土壤理化性质测定方案设计

合集下载

土壤测定理化性质方法

土壤测定理化性质方法

土壤农化分析常用指标测定方法土壤有机质测定、原理170〜180°C条件下,用一定浓度的K2Cr2O7-H2SO4溶液(过量)氧化土壤有机质,剩余的K2Cr2O7用FeSO4滴定,由消耗的K2Cr2O7量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。

其反应式如下:K2Cr2O7与有机碳反应K2Cr2O7+8H2SO4+3C f2Cr2(SO4)3+3CO2+8H2O过量的K2Cr2O7与FeSO4的滴定反应K2Cr2O7+4FeSO4+7H2SO4^K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O二、试剂1、0.4mol/L(+K2Cr2O7-浓H2SO4)标准溶液:称取经130C烘干的K2Cr2O7(AR)39.2245g溶于水中,加热溶解后加入1000mL浓H2SO4定容至2000mL。

2、0.2mol/LFeSO4溶液:称取FeSO4(AR)56g溶于水中,加浓硫酸5mL,稀释至1L。

3、石英砂:粉末状。

三、实验步骤称取<0.25mm风干土0.5XXX〜1.0XXX g于干燥试管中。

加入少量水润湿样品,准确沿避缓慢加入10.0mLK2Cr2O7-H2SO4混合液,摇分散土样,加入小漏斗,放入铁丝笼中。

将铁丝笼放入已开启185〜190C油浴锅中(使温度在170〜180C)沸腾准确5分钟;取出稍冷,擦净试管外壁油污(同时做空白实验);冷却后把溶液全部转移到200~250mL三角瓶中(最后体积控制在60~70mL),加入指示剂3滴,用已知浓度的FeSO4滴定。

四、结果计算,3.0,10-3,1.1,1.724式中:V0——滴定空白所用的FeSO4溶液的体积(mL);V——滴定样品所用的FeSO4溶液的体积(mL);c——0.2mol/LFeSO4溶液准确浓度;3.01/4碳原子的摩尔质量(g/mol);10-3——将mL换算为L;1.1——氧化校正系数;1.724——土壤有机碳换算成土壤有机质的平均换算系数。

土壤理化性质的测定

土壤理化性质的测定

五、 土壤湿度
土壤湿度,根据手感,可分为五级: 干:土壤放在手中没有水分感觉,碎后不能用手捏在一起; 潮:土壤用手能捏在一起,用手摸时有凉的感觉; 湿:用手捏时,可以在手指上留有印痕; 重湿:用手捏时,可以使手湿润; 极湿:用手捏时,有泥水挤出。 以上对湿度的描述只不过是将湿度作为 一种形态特征来看待,实际上土壤水分 是重要的肥力因素。
他用平行黄铜杆传导由探测器发出的电磁波依据电磁波在不同介电常数物质中的传输时间的不同计算出被测物的含水量
三、 土壤质地
土壤质地指的是土壤基本颗粒的粗细程度及其组合状况所表 现出来的外部(手感)特征。
砂土,不论加水多少都不能搓成条或片; 砂壤土,湿时可搓成大拇指粗的土条,再细即断; 轻壤土,湿时可搓成土条,但放地上捡不起来,易断; 中壤土,湿时可搓成土条,能捡起来,但弯曲成环就断裂; 重壤土,湿时可搓成细长土条,可弯成环,但换上有裂纹; 粘土,可揉成细条,能弯成完整的环而无裂痕。
四、 土壤紧实度
➢土壤紧实度表示土壤紧实或疏松的程度,其对土壤翻耕的 难易、水分状况、植物根系的发育和分布等都有重要影响; ➢野外确定土壤紧实度可用刀试法,分为五级: 极坚实:用较大力也不能把刀插入土壤中; 坚实:用较大力可把刀插入土壤中1~3cm; 紧实:用较大力可把刀插入土壤中4~5cm; 较紧实:用较小力就能把刀插入土壤中, 土体易脱落; 疏松:用很小的力就能把刀插入土壤中, 刀经过之处,土壤很易脱落。
土壤含水量的测定技术
(一)烘干法
1.经典烘干法 此方法经典、简便、可靠,但也有许多不足之处: • 不能在同一地点连续进行观测土壤水分动态变化,多点采 样必然会因为土壤时空变异性造成测试误差; • 采样、运输及多次称量会产生不必要的误差; • 费力、费时,不能快速得到结果;烘干过程中一些有机物 质有可能氧化分解,给测定结果带来误差。 2.快速烘干法 红外线烘干法、微波炉烘干法、酒精燃烧法等

土壤理化性质测定方法

土壤理化性质测定方法

1 土壤pH的测定方法(电位法)称取10g通过1mm筛孔风干土样置25mL烧杯中,加蒸馏水10mL混匀,静置30min,用校正过的pH计测定悬液的pH值。

测定时将玻璃电极球部(或底部)浸入悬液泥层中,并将甘汞电极侧孔上的塞子拔去,甘汞电极浸在悬液上部清液中,读pH值。

2 土壤含水率的测定方法将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.0001g。

揭开盒盖,放在瓶底下,置于已预热至105±2℃的烘箱中烘烤12h。

取出,盖好,移入干燥器内冷却至室温(约需30min),立即称重。

新鲜土样水分的测定做三份平行测定。

结果的计算:①计算公式:水分(分析基),%=(m1-m2)/(m1-m0)×100 (E1)水分(干基),%=(m1-m2)/(m2-m0)×100 (E2)式中:m o-烘干空铝盒质量(g);m1-烘干前铝盒及土样质量(g);m2-烘干后铝盒及土样质量(g)。

②平行测定的结果用算术平均值表示,保留小数点后一位。

3 土壤容重的测定方法(环刀法)将环刀托放在已知重量的环刀上,环刀内壁稍擦上凡士林,将环刀刃口向下垂直压入土中,直至环刀筒中充满土样为止。

用修土刀切开环周围的土样,取出已充满土的环刀,细心削平和擦净环刀两端及外面多余的土。

同时在同层取样处,用铝盒采样,测定土壤含水量。

把装有土样的环刀两端立即加盖,以免水分蒸发。

随即称重(精确到0.01g),并记录。

结果计算:ρb=m/[V(1+θm)] (E3)式中:ρb ------土壤容重;m----环刀内湿样质量;V----环刀容积;θm样品含水量(质量含水量)。

4土壤速效磷的测定方法(0.5 mol·L-1NaHCO3法)(1)方法原理石灰性土壤中的磷主要以Ca-P(磷酸钙盐)的形态存在,中性土壤中Ca-P、A1-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定比例。

由于浸提液(0.5M NaHCO3)提高了CO32-离子的活性,使其与Ca2+形成CaCO3沉淀,从而降低了Ca2+的活性,因磷酸钙的溶解度>碳酸钙,故磷酸根的活性增加,同时也可使比较活性的Fe-P和AI-P起水解作用而浸出,从而增加了碳酸氢钠提取中性和石灰性土壤速效磷的能力。

