最小值为:z min=3×1+6×2=15.10.(2011·福建厦门外国语学校月考)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?[解析] 设投资人分别用x 万元、y 万元投资甲、乙两个项目, 由题意知⎩⎪⎨⎪⎧x +y≤10,0.3x +0.1y≤1.8,x≥0,y≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如下图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,此时z 取得最大值,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6.此时z =1×4+0.5×6=7(万元). ∴当x =4,y =6时z 取得最大值.答:投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.11.(文)(2010·揭阳市模考、重庆南开中学模考)已知正数x 、y 满足⎩⎪⎨⎪⎧2x -y≤0x -3y +5≥0,则z=⎝⎛⎭⎫14x ·⎝⎛⎭⎫12y的最小值为( )A .1 B.324C.116 D.132[答案] C[解析] 如下图易得2x +y 的最大值为4,从而z =4-x·⎝⎛⎭⎫12y =⎝⎛⎭⎫122x +y 的最小值为116,选C.(理)(2011·重庆一诊)设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0x -2y +8≥0x≥0,y≥0,若目标函数z =ax +by(a>0,b>0)的最大值为12,则2a +3b的最小值为( )A.256B.83C.113 D .4[答案] A[解析] 如下图由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b2=1,∴2a +3b =(2a +3b )·(a 3+b 2)=136+b a +a b ≥136+2=256,故选A. 12.(文)(2010·山师大附中模考)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )A .12万元B .20万元C .25万元D .27万元[答案] D[解析] 设生产甲、乙两种产品分别为x 吨,y 吨, 由题意得⎩⎪⎨⎪⎧3x +y≤132x +3y≤18x≥0y≥0,获利润ω=5x +3y ,画出可行域如下图,由⎩⎪⎨⎪⎧3x +y =132x +3y =18,解得A(3,4). ∵-3<-53<-23,∴当直线5x +3y =ω经过A 点时,ωmax =27.(理)(2011·四川文,10)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车,某天需送往A 地至少72吨的货物,派用的每辆车需载满且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人;运送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z =( )A .4650元B .4700元C .4900元D .5000元[答案] C[解析] 设该公司派甲型卡车x 辆,乙型卡车y 辆,由题意得⎩⎪⎨⎪⎧10x +6y≥72,2x +y≤19,x +y≤12,0≤x≤8,x ∈N 0≤y≤7,y ∈N利润z =450x +350y ,可行域如下图所示.解⎩⎪⎨⎪⎧2x +y =19x +y =12得A(7,5). 当直线350y +450x =z 过A(7,5)时z 取最大值, ∴z max =450×7+350×5=4900(元).故选C.13.(2011·广州一测)某校计划招聘男教师x 名,女教师y 名,x 和y 满足约束条件⎩⎪⎨⎪⎧2x -y≥5,x -y≤2,x<6.则该校招聘的教师最多是________名. [答案] 10[解析] 如下图在坐标平面内画出题中的不等式组表示的平面区域及直线x +y =0,平移该直线,因为x ∈N ,y ∈N ,所以当平移到经过该平面区域内的整点(5,5)时,相应直线在y 轴上的截距最大,此时x +y 取得最大值,x +y 的最大值是10.14.(2011·苏北四市三调)在约束条件⎩⎪⎨⎪⎧0≤x≤10≤y≤22y -x≥1下,x -1 2+y 2的最小值为________.[答案]255[解析] 在坐标平面内画出题中的不等式组表示的平面区域,注意到x -1 2+y 2可视为该区域内的点(x ,y)与点(1,0)之间距离,结合下图可知,该距离的最小值等于点(1,0)到直线2y -x =1的距离,即为|-1-1|5=255.15.(文)(2010·吉林省质检)某单位投资生产A 产品时,每生产1百吨需要资金2百万元,需场地2百平方米,可获利润3百万元;投资生产B 产品时,每生产1百米需要资金3百万元,需场地1百平方米,可获利润2百万元.现该单位有可使用资金14百万元,场地9百平方米,如果利用这些资金和场地用来生产A 、B 两种产品,那么分别生产A 、B 两种产品各多少时,可获得最大利润?最大利润是多少?[解析] 设生产A 产品x 百吨,生产B 产品y 百米,共获得利润S 百万元,则⎩⎪⎨⎪⎧2x +3y≤142x +y≤9x≥0y≥0,目标函数为S =3x +2y. 作出可行域如上图,由⎩⎪⎨⎪⎧2x +y =92x +3y =14解得直线2x +y =9和2x +3y =14的交点为A ⎝⎛⎭⎫134,52,平移直线y =-32x +S 2,当它经过点A ⎝⎛⎭⎫134,52时,直线y =-32x +S 2在y 轴上截距S2最大,S 也最大. 此时,S =3×134+2×52=14.75.因此,生产A 产品3.25百吨,生产B 产品2.5百米,可获得最大利润,最大利润为1475万元.(理)(2010·茂名模考)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?[解析] (1)依题意得⎩⎪⎨⎪⎧P 甲-P 乙=0.251-P 甲=P 乙-0.05,解得⎩⎪⎨⎪⎧P 甲=0.65P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为⎩⎪⎨⎪⎧4x +8y≤3220x +5y≤55x≥0y≥0,且z =0.65x +0.4y.作出以上不等式组所表示的平面区域(如上图阴影部分),即可行域.作直线l :0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,且l 1与原点的距离最大,此时z 取最大值.解方程组⎩⎪⎨⎪⎧x +2y =84x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.51.在坐标平面上,不等式组⎩⎪⎨⎪⎧y≥x -1,y≤-3|x|+1所表示的平面区域的面积为( )A. 2B.32C.322 D .2[答案] B[解析] 不等式组⎩⎪⎨⎪⎧y≥x -1y≤-3|x|+1的图形如下图.解得:A(0,1) D(0,-1) B(-1,-2) C(12,-12)S △ABC =12×|AD|×|x C -x B |=12×2×(12+1)=32,故选B. 2.(2010·重庆市南开中学)不等式组⎩⎪⎨⎪⎧x +y≥22x -y≤4x -y≥0所围成的平面区域的面积为( )A .3 2B .6 2C .6D .3[答案] D[解析] 不等式组表示的平面区域为图中Rt △ABC ,易求B(4,4),A(1,1),C(2,0)∴S △ABC =S △OBC -S △AOC =12×2×4-12×2×1=3.3.(2010·南昌市模拟)已知a ,b ∈R +,a +b =1,M =2a +2b ,则M 的整数部分是( )A .1B .2C .3D .4[答案] B[解析] ∵a ,b ∈R +,a +b =1,∴0<a<1,设t =2a ,则t ∈(1,2),M =2a +2b =2a +21-a=t +2t≥22,等号在t =2时成立,又t =1或2时,M =3,∴22≤M<3,故选B.4.(2010·广东中山)实数x ,y 满足条件⎩⎪⎨⎪⎧x +2y≤4x +y≥1y≥0,则3x +5y 的最大值为( )A .12B .9C .8D .3[答案] A[解析] 由下图可知,当z =3x +5y 经过点A(4,0)时,z 取最大值,最大值为12,故选A.5.(2011·湖北高考)直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x≥0,y≥0,x -y≥-2,4x +3y≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个[答案] B[解析] 直线2x +y -10=0与不等式组表示的平面区域的位置关系如下图所示,故直线与此区域的公共点只有1个,选B.6.(2011·黄山期末)设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0所表示的平面区域为M ,使函数y =a x (a>0,a≠1)的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10]C .[2,9]D .[10,9][答案] C[解析] 作出不等式表示的平面区域如下图,由⎩⎪⎨⎪⎧x +2y -19=0x -y +8=0得A(1,9),由⎩⎪⎨⎪⎧x +2y -19=02x +y -14=0得B(3,8),当函数y =a x 过点A 时,a =9,过点B 时,a =2,∴要使y =a x 的图象经过区域M ,应有2≤a≤9.7.如下图,目标函数z =ax -y 的可行域为四边形OACB(含边界),若C(23,45)是该目标函数z =ax -y 的最优解,则a 的取值范围是________.[答案] (-125,-310)8.某人有楼房一幢,室内面积共计180m 2,拟分隔成两类房间作为旅游客房.大房间每间面积18m 2,可住游客5名,每名游客每天住宿费40元;小房间每间面积15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他隔出大房间和小房间各多少间,能获得最大收益?[解析] 设隔出大房间x 间,小房间y 间时收益为z 元, 则x ,y 满足⎩⎪⎨⎪⎧18x +15y≤1801000x +600y≤8000x≥0,y≥0,x ,y ∈Z ,且z =200x +150y.约束条件可化简为: ⎩⎪⎨⎪⎧6x +5y≤605x +3y≤40x≥0,y≥0,x ,y ∈Z可行域为如下图所示的阴影部分(含边界)作直线l :200x +150y =0,即直线l :4x +3y =0把直线l 向右上方平移至l 1的位置时,直线经过点B ,且与原点的距离最大,此时z =200x +150y 取得最大值.解方程组⎩⎪⎨⎪⎧6x +5y =605x +3y =40,得到B(207,607).由于点B 的坐标不是整数,而最优解(x ,y)中的x ,y 必须都是整数,所以,可行域内的点B(207,607)不是最优解,通过检验,当经过的整点是(0,12)和(3,8)时,z 取最大值1800元.于是,隔出小房间12间,或大房间3间、小房间8间,可以获得最大收益. [点评] 当所求解问题的结果是整数,而最优解不是整数时,可取最优解附近的整点检验,找出符合题意的整数最优解.。
山东省栖霞市2024届高三阶段性测试(四)数学试题
山东省栖霞市2024届高三阶段性测试(四)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若32a =,12b =,则输出的n =( )A .3B .4C .5D .62.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)3.已知实数,x y 满足不等式组10240440x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则34x y +的最小值为( )A .2B .3C .4D .54.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A .10B .3C .5D .25.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( ) A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)6.已知直线l :310kx y k --+=与椭圆22122:1(0)x y C a b a b+=>>交于A 、B 两点,与圆2C :()()22311x y -+-=交于C 、D 两点.若存在[]2,1k ∈--,使得AC DB =,则椭圆1C 的离心率的取值范围为( )A .3633⎣⎦B .3,1)3C .3]D .6[7.设12,x x 为()()3sin cos 0f x x x ωωω=->的两个零点,且12x x -的最小值为1,则ω=( ) A .πB .2π C .3π D .4π 8.三棱锥S ABC -的各个顶点都在求O 的表面上,且ABC ∆是等边三角形,SA ⊥底面ABC ,4SA =,6AB =,若点D 在线段SA 上,且2AD SD =,则过点D 的平面截球O 所得截面的最小面积为( ) A .3πB .4πC .8πD .13π9.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .410.已知ba b c a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<11.已知向量(22cos 3m x =,()1,sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是( )A .关于直线12x π=对称B .关于点5,012π⎛⎫⎪⎝⎭对称 C .周期为2πD .()y f x =在,03π⎛⎫-⎪⎝⎭上是增函数12.设1F ,2F 分别为双曲线22221x y a b-=(a >0,b >0)的左、右焦点,过点1F 作圆222x y b += 的切线与双曲线的左支交于点P ,若212PF PF =,则双曲线的离心率为( ) A .2B .3C .5D .6二、填空题:本题共4小题,每小题5分,共20分。
2024年苏科新版高三数学上册阶段测试试卷761
2024年苏科新版高三数学上册阶段测试试卷761考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、已知S n是等差数列{a n}的前n项和,若a2015=S2015=2015,则首项a1=()A. 2015B. -2015C. 2013D. -20132、已知函数f(x)满足2f(x)-f()=,则f(x)的最小值是()A. 2B. 2C. 3D. 43、若,则x的取值范围是()A. (-∞,-3]B. (-∞,-3)C. [-3,+∞)D. R4、给出p:(x+3)2+(y-4)2=0,q:(x+3)(y-4)=0,x,y∈R,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5、函数的定义域是()A.[-1,4] B.[1,4] C.D.6、已知一个空间几何体的三视图如图所示;根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. 4 cm3B. 5 cm3C. 6 cm3D. 7 cm37、(2016•山东)若变量x,y满足则x2+y2的最大值是()A. 4B. 9C. 10D. 128、已知全集U={x|x2≥1},集合A={x|ln(x-1)≤0},则∁U A=()A. {x|x≤-1或x>2}B. {x|x>2}C. {x|x≤-1或x=1或x>2}D. {x|x=1或x>2}9、已知偶函数f(x)对∀x∈R满足f(2+x)=f(2-x),且当-2≤x≤0时,f(x)=log2(1-x),则f(2011)的值为()A. 2011B. 2C. 1D. 0评卷人得分二、填空题(共9题,共18分)10、若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列,已知数列1,x,y,2是调和数列,则(x,y)为____.11、设∅⊊A⊆{1,2,3,4},则符合条件的集合A的个数为____.12、sinα=,则α的范围是____.13、设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=,若AB=4,BC=,则Γ的两个焦点之间的距离为____.14、已知等比数列{a n}中,a2=1,则其前三项和S3的取值范围是____.15、设则的最小值为 .16、正四棱柱的底面边长为a,高为b(a<b),一蚂蚁从顶点A出发,沿正四棱柱的表面爬到顶点C1,那么这只蚂蚁所走过的最短路程为____.17、已知的最小值为则二项式展开式中项的系数为____.18、在△ABC中,A=60°,AC=2,BC=则AB等于____评卷人得分三、判断题(共5题,共10分)19、判断集合A是否为集合B的子集;若是打“√”,若不是打“×”.(1)A={1,3,5},B={1,2,3,4,5,6}.____;(2)A={1,3,5},B={1,3,6,9}.____;(3)A={0},B={x|x2+1=0}.____;(4)A={a,b,c,d},B={d,b,c,a}.____.20、已知函数f(x)=4+a x-1的图象恒过定点p,则点p的坐标是( 1,5 )____.(判断对错)21、判断集合A是否为集合B的子集;若是打“√”,若不是打“×”.(1)A={1,3,5},B={1,2,3,4,5,6}.____;(2)A={1,3,5},B={1,3,6,9}.____;(3)A={0},B={x|x2+1=0}.____;(4)A={a,b,c,d},B={d,b,c,a}.____.22、空集没有子集.____.23、任一集合必有两个或两个以上子集.____.评卷人得分四、证明题(共1题,共3分)24、在空中;取直线l为轴,直线l与l′相交于O点,夹角为30°,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.已知直线l∥平面α,l与α的距离为2,平面α与圆锥面相交得到双曲线Γ.在平面α内,以双曲线Γ的中心为原点,以双曲线的两个焦点所在直线为y轴,建立直角坐标系.