环境监测土壤环境质量监测方案设计

环境监测土壤环境质量监测方案设计

环境监测土壤环境质量监测方案设计一、引言土壤是生态系统的重要组成部分,对于农业生产、生物多样性维护以及人类健康具有重要意义。

随着工业化和城市化的发展,土壤环境质量受到了越来越大的威胁,因此进行土壤环境监测十分必要。

本文旨在设计一种有效的土壤环境质量监测方案,以保障土壤环境的健康与可持续发展。

二、目标与原则1. 目标:(1)了解土壤中各种化学物质、重金属等的污染程度;(2)评估土壤对农作物、生态系统和人类健康的潜在影响;(3)提供科学依据,制定土壤污染治理和环境保护措施。

2. 原则:(1)科学性:方案设计应基于有效的科学方法与技术;(2)系统性:监测范围要全面,包含各种污染物;(3)可行性:方案应可行,社会经济成本可控。

三、监测内容1. 土壤理化性质监测(1)土壤质地:采用标准的土壤颗粒成分分析方法,确定土壤质地;(2)pH值:使用准确的pH测试仪测定土壤的酸碱程度;(3)有机质含量:采用经典的乌斯特法进行测定;(4)土壤湿度:通过测量土壤含水量来评估土壤湿度。

2. 污染物监测(1)重金属:采取仪器分析方法,如原子吸收光谱法、电感耦合等离子体质谱法等,对土壤中重金属污染物进行监测;(2)有机污染物:运用气相色谱、液相色谱等方法检测土壤中的有机污染物。

3. 微生物监测利用生物学方法,如微生物菌落计数、基因测序等技术,对土壤中的微生物群落进行监测,以评估土壤生物活性和生态功能。

四、监测方案1. 采样方法(1)根据监测点分布情况,制定采样网格,采用系统采样方法,以确保样本的代表性;(2)采用干净的不锈钢锹或抽样器具,避免污染;(3)根据监测需求,确定采样深度,一般应取30厘米以下的土壤。

2. 样品处理按照土壤性质和监测要求,将采样得到的土壤样品进行加工处理,去除杂质,并按照标准规定进行样品的保存、封存与运输。

3. 数据分析与评估针对监测得到的数据,利用适当的统计学方法进行污染物浓度的计算与分析,制作监测报告,并以图表的形式展示监测结果。

(word完整版)土壤理化性质测定方案

(word完整版)土壤理化性质测定方案

2土壤样品采集与测定方法2.1采样方法在选择好挖掘土壤剖面的位置,先挖一个 1.0m×1.5m的长方形土坑,然后用环刀(100cm3 50。

46mm×50mm)取土法分10cm、20cm、30cm-40cm三层取土.2.2 土壤样品制备:森林土壤的制备:风干、研磨、过筛、混合分样、储存。

1)风干:从实验林地采回的土壤样品,应及时进行风干,以免发霉而引起性质的改变,其方法是将土壤样品弄成碎块平铺在干净的纸上,摊成薄层放于室内阴凉通风处风干,经常加以翻动,加速其干燥,切忌阳光直接暴晒,风干后的土样再进行研磨过筛、混合分样处理。

2)研磨过筛:土壤微生物、含水量等测定项目必须用湿土立即进行测定,用湿土测定的最大优点是反映了土壤在自然状态时的有关理化性状,具有照相般的真实性.在进行土壤物理分析时,样品处理的方法是取风干土样100—200g,挑去没有分解的有机物及石块,用研钵研磨,通过2mm孔隙筛的土样作为物理分析用。

在进行土壤化学分析时,样品制备的方法是取风干土样品一份,仔细挑去石块,根茎及各种新生体和侵入体.研磨,使全部通过2mm筛,这种土样可供土壤表面物质测定项目。

3)混合分样:研磨过筛后将样品混匀。

如果采来的土壤样品数量太多,则要进行混合、分样。

样品的混合可以用来回转动的方法进行,并用土壤分样器或四分法将混合的土壤进行分样,将多余的土壤弃去,一般有1kg的土壤样品即够化学、物理分析之用.4)贮存:过筛后的土样经充分混匀,然后装入玻璃塞广口瓶或塑料袋中,内外各具标签一张,写明编号、采样地点、土壤名称、深度、筛孔、采样日期和采样者等项目.2。

3物理性质 2.3。

1测定指标:土壤水分、土壤容重、总孔隙度、毛管孔隙度及非毛管孔隙度,最大持水量和田间持水量。

2。

3.2实验仪器及试剂:环刀 铝盒 自封袋50个 标签纸 记号笔 削土小刀 小铁铲 托盘天平 烘箱 凡士林2。

3.3 实验步骤:准备工作:用凡士林在环刀内壁薄薄的涂抹一层,同时准备一定数量的铝盒,将铝盒逐个编号并称量记录铝盒的重量(准确到0。

实验3 土壤理化性质测定与分析

实验3 土壤理化性质测定与分析

实验3 土壤理化性质测定与分析1 土壤样品的采集和制备土壤样品的采集是否具有代表性,是决定分析结果能否正确反映土壤特性的关键。

因此,采集的土壤样品必须具有代表性,以确保土壤质量分析结果的正确性。

从田间采集来的土壤样品不可直接进行化学分析,需经过筛或风干过筛等处理后方可进行分析。

因此,在风干过筛处理中保持最小的误差是同样的重要。

本实验的目的在于通过土壤样品采集的实践,使学生更好地掌握采集具有代表性土壤样品的技能和合理处理样品的技能。

1.1土壤样品的采集1.1.1耕层混合土壤样品的采集(1)确定采样单元根据有关资料和现场勘查后,将采样区划分为数个采样单元,每个采样单元的图类型,肥力状况和地形等因素要尽可能均匀一致。

(2)确定采样点数及采样点位置采样点数的确定,取决于采样区域的大小、地块的复杂程度和所要求的精密度等因素,一般以5-20个为宜。

采样点位置的确定要遵循随机布点的原则,常采用“S”型布点方式,该方式能较好地克服耕作、施肥等农业措施造成的误差。

但在采样单元面积较小,地形变化较小,地力较均匀的情况下也可采用对角线(或梅花)形布点方式。

为从总体上控制采样点的代表性,避免在堆过肥的地方和田埂,沟边以及特殊地形部位采样。

(3)各采样点土样的采集遵循采样“等量”的原则,即每点所采土样的土体的宽度、厚度及深度均相同。

使用采样器采样时应垂直于地面向下至规定的深度。

用取土铲取样应先铲出一个耕层断面,再平行于断面下取土。

(4)混合土样的制备将个点采集的土样集中在一起,尽可能捏碎,混均;如果采集的样品数量过多,可用四分法将多余的土样弃去,以取1kg为宜。

其方法是将混均的土样平铺成四方形,划对角线将土样分成四份,将其中一对角线的两份弃去,如所剩样品仍很多,可重复上诉方法处理,知道所需数目为止。

采集含水较多的土样时(如水稻土),四分法很难使用,可将各样点采集的烂泥状样品搅拌均匀后,再取出所需数量。

将采好的土样装袋,土袋最好采用布制的,以保持通气。

土壤理化性质测定的方法

土壤理化性质测定的方法

1、土壤有机质的测定(重铬酸钾容量法)土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。

测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。

因为土壤有机质直接影响着土壤的理化性状。

测定原理在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。

其反应式为:重铬酸钾—硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O硫酸亚铁滴定剩余重铬酸钾的反应:K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O测定步骤:1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g)(0.3000),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。

2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。

3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。

然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。

土壤分析实验

土壤分析实验

土壤理化性质分析方法实验一土壤样品的采集和制备土壤样品的采集是否具有代表性,是决定分析结果能否正确反映土壤特性的关键。

因此,采集的土壤样品必须具有代表性,以确保土壤质量分析结果的正确性。

从田间采集来的土壤样品不可直接进行化学分析,需经过筛或风干过筛等处理后方可进行分析。

因此,在风干过筛处理中保持最小的误差是同样的重要。

本实验的目的在于通过土壤样品采集的实践,使学生更好地掌握采集具有代表性土壤样品的技能和合理处理样品的技能。

一、土壤样品的采集(一)耕层混合土壤样品的采集1.确定采样单元根据有关资料和现场勘查后,将采样区划分为数个采样单元,每个采样单元的图类型,肥力状况和地形等因素要尽可能均匀一致。

2.确定采样点数及采样点位置采样点数的确定,取决于采样区域的大小、地块的复杂程度和所要求的精密度等因素,一般以5-20个为宜。

采样点位置的确定要遵循随机布点的原则,常采用“S”型布点方式,该方式能较好地克服耕作、施肥等农业措施造成的误差。

但在采样单元面积较小,地形变化较小,地力较均匀的情况下也可采用对角线(或梅花)形布点方式。

为从总体上控制采样点的代表性,避免在堆过肥的地方和田埂,沟边以及特殊地形部位采样。

3.各采样点土样的采集遵循采样“等量”的原则,即每点所采土样的土体的宽度、厚度及深度均相同。

使用采样器采样时应垂直于地面向下至规定的深度。

用取土铲取样应先铲出一个耕层断面,再平行于断面下取土。

4.混合土样的制备?将个点采集的土样集中在一起,尽可能捏碎,混均;如果采集的样品数量过多,可用四分法将多余的土样弃去,以取1kg为宜。

其方法是将混均的土样平铺成四方形,划对角线将土样分成四份,将其中一对角线的两份弃去,入所剩样品仍很多,可重复上诉方法处理,知道所需数目为止。

采集含水较多的土样时(如水稻土),四分法很难使用,可将各样点采集的烂泥状样品搅拌均匀后,再取出所需数量。

将采好的土样装袋,土袋最好采用布制的,以保持通气。

土壤分析实施方案范本

土壤分析实施方案范本

土壤分析实施方案范本一、前言。

土壤是农业生产的基础,其肥力状况直接关系到作物的生长和产量。

因此,对土壤进行分析,了解土壤的理化性质和肥力状况,对于合理施肥、提高土壤肥力、保护环境、增加农产品质量和产量具有重要意义。

本文档旨在提供一份土壤分析实施方案范本,以便广大农业生产者和相关从业人员参考和使用。

二、实施方案。

1. 采样。

(1)选择采样地点,根据土壤类型、地形地貌、土地利用方式等因素,合理选择采样地点。

尽量避免沟壑、积水处、垃圾堆放区、施过化肥或农药的地方。

(2)采样工具,采用不锈钢或塑料铲、铲子、钻头等工具进行采样,避免使用铁质工具,以免影响土壤中微量元素的分析结果。

(3)采样深度,根据不同作物的根系分布情况和施肥方式,一般采样深度为0-20厘米和20-40厘米两层。

2. 样品处理。

(1)将采样好的土壤样品进行混匀,取样后放入标有采样点号码的袋子中,并在袋子上标明采样点的名称、地点、深度等信息。

(2)将土壤样品送至专业实验室进行分析,确保分析结果的准确性。

3. 分析内容。

(1)理化性质分析,包括土壤质地、PH值、有机质含量、全氮含量、速效磷、速效钾等指标的测定。

(2)肥力状况分析,包括土壤养分含量、离子交换量、盐碱情况等指标的测定。

(3)微量元素分析,包括土壤中微量元素如锌、硒、铁、锰等的含量测定。

4. 结果解读。

根据实验室提供的土壤分析报告,结合当地的土壤肥力特点和作物的需求,进行分析结果的解读,制定合理的土壤改良和施肥方案。

5. 结语。

土壤分析是农业生产的重要环节,通过科学的土壤分析,可以为合理施肥、增加产量、提高农产品品质提供科学依据。

希望本文档提供的土壤分析实施方案范本能够对广大农业生产者和相关从业人员有所帮助,促进农业生产的可持续发展。

三、参考资料。

1. 《土壤分析技术规范》。

2. 《土壤肥力与施肥技术手册》。

3. 《农田土壤肥力快速检测技术指南》。

4. 《土壤微量元素分析方法》。

5. 《土壤理化性质分析方法》。

土壤环境调查方案

土壤环境调查方案

土壤环境调查方案一、调查目的和意义随着经济的快速发展和城市化进程的加速,土壤环境问题日益突出,严重影响了生态平衡和人类健康。

为了全面了解土壤环境状况,掌握土壤污染状况和分布特征,为后续的土壤污染防治和生态修复工作提供科学依据,特制定本土壤环境调查方案。

二、调查范围本次调查范围为某市辖区内的农田、工业园区、城市建设区域等典型区域。

在调查区域内,根据土地利用类型、污染源分布等因素,选取具有代表性的样点进行土壤环境质量监测。

三、调查内容1.土壤理化性质调查:测定土壤pH值、有机质、全氮、有效磷、速效钾等基本理化性质指标,了解土壤养分状况和酸碱度情况。

2.土壤重金属调查:监测土壤中的汞、镉、铅、铬、镍等重金属元素含量,评估土壤重金属污染程度。

3.土壤农药残留调查:检测土壤中的有机氯农药、有机磷农药等残留量,评估农药对土壤环境的影响。

4.土壤微生物调查:通过对土壤中的细菌、放线菌、真菌等微生物的分离和计数,了解土壤微生物群落结构及多样性。

5.土地利用类型及人类活动情况调查:收集调查区域内土地利用类型、工业布局、企业排污情况等信息,分析人类活动对土壤环境的影响。

四、调查方法与技术路线1.样品采集:根据调查目的和范围,采用网格布点、随机布点等方法进行采样点布置。

每个采样点的土壤深度分为0-20cm、20-40cm、40-60cm三个层次进行采集。

2.样品处理与分析:采集的土壤样品需进行风干、破碎、过筛等处理,然后根据调查内容进行各项指标的测定。

测定方法采用国家相关标准方法或行业公认的测定方法。

3.数据分析与评价:对采集的土壤样品数据进行整理、统计和分析,采用单项污染指数、综合污染指数等评价方法,对土壤环境质量进行评价。

4.编制调查报告:根据调查数据和评价结果,编制详细的土壤环境调查报告,报告内容应包括调查目的、范围、方法、结果及结论等。

5.成果展示与应用:将调查报告提交给相关部门,为其制定土壤污染防治和生态修复政策提供依据。

土壤理化分析测定指导书(doc 140页)