(Ⅰ)求双曲线Γ的方程;(Ⅱ)在平面α内,以双曲线Γ的中心为圆心,半径为2的圆记为曲线Γ′,在Γ′上任取一点P,过点P作双曲线Γ的两条切线交曲线Γ′于两点M、N,试证明线段MN的长为定值,并求出这个定值.评卷人得分五、计算题(共3题,共24分)25、已知非常数函数f(x)在R上可导,当x∈(-∞,1]时,有(1-x)f'(x)≤0,且对任意x∈R都有f(1-x)=f(1+x),则不等式f(2-x)>f(2x+1)的解集是____.26、已知f(x)=x3+2x+1,则f(a)+f(-a)的值是____.27、正三棱柱的底面边长为2cm,高为2cm,则它的外接球的表面积为 ____cm2.(结果保留π)评卷人得分六、综合题(共3题,共6分)28、已知抛物线Γ:x2=2py(p>0);焦点为F,点P在抛物线Γ上,且P到F的距离比P到直线y=-2的距离小1.(1)求抛物线Γ的方程;(2)若点N为直线l:y=-5上的任意一点,过点N做抛物线Γ的切线NA与NB,切点分别为A,B,求证:直线AB恒过某一定点.29、在高中数学课本中我们见过许多的“信息技术应用”;我们可以利用几何画板软件的拖动;动画及计算等功能来研究许多数学问题.比如:在平面内做一条线段KL,以定点A为圆心,以|KL|为半径作一圆,在圆内取一定点F,在圆上取动点B,作线段BF的中垂线与圆A的半径AB交于点P,当点B在圆上运动时,就会发现点P的运动轨迹.(Ⅰ)你能猜出点P的轨迹是什么曲线吗?请说明理由;若|KL|=6;|AF|=4,以线段AF的中点O为原点,以直线AF为x轴,建立平面直角坐标系,试求点P的轨迹方程;(Ⅱ)在(Ⅰ)的条件下,过点A作直线l与点P的轨迹交于两点M、N,试求线段MN的中点Q的轨迹方程.30、已知数列{a n}为正项等比数列,a3=8,a5=32,b n=log2a n(1)求a n的通项公式;(2)设{b n}的前n项和为S n,求S n.参考答案一、选择题(共9题,共18分)1、D【分析】【分析】设等差数列{a n}的公差为d,由题意可得a1和d的方程组,解方程组可得.【解析】【解答】解:设等差数列{a n}的公差为d;由题意可得a2015=a1+2014d=2015;S2015=2015a1+ d=2015联立解得a1=-2013;d=2;故选:D2、B【分析】【分析】令x= ,原式可变为2f()-f(x)=3x2,与已知联立可得f(x)解析式,用基本不等式即可求得f(x)的最小值.【解析】【解答】解:由2f(x)-f()= ①,得2f()-f(x)=3x2②;联立①②解得f(x)= ;f(x)= =2 ,当且仅当,即x= 时取等号;故f(x)的最小值为2 .3、B【分析】【分析】考查指数函数y= ,发现函数是定义在R上的减函数,发现方程的解为x=-3,由此不难得出答案.【解析】【解答】解:原不等式可化为而指数函数y= 是定义在R上的减函数所以解集应该是x<-3故选B4、A【分析】【分析】先通过解方程化简命题p,q;再判断p成立是否能判断出q成立;反之判断q成立是否能推出q成立,利用充要条件定义判断出结论.【解析】【解答】解:p:(x+3)2+(y-4)2=0等价于x=-3且y=4q:(x+3)(y-4)=0等价于x=-3或y=4若p成立则q成立;反之当q成立p不一定成立故p是q的充分不必要条件故选A5、C【分析】【解析】【解析】【答案】C6、A【分析】如图三视图复原的几何体是底面为直角梯形;ABCD是直角梯形,AB⊥AD;AB=AD=2;BC=4一条侧棱垂直直角梯形的直角顶点的四棱锥;即PA⊥平面ABCD,PA=2所以几何体的体积为:=×()×2×2=4故选A.【解析】【答案】三视图复原的几何体是底面为直角梯形;一条侧棱垂直直角梯形的直角顶点的四棱锥,结合三视图的数据,求出几何体的体积.7、C【分析】【解答】解:由约束条件作出可行域如图;∵A(0;﹣3),C(0,2);∴|OA|>|OC|;联立解得B(3,﹣1).∵∴x2+y2的最大值是10.故选:C.【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.;本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.8、C【分析】本题考查了集合的运算性质及不等式的解法;分别化简集合U,A,再利用补集的运算性质即可得出.解:由x2≥1;解得x≥1,或x≤-1;∴全集U={x|x2≥1}={x|x≥1;或x≤-1};由ln(x-1)≤0;∴0<x-1≤1;解得1<x≤2;∴集合A={x|ln(x-1)≤0}={x|1<x≤2};则∁U A={x|x≤-1或x=1或x>2}.故选C.【解析】【答案】 C9、C【分析】本题考查函数的对称性及周期性;由已知可得周期为4,则利用周期性可知f(2011)=f(-1),即可求解.解:∵f(2+x)=f(2-x);∴f(x)=f(4-x)∵f(x)是偶函数;∴f(x)=f(4-x)=f(-x)所以f(x)周期是4.∴f(2011)=f(-1);当-2≤x≤0时,f(x)=log2(1-x);代入-1即可答案为log22=1.故选C.【解析】【答案】 C二、填空题(共9题,共18分)10、略【分析】【分析】由题意可得1,,,成等差数列,设公差为d,由通项公式可得d,进而得到x,y.【解析】【解答】解:由数列1;x,y,2是调和数列,可得。
(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)
一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,38.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =9.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.16.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.25.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 26.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242 x yzx+-=-,并理解z的几何意义,利用数形结合分析问题.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x xy -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e xxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B.【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()445529 41x y x yx y x yy xx y xy+⎛⎫+=+=++≥+⨯=⎪⎝⎭,当且仅当4x yy x=即3,6x y==时取等号.故答案为:9.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.2=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.16.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知解析:9 【分析】 将已知等式变形为111a b+=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得. 【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b+=.又a ,b 为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9. 故答案为:9 【点睛】本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)st s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=, 由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.三、解答题21.(1)见解析(2)1b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-11b =⇒>. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -; ②当1a =-时,原不等式的解集为φ; ③当10a -<≤时,原不等式的解集为()1,a -; ④当0a >时,原不等式的解集为()()1,00,a -⋃. (2)当,2b c a ==时,()2211x f x bx b +<⇔<+22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()2221515512254214x t g x t x t t t+===≤=+=+--++-,时取等号, 故512b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可. max 2.():,()a f x x D a f x >∈>即可.22.(1) 8; (2)[]2,0-. 【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x ≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0]. 【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 23.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 25.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米,因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.26.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-,解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =.所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.。
高一 二元一次不等式(组)与简单的线性规划问题知识点+例题+练习 含答案
1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题
某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。
2025届上海市第一中学高考数学一模试卷含解析
2025届上海市第一中学高考数学一模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若实数,x y 满足不等式组121210x y x y x y +≥-⎧⎪-≤-⎨⎪--≤⎩,则234x y -+的最大值为( )A .1-B .2-C .3D .22.已知函数()f x 是定义域为R 的偶函数,且满足()(2)f x f x =-,当[0,1]x ∈时,()f x x =,则函数4()()12x F x f x x +=+-在区间[9,10]-上零点的个数为( ) A .9 B.10 C .18 D .203.中国的国旗和国徽上都有五角星,正五角星与黄金分割有着密切的联系,在如图所示的正五角星中,以A 、B 、C 、D 、E 为顶点的多边形为正五边形,且512PT AP -=,则512AT ES --=( )A 51+B 51+C 51RD - D 51RC - 4.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( ) A .74 B .94 C .52 D .25.某三棱锥的三视图如图所示,则该三棱锥的体积为A .23B .43C .2D .836.已知抛物线()220y px p =>经过点()2,22M ,焦点为F ,则直线MF 的斜率为( ) A .22 B .24 C .22 D .22-7.正四棱锥P ABCD -的五个顶点在同一个球面上,它的底面边长为6,侧棱长为23,则它的外接球的表面积为( )A .4πB .8πC .16πD .20π8. “角谷猜想”的内容是:对于任意一个大于1的整数n ,如果n 为偶数就除以2,如果n 是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入10n =,则输出i 的( )A .6B .7C .8D .99.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .410.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .4311.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 312.如图所示,正方体1111ABCD A B C D -的棱AB ,11A D 的中点分别为E ,F ,则直线EF 与平面11AA D D 所成角的正弦值为( )A 5B 30C 6D 25 二、填空题:本题共4小题,每小题5分,共20分。
2024届炎德英才大联考高一数学第二学期期末综合测试试题含解析
2024届炎德英才大联考高一数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知tan 2α=,则22sin sin 23cos ααα+-的值为( ) A .25B .1C .45D .852.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B .23C .33D .233.设等比数列{}n a 的前n 项和为n S ,若4813S S =,则816S S =( ) A .19B .14 C .15D .2154.已知圆锥的母线长为6,母线与轴的夹角为30°,则此圆锥的体积为( ) A .27πB .93πC .9πD .33π5.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若7AB =,2DE =,则线段BD 的长为( )A .3B .3.5C .4D .4.56.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是( )A .定B .有C .收D .获7.在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2sin a b A =,则B 等于( )A .75︒B .60︒C .45︒D .308.某个命题与自然数n 有关,且已证得“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立D .当6n =时,该命题成立9.若(3,1),(1,),2a b t a b a =-=+⊥(),则t =() A .32B .23C .14D .1310.在ABC ∆中,60A ︒∠=,43a =,42b =,则B 等于( )A .45︒或135︒B .135︒C .45︒D .以上答案都不对二、填空题:本大题共6小题,每小题5分,共30分。
江苏省苏州市南麻中学高三数学理测试题含解析
江苏省苏州市南麻中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 复数(是虚数单位)在复平面上对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限参考答案:B复数,其在复平面上对应的点为,该点位于第二象限.故选.2. 数列是首项的等比数列,且,,成等差数列,则其公比为()A.B. C.或 D.参考答案:C略3. (5分)设集合M={ x∈Z|﹣4<x<2 },N={x|x2<4},则M∩N等于()A.(﹣1,1) B.(﹣1,2) C. {﹣1,0,1} D. {﹣1,1,2}参考答案:C【考点】:交集及其运算.【专题】:集合.【分析】:根据集合的基本运算进行求解.解:M={ x∈Z|﹣4<x<2 }={﹣3,﹣2,﹣1,0,1},N={x|x2<4}={x|﹣2<x<2},则M∩N={﹣1,0,1},故选:C【点评】:本题主要考查集合的基本运算,比较基础.4. 设i为虚数单位,复数 z1=3﹣ai,z2=1+2i,若是纯虚数,则实数a的值为( )A.﹣B.C.﹣6 D.6参考答案:B考点:复数代数形式的乘除运算;复数的基本概念.专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简,然后由实部等于0且虚部不等于0求得a 的值.解答:解:∵z1=3﹣ai,z2=1+2i,由=是纯虚数,得,解得:a=.故选:B.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.5. 在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的,且样本容量为160,则中间一组的频数为( ) A.32 B. 0.2 C. 40 D. 0.25参考答案:A略6. 已知函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,则f(1)=()A.3 B.﹣3 C.0 D.4﹣1参考答案:A【考点】函数的值.【分析】由已知利用函数性质推导出asin1﹣btan1=1,由此能求出f(1)的值.【解答】解:∵函数f(x)=asinx﹣btanx+4cos,且f(﹣1)=1,∴f(﹣1)=asin(﹣1)﹣btan(﹣1)+4×=﹣asin1+btan1+2=1,∴asin1﹣btan1=1,∴f(1)=asin1﹣bsin1+4×=1+2=3.故选:A.7. 已知正方形的边长为4,点位边的中点,沿折叠成一个三棱锥(使重合于点),则三棱锥的外接球表面积为A. B. C.D.参考答案:A略8. 在复平面内,复数+(1+i)2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限参考答案:答案:B9. 