土壤理化分析测定指导书(doc 140页)

土壤理化分析测定指导书(doc 140页)土壤理化分析实验指导书北京林业大学2002年月11月目录绪论1.概述1.1土壤理化分析课程介绍1.2课堂要求第一篇基础知识和化学及养分分析第一章土壤理化分析的基本知识1.1土壤理化分析用纯水1.1.1纯水的制备1.2试剂的标准、规格、选用和保存1.2.1试剂的标准1.2.2试剂的规格1.2.3试剂的选用1.2.4试剂的保存1.2.5试剂的配制1.3 常用器皿的性能、选用和洗涤1.3.1玻璃器皿1.3.2瓷、石英、玛瑙、铂、塑料和石墨等器皿1.4滤纸的性能与选用第二章土壤样品的采集与制备2.1 土壤样品的采集2.1.1概述2.1.2混合土样的采集2.1.3特殊土样的采集2.1.4其他特殊样品的采集2.1.5采集土壤样品的工具2.2土壤样品的制备和保存2.2.1新鲜样品和风干样品2.2.2样品的风干、制备和保存2.3土壤水分测定2.3.1适用范围2.3.2方法原理2.3.3仪器设备2.3.4试样的选取和制备2.3.5测定步骤2.3.6结果的计算第三章土壤有机质的测定3.1概述3.1.1土壤有机质含量及其在肥力上的意义3.1.2土壤有机碳不同测定方法的比较和选用3.1.3有机碳的校正系数3.1.4 有机质含水量量的计算3.2 土壤有机质测定3.2.1重铬酸钾容量法——外加热法第四章土壤氮的分析4.1概述4.2土壤全氮量的测定4.2.1方法概述[1]4.2.2土壤全氮测定 ---半微量开氏法4.3矿化氮的测定4.3.1厌气培养法4.3.2好气培养法4.4土壤无机氮的实验室测定4.4.1方法概述4.4.2土壤硝态氮的测定4.4.3土壤铵态氮的测定第五章土壤中磷的测定5.1概述5.2土壤全磷的测定5.2.1土壤样品的分解和溶液中磷的测定5.2.2土壤全磷测定方法之一——HClO4—H2SO4法5.2.3土壤全磷测定方法之二——NaOH熔融—钼锑抗比色法5.3土壤速效磷的测定5.3.1概述5.3.2土壤有效磷的化学浸提方法5.3.3中性和石灰性土壤速效磷的测定——0.05 mol·L-1NaHCO3法第六章土壤中钾的测定6.1概述6.2土壤全钾的测定6.2.1土壤样品的分解和溶液中钾的测定6.2.2土壤中全钾的测定方法——NaOH熔融法,火焰光度法6.3土壤中速效钾、有效钾和缓效钾的测定6.3.1概述6.3.2土壤速效钾的测定——NH4OAc浸提,火焰光度法6.3.3土壤有效性钾的测定(冷的2mol·L-1HNO3溶液浸提——火焰光度法)6.3.4土壤缓效钾的测定——1mol·L-1热HNO3浸提,火焰光度法第七章土壤中微量元素的测定7.1概述7.2土壤中铜、锌的测定7.2.1概述第八章土壤阳离子交换性能的分析8.1概述8.2酸性土交换量和交换阳离子的测定8.2.1酸性土交换量的测定8.2.2土壤交换性盐基及其组成的测定8.2.3土壤活性酸、交换性酸的测定8.3石灰性土壤交换量的测定8.3.1概述8.3.2乙酸钠——火焰光度法(适用于石灰性土和盐碱土)8.4盐碱土交换量及交换性钠的测定8.4.1盐碱土交换量的测定8.4.2交换性钠的测定第九章土壤水溶性盐的分析9.1概述9.2土壤水溶性盐的浸提(1:1和5:1水土比及饱和土浆浸出液的制备)9.2.1主要仪器9.2.2试剂9.2.3操作步骤9.2.4注释9.3土壤水溶性盐总量的测定9.3.1电导法9.3.2残渣烘干法——质量法9.3.3用阳离子和阴离子总量计算土壤或水样中的总盐量9.4阳离子的测定9.4.1钙和镁的测定——EDTA滴定法9.4.2钙和镁的测定——原子吸收分光光度法9.4.3钾和钠的测定——火焰光度法9.5阴离子的测定9.5.1碳酸根和重碳酸根的测定——双指示剂——中和滴定法9.5.2氯离子的测定9.5.3硫酸根的测定第二篇土壤物理性质分析第一章土粒密度、土壤容重(土壤密度)和孔隙度的测定1.1 测定意义1.2土粒密度的测定(比重瓶法)1.3 土壤容重的测定第二章土壤粒径分布和分析2.1 分析意义2.2土粒的粒级和土壤的质地2.3土粒粒径分析—吸管法2.4吸管法2.5比重计法第三章土壤含水量、土水势和土壤水特征曲线的测定3.1测定意义3.2方法选择的依据3.3土壤含水量的测定(烘干法)3.4土水势的测定(张力计法)3.5土壤水特征曲线的测定[压力膜(板)法附录1.KDY-9830凯氏定氮仪使用说明2.UV-120-02紫外-可见分光光度计操作说明3.AA7001原子吸收光谱仪操作说明绪论1.概述土壤理化分析也称土壤测定,它包括土壤物理性质测定和化学性质测定两个方面。