已知函数f(x)=x3﹣bx2﹣4,x∈R,则下列命题正确的是()A.当b>0时,?x0<0,使得f(x0)=0B.当b<0时,?x<0,都有f(x)<0C.f(x)有三个零点的充要条件是b<﹣3D.f(x)在区间(0.+∞)上有最小值的充要条件是b<0参考答案:C【考点】利用导数研究函数的单调性.【分析】令f(x)=0,得到矛盾,判断A错误,令b=﹣6,x=﹣1,求出f(﹣1)>0,得到矛盾,判断B错误;求出函数的导数,通过讨论b的符号结合函数的单调性判断C正确,D错误.【解答】解:对于A:令f(x)=0,得:x3﹣bx2﹣4=0,∴x2(x﹣b)=4,∴x2=①,若b>0,x0<0,则x0﹣b<0,方程①无解,故选项A错误;对于B:若b<0,?x<0,不妨令b=﹣6,x=﹣1,则f(﹣1)=﹣1﹣(﹣6)×1﹣4=1>0,故选项B错误;对于C:f′(x)=3x2﹣2bx=x(3x﹣2b),b>0时,令f′(x)>0,解得:x>或x<0,∴f(x)在(﹣∞,0)递增,在(0,)递减,在(,+∞)递增,∴x=0是极大值点,此时f(0)=﹣4,函数f(x)只有1个零点,故b>0不合题意,b<0时:令f′(x)>0,解得:x<或x>0,∴f(x)在(﹣∞,)递增,在(,0)递减,在(0,+∞)递增,∴x=是极大值点,若f(x)有三个零点,只需f()>0,解得:b<﹣3,故选项C正确;对于D:由选项C得:若b<0,则f(x)在(0,+∞)递增,而函数f(x)无最小值,故D错误,故选:C.10. 若复数z满足z+zi=3+2i,则在复平面内z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:D【考点】复数的代数表示法及其几何意义.【专题】计算题;转化思想;数学模型法;数系的扩充和复数.【分析】由z+zi=3+2i,得,然后利用复数代数形式的乘除运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.【解答】解:由z+zi=3+2i,得=,则复数z在复平面内对应的点的坐标为:(,),位于第四象限.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 若x,y满足不等式则z=x﹣y的取值范围是.参考答案:[﹣2,2]【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,2).联立,解得B(2,4).化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过A时,直线在y轴上的截距最小,z有最大值为2.当直线y=x﹣z过B时,直线在y轴上的截距最大,z有最小值为﹣2.故答案为:[﹣2,2].【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.12. 设(x﹣2)6=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a0+a1+a2+…+a6的值为.参考答案:6413. 函数,则的解集为 .参考答案:14. 若集合A={x|ax2+ax+1=0}中只有一个元素,则满足条件的实数a构成的集合为.参考答案:{4}【考点】15:集合的表示法.【分析】由已知得,由此能求出满足条件的实数a构成的集合.【解答】解:∵集合A={x|ax2+ax+1=0}中只有一个元素,∴,解得a=4.∴满足条件的实数a构成的集合为{4}.故答案为:{4}.【点评】本题考查集合的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.15. 若是偶函数,则a=____________.参考答案:16. 已知函数的图像关于直线对称,且为函数的一个零点,则的最小值为.参考答案:217. 对于正整数n,设x n是关于x的方程nx3+2x﹣n=0的实数根,记a n=[(n+1)x n](n≥2),其中[x]表示不超过实数x的最大整数,则(a2+a3+…+a2015)= .参考答案:2017【考点】8E:数列的求和.【分析】根据条件构造f(x)=nx3+2x﹣n,求函数的导数,判断函数的导数,求出方程根的取值范围进行求解即可.【解答】解:设f(x)=nx3+2x﹣n,则f′(x)=3nx2+2,当n是正整数时,f′(x)>0,则f(x)为增函数,∵当n≥2时,f()=n×()3+2×()﹣n=?(﹣n2+n+1)<0,且f(1)=2>0,∴当n≥2时,方程nx3+2x﹣n=0有唯一的实数根x n且x n∈(,1),∴n<(n+1)x n<n+1,a n=[(n+1)x n]=n,因此(a2+a3+a4+…+a2015)=(2+3+4+…+2015)==2017,故答案为:2017.三、解答题:本大题共5小题,共72分。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
高三数学考点-二元一次不等式(组)与简单的线性规划问题
7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax +By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a )(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.故选B .(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x -4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x 的最大值是________.解:作可行域如图所示,由目标函数z=y-3x得直线y=3x+z,当直线y=3x+z平移经过点A⎝⎛⎭⎫12,3时,目标函数z=y-3x取得最大值为32.故填32.类型一二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x|≤|y|,|x|<1的点(x,y)的集合用阴影表示为下列图中的()解:|x|=|y|把平面分成四部分,|x|≤|y|表示含y轴的两个区域;|x|<1表示x=±1所夹含y轴的区域.故选C.【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O(0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD|=2,C点坐标(8,-2),所以S△ABC=S△ABD+S△BCD=12×2×(2+2)=4.故填4.类型二利用线性规划求线性目标函数的最优解(2017·天津)设变量x,y满足约束条件⎩⎪⎨⎪⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y的最大值为()A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x , 则x + 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max=3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0. 若z =ax +y 的最大值为3a +9,最小值为3a-3,则a 的取值范围是( ) A .[-1,0] B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z .因为z =ax +y 的最大值为3a +9,最小值为3a -3, 所以当直线y =-ax +z 经过点B (3,9)时直线截距最大, 当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0 (a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0, 若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *) 所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x 至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D . 【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距z b 的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距z b 取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是. 第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D . 2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 则目标函数z =2x -y 的最大值为( )A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C .3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0, 若2x +y +k ≥0恒成立,则实数k的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值.解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=y x 表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分工人(名)资金(万元)甲420乙85解:(1)依题意得⎩⎪⎨⎪⎧甲乙1-P甲=P乙-0.05,解得⎩⎪⎨⎪⎧P甲=0.65,P乙=0.4,故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4.(2)依题意得x,y应满足的约束条件为⎩⎪⎨⎪⎧4x+8y≤32,20x+5y≤55,x≥0,y≥0,且z=0.65x+0.4y.作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,且l1与原点的距离最大,此时z取最大值.解方程组⎩⎪⎨⎪⎧x+2y=8,4x+y=11,得⎩⎪⎨⎪⎧x=2,y=3.故M的坐标为(2,3),所以z的最大值为z max=0.65×2+0.4×3=2.5.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax+y≤4得⎩⎪⎨⎪⎧1≤a≤4,1≤a+32≤4,1≤2a+1≤4.解不等式组可得1≤a≤32.故填⎣⎡⎦⎤1,32.项目用量产品。
2023年陕西省西安市周至县高考数学二模试卷(理科)+答案解析(附后)
2023年陕西省西安市周至县高考数学二模试卷(理科)1. 已知全集,,,则集合( )A. B. C. D.2. 设复数z满足,则复数z的虚部是( )A. B. 5 C. D.3.若非零向量满足,则必有( )A. B.C. D.4. 已知数据,,…,是某市个普通职工的年收入,如果再加上世界首富的年收入,组成个数据,则下列说法正确的是( )A. 年收入的平均数可能不变,中位数可能不变,方差可能不变B. 年收入的平均数大大增加,中位数可能不变,方差变大C. 年收入的平均数大大增加,中位数可能不变,方差变小D. 年收入的平均数大大增加,中位数一定变大,方差可能不变5. “双碳”战略倡导绿色、环保、低碳的生活方式年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”,为了实现这一目标,中国持续推进产业结构和能源结构调整,大力发展可再生能源,新型动力电池随之也迎来了蓬勃发展机遇于1898年提出蓄电池的容量单位:,放电时间单位:与放电电流单位:之间关系的经验公式,其中为Peukert常数.在电池容量不变的条件下,当放电电流时,放电时间,则当放电电流时,放电时间为( ) A. 14h B. C. 29h D. 56h6. 是的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件7. 已知函数的部分图象如图所示,其中,,则( )A. 1B.C.D.8. 折扇是我国传统文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征如图,图2为其结构简化图,设扇面A,B间的圆弧长为l,AB间的弦长为d,圆弧所对的圆心角为为弧度角,则l、d和所满足的恒等关系为( )A. B. C. D.9. 如图,在正方体中,F为线段的中点,E为线段上的动点,下列四个结论中,正确的是( )A. 平面B. 存在点E,使平面C. 存在点E,使D.10. 某学生在“捡起树叶树枝,净化校园环境”的志愿活动中拾到了三支小树枝视为三条线段,想要用它们作为三角形的三条高线制作一个三角形,经测量,其长度分别为3cm,4cm,6cm,则( )A. 能作出一个锐角三角形B. 能作出一个直角三角形C. 能作出一个钝角三角形D. 不能作出这样的三角形11. 已知是抛物线C:上一点,点M到抛物线C的焦点F的距离为若过点向抛物线C作两条切线,切点分别为A,B,则( )A. 18B. 17C. 16D. 1512. 已知,,,则( )A. B. C. D.13. 双曲线的实轴长为4,则其渐近线方程为______ .14. 若满足约束条件,则的最小值为______ .15. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“现在有底面为矩形,一条侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的外接球的表面积为______平方尺.16. 函数是计算机程序中一个重要函数,它表示不超过x的最大整数,例如,已知函数且,若的图象上恰有3对点关于原点对称,则实数a的最小值为______ .17. 在①;②,;③,这三个条件中任选一个,补充在下面问题中,并作答.已知为等差数列的前n项和,若_____.求数列的通项公式;设,求数列的前n项和注:如果选择多个条件分别解答,按第一个解答计分.18. 某学校在假期安排了“垃圾分类知识普及实践活动”,为了解学生的学习成果,该校对全校学生进行了测试,并随机抽取50名学生的成绩进行统计,将其分成以下6组:整理得到如图所示的频率分布直方图.求图中a的值;若将频率视为概率,从全校成绩在80分及以上的学生中随机抽取3人,用X表示这3人中成绩在中的人数,求随机变量X的分布列及数学期望.19. 在如图所示的多面体中,,,平面ABCD,四边形ACFE为矩形.求证:平面平面CDF;若,,求直线AD与平面BEF所成角的正弦值.20. 如图,已知椭圆E:的一个焦点为,离心率为求椭圆E的方程;过点作斜率为k的直线交椭圆E于A,B两点,AB的中点为设O为原点,射线OM 交椭圆E于点当四边形OACB为平行四边形时,求k的值.21. 已知函数讨论的零点个数;若有两个零点,,求证:22. 已知圆C的极坐标方程为,直线l的方程为以极点为坐标原点,极轴为x轴正半轴建立直角坐标系求圆C的圆心坐标及半径;直线l与圆C的交点为A,B,求三角形ABC的面积.23. 已知函数求不等式的解集;若的最小值为k,且实数a,b,c满足,求证:答案和解析1.【答案】C【解析】解:全集,,,,则集合故选:利用补集定义先求出,再由交集定义能求出集合本题考查集合的运算,考查交集、补集定义、不等式的性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:,则,故复数z的虚部是故选:根据已知条件,结合复数模公式,以及复数的运算,求出z,再结合虚部的定义,即可求解.本题主要考查复数的运算,属于基础题.3.【答案】B【解析】解:若非零向量满足,则,即,,故选:把已知向量等式变形,可得,由此得到本题考查平面向量数量积的性质及运算,考查向量垂直与数量积的关系,是基础题.4.【答案】B【解析】解:数据,,…,是某市个普通职工的年收入,而为世界首富的年收入,则会远远大于,,…,,故这个数据中,年收入平均数大大增大,中位数可能不变,也可能变大,又数据的集中程度也更加离散,则方差变大.故选:根据平均数,中位数及方差的意义判断即可.本题主要考查了数据的平均数及中位数,方差的特征,属于基础题.5.【答案】D【解析】解:,因为电池容量不变,则有,即有,所以当放电电流时,放电时间为故选:根据给定的条件,列出方程,结合指数、对数运算计算作答.本题考查函数模型的选择及其应用,考查对数的运算,属基础题.6.【答案】C【解析】解:由,可得或,由,一定可以推出,所以是的必要不充分条件,故选:根据充分条件和必要条件的定义分别进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键,属于基础题.7.【答案】C【解析】【分析】本题考查由部分图像求三角函数解析式,考查计算能力,是基础题.利用函数的图象求解,结合五点法作图求解即可.【解答】解:由题意可知:,解得,则,解得,由五点法作图可得,,且,解得,所以,可得故选:8.【答案】A【解析】解:由题意,如图,可得,,设,则在中,,①又,②所以由①②可得:,即故选:由题意,设,在中,解三角形可得,又,联立方程即可求解.本题考查了扇形的弧长公式的应用,考查了数形结合思想,属于基础题.9.【答案】D【解析】解:如图,当E为线段的中点时,,则平面,当E不为线段的中点时,EF 与平面相交,故A错误;若存在点E,使平面,而平面,则平面平面,而平面与平面所成角的正切值为,矛盾,故B错误;当E与重合时,EF与相交,当E不与重合时,又异面直线所成角的定义可知,EF与异面,故C错误;由正方体的结构特征可知,平面,而平面,则,故D正确.故选:由空间中直线与平面的位置关系判定A;利用反证法思想判断B;由异面直线的定义判断C;直接证明D正确.本题考查空间中直线与直线、直线与平面、平面与平面位置关系的判定,考查空间想象能力与思维能力,是中档题.10.【答案】C【解析】解:设高分别为3cm、4cm、6cm对应的底边长分别为a、b、单位:,则,设,则,,由三角形三边关系可知,这样的三角形存在,设该三角形的最大内角为,则,则为钝角,故能作出一个钝角三角形.故选:计算出三角形三边的比值,并计算出三角形中最大角的余弦值,可得出结论.本题考查余弦定理的应用,是中档题.11.【答案】B【解析】解:抛物线C:,则抛物线的焦点,准线方程为,是抛物线C:上一点,点M到抛物线C的焦点F的距离为6,,解得,抛物线的方程为,显然不在抛物线C上,,则,设切点,,抛物线在切点A处的切线方程为,将代入得,又,则,同理可得抛物线C在点B处的切线方程为,直线AB的方程为,联立,整理得,,,故选:由题意得抛物线的焦点,准线方程为,求出p,求出在切点A、B的切线方程,可得直线AB的方程为,联立,利用韦达定理,即可得出答案.本题考查抛物线的性质,考查转化思想和方程思想,考查逻辑推理能力和运算能力,属于中档题.12.【答案】A【解析】解:设,则恒成立,所以在R上单调递增,所以,所以,即,所以,设,则,当时,,所以在上单调递增,所以,所以,即,所以,综上,故选:设,,利用导数可证在R上单调递增,在上单调递增,再代入运算,得解.本题考查利用导数研究函数的单调性,构造新函数是解题的关键,考查逻辑推理能力和运算能力,属于中档题.13.【答案】【解析】解:双曲线的实轴长为4,,解得,即双曲线的渐近线为,即故答案为:由题意得,可得,即可得出答案.本题考查双曲线的性质,考查转化思想,考查运算能力,属于基础题.14.【答案】【解析】解:因为变量x,y满足约束条件,目标函数,画出图形:点,平移直线可得:z在点A处有最小值:故答案为:线性约束条件画出可行域,然后求出目标函数的最小值.本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【答案】【解析】解:将该四棱锥补全成以底面长、宽分别为7尺和5尺,高为8尺的长方体,则此四棱锥的外接球为该长方体的外接球,长方体的体对角线即为外接球的直径2R,由长方体的体对角线公式得,,所求球的表面积为,故答案为:先将该四棱锥补全成长方体,则长方体的为接球即为该四棱锥的外接球,长方体的体对角线即为外接球的直径,再利用长方体的体对角线公式求出外接球半径,最后代入球的表面积公式即可求解.本题考查四棱锥的外接球问题,分割补形法,长方体的体对角线公式,球的表面积公式,属基础题.16.【答案】【解析】解:根据新定义,作出的图象如下:要使的图象上恰有3对点关于原点对称,则与的图象恰有3个交点,由图象可得,解得,即实数a的取值范围是故答案为:根据新定义,作出的图象,结合图象即可求解.本题主要考查分段函数及其应用,考查数形结合思想与运算求解能力,属于中档题.17.【答案】解:方案一:选择条件①由题意,当时,,当时,,当时,也满足上式,,方案二:选择条件②由题意,设等差数列的公差为d,则,解得,,方案三:选择条件③由题意,设等差数列的公差为d,则,解得,,由可得,,故【解析】在选择条件①的情况下根据题干已知条件并结合公式即可计算出数列的通项公式;在选择条件②的情况下先设等差数列的公差为d,再结合等差数列的通项公式列出关于公差d的方程,解出d的值,即可计算出数列的通项公式;在选择条件③的情况下先设等差数列的公差为d,再结合等差数列的前n项和公式列出关于公差d的方程,解出d的值,即可计算出数列的通项公式.先根据第题的结果计算出数列的通项公式,再运用裂项相消法即可计算出前n项和本题主要考查数列求通项公式,以及运用裂项相消法求前n项和问题.考查了方程思想,转化与化归思想,分类讨论,等差数列通项公式与求和公式的运用,以及逻辑推理能力和数学运算能力,属中档题.18.【答案】解:由频率分布直方图可得,,解得由图可知,成绩在与的学生比例为2:1,所以从全校成绩在80分及以上的学生中抽取1人,成绩在的概率为,抽取3人,成绩在中的人数为X,,则,的分布列如下:X0123P【解析】根据频率分布直方图中各矩形面积之和等于1,即可求得a的值;确定随机变量X服从于二项分布,根据二项分布的概率计算以及期望公式,即可求得答案.本题主要考查离散型随机变量的分布列及期望,是中档题.19.【答案】解:证明:,平面CDF,平面CDF,平面CDF,四边形ACFE为矩形,,平面CDF,平面CDF,平面CDF,,平面ABE,平面ABE,平面平面易知AB,AD,AE两两相互垂直,以点A为原点,AB,AD,AE所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则,,,,,,,,设平面BEF的法向量为,,且,,取,可得,直线AD与平面BEF所成角的正弦值为【解析】可知,,从而得出平面CDF,平面CDF,从而根据面面平行的判定定理即可得出平面平面CDF;可以A为原点,AB,AD,AE所在的直线分别为x,y,z轴,建立空间直角坐标系,然后可得出,,的坐标,然后设平面BEF的法向量,根据即可求出的坐标,然后根据向量夹角的余弦公式可求出,然后即可得出直线AD 与平面BEF所成角的正弦值.本题考查了线面平行和面面平行的判定定理,通过建立坐标系,利用向量求线面角的正弦值的方法,向量垂直的充要条件,向量坐标的数量积运算,考查了计算能力,属于基础题.20.【答案】解:由椭圆E:的一个焦点为,可得半焦距,又椭圆的离心率为,,则,,椭圆E的方程为由得椭圆E的方程为,由题意得直线AB的方程为,即,联立消去y得,设,,则四边形OACB是平行四边形,设,则,即,,又,即,解得【解析】由题意易求c,a,从而可求椭圆E的方程;联立直线与椭圆方程可得进而可得,求解即可.本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,属中档题.21.【答案】解:,因为,所以当时,,单调递减;当时,,单调递增,所以,当,即时,的零点个数为0,当,即时,的零点个数为1,当,即时,注意到,因为,所以,因此,,使得,所以此时的零点个数为2,综上,当时,的零点个数为0;当时,的零点个数为1;当时,的零点个数为2;证明:由可知,当时,函数有两个零点,且,令,则,当时,,所以在区间上单调递增,所以,所以,因为,所以,又由可知,在区间上单调递增,所以,故【解析】由题意当时,单调递减;当时,单调递增,得,分,,三种情况,讨论得到的零点个数;由可知,当时,函数有两个零点,且,令,求导后利用单调性即可得证.本题考查了导数的综合应用,属于中档题.22.【答案】解:圆C的极坐标方程为,所以,根据得直角坐标方程为所以圆的半径为直线l的极坐标方程为所以,整理得,所以,所以由于为等腰三角形.所以弦AB上的高,所以【解析】利用极坐标与直角坐标的互化,转化求解即可.利用弦长公式求解,然后求解圆的圆心到直线的距离,即可求解三角形的面积.本题考查极坐标与坐标坐标的互化,直线与圆的位置关系的应用,考查分析问题解决问题的能力,是中档题.23.【答案】解:因为函数,所以不等式可化为或或,解得或或,即或,所以不等式的解集为证明:由知时,,时,,时,,所以,所以所以,所以,所以,当且仅当时取等号,所以【解析】利用分段讨论法去掉绝对值,再求不等式的解集.求出,化简,利用基本不等式求出的最小值即可.本题考查了含有绝对值的不等式解法与应用问题,也考查了基本不等式的应用问题,是中档题.。
2018年高考考点完全题数学(文)考点通关练习题第五章不等式、推理与证明、算法初步与复数34Word版含答案
考点测试34 二元一次不等式组与简单的线性规划一、基础小题1.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A .32 B .23 C .43 D .34答案 C解析 不等式组表示的平面区域如图阴影部分所示,即△ABC .由⎩⎪⎨⎪⎧x +3y =4,3x +y =4,得交点A 的坐标为(1,1).又B 、C 两点的坐标分别为(0,4),⎝ ⎛⎭⎪⎫0,43,故S △ABC =12·|BC |·|x A |=12×⎝ ⎛⎭⎪⎫4-43×1=43,故选C.2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x ≤2,x -y ≥0,则x +3y 的最大值是( )A .2B .3C .4D .5答案 D解析 作出不等式组表示的可行域,如图(阴影部分),易知z =x +3y 过点B (2,1)时取得最大值,z max =2+3×1=5.故选D.3.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -7≤0,x ≥1,y ≥1,则|y -x |的最大值是( )A .2 2B .322C .4D .3答案 D解析 画出不等式组表示的平面区域(如图),计算得A (1,2),B (4,1),当直线z =x -y 过点A 时z min =-1,过点B 时z max =3,则-1≤x -y ≤3,则|y -x |≤3.4.若点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,y ≤-x +4,则x 2+y 2的最大值为( )A .10B .8C .16D .10答案 D解析 画出不等式组对应的可行域如图所示,易得A (1,1),|OA |=2,B (2,2),|OB |=22,C (1,3),|OC |=10,故|OP |的最大值为10,即x 2+y 2的最大值等于10.故选D.5.若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的取值范围是( )A .(0,2)B .(0,2]C .(2,+∞)D . B .(22,32] C .(32,25] D .(0,22)∪(25,+∞)答案 D解析 圆C 不经过区域D 有两种情况:①区域D 在圆外;②区域D 在圆内.由于不等式组中的一个不等式对应的直线y =x 正好经过圆的圆心,故利用圆的性质即可求解出r 的取值范围.作出不等式组⎩⎪⎨⎪⎧x +y ≤4,y -x ≥0,x -1≥0表示的平面区域,得到如图所示的△MNP 及其内部,其中M (1,1),N (2,2),P (1,3),且MN ⊥PN .∵圆C :(x +1)2+(y +1)2=r 2(r >0)表示以C (-1,-1)为圆心,r 为半径的圆.∴由图可得,当半径满足r <CM 或r >CP 时,圆C 不经过区域D 上的点.又∵CM =+2++2=22,CP =+2++2=25,∴当0<r <22或r >25时,圆C 不经过区域D 上的点.12.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.答案 92解析 目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92.二、高考小题13.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12答案 C解析 作出不等式组所表示的平面区域,如图(阴影部分)所示,x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A (3,-1)到原点的距离最大,所以x 2+y 2的最大值是10,故选C.14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 作出可行域如图.由⎩⎪⎨⎪⎧ 2x -y -3=0,x +y -3=0,得A (2,1),由⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0,得B (1,2).斜率为1的平行直线l 1,l 2分别过A ,B 两点时它们之间的距离最小,且最小值为A 、B 两点之间的距离|AB |= 2.故选B.15.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________. 答案 -10解析 可行域如图所示(包括边界),直线2x -y +1=0与x -2y -1=0相交于点(-1,-1),当目标函数线过(-1,-1)时,z 取最小值,z min =-10.16.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0,则z =3x +y 的最大值为________.答案 4解析 由线性约束条件画出可行域,如图.解方程组⎩⎪⎨⎪⎧x +y -2=0,x -2y +1=0,得⎩⎪⎨⎪⎧x =1,y =1,即A 点坐标为(1,1).当动直线3x +y -z =0经过点A (1,1)时,z 取得最大值,z max =3×1+1=4.17.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.答案 216000解析 设生产产品A x 件,产品B y 件,依题意,得⎩⎪⎨⎪⎧x ≥0,y ≥0,1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,设生产产品A ,产品B 的利润之和为E 元,则E =2100x+900y .画出可行域(图略),易知最优解为⎩⎪⎨⎪⎧x =60,y =100,此时E max =216000.18.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤1,32解析 作出题中线性规划条件满足的可行域如图阴影部分所示,令z =ax +y ,即y =-ax +z .作直线l 0:y =-ax ,平移l 0,最优解可在A (1,0),B (2,1),C ⎝⎛⎭⎪⎫1,32处取得.故由1≤z ≤4恒成立,可得⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.三、模拟小题19.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1C .32D .2答案 B解析 约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m表示的可行域如图中阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的虚线位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x得A 点坐标为(1,2),∴m 的最大值是1,故选B.20.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0.则z =2x -2y -1的取值范围是( )A .⎣⎢⎡⎦⎥⎤53,5B .C .⎣⎢⎡⎭⎪⎫53,5 D .⎣⎢⎡⎭⎪⎫-53,5 答案 D解析 画出不等式组所表示的区域,如图阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是⎣⎢⎡⎭⎪⎫-53,5.21.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43答案D解析 作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1、l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3).故选D.22.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(1,1)处取得最大值,则a 的取值范围为( )A .(0,2)B .⎝ ⎛⎭⎪⎫0,12C .⎝ ⎛⎭⎪⎫0,13 D .⎝ ⎛⎭⎪⎫13,12 答案 B解析 约束条件表示的可行域如图中阴影部分所示,作直线l :ax +y =0,过点(1,1)作l 的平行线l ′,要满足题意,则直线l ′的斜率介于直线x +2y -3=0与直线y =1的斜率之间,因此,-12<-a <0,即0<a <12.故选B.23.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,4x +3y -12≤0,y -2≥0,则z =2x -y +1x +1的最大值为( )A .54 B .45 C .916 D .12答案 B解析 因为z =2x -y +1x +1=2x +2-y -1x +1=2-y +1x +1,所以要求z 的最大值,只需求u =y +1x +1的最小值,画出可行域(图略)可知,使u =y +1x +1取得最小值的最优解为⎝ ⎛⎭⎪⎫32,2,代入z=2x -y +1x +1,可求得z 的最大值为45,故选B.24.一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是( )A .16B .18C .20D .36答案 C解析 平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为⎝⎛⎭⎪⎫32,0,也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20,故选C.一、高考大题1.某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧4x +5y ≤200,8x +5y ≤360,3x +10y ≤300,x ≥0,y ≥0.该二元一次不等式组所表示的平面区域为图1中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-23x +z 3,这是斜率为-23,随z 变化的一族平行直线.z 3为直线在y 轴上的截距,当z3取最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线z =2x +3y 经过可行域上的点M 时,截距z3最大,即z 最大.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得点M 的坐标为(20,24).所以z max =2×20+3×24=112.所以生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元. 二、模拟大题2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).3.为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知:甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP 260万元;乙项目每投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP 200万元.已知该地为甲、乙两项目最多可投资3000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP 最大?解 设甲项目投资x (单位:百万元), 乙项目投资y (单位:百万元), 两项目增加的GDP 为z =260x +200y ,依题意,x 、y 满足⎩⎪⎨⎪⎧x +y ≤30,2x +4y ≤100,24x +32y ≥800,x ≥0,y ≥0,所确定的平面区域如图中阴影部分.解⎩⎪⎨⎪⎧x +y =30,2x +4y =100,得⎩⎪⎨⎪⎧x =10,y =20,即A (10,20);解⎩⎪⎨⎪⎧x +y =30,24x +32y =800,得⎩⎪⎨⎪⎧x =20,y =10,即B (20,10).设z =0,得y =-1.3x ,将直线y =-1.3x 平移至经过点B (20,10),即甲项目投资2000万元,乙项目投资1000万元,两项目增加的GDP最大.。