土壤理化性质测定的方法

土壤理化性质测定的方法

土壤理化性质测定的方法1.pH值测定pH值是衡量土壤酸碱性的重要指标。

常用的测定方法有玻璃电极法、酸碱滴定法和庚醇-水混合物电极法。

玻璃电极法是最常用的方法,通过将土壤样品与水混合后,用pH计进行测量。

在测定pH值时,一般使用的水是蒸馏水或去离子水。

2.有机质含量测定3.铵态氮测定铵态氮是土壤中的重要氮源,对于植物的生长发育至关重要。

常用的测定方法有Kjeldahl消解法和桥式电极法。

Kjeldahl消解法是最常用的方法,通过将土壤样品与硫酸和氢氧化钠混合,加热使其消化,然后用钼酸铵和硫酸还原,最后用盐酸调节pH值,用分光光度计测定氮的含量。

4.磷态含量测定磷是植物生长必需的重要营养元素,对于提高土壤肥力和植物产量具有关键作用。

常用的测定方法有Olsen法、Bray法和纳氏法。

Olsen法是最常用的方法,将土壤样品用酸溶液浸提,然后用分光光度计测定磷的含量。

5.钾态含量测定钾是植物生长发育必需的重要元素,对于提高植物抗病能力和增加产量具有重要作用。

常用的测定方法有火焰光度法和原子吸收光谱法。

火焰光度法是最常用的方法,将土壤样品消解后,用火焰光度计测定钾的含量。

6.土壤容重测定容重是土壤物理性质的重要指标之一,它是单位体积土壤的质量。

常用的测定方法有干湿状况下的外围法、质量与体积法和橡皮器法。

干湿状况下的外围法是最常用的方法,通过测定土柱、土块和切圆柱的湿重和干重,从而计算土壤容重。

上述介绍的是常用的几种土壤理化性质测定方法,这些方法在土壤肥力评价、土壤改良和农田管理中发挥着重要的作用。

然而,随着科技的不断进步,新的测定方法也不断涌现,如光谱法、分子生物学技术等,使得对土壤理化性质的研究更加深入和全面。

实验二土壤理化性质及测定

实验二土壤理化性质及测定

实验二土壤理化性质的测定一、实验目的通过本实验,学会观察描述土壤的形态特征,掌握土壤容重以及土壤含水量测定的方法.二、实验器材pH试纸、水果刀、土样、环刀、铝盒、电子天平、酒精、烘箱、试管夹、时域土壤水分仪等.三、实验步骤1、土壤形态特征的描述〔1〕土壤颜色鉴别土壤颜色可用门塞尔比色卡进行对比确定土色,也可用肉眼进行简单判断.〔2〕土壤湿度根据手感,土壤湿度可分为五级:干、潮、湿、重湿、极湿.〔3〕土壤质地在野外鉴定土壤质地通常采用简单的指感法,感觉手感,可分为六级:砂土、沙壤、轻壤土、中壤土、重壤土、粘土.〔4〕土壤结构土壤结构大多按几何形状来划分,可分为五类:团粒结构、片状结构、块状结构、棱柱状结构、核状结构.〔5〕土壤松紧度,又名坚实度土壤坚实度可用刀试法进行简单判断.可分为五类:极坚实、坚实、紧实、较紧实、疏松〔6〕pH值可用广泛pH试纸,或pH混合指示剂,取黄豆大土粒碾散.放在白瓷板上,滴入蒸馏水5~8滴,数分钟后用pH试纸测定土壤pH值.2、土壤容重的测定〔1〕先将环刀称重.〔2〕在需要测定容重的地块上,环刀的刃口向下,将环刀垂直压入土中.环刀入土时要平稳,用力一致,不能过猛,以免受震动而破坏土壤的自然状态.环刀的方向要垂直不能倾斜,避免环刀与其中的土壤产生间隙,使容重的结果偏低.〔3〕将整个环刀从土中取出,除去环刀外粘附的土壤,用小刀仔细地削去环刀两端多余的土壤,使环刀内的土壤体积与环刀容积相等,然后带回室内称重. 〔4〕结果计算土壤容重的计算:rs ——土壤容重〔克/立方厘米〕,g ——环刀内湿土重〔克〕V ——环刀容积〔立方厘米〕,W ——土壤含水率〔g/kg 〕3、土壤含水量的测定〔1〕酒精燃烧法①取铝盒称重为W l <克>.②取湿土约10克<尽量避免混入根系和石砾等杂物>与铝盒一起称重为W 2<克>.③加酒精于铝盒中,至土面全部浸没即可,稍加振摇,使土样与酒精混合,点燃酒精,待燃烧将尽,用小玻棒来回拨动土样,助其燃烧<但过早拨动土样会造成土样毛孔闭塞,降低水分蒸发速度>,熄火后再加酒精3毫升燃烧,如此进行2—3次,直至土样烧干为止.④冷却后称重为W 3<克>.结果计算:W 2-W 3土壤水分含量〔%〕=————— ×100W 3-W 1〔2〕烘干法①取干燥铝盒称重为W 1<克>.②加土样约5克于铝盒中称重为W 2<克>.③将铝盒放入烘箱,在105℃一110℃下烘烤6小时,一般可达恒重,冷却20分钟可称重.结果计算同前〔3〕TDR 法)1(w V grs +=①将时域土壤水分仪搬至被测地点;②将探头插入被测土层中;③直接在仪器上读取数据.四、实验记录格式和思考题土壤容重测定记录表壤含水量测定记录表1、请描述土壤的形态特征.2、请对各实验结果进行误差分析.。

土壤理化性质测定的方法

土壤理化性质测定的方法

1、土壤有机质的测定(重铬酸钾容量法)土壤有机质既是植物矿质营养和有机营养的源泉,又是土壤中异养型微生物的能源物质,同时也是形成土壤结构的重要因素。

测定土壤有机质含量的多少,在一定程度上可说明土壤的肥沃程度。

因为土壤有机质直接影响着土壤的理化性状。

测定原理在加热的条件下,用过量的重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,Cr2O-27等被还原成Cr+3,剩余的重铬酸钾(K2Cr2O7)用硫酸亚铁(FeSO4)标准溶液滴定,根据消耗的重铬酸钾量计算出有机碳量,再乘以常数1.724,即为土壤有机质量。

其反应式为:重铬酸钾—硫酸溶液与有机质作用:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2O硫酸亚铁滴定剩余重铬酸钾的反应:K2Cr2O7+6FeSO4+7H2SO4=K2SO4+Cr2(SO4)3+3Fe2(SO4)3+7H2O测定步骤:1.在分析天平上准确称取通过60目筛子(<0.25mm)的土壤样品0.1—0.5g(精确到0.0001g)(0.3000),用长条腊光纸把称取的样品全部倒入干的硬质试管中,用移液管缓缓准确加入0.136mol/L重铬酸钾—硫酸(K2Cr2O7-H2SO4)溶液10ml,(在加入约3ml时,摇动试管,以使土壤分散),然后在试管口加一小漏斗。

2.预先将液体石蜡油或植物油浴锅加热至185—190℃,将试管放入铁丝笼中,然后将铁丝笼放入油浴锅中加热,放入后温度应控制在170—180℃,待试管中液体沸腾发生气泡时开始计时,煮沸5分钟,取出试管,稍冷,擦净试管外部油液。

3.冷却后,将试管内容物小心仔细地全部洗入250ml的三角瓶中,使瓶内总体积在60—70ml,保持其中硫酸浓度为1—1.5mol/l,此时溶液的颜色应为橙黄色或淡黄色。

然后加邻啡罗啉指示剂3—4滴,用0.2mol/l的标准硫酸亚铁(FeSO4)溶液滴定,溶液由黄色经过绿色、淡绿色突变为棕红色即为终点。

土壤理化特征

土壤理化特征

土壤理化特征
土壤理化性质:主要包括土壤的容重、比重、通气性、透水性、养分状况、粘结性、粘着性、可塑性、耕性、磁性等。

物理的是指土壤的物理状况,如含砂量,松、软程度,红色或黑色等等。

化学的是指所含化学成分,如各种元素的含量,酸碱性(PH值)等等。

土壤理化性质测定方法:
1、土壤pH的测定方法(电位法):
称取10g通过1mm筛孔风干土样置25mL烧杯中,加蒸馏水10mL混匀,静置30min,用校正过的pH计测定悬液的pH值。

测定时将玻璃电极球部(或底部)浸入悬液泥层中,并将甘汞电极侧孔上的塞子拔去,甘汞电极浸在悬液上部清液中,读pH值。

2、土壤含水率的测定方法:
将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.0001g。

揭开盒盖,放在瓶底下,置于已预热至105±2℃的烘箱中烘烤12h。

取出,盖好,移入干燥器内冷却至室温(约需30min),立即称重。

新鲜土样水分的测定做三份平行测定。

土壤理化性质测定方案

土壤理化性质测定方案

土壤理化性质测定方案
一、研究目标
本研究为评价土壤肥力提供参考依据,旨在通过对土壤理化性质的测定,了解土壤肥力的状况,为该区域的土壤肥料管理提供有效的数据支持。

二、研究范围
本研究测定的土壤理化性质及其指标包括:土壤酸碱度、土壤温度、
容重、含水率、pH值、有机质、含盐量、重金属离子含量、养分种类及
其释放量等。

三、实验设计
1.采样:在确定研究区域的基本地理环境特征后,沿着抽样线多点采样,每个点进行0-20cm与20-40cm共计取2-4个样点,以获取比较均匀
的数据;
2.测试:取样后将土壤样品放入实验室进行理化性质的检测,检测内
容包括:酸碱度、温度、容重、含水率、pH值、有机质、含盐量、重金
属离子含量、养分种类及其释放量等方面的测定;
3.结果分析:将土壤理化性质检测结果进行比较分析,相应地结合图表,对土壤理化性质在不同深度及不同耕作层次上的变化情况进行归纳,
最终给出相应区域土壤肥力水平的整体评价结论。

四、数据处理
1.标准化:将土壤理化性质检测结果数据作标准化处理,除去数据之
间的差异,以获得更为准确的评价结论;
2.比较:将标准化后的土壤理化性质各项指标结果分。

土壤理化性质测定方法

土壤理化性质测定方法

1 土壤pH的测定方法(电位法)称取10g通过1mm筛孔风干土样置25mL烧杯中,加蒸馏水10mL混匀,静置30min,用校正过的pH计测定悬液的pH值。

测定时将玻璃电极球部(或底部)浸入悬液泥层中,并将甘汞电极侧孔上的塞子拔去,甘汞电极浸在悬液上部清液中,读pH值。

2 土壤含水率的测定方法将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.0001g。

揭开盒盖,放在瓶底下,置于已预热至105±2℃的烘箱中烘烤12h。

取出,盖好,移入干燥器内冷却至室温(约需30min),立即称重。

新鲜土样水分的测定做三份平行测定。

结果的计算:①计算公式:水分(分析基),%=(m1-m2)/(m1-m)×100 (E1)水分(干基),%=(m1-m2)/(m2-m)×100 (E2)式中:mo-烘干空铝盒质量(g);m1-烘干前铝盒及土样质量(g);m2-烘干后铝盒及土样质量(g)。

②平行测定的结果用算术平均值表示,保留小数点后一位。

3 土壤容重的测定方法(环刀法)将环刀托放在已知重量的环刀上,环刀内壁稍擦上凡士林,将环刀刃口向下垂直压入土中,直至环刀筒中充满土样为止。

用修土刀切开环周围的土样,取出已充满土的环刀,细心削平和擦净环刀两端及外面多余的土。

同时在同层取样处,用铝盒采样,测定土壤含水量。

把装有土样的环刀两端立即加盖,以免水分蒸发。

随即称重(精确到),并记录。

结果计算:ρb =m/[V(1+θm)] (E3)式中:ρb------土壤容重;m----环刀内湿样质量;V----环刀容积;θm样品含水量(质量含水量)。

4土壤速效磷的测定方法(mol·L-1NaHCO3法)(1)方法原理石灰性土壤中的磷主要以Ca-P(磷酸钙盐)的形态存在,中性土壤中Ca-P、A1-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定比例。

由于浸提液(0.5M NaHCO3)提高了CO32-离子的活性,使其与Ca2+形成CaCO3沉淀,从而降低了Ca2+的活性,因磷酸钙的溶解度>碳酸钙,故磷酸根的活性增加,同时也可使比较活性的Fe-P 和AI-P起水解作用而浸出,从而增加了碳酸氢钠提取中性和石灰性土壤速效磷的能力。

土壤理化性质测定方法

土壤理化性质测定方法

1 土壤pH的测定方法(电位法)称取10g通过1mm筛孔风干土样置25mL烧杯中,加蒸馏水10mL混匀,静置30min,用校正过的pH计测定悬液的pH值。

测定时将玻璃电极球部(或底部)浸入悬液泥层中,并将甘汞电极侧孔上的塞子拔去,甘汞电极浸在悬液上部清液中,读pH值。

2 土壤含水率的测定方法将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.0001g。

揭开盒盖,放在瓶底下,置于已预热至105±2℃的烘箱中烘烤12h。

取出,盖好,移入干燥器内冷却至室温(约需30min),立即称重。

新鲜土样水分的测定做三份平行测定。

结果的计算:①计算公式:水分(分析基),%=(m1-m2)/(m1-m0)×100(E1)水分(干基),%=(m1-m2)/(m2-m0)×100(E2)式中:mo-烘干空铝盒质量(g);m1-烘干前铝盒及土样质量(g);m2-烘干后铝盒及土样质量(g)。

②平行测定的结果用算术平均值表示,保留小数点后一位。

3 土壤容重的测定方法(环刀法)将环刀托放在已知重量的环刀上,环刀内壁稍擦上凡士林,将环刀刃口向下垂直压入土中,直至环刀筒中充满土样为止。

用修土刀切开环周围的土样,取出已充满土的环刀,细心削平和擦净环刀两端及外面多余的土。

同时在同层取样处,用铝盒采样,测定土壤含水量。

把装有土样的环刀两端立即加盖,以免水分蒸发。

随即称重(精确到0.01g),并记录。

结果计算:ρb=m/[V(1+θm)] (E3)式中:ρb ------土壤容重;m----环刀内湿样质量;V----环刀容积;θm样品含水量(质量含水量)。

4土壤速效磷的测定方法(0.5 mol·L-1NaHCO3法)(1)方法原理石灰性土壤中的磷主要以Ca-P(磷酸钙盐)的形态存在,中性土壤中Ca-P、A1-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定比例。

由于浸提液(0.5M NaHCO3)提高了CO32-离子的活性,使其与Ca2+形成CaCO3沉淀,从而降低了Ca2+的活性,因磷酸钙的溶解度>碳酸钙,故磷酸根的活性增加,同时也可使比较活性的Fe-P和AI-P起水解作用而浸出,从而增加了碳酸氢钠提取中性和石灰性土壤速效磷的能力。