2020届高考数学理一轮(新课标通用)考点测试:35 二元一次不等式组与简单的线性规划 Word版含解析
考点测试35 二元一次不等式组与简单的线性规划高考概览本考点是高考必考知识点,常考题型为选择题、填空题,分值5分,中等难度考纲研读1.会从实际情境中抽象出二元一次不等式组2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组 3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决一、基础小题1.不等式y (x +y -2)≥0在平面直角坐标系中表示的区域(用阴影部分表示)是( )答案 C解析 由y (x +y -2)≥0,得⎩⎨⎧y ≥0,x +y -2≥0或⎩⎨⎧y ≤0,x +y -2≤0,所以不等式y (x +y -2)≥0在平面直角坐标系中表示的区域是C 项.2.已知点A (-3,-1)与点B (4,-6)在直线3x -2y -a =0的两侧,则实数a的取值范围是( )A .(-24,7)B .(-7,24)C .(-∞,-24)∪(7,+∞)D .(-∞,-7)∪(24,+∞) 答案 B解析 (-9+2-a )(12+12-a )<0,所以-7<a <24.故选B .3.若实数x ,y 满足不等式组⎩⎨⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3B .52 C .2 D .22 答案 C解析 因为直线x -y =-1与x +y =1互相垂直,所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故|AB |=2,|AC |=22,所以其面积为12×|AB |×|AC |=2.4.若变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -y ≥0,3x +y -4≤0,则3x +2y 的最大值是( )A .0B .2C .5D .6 答案 C解析 作不等式组的可行域,如图:令z =3x +2y ,则y =-32x +z 2表示一系列平行于y =-32x 的直线,并且z2表示该直线的纵截距.显然,把直线y =-32x 平移至点A 处,z 最大.由⎩⎨⎧x -y =0,3x +y -4=0得A (1,1).所以z max =3x +2y =3+2=5.故选C .5.已知点(a ,b )是平面区域⎩⎨⎧x +y -2≤0,x ≥0,y ≥-1内的任意一点,则3a -b 的最小值为( )A .-3B .-2C .-1D .0 答案 B解析 根据题意可知(a ,b )在如图阴影中,设z =3a -b .则b =3a -z ,所以-z 可以理解为y =3x +t 中的纵截距t .因而当y =3x +t 过点(0,2)时,t 最大为2.即-z 最大为2,所以z 最小为-2.6.若x ,y 满足约束条件⎩⎨⎧x ≥0,x -y ≤0,x +y -1≥0,则z =x +3y 的取值范围是( )A .(-∞,2]B .[2,3]C .[3,+∞)D .[2,+∞) 答案 D解析 作不等式组表示的平面区域,如图.平移直线x +3y =0到点A 时,z 取得最小值,由⎩⎨⎧x -y =0,x +y -1=0,解得点A 12,12,所以z min =12+32=2,无最大值.故选D .7.在如图所示的平面区域内有A (5,3),B (1,1),C (1,5)三点,若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则实数a 的值是( )A .23B .12 C .2 D .32 答案 B解析 由题意知,当z =ax +y 与直线AC 重合时最优解有无穷多个.因为k AC =-12,所以-a =-12,即a =12.故选B .8.已知实数x ,y 满足约束条件⎩⎨⎧x +3y -7≤0,x ≥1,y ≥1,则|y -x |的最大值是( )A .2 2B .322 C .4 D .3 答案 D解析画出不等式组表示的平面区域(如图),计算得A (1,2),B (4,1),当直线z =x -y 过点A 时z min =-1,过点B 时z max =3,则-1≤x -y ≤3,则|y -x |≤3.9.不等式组⎩⎨⎧x >0,y >0,2x +y <6所表示的平面区域内的整点个数为( )A .2B .3C .4D .5答案 C解析 由不等式2x +y <6,得y <6-2x ,且x >0,y >0,则当x =1时,0<y <4,则y =1,2,3,此时整点有(1,1),(1,2),(1,3);当x =2时,0<y <2,则y =1,此时整点有(2,1);当x =3时,y 无解.故平面区域内的整点个数为4.故选C .10.某蔬菜收购点租用车辆,将100吨新鲜黄瓜运往某市销售,可供租用的卡车和农用车分别为10辆和20辆.若每辆卡车载重8吨,运费960元,每辆农用车载重2.5吨,运费360元,则蔬菜收购点运完全部黄瓜支出的最低运费为( )A .11280元B .12480元C .10280元D .11480元 答案 B解析 设租用的卡车和农用车分别为x 辆和y 辆,运完全部黄瓜支出的运费为z 元,则⎩⎪⎨⎪⎧0≤x ≤10,0≤y ≤20,8x +2.5y ≥100,x ∈N *,y ∈N *,目标函数z =960x +360y ,此不等式组表示的可行域是△ABC (其中A (10,8),B (10,20),C (6.25,20))内横坐标和纵坐标均为整数的点.当直线l :z =960x +360y 经过点A (10,8)时,运费最低,且其最低运费z min =960×10+360×8=12480(元),选B .11.设不等式组⎩⎨⎧3x +y ≥10,x +3y ≤6表示的平面区域为D ,若在区域D 上存在函数y =log a x (a >1)的图象上的点,则实数a 的取值范围是( )A .(3,+∞)B .(1,3)C .[3,+∞)D .(1,3]答案 C解析 作不等式组⎩⎨⎧3x +y ≥10,x +3y ≤6表示的平面区域D ,如图中阴影部分所示.由⎩⎨⎧3x +y =10,x +3y =6,解得点A (3,1). 由a >1,对数函数的图象经过可行域,此时满足log a 3≤1,解得a ≥3,所以实数a 的取值范围是[3,+∞),故选C .12.已知实数x ,y 满足⎩⎨⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.答案 92解析目标函数w =x 2+y 2-4x -4y +8=(x -2)2+(y -2)2,其几何意义是点(2,2)与可行域内的点的距离的平方.由实数x ,y 所满足的不等式组作出可行域如图中阴影部分所示,由图可知,点(2,2)到直线x +y -1=0的距离为其到可行域内点的距离的最小值,又|2+2-1|2=322,所以w min =92. 二、高考小题13.(2018·天津高考)设变量x ,y 满足约束条件⎩⎨⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45 答案 C解析 由变量x ,y 满足的约束条件画出可行域(如图中阴影部分所示). 作出基本直线l 0:3x +5y =0,平移直线l 0,当直线经过点A (2,3)时,z 取最大值,即z max =3×2+5×3=21.故选C .14.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________. 答案 9解析 不等式组表示的可行域是以A (5,4),B (1,2),C (5,0)为顶点的三角形区域,如图所示,由图可知目标函数z =x +y 的最大值在顶点A 处取得,即当x =5,y =4时,z max =9.15.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________. 答案 6解析 根据题中所给的约束条件,画出其对应的可行域,如图所示:由z =3x +2y 可得y =-32x +12z ,画出直线y =-32x ,将其上下移动,结合z2的几何意义,可知当直线过点B 时,z 取得最大值,由⎩⎨⎧x -2y -2=0,y =0,解得B (2,0),此时z max =3×2+0=6.16.(2018·全国卷Ⅲ)若变量x ,y 满足约束条件⎩⎨⎧2x +y +3≥0,x -2y +4≥0,x -2≤0,则z =x +13y的最大值是________.答案 3解析 作出可行域如图阴影部分.由图可知目标函数在直线x -2y +4=0与x =2的交点(2,3)处取得最大值3.17.(2018·浙江高考)若x ,y 满足约束条件⎩⎨⎧x -y ≥0,2x +y ≤6,x +y ≥2,则z =x +3y 的最小值是________,最大值是________.答案 -2 8解析 由约束条件得可行域是以A (1,1),B (2,2),C (4,-2)为顶点的三角形区域(含边界),如图.当直线y =-13x +z3过点C (4,-2)时,z =x +3y 取得最小值-2,过点B (2,2)时,z =x +3y 取得最大值8.18.(2018·北京高考)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是________. 答案 3解析 由x +1≤y ≤2x 作出可行域,如图中阴影部分所示.设z =2y -x ,则y =12x +12z ,当直线y =12x +12z 过A (1,2)时,z 取得最小值3.三、模拟小题19.(2018·山西太原模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .53,5 B .[0,5]C .53,5D .-53,5 答案 D解析 作出不等式组表示的可行域,如图阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是-53,5.20.(2018·南昌一模)设不等式组⎩⎨⎧x +y -3≥0,x -y +1≥0,3x -y -5≤0表示的平面区域为M ,若直线y =kx 经过区域M 内的点,则实数k 的取值范围为( )A .12,2B .12,43C .12,2D .43,2 答案 C解析 作不等式组表示的平面区域,如图阴影部分所示:由⎩⎨⎧ x +y -3=0,x -y +1=0得A (1,2),由⎩⎨⎧x +y -3=0,3x -y -5=0得B (2,1),平面区域M 即为图中阴影部分△ABC ,直线y =kx 经过区域M 内的点A 时,k =2,直线y =kx 经过区域M 内的点B 时,k =12,故12≤k ≤2,故选C .21.(2018·长沙统考)已知x ,y 满足约束条件⎩⎨⎧x -y ≥0,2x +3y ≤4,y ≥0,若z =ax +y 的最大值为4,则a =( ) A .2 B .12 C .-2 D .-12 答案 A解析作不等式组表示的平面区域如图.当直线l :y =-ax +z 经过△AOB 区域时,l 在y 轴上的最大截距为4,则点B (2,0)为最优解,所以z =2a =4,即a =2,故选A .22.(2018·太原模拟)已知不等式ax -2by ≤2在平面区域{(x ,y )||x |≤1且|y |≤1}上恒成立,则动点P (a ,b )所形成平面区域的面积为( )A .4B .8C .16D .32 答案 A解析 作平面区域{(x ,y )||x |≤1且|y |≤1},如图1所示.该平面区域表示正方形ABCD 内部(含边界).令z =ax -2by ,因为ax -2by ≤2恒成立,则函数z =ax -2by 在该平面区域要求的条件下,z max =2恒成立.当直线ax -2by -z =0过点A (-1,1)或B (1,1)或C (1,-1)或D (-1,-1)时,有⎩⎨⎧-a -2b ≤2,a -2b ≤2,a +2b ≤2,-a +2b ≤2,再作该不等式组表示的可行域,即菱形EFGH 内部(含边界).如图2所示.其中H (-2,0),F (2,0),E (0,1),G (0,-1),所以动点P (a ,b )所形成平面区域的面积为12×4×2=4.故选A .23.(2018·湖北八市联考)已知x ,y 满足⎩⎨⎧y ≥x ,x +y ≤2,2x -y ≥m .若z =x +2y 有最大值4,则实数m 的值为( )A .-4B .-2C .-1D .1 答案 B解析 可行域所表示区域为三条直线所封闭的三角形区域(含边界),如图阴影部分所示.依题意,有直线y =-12x +z 2的纵截距z2有最大值2,则结合图形可知需满足直线2x -y =m 过点(0,2),从而m =2×0-2=-2,故选B .24.(2018·河北石家庄质检)在平面直角坐标系中,不等式组⎩⎨⎧x +y ≤0,x -y ≤0,x 2+y 2≤r 2(r为常数)表示的平面区域的面积为π,若x ,y 满足上述约束条件,则z =x +y +1x +3的最小值为( )A .-1B .-52+17 C .13 D .-75 答案 D解析 作出不等式组表示的平面区域,如图所示,由题意知14πr 2=π,解得r =2.z =x +y +1x +3=1+y -2x +3,易知y -2x +3表示可行域内的点(x ,y )与点P (-3,2)的连线的斜率,由图可知当点(x ,y )与点P 的连线与圆x 2+y 2=r 2相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍),所以z min =1-125=-75.故选D .25.(2018·河北石家庄质检)设变量x ,y 满足约束条件⎩⎨⎧x -3≤0,x +y ≥3,y -2≤0,则y +1x 的最大值为________.答案 3解析 题设中的约束条件如图中阴影部分所表示的区域,则y +1x 表示可行域内点P (x ,y )与B (0,-1)的连线的斜率,由图知,当P 位于A (1,2)时,y +1x 取得最大值2+11=3.26.(2018·福州模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两个工种,已知生产一把椅子需要木工4个工作时,漆工2个工作时;生产一张桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1500元,生产一张桌子的利润为2000元,该厂每个月木工最多完成8000个工作时,漆工最多完成1300个工作时,根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.答案 2100000解析 依题意,设每个月生产x 把椅子、y 张桌子,那么利润t =1500x +2000y .其中x ,y 满足约束条件⎩⎨⎧x ≥0,y ≥0,x ,y ∈N *,4x +8y ≤8000,2x +y ≤1300,可行域如图中阴影部分所示,对于不同的t 值,t =1500x +2000y 表示一组斜率为-34的平行线,且t 越大,相应的直线位置越高;t 越小,相应的直线位置越低.依题意,要求t 的最大值,需把直线t =1500x +2000y 尽量地往上平移,又考虑到x ,y 的允许范围,显然当直线通过点B 时,处在这组平行线的最高位置,此时t 取最大值.由⎩⎨⎧4x +8y =8000,2x +y =1300,得点B (200,900),从而t max =1500×200+2000×900=2100000(元),即生产200把椅子、900张桌子可获得最大利润2100000元.一、高考大题1.(2017·天津高考)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解 (1)由已知,x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,x ∈N ,y ≥0,y ∈N ,该二元一次不等式组所表示的平面区域为图①中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z 25为直线在y 轴上的截距,当z25取得最大值时,z 的值就最大.又因为x ,y 满足约束条件,所以由图②可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎨⎧ 7x +6y =60,x -2y =0,得⎩⎨⎧x =6,y =3,则点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时,才能使总收视人次最多.二、模拟大题2.(2018·广东佛山月考)若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2.(1)求目标函数z =12x -y +12的最值;(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1.∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).3.(2018·福建泉州质检)画出不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x ,y 的取值范围; (2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合.x +y ≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合.所以,不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示. 结合图中可行域得x ∈⎣⎢⎡⎦⎥⎤-52,3,y ∈[-3,8]. (2)由图形及不等式组知⎩⎨⎧-x ≤y ≤x +5,-2≤x ≤3,且x ∈Z .当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点.所以平面区域内的整点共有2+4+6+8+10+12=42(个).。
线性规划问题
界,特殊点定域”的方法.
(1)直线定界,即不等式不含等号,则应把直线画成虚
线;若不等式含有等号,把直线画成实线. (2)特殊点定域,即在直线A x+ B y + C=0的某一侧取一
个特殊点(x0,y0)作为测试点代入不等式检验,若满足不等
式,则表示的就是包括该点的这一侧,否则就表示直线的另 一侧. 特别地,当C≠0时,常把原点作为测试点;当C=0时,
由此可知,二元一次不等式Ax + By + C>0在平面直角
坐标系中表示直线Ax + By + C=0某一侧所有点组成的平面 区域.我们把直线画成虚线以表示区域不含边界直线.当我们 在坐标系中画不等式Ax + By + C≥0所表示的平面区域时, 此区域应包括边界直线,则把边界直线画成实线. 由于对在直线Ax + By + C=0同一侧的所有点(x , y),把 它的坐标(x , y)代入Ax + By + C,所得到的实数的符号都相 同,所以只需在此直线的某一侧取一个特殊点(x0 ,y0),从
△ABC 由x+3y=4并3x+y=4得A(1,1),又 B(0,4),C(0, 4/3) ∴S△ABC =1/2×(4-4/3)×1=4/3, 设y=kx+4/3与 3x+y=4的交点为D,则由S△BCD=(1/2 ) S△ABC =2/3知xD=1/2, ∴yD=5/2. ∴5/2=k×1/2+4/3,k=7/3 选A.
x+4y<4表示的平面区域内,即不等式x+4y<4表示的区域如 下图:
变式探究
1.(2008年湖北卷)在平面直角坐标系x O y中,满足不等式
第39讲 二元一次不等式(组)与简单的线性规划问题
第39讲 二元一次不等式(组)与简单的线性规划问题夯实基础 【p 89】【学习目标】会从实际情境中抽象出二元一次不等式组,了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【基础检测】1.不等式组⎩⎪⎨⎪⎧x ≤1,x -y +1≥0所表示的平面区域是( )【解析】不等式组⎩⎪⎨⎪⎧x ≤1,x -y +1≥0所表示的平面区域在直线x =1的左边,在直线y =x +1的右下方,故选A.【答案】A2.若实数x ,y 满足不等式组⎩⎨⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是( )A .3 B.52C .2D .22【解析】因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3), 故|AB|=2,|AC|=22,其面积为12×|AB|×|AC|=2.【答案】C3.若变量x ,y 满足约束条件⎩⎨⎧x +2y ≤8,0≤x ≤4,0≤y ≤3,则z =x +y 的最大值为________.【解析】如图所示,当直线l :y =-x +z 过C (4,2)时,x +y 有最大值,最大值为6.【答案】64.某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元.【解析】设每天安排生产x 个遥控小车模型,y 个遥控飞机模型,则生产(30-x -y )个遥控火车模型,依题意得,实数x ,y 满足线性约束条件⎩⎪⎨⎪⎧10x +12y +8(30-x -y )≤320,30-x -y ≥0,x ≥0,y ≥0,目标函数为z =160x +180y +120(30-x -y ),化简得⎩⎪⎨⎪⎧x +2y ≤40,x +y ≤30,x ≥0,y ≥0,z =40x +60y +3 600,作出不等式组⎩⎪⎨⎪⎧x +2y ≤40,x +y ≤30,x ≥0,y ≥0,表示的可行域(如图所示):作直线l 0:y =-23x -60,将直线l 0向右上方平移过点P 时,直线在y 轴上的截距最大,由⎩⎨⎧x +2y =40,x +y =30,得⎩⎨⎧x =20,y =10,所以P (20,10), 此时z max =40×20+60×10+3 600=5 000(元). 【答案】5 000 【知识要点】 1.基本概念(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是__1__的不等式称为二元一次不等式.(2)二元一次不等式组:由几个二元一次不等式组成的不等式组称为二元一次不等式组. (3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成的有序数对(x ,y),所有这样的有序数对(x ,y)构成的集合称为二元一次不等式(组)的解集.2.二元一次不等式(组)表示的平面区域(1)在平面直角坐标系中,平面内的所有点都被直线Ax +By +C =0分成三类: 第一类:在直线Ax +By +C =0上的点;第二类:在直线Ax +By +C =0上方区域内的点; 第三类:在直线Ax +By +C =0下方区域内的点.Ax +By +C >0(<0):表示直线l :Ax +By +C =0某一侧所有点组成的平面区域,直线l 应画成__虚线__.Ax +By +C ≥0(≤0):表示直线l :Ax +By +C =0某一侧含边界直线上的所有点组成的平面区域,直线l 应画成__实线__.(2)对于直线Ax +By +C =0同一侧的所有点,把它的坐标(x ,y)代入Ax +By +C ,所得符号都相同,因此只需在直线Ax +By +C =0的同一侧取某个特殊点(x 0,y 0)作为测试点,由Ax 0+By 0+C 的符号就可以断定Ax +By +C>0表示的是直线Ax +By +C =0哪一侧的平面区域.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的__交集__.3.线性规划中的基本概念(1)约束条件:由x ,y 的不等式(或方程)组成的不等式组.(2)线性约束条件:由x ,y 的一次不等式(或方程)组成的不等式组. (3)目标函数:__关于x ,y 的函数的解析式__,如z =2x +6y 等. (4)线性目标函数:关于x ,y 的一次解析式. (5)可行解:满足线性约束条件的解(x ,y). (6)可行域:所有可行解组成的集合.(7)最优解:使目标函数取得__最大值或最小值__的可行解.(8)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题,统称为__线性规划问题__.4.常见简单的二元线性规划实际问题一是在人力、物力、资金等资源一定的条件下,如何使用它们完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.解线性规划问题的一般步骤:审题、设元——__列出约束条件__(通常为不等式组)——建立__目标函数__——作出__可行域__——求__最优解__.典 例 剖 析 【p 90】考点1 平面区域的确定与应用例1(1)变量x ,y 满足⎩⎨⎧5x +2y -18≤0,2x -y ≥0,x +y -3≥0,若直线kx -y +2=0经过该可行域,则k 的最大值为( )A .1B .2C .3D .4【解析】直线kx -y +2=0过定点(0,2),作可行域如图所示(阴影部分),由⎩⎪⎨⎪⎧5x +2y -18=0,2x -y =0得B (2,4). 当定点(0,2)和B 点连接时,斜率最大,此时k =4-22-0=1, 则k 的最大值为1. 故选A. 【答案】A(2)若不等式组⎩⎪⎨⎪⎧x -y>0,3x +y<3,x +y>a表示一个三角形内部的区域,则实数a 的取值范围是( )A.⎝⎛⎭⎫34,+∞B.⎝⎛⎭⎫32,+∞ C.⎝⎛⎭⎫-∞,34 D.⎝⎛⎭⎫-∞,32 【解析】不等式组⎩⎪⎨⎪⎧x -y>0,3x +y<3表示的平面区域如图:由⎩⎪⎨⎪⎧x -y =0,3x +y =3解得x =y =34,即A ⎝⎛⎭⎫34,34, 由图可知,a <34+34=32.故实数a 的取值范围是a <32.故选D. 【答案】D【小结】利用几何意义求解的平面区域问题,应作出平面图形,利用数形结合的方法去求解.考点2 简单线性与非线性规划问题例2若变量x ,y 满足约束条件⎩⎨⎧x +y -2≥0,3x -y ≤6,x -y ≥0,求:(1)z =x -2y +3的最大值;(2)z =y +2x +3的取值范围;(3)z =x 2+y 2-2x -y +1的取值范围.【解析】作出可行域,如图阴影部分所示.由⎩⎪⎨⎪⎧x +y -2=0,3x -y =6⇒⎩⎪⎨⎪⎧x =2,y =0即A (2,0), 由⎩⎪⎨⎪⎧x +y -2=0,x -y =0⇒⎩⎪⎨⎪⎧x =1,y =1即B (1,1), 由⎩⎪⎨⎪⎧3x -y =6,x -y =0⇒⎩⎪⎨⎪⎧x =3,y =3即C (3,3). (1)由图可知z =x -2y +3在点A (2,0)处取得最大值,z max =5.(2)z =y +2x +3可看作(x ,y )与(-3,-2)连线的斜率的取值范围,在点A (2,0),C (3,3)处取得最优解,z min =0+22+3=25,z max =3+23+3=56.所以z ∈⎣⎡⎦⎤25,56.(3)z =x 2+y 2-2x -y +1=(x -1)2+⎝⎛⎭⎫y -122-14,(x -1)2+⎝⎛⎭⎫y -122可看作点(x ,y )与点⎝⎛⎭⎫1,12距离的平方, 由图可知d min =⎪⎪⎪⎪1+12-22=122.所以z min =d 2min -14=18-14=-18. 在点C (3,3)处取得最大值,z max =(3-1)2+⎝⎛⎭⎫3-122-14=10.所以z ∈⎣⎡⎦⎤-18,10. 【小结】(1)求线性目标函数的最大值或最小值,必须先求出准确的可行域,令目标函数等于0.将其对应的直线平行移动,最先通过或最后通过的顶点便是最优解.(2)求非线性目标函数的最大值或最小值,充分理解目标函数并将目标函数赋予几何意义,如截距、点到直线的距离、过已知点的直线斜率等是本例求解的关键和切入点.考点3 含参数的简单线性规划问题例3(1)已知实数x ,y 满足约束条件⎩⎨⎧x ≥2,x -2y +4≥0,2x -y -4≤0,若z =kx +y 的最大值为13,则实数k =( )A .2 B.132 C.94D .5【解析】可行域为一个三角形ABC 及其内部,其中A (2,3),B (2,0),C (4,4),当-k>0时,2k +3=13,k =5(舍);或4k +4=13,k =94(舍),当-k<0时,4k +4=13,k =94,选C.【答案】C(2)已知x ,y 满足约束条件⎩⎨⎧x +y -4≤0,x -2y -4≤0,2x -y +4≥0,若z =ax -y 取得最大值的最优解不唯一...,则实数a 的值为( )A .-1B .2 C.12D .2或-1【解析】作出不等式组对应的平面区域如图阴影部分所示. 由z =ax -y 得y =ax -z ,即直线的截距最小,z 最大.若a =0,此时y =-z ,此时,目标函数只在B 处取得最大值,不满足条件;若a>0,目标函数y =ax -z 的斜率k =a>0,要使z =ax -y 取得最大值的最优解不唯一,则直线y =ax -z 与直线x -2y -4=0平行,此时a =12;若a<0,不满足,故选C.【答案】C【小结】解决含参数的线性规划问题,要对以下问题高度关注: (1)解题时要看清题目,不能忽视或漏掉参数的范围.(2)对于题目中最值条件的确定至关重要,且不能计算出错,如果不能正确解出最值点坐标,那么代入求解就会出错.考点4 线性规划的应用例4(1)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果甲、乙两种产品每吨可获利润分别为3万元、4万元,A.12万元 B .16C .17万元 D .18万元【解析】设每天生产甲、乙两种产品分别为x ,y 吨,利润为z 万元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为 z =3x +4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域,由z =3x +4y 得y =-34x +z4,平移直线y =-34x +z 4,由图象可知当直线y =-34x +z 4经过点B 时,直线y =-34x +z4的截距最大,此时z 最大,解方程组⎩⎨⎧3x +2y =12,x +2y =8,得⎩⎨⎧x =2,y =3,即B 的坐标为(2,3),∴z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨,3吨,能够产生最大的利润,最大的利润是18万元.【答案】D(2)小明准备用积攒的300元零用钱买一些科普书和文具,作为礼品送给山区的学生.已知科普书每本6元,文具每套10元,并且买的文具的数量不少于科普书的数量,那么最多可以买的科普书与文具的总数是________.【解析】设买科普书x 本与文具y 套,总数为z =x +y.由题意可得⎩⎨⎧6x +10y ≤300,x ≤y (x ,y ∈N ),作出可行域如图中阴影部分所示,将z =x +y 化为y =-x +z ,作出直线y =-x 并平移,使之经过可行域,易知经过点A ⎝⎛⎭⎫754,754时,纵截距最大,但因x ,y 均属于正整数,故取得最大值时的最优解应为(18,19),此时z 最大为37.【答案】37【小结】解线性规划应用问题的一般步骤: (1)分析题意,设出未知量;(2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答. 【能力提升】例5某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP【解析】(1)依题意得⎩⎨甲乙1-P 甲=P 乙-0.05,解得⎩⎨⎧P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为 ⎩⎪⎨⎪⎧4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y. 