土壤理化性质分析测试方法

土壤理化性质分析测试方法

1目 录附件5:土壤理化性质分析测试方法 ·········································································· 2 5-1土壤P H-电极法 ····························································································· 2 5-2全氮 ··········································································································· 4 5-3全钾 ··········································································································· 7 5-4 全磷 ·········································································································· 9 5-5有机质含量 ································································································· 12 5-5-1重铬酸钾容量法 ·················································································································· 12 5-5-2 总有机碳分析仪测定 ········································································································· 15 5-6土壤颗粒组成分析 ························································································ 17 5-6-1 吸管法 ································································································································· 17 5-6-2 比重计法 ····························································································································· 25 5-7阳离子交换量 ······························································································ 29 5-8土壤容重 ···································································································· 31 5-9 硝酸盐含量 ································································································· 33 5-9-1酚二磺酸比色法 ·················································································································· 33 5-9-2还原蒸馏法 ·························································································································· 36 5-10有效态磷含量····························································································· 38 5-10-1 0.05mol/L HCl-0.025 mol/L 21H 2SO 4浸提法 ................................................................. 38 5-10-2 0.03 mol/L 氯化铵—0.025 mol/L 盐酸浸提法 .................................................................. 41 5-10-3 石灰性土壤有效磷的测定 ............................................................................................... 43 5-11碳酸盐含量 ................................................................................................ 46 5-12盐分 ........................................................................................................ 48 5-12-1质量法 ................................................................................................................................ 48 5-12-2电导法 ................................................................................................................................ 51 5-13 土壤水分的测定 .. (53)附件5:土壤理化性质分析测试方法5-1土壤pH-电极法A主题内容与适用范围A-1本方法适用于一般土壤、沉积物样品pH值的测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 土壤样品采集与测定方法2.1 采样方法在选择好挖掘土壤剖面的位置,先挖一个1.0m X1.5m的长方形土坑,然后用环刀(100cm 350.46mm X50mm )取土法分10cm、20cm、30cm-40cm三层取土。

2.2 土壤样品制备:森林土壤的制备:风干、研磨、过筛、混合分样、储存。

1 )风干:从实验林地采回的土壤样品,应及时进行风干,以免发霉而引起性质的改变,其方法是将土壤样品弄成碎块平铺在干净的纸上,摊成薄层放于室内阴凉通风处风干,经常加以翻动,加速其干燥,切忌阳光直接暴晒,风干后的土样再进行研磨过筛、混合分样处理。

2)研磨过筛:土壤微生物、含水量等测定项目必须用湿土立即进行测定,用湿土测定的最大优点是反映了土壤在自然状态时的有关理化性状,具有照相般的真实性。

在进行土壤物理分析时,样品处理的方法是取风干土样100-200g ,挑去没有分解的有机物及石块,用研钵研磨,通过2mm 孔隙筛的土样作为物理分析用。

在进行土壤化学分析时,样品制备的方法是取风干土样品一份,仔细挑去石块,根茎及各种新生体和侵入体。

研磨,使全部通过2mm 筛,这种土样可供土壤表面物质测定项目。

3)混合分样:研磨过筛后将样品混匀。

如果采来的土壤样品数量太多,则要进行混合、分样。

样品的混合可以用来回转动的方法进行,并用土壤分样器或四分法将混合的土壤进行分样,将多余的土壤弃去,一般有1kg 的土壤样品即够化学、物理分析之用。

4)贮存:过筛后的土样经充分混匀,然后装入玻璃塞广口瓶或塑料袋中,内外各具标签一张,写明编号、采样地点、土壤名称、深度、筛孔、采样日期和采样者等项目。

2.3 物理性质2.3.1 测定指标:土壤水分、土壤容重、总孔隙度、毛管孔隙度及非毛管孔隙度,最大持水量和田间持水量。

2.3.2 实验仪器及试剂:环刀铝盒自封袋50 个标签纸记号笔削土小刀小铁铲托盘天平烘箱凡士林2.3.3 实验步骤:准备工作:用凡士林在环刀内壁薄薄的涂抹一层,同时准备一定数量的铝盒,将铝盒逐个编号并称量记录铝盒的重量(准确到0.1g ),记为G0 。

采样:在野外采样点选择好土壤剖面点,挖掘土壤剖面并按土壤发生层次自下而上在每个土壤发生层次中部平稳打入环刀,待环刀全部进入土壤后,用铁锹挖去环刀周围的土壤,取出环刀,小心脱出环刀上端的环刀托,然后用削土刀削平环刀两端的土壤,使得环刀内土壤容积一定。

在采样过程中,每一个操作步骤都要小心确保不扰动环刀内的土壤,如发现环刀内土壤亏缺或松动,则应该弃掉已采集土样,重新采 集。

烘干:将已采集好的环刀内土壤样品小心的全部转移到已知重量 的铝盒内,称量铝盒及新鲜土壤样品地重量,记为 G1。

将样品带回 室内,放在105 C 烘箱内烘干至恒重,称量烘干土及铝盒重量,记 为G2。

234结果计算:非毛管空隙=0.1 X (最大持水量-毛管持水量)X 土壤密度/水的 密度毛管空隙=0.1 X 毛管持水量X 土壤密度/水的密度总孔隙度二非毛管空隙+毛管空隙式中W 指土壤含水量,V 指环刀容积,cm 3G0指铝盒的重量,gG1指铝盒及湿土的重量,gM3为浸润12h 后环刀内湿土的质量,gM4为在干沙上搁置2h 后环刀内湿土的质量,gM5为在干沙上搁置12h 后环刀内湿土的质量,g 实验记录:环刀内干土的质量: M1=G2-G0 ,湿土的质量:M2二 G1-G0土壤容重(Gl G°) 100 V(100 W) 土壤含水量 M 2 M 1 1000M 1土壤密度M i V 毛管持水量冒1000最大持水量 M3 M1 1000 M 1田间持水量 叫一叫1000 M2.4化学性质在采样点分10cm、20cm、30-40cm 三层采集随后将采集的样品放入自封袋,一般采集1 kg左右,在自封袋内外均应附上土壤标签,写明剖面号数、采集地点、土层深度、采样深度、土壤名称、采集人和采样日期,然后托运到实验室。

2.3.1 测定指标:全氮、水解性氮、全磷、有效磷、全钾、速效钾、PH 值、有机质2.3.2 实验步骤:(一)全氮;(1)试剂:1、混合催化剂:称取硫酸钾100g 、五水硫酸铜10g 、硒粉1g 。

均匀混合后研细。

贮于瓶中。

2、比重1.84 浓硫酸。

3、40%氢氧化钠:称400g 氢氧化钠于烧杯中,加蒸馏水600ml ,搅拌使之全部溶解。

4、2% 硼酸溶液:称20g 硼酸溶于1000ml 水中,再加入2.5ml 混合指示剂。

(按体积比100:0.25 加入混合指示剂)5 、混合指示剂:称取溴甲酚绿0.5g 和甲基红0.1 克,溶解在100ml95% 的乙醇中,用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH 应为4.5 。