作出不等式组所表示的平面区域,如图阴影部分,即可行域.作直线l 0:0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,此时z 取得最大值.解方程组⎩⎨⎧x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5. 所以,当x =2,y =3时,z 取最大值为2.5.方 法 总 结 【p 91】1.二元一次不等式(组)表示的平面区域确定的方法二元一次不等式(组)表示的平面区域,有三种方法判定:第一种:若用y)第三种:选特殊点判定(如原点),取一点坐标代入二元一次不等式(组),若成立,则平面区域包括该点,反之,则不包括.2.线性规划问题求解策略(1)解决线性规划问题时,找出约束条件和目标函数是关键,一般步骤如下: ①作:确定约束条件,并在坐标系中作出可行域;②移:由z =ax +by 变形为y =-a b x +z b ,所求z 的最值可以看成是求直线y =-a b x +zb在y 轴上的截距的最值(其中a ,b 是常数,z 随x ,y 的变化而变化),将直线ax +by =0平移,在可行域中观察使zb最大(或最小)时所经过的点;③求:求出取得最大值或最小值的点的坐标,并将其代入目标函数求得最大值和最小值; ④答:写出最后结论.(2)可行域可以是一个一侧开放的平面区域,也可以是一个封闭的多边形,若是一个多边形,目标函数的最优解一般在多边形的某个顶点处取得.(3)若要求的最优解是整数解,而通过图象求得的是非整数解,这时应以与线性目标函数的距离为依据,在直线的附近寻求与此直线最近的整点,或者用“调整优值法”去寻求最优解.走 进 高 考 【p 91】1.(2018·全国卷Ⅰ)若x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z =3x +2y 的最大值为________.【解析】画出可行域,如图中阴影部分所示.作出直线3x +2y =0并平移,结合图象可知, 当平移后的直线经过点B(2,0)时,直线z =3x +2y 在y 轴上的截距最大,z 取最大值,即当⎩⎪⎨⎪⎧x =2,y =0时,z max =3×2+0=6.【答案】6 2.(2018·北京)若x ,y 满足x +1≤y ≤2x ,则2y -x 的最小值是__________.【解析】解法一:由x +1≤y ≤2x 作出可行域如图中阴影部分所示,令z =2y -x ,易知z =2y -x 在点A(1,2)处取得最小值,最小值为3.解法二:由题意知:⎩⎨⎧x -y ≤-1,2x -y ≥0,则2y -x =-3(x -y)+(2x -y)≥3,所以2y -x 的最小值为3.【答案】3。
高考数学一轮复习 课时规范练32 二元一次不等式(组)与简单的线性规划问题 理 北师大版-北师大版高
课时规X练32 二元一次不等式(组)与简单的线性规划问题基础巩固组1.若点(m,1)在不等式2x+3y-5>0所表示的平面区域内,则m的取值X围是()A.m≥1B.m≤1C.m<1D.m>12.(2018某某某某舒城中学仿真(三),3)若x,y满足则z=x+2y的最大值为()A.8B.7C.2D.13.(2018某某阳春一中模拟,4)若实数x,y满足不等式组则z=x2+y2的取值X围是()A.,2B.[0,2]C.D.[0,]4.(2018某某某某高三质监(二),6)已知动点M(x,y)满足线性条件定点N(3,1),则直线MN斜率的最大值为()A.1B.2C.3D.45.(2018某某某某沂水一中三模,11)已知实数x,y满足的取值X围为()A.-3,B.-3,C.-3,D.-6.(2018某某某某四模,6)已知实数x,y满足的取值X围是()A.(0,1)B.(0,1]C.[1,+∞)D.,+∞7.(2018某某某某联考,9)已知实数x,y满足:若目标函数z=ax+y(其中a为常数)仅在处取得最大值,则a的取值X围是()A.(-1,1)B.(-1,0)C.(0,1)D.{-1,1}8.(2018某某某某联考)已知实数x,y满足且(k-1)x-y+k-2≥0恒成立,则实数k的最小值是.9.(2018某某某某质检,15)若直线ax+y=0将平面区域Ω=划分成面积为1∶2的两部分,则实数a的值等于.10.(2018某某红河一模,14)已知则z=2x-y的取值X围是.11.(2018海淀区二模,13)A,B两个居民小区的居委会欲组织本小区的中学生利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:A小区B小区往返车费3元 5元服务老人的人数5人 3人根据安排,去敬老院的往返总车费不能超过37元,且B小区参加献爱心活动的同学比A小区的同学至少多1人,则接受服务的老人最多有人.综合提升组12.(2018某某某某二模,6)已知点P(m,n)在不等式组表示的平面区域内,则实数m 的取值X围是()A.[-5,5]B.[-5,-5]C.[-5,1]D.[-5,1]13.(2018某某某某测试八,5)已知f(x)=x2+ax+b,0≤f(1)≤1,9≤f(-3)≤12,则z=(a+1)2+(b+1)2的最小值为()A. B. C. D.114.(2018某某某某一模,7)已知不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,则动点P(a,b)所形成平面区域的面积为()A.4B.8C.16D.3215.(2018某某某某一联,14)已知平面区域Ω:夹在两条斜率为-2的平行直线之间,则这两条平行直线间的最短距离为.创新应用组16.(2018某某一模,7)设不等式组表示的平面区域为D,若圆C:(x+1)2+y2=r2(r>0)不经过区域D上的点,则r的取值X围为()A.(0,)∪(,+∞)B.(,+∞)C.(0,)D.[]17.(2018某某某某调研,10)若x,y满足|x-1|+2|y+1|≤2,则M=2x2+y2-2x的最小值为()A.-2B.C.4D.-参考答案课时规X练32 二元一次不等式(组)与简单的线性规划问题1.D由2m+3-5>0,得m>1.2.B作出题设约束条件可行域,如图△ABC内部(含边界),作直线l:x+2y=0,把直线l向上平移,z增加,当l过点B(3,2)时,z=3+2×2=7为最大值.故选B.3.B绘制不等式组表示的平面区域如图所示,目标函数表示坐标原点到可行域内点的距离的平方,则目标函数在点(0,0)处取得最小值:z min=02+02=0,目标函数在点A(1,1)处取得最大值:z max=12+12=2,故x2+y2的取值X围是[0,2].故选B.4.C画出线性条件表示的可行域,由可得M(2,-2),由可行域可知当M 取(2,-2)时,直线MN的斜率最大值为=3,故选C.5.A先作出不等式组对应的可行域,如图所示,解方程组得A,2,=表示可行域内的点(x,y)到原点的直线的斜率,所以当点在A点时,斜率最大==,没有最小值,无限接近直线3x+y-6=0的斜率-3,所以的取值X围为-3,.故选A.6.D的几何意义为可行域内的点到原点的距离,画出可行域,根据几何图像中的距离,结合点到直线的距离公式,即可求出X围.根据题意作出可行域:此区域为开放区域,所以距离可以无限大,由图像可知最近距离为原点到直线x+y-1=0的距离,所以由点到直线距离公式可得:最短距离d==.故选D.7.A构造二次函数f(t)=t2-t,由函数的单调性可知,f(x)≤f(y),得到自变量离轴越远函数值越大,故≤-y,且0≤y≤,得到可行域为如图所示,直线斜率为-a,由图像可得到-1<-a<1即-1<a<1.故选A.8.4画出表示的可行域,如图,直线(k-1)x-y+k-2=0过定点(-1,-1),若(k-1)x-y+k-2≥0恒成立,可行域在直线下面,当直线过(0,2)时,k-1有最小值=3,k最小值为4,故答案为4.9.或- 绘制不等式组表示的平面区域如图所示,由题意可知,该平面区域的面积:S=×OB×AC=×1×2=1,直线ax+y=0的斜率为k=-a,当a<0时,如图所示,联立方程组:可得D,,此时S△OCD=×1×=,解得a=,由对称性可知,a=-也满足题意.综上可得:实数a的值等于或-.10.[-6,2]由z=2x-y⇒y=2x-z,则z表示直线y=2x+b在y轴上截距的相反数.如图,易知当直线过点A时直线在y轴上的截距最小为-2,z取最大值为2;当直线过点B时直线在y轴上的截距最大为6,z取最小值为-6.所以,z=2x-y的取值X围是[-6,2].11.35设A,B两小区参加活动同学的人数分别为x,y,受到服务的老人人数为z,则z=5x+3y,且作出可行域,如图平移直线z=5x+3y,由图可知,当直线z=5x+3y过点M(4,5)时,z最大,∴当x=4,y=5时,z取得最大值为35,即接受服务的老人最多有35人,故答案为35.12.C作出约束条件所表示的平面区域,如图所示,由解得A(1,7),且点B(-5,0),又因为点P(m,n)在不等式组所表示的平面区域内,所以实数m的取值X围是[-5,1],故选C.13.B因为0≤f(1)≤1,9≤f(-3)≤12,所以作可行域,则z=(a+1)2+(b+1)2,其几何意义是可行域内点到定点A(-1,-1)距离的平方,其最小值为A到直线x+y+1=0距离的平方,即z min=2=,选B.14.A令z=ax-2by.∵不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,∴函数z=ax-2by在可行域要求的条件下,z max=2恒成立,画出平面区域{(x,y)||x|≤1且|y|≤1},如图所示:当直线ax-2by-z=0过点(1,1)或点(1,-1)或(-1,1)或(-1,-1)时,有:点P(a,b)形成的图形是图中的菱形MNTS.∴所求的面积S=2××4×1=4,故选A.15.画出可行域如下图所示,由图可知,两平行线最短距离为点A(0,2)到直线2x+y-5=0的距离,即d==.16.A作出不等式组表示的平面区域,得到如图的△MNP及其内部,其中M(1,1),N(2,2),P(1,3).∵圆C:(x+1)2+y2=r2(r>0)表示以C(-1,0)为圆心,半径为r的圆,∴由图可得,当半径满足r<CM或r>CP时,圆C不经过区域D上的点,∵CM==,CP==,∴当0<r<或r>时,圆C不经过区域D上的点,故选A.17.D令t=x,+2|y+1|≤2,作出可行域,如图所示.A(,0),B(-,-1),M=t2+y2-t=t-2+y2-表示可行域上的动点到定点,0的距离的平方,然后减去,故其最小值为定点,0到直线AB的距离的平方减去.AB:y=t-,定点,0到直线AB的距离:=,∴M=t2+y2-t=t-2+y2-≥-=-,故选D.。
江西师大附中2024年高三第三次适应性测试数学试题试卷
江西师大附中2024年高三第三次适应性测试数学试题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .252.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122B .112C .102D .923.已知向量a 与向量()4,6m =平行,()5,1b =-,且14a b ⋅=,则a =( ) A .()4,6 B .()4,6-- C .213313,1313⎛⎫⎪⎪⎝⎭ D .213313,1313⎛⎫-- ⎪ ⎪⎝⎭ 4.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x -5.如图,在ABC ∆中,点M ,N 分别为CA ,CB 的中点,若5AB =,1CB =,且满足223AG MB CA CB ⋅=+,则AG AC ⋅等于( )A .2B 5C .23D .836.已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值范围是 A .(,1)-∞- B .(,1]-∞ C .[0,)+∞D .[1,)+∞7.若变量,x y ,满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值为( )A .3B .2C .8113D .108.如图,长方体1111ABCD A B C D -中,1236AB AA ==,112A P PB =,点T 在棱1AA 上,若TP ⊥平面PBC .则1TP B B ⋅=( )A .1B .1-C .2D .2-9.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( )A .0B .2-C .52-D .3-10.已知抛物线C :22y px =(0p >)的焦点为F ,01,2M y ⎛⎫ ⎪⎝⎭为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x =B .24y x =C .26y x =D .28y x =11.要得到函数()sin(3)3f x x π=+的导函数()f x '的图像,只需将()f x 的图像( )A .向右平移3π个单位长度,再把各点的纵坐标伸长到原来的3倍 B .向右平移6π个单位长度,再把各点的纵坐标缩短到原来的13倍 C .向左平移3π个单位长度,再把各点的纵坐标缩短到原来的13倍 D .向左平移6π个单位长度,再把各点的纵坐标伸长到原来的3倍 12.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
【高中数学新人教B版必修5】3.5.1《二元一次不等式(组)与简单的线性规划问题》测试
【高中数学新人教B 版必修5】3.5.1《二元一次不等式(组)与简单的线性规划问题》测试一、选择题1.下列命题正确的是 ( )A .线性规划中最优解指的是使目标函数取得最大值或最小值的变量x 或y 的值B .线性规划中最优解指的是使目标函数的最大值或最小值C .线性规划中最优解指的是使目标函数取得最大值或最小值的可行域D .线性规划中最优解指的是使目标函数取得最大值或最小值的可行解2.如右图所示的阴影部分﹙包括边界﹚对应的二元一次不等式组为 ( )A .⎪⎩⎪⎨⎧≥+-≤≤≤022010y x x y B .⎪⎩⎪⎨⎧≤+-≤≤02201y x x y C .⎩⎨⎧≤+-≤≤02210y x y D .⎩⎨⎧≤+-≤0221y x y 3.已知x 、y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z=2x+4y 的最小值为 ( )A .5B .-6C .10D .-104.某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A .5种B .6种C .7种D .8种二、填空题5.已知1≤x ≤3, -1≤y ≤4,则3x+2y 的取值范围是 。
6.已知10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩且u=x 2+y 2-4x -4y+8,则u 的最小值是 . 7.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .三、解答题8.求满足不等式组⎪⎩⎪⎨⎧>++<++<016340440y x y x x 的整数解(x,y )9.设f(x)=ax 2+bx ,且-1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围。
10.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益 对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下:根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜. 初、高中的教育周期均为三年.根据以上情况,请你合理规划办学规模使年利润最大,最大利润多少万元?参考答案一、选择题1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的线性规划测试(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是( ) A .f (x )>g (x ) B .f (x )=g (x ) C .f (x )<g (x ) D .随x 值的变化而变化解析:选A.因f (x )-g (x )=x 2-2x +2=(x -1)2+1>0,故f (x )>g (x ).2.已知点P (x 0,y 0)和点A (1,2)在直线l :3x +2y -8=0的异侧,则( ) A .3x 0+2y 0>0 B .3x 0+2y 0<0 C .3x 0+2y 0<8 D .3x 0+2y 0>8解析:选D.设f (x ,y )=3x +2y -8,则由题意,得f (x 0,y 0)·f (1,2)<0,得3x 0+2y 0-8>0.3.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C.12D .-12解析:选D.作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A ⎝⎛⎭⎫-2k ,0. 因为z =y -x 的最小值为-4,所以2k=-4,解得k =-12,故选D.4.不等式组⎩⎪⎨⎪⎧-2(x -3)>10,x 2+7x +12≤0的解集为( )A .[-4,-3]B .[-4,-2]C .[-3,-2]D .∅解析:选A.⎩⎪⎨⎪⎧-2(x -3)>10,x 2+7x +12≤0⇒⎩⎪⎨⎪⎧x -3<-5,(x +3)(x +4)≤0⇒⎩⎪⎨⎪⎧x <-2,-4≤x ≤-3⇒-4≤x ≤-3. 5.不等式(x -1)2(x -2)(x +3)3(x +1)4x 5<0的解集是( )A .(-∞,-3)∪(0,2)B .(-∞,-3)∪(0,1)C .(-∞,-3)∪(1,2)D .(-∞,-3)∪(0,1)∪(1,2)解析:选D.原不等式等价于(x -1)2(x -2)(x +3)3(x +1)4x 5<0,利用穿针引线法解题,作出图像(如图所示),所以x <-3或0<x <1或1<x <2,故选D.6.已知点(x ,y )是如图所示的平面区域内(阴影部分且包括边界)的点,若目标函数z =x +ay 取最小值时,其最优解有无数个,则yx -a的最大值是( )A.25B.13C.27D.23解析:选A.目标函数z =x +ay 可化为y =-1a x +1a z ,由题意知,当a <0,且直线y =-1a x +1a z 与直线AC 重合时,符合题意,此时k AC =2-04-2=1,所以-1a =1,a =-1,而yx -a =y -0x +1表示过可行域内的点(x ,y )与点(-1,0)的直线的斜率,显然过点C (4,2)与点(-1,0)的直线的斜率最大,即2-04-(-1)=25.7.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站( )A .5 km 处B .4 km 处C .3 km 处D .2 km 处 解析:选A.设车站到仓库距离为x (x >0),土地费用为y 1,运输费用为y 2,由题意得y 1=k 1x ,y 2=k 2x ,因为x =10时,y 1=2,y 2=8,所以k 1=20,k 2=45,所以费用之和为y =y 1+y 2=20x +45x ≥220x ×45x =8,当且仅当20x =4x 5,即x =5时取等号.8.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.如图,直线x +y =a 与x 轴负半轴相交时,不等式组不表示任何图形,直线x +y =a 与线段OB 相交时,不等式组表示的平面区域是一个三角形,直线x +y =a 与线段AB 相交时,不等式组表示的平面区域是一个四边形,直线x +y =a 与直线2x +y =2在A 点上侧相交时,不等式组表示的平面区域是一个三角形.9.已知x >0,y >0.若2y x +8xy>m 2+2m 恒成立,则实数m 的取值范围是( )A .m ≥4或m ≤-2B .m ≥2或m ≤-4C .-2<m <4D .-4<m <2解析:选D.因为x >0,y >0,所以2y x +8x y ≥8(当且仅当2y x =8x y 时取“=”).若2y x +8xy >m 2+2m 恒成立,则m 2+2m <8,解之得-4<m <2.10.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或 12C .2或1D .2或-1解析:选D .如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab>2;⑤a 2>b 2;⑥2a >2b .其中正确的不等式的序号为________.解析:因为1a <1b <0.所以b <a <0,故③错,又b <a <0,可得|a |<|b |,a 2<b 2,故②⑤错.答案:①④⑥12.函数y =2-x -4x(x >0)的值域为________.解析:当x >0时,y =2-⎝⎛⎭⎫x +4x ≤2-2x ×4x =-2.当且仅当x =4x,x =2时取等号. 答案:(-∞,-2]13.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为________.解析:z =2x +3y ⇒y =-23x +z3,求截距的最小值,画出可行域如图阴影部分所示,可知把直线y =-23x 平移到经过点(2,1)时,z 取得最小值,z min =2×2+3×1=7.答案:714.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.解析:因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc ,所以2a 2-1=2bc ≤b 2+c 2=1-a 2,所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63.所以a max =63.答案:6315.已知不等式x 2-ax -b <0的解集为(2,3),则不等式bx 2-ax -1>0的解集为________.解析:方程x 2-ax -b =0的根为2,3.根据根与系数的关系得:a =5,b =-6,所以不等式为6x 2+5x +1<0,解得解集为⎝⎛⎭⎫-12,-13. 答案:⎝⎛⎭⎫-12,-13 三、解答题(本大题共5小题,共55分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分10分)已知函数f (x )=x 2+2x,解不等式f (x )-f (x -1)>2x -1.解:由题意可得x 2+2x -(x -1)2-2x -1>2x -1,化简得2x (x -1)<0,即x (x -1)<0, 解得0<x <1.所以原不等式的解集为{x |0<x <1}.17.(本小题满分10分)(1)求函数y =x 2+7x +10x +1(x >-1)的最小值;(2)已知:x >0,y >0且3x +4y =12.求lg x +lg y 的最大值及相应的x ,y 值. 解:(1)因为x >-1,所以x +1>0,所以y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5≥2(x +1)⎝ ⎛⎭⎪⎫4x +1+5=9.当且仅当x +1=4x +1,即x =1时,等号成立.所以当x =1时,函数y =x 2+7x +10x +1(x >-1)的最小值为9.(2)因为x >0,y >0,且3x +4y =12. 所以xy =112(3x )·(4y )≤112⎝ ⎛⎭⎪⎫3x +4y 22=3.所以lg x +lg y =lg xy ≤lg 3.当且仅当3x =4y ,即x =2,y =32时等号成立.所以当x =2,y =32时,lg x +lg y 取最大值lg 3.18.(本小题满分10分)已知x 、y 、z 是实数,a 、b 、c 是正实数,求证:b +c a x 2+a +c by2+a +b c z 2≥2(xy +yz +xz ).证明:法一:b +c a x 2+a +c b y 2+a +b c z 2-2(xy +yz +xz )=b a x 2-2xy +a b y 2+c a x 2-2xz +acz 2+c b y 2-2yz +b c z 2=⎝⎛⎭⎫b ax -a b y 2+⎝⎛⎭⎫c a x -a c z 2+⎝⎛⎭⎫c b y -b c z 2≥0. 所以b +c a x 2+a +c b y 2+a +b c z 2≥2(xy +yz +xz )成立.当且仅当a =b =c 时等号成立.法二:b +c a x 2+a +c b y 2+a +b c z 2=⎝⎛⎭⎫b a x 2+a b y 2+⎝⎛⎭⎫c a x 2+a c z 2+⎝⎛⎭⎫c b y 2+b c z 2≥2b a ·abxy +2c a ·a c xz +2c b ·b cyz =2(xy +yz +xz ).当且仅当a =b =c 时等号成立.19.(本小题满分12分)一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?解:设水稻种x 亩,花生种y 亩,则由题意得 ⎩⎪⎨⎪⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0.即⎩⎪⎨⎪⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,画出可行域如图阴影部分所示.而利润P =(3×400-240)x +(5×100-80)y =960x +420y (目标函数),可联立⎩⎪⎨⎪⎧x +y =2,3x +y =5,得交点B (1.5,0.5). 故当x =1.5,y =0.5时,P 最大值=960×1.5+420×0.5=1 650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大. 20.(本小题满分13分)已知二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )满足:对任意实数x ,都有f (x )≥x ,且当x ∈(1,3)时,有f (x )≤18(x +2)2成立.(1)证明:f (2)=2;(2)若f (-2)=0,求f (x )的表达式;(3)设g (x )=f (x )-m 2x ,x ∈[0,+∞),若g (x )图像上的点都位于直线y =14的上方,求实数m 的取值范围.解:(1)证明:由条件知: f (2)=4a +2b +c ≥2恒成立.又因取x =2时,f (2)=4a +2b +c ≤18(2+2)2=2恒成立,所以f (2)=2.(2)因⎩⎪⎨⎪⎧4a +2b +c =2,4a -2b +c =0,所以4a +c =2b =1.所以b =12,c =1-4a .又f (x )≥x 恒成立,即ax 2+(b -1)x +c ≥0恒成立.所以a >0,Δ=⎝⎛⎭⎫12-12-4a (1-4a )≤0, 解得:a =18,c =12.所以f (x )=18x 2+12x +12.(3)g (x )=18x 2+⎝⎛⎭⎫12-m 2x +12>14,在x ∈[0,+∞)上恒成立. 即x 2+4(1-m )x +2>0在x ∈[0,+∞)上恒成立, ①Δ<0,即[4(1-m )]2-8<0.解得:1-22<m <1+22.②⎩⎪⎨⎪⎧Δ≥0,-2(1-m )≤0,f (0)>0.解得:m ≤1-22,综上m ∈⎝⎛⎭⎫-∞,1+22.。