6、0.01 的盐酸标准溶液:取比重1.19 的浓盐酸0.84ml ,用蒸馏水稀释至1000ml ,用基准物质标定之。

(2)操作步骤1、消煮:在分析天平上准确称取通过60 号筛的风干土0.5000g 左右,移入干燥的凯氏瓶中,加入1.5g 的还原性混合催化剂。

用注射器加入4ml 浓硫酸,放到通风柜内的消煮器上消煮1.5h 左右。

直至内容物呈清彻的淡蓝色为止。

2、蒸馏:消煮完毕后冷却。

将三角瓶置于冷凝管的承接管下,管口淹没在硼酸溶液中(三角瓶用2% 的硼酸20ml 作吸收剂),然后打开冷凝器中的水流,进行蒸馏。

在整个蒸馏过程中注意冷凝管中水不要中断,当接受液变蓝后蒸馏5min, 将冷凝管下端离开硼酸液面,再用蒸馏水冲净管外。

3、滴定:用0.01 当量的盐酸标准溶液滴定至红色为止。

记录所消耗的盐酸标准溶液的体积。

4、空白:除不加试样外其余步骤完全相同。

(二)水解性氮(1)仪器设备:恒温培养箱;扩散皿;滴定管;移液器等(2)试剂配制:1、1mol • NaOH 溶液:40.0克NaOH (三级)溶于水,冷却后,定容至1 升。

2 、2%H3B03 指示剂:20g 纯H3B03 加水700 毫升稍稍加热溶解之,冷却后,转移至1000 毫升容量瓶中,加入200ml95% 乙醇和20 毫升混合指示剂(0.066 克溴甲酚绿和0.033 克甲基红于玛瑙研钵中,加入少量95% 乙醇,研磨至指示剂全部溶解后,用95%乙醇定容至100毫升),然后用0.05 mol L-1 NaOH或0.05 mol L-1 HCL调节溶液至紫红色(葡萄酒色,PH值为4.5),最后加水至1000 毫升,摇匀,贮于塑料瓶中备用。

3、0.005 mol L-1 H2S04 标准溶液:先配制0.1 mol L-1 H2S04 溶液(每升水中注入2.67ml 浓硫酸),取上述0.1 mol L-1 H2S04 50ml 定容到1000ml (稀释20 倍)。

3.4 碱性胶液:阿拉伯胶40.0g 和水50ml 在烧杯中热温至70 〜80 C,搅拌促进溶解,约1小时后放冷。

加入20ml甘油和20ml饱和碳酸钾水溶液,搅拌、放冷。

离心除去泡沫和不溶物,上清液贮于具塞玻璃瓶中备用。

(3)操作步骤:称取风干土(过1mm 筛)2.00 克,均匀铺在扩散皿外室,水平的轻轻旋转扩散皿,使样品铺平。

在扩散皿的内室中加入2% 的H3B03 指示剂2m1 ,然后在皿的外室边缘上涂上碱性胶液,盖上毛玻璃,旋转至完全粘合。

再慢慢转开毛玻璃的一边,使扩散皿露出一条小缝,从毛玻璃狭缝处迅速加入10m1 1 mol L-1 的Na0H 溶液,立即盖严,用橡皮筋圈紧。

随后放入40 士「C 恒温箱中,碱解扩散24 士0.5小时后取出(可以观察到内室应为蓝色),内室吸收液中的NH3用0.005M 或0.0025M H2S04 滴定,终点由蓝绿色转变至红紫色,记下所用去的标准酸量(毫升)。

同时进行空白试验。

并做土壤含水量。

(4)注意事项; 1. 由于碱性胶液的碱性很强,在涂胶液和洗涤扩散皿时,必须特别细心,以防污染内室,造成错误。

2. 滴定时要用小玻璃棒小心搅动吸收液,切不可摇动扩散皿。

3. 本方法不包括硝态氮(三)全磷(1)仪器、设备土壤样品粉碎机;土壤筛(孔径1mm 和0.149mm )分析天平(感量为0.0001g)镍(或银)坩埚(容量>30mL)高温电炉:温度可调(0〜1000 C);分光光度计(要求包括700nm 波长)容量瓶(50、100、1000mL)移液管(5、10、15、20mL)漏斗(直径7cm)烧杯(150 、1000mL)玛瑙研钵(2)试剂所有试剂,除注明者外,皆为分析纯,水均指蒸馏水或去离子水。

1 氢氧化钠(GB 629 );2无水乙醇(GB 678 );310%(M/V )碳酸钠溶液:10g 无水碳酸钠(GB 639)溶于水后,稀释至100mL ,摇匀;4 5 %(V/V )硫酸溶液:吸取5mL浓硫酸(GB 625 , 95.0〜98.0 %,比重1.84 )缓缓加入90mL 水中,冷却后加水至100mL ;53mol/L 硫酸溶液:量取168mL 浓硫酸缓缓加入到盛有800mL 左右水的大烧杯中,不断搅拌,冷却后,再加水至1000mL ;6 二硝基酚指示剂:称取0.2g 2 ,6- 二硝基酚溶于100mL 水中;7 0.5 %酒石酸锑钾溶液:称取化学纯酒石酸锑钾0.5g 溶于100mL 水中;8 硫酸钼锑贮备液:量取126mL 浓硫酸,缓缓加入到400mL 水中,不断搅拌,冷却。

另称取经磨细的钼酸铵(GB 657 )10g溶于温度约60 C 300mL水中,冷却。

然后将硫酸溶液缓缓倒入钼酸铵溶液中。

再加入0.5%酒石酸锑钾溶液(4.7)100mL ,冷却后,加水稀释至1000mL ,摇匀,贮于棕色试剂瓶中,此贮备液含钼酸铵1 %,硫酸2.25mol/L ;9 钼锑抗显色剂:称取1.5g 抗坏血酸(左旋,旋光度+21〜22 °)溶于100mL钼锑贮备液中。

此溶液有效期不长,宜用时现配;10磷标准贮备液:准确称取经105 C下烘干2h的磷酸二氢钾(GB 1274,优级纯)0.4390g ,用水溶解后,加入5mL 浓硫酸,然后加水定容至1000mL 。

该溶液含磷100mg/L ,放入冰箱可供长期使用;115mg/L 磷标准溶液:吸取5mL 磷贮备液(4.10),放入100mL 容量瓶中,加水定容。

该溶液用时现配;12无磷定性滤纸。

(3)土壤样品制备取通过1mm 孔径筛的风干土样在牛皮纸上铺成薄层,划分成许多小方格。

用小勺在每个方格中提取出等量土样(总量不少于20g )于玛瑙研钵中进一步研磨,使其全部通过0.149mm 孔径筛。

混匀后装入磨口瓶中备用。

(4)操作步骤1 熔样准确称取风干样品0.25g ,精确到0.0001g ,小心放入镍(或银)坩埚(3.4)底部,切勿粘在壁上。

加入无水乙醇(4.2 )3〜4滴,润湿样品,在样品上平铺2g 氢氧化钠(4.1)。

相关文档
最新文档