传感器线性度的概念及表示方法

合集下载

传感器技术知识点

传感器技术知识点

1-1衡量传感器静态特性的主要指标。

说明含义。

1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

4、灵敏度——传感器输出量增量与被测输入量增量之比。

5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、稳定性——即传感器在相当长时间内仍保持其性能的能力。

8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

1-2计算传感器线性度的方法,差别。

1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

1-3什么是传感器的静态特性和动态特性?为什么要分静和动?(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

1—4传感器有哪些组成部分?在检测过程中各起什么作用?答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。

传感器几个必须掌握的公式

传感器几个必须掌握的公式

传感器几个必须掌握的公式在传感器领域,有一些必须掌握的公式对于传感器的设计、校准和使用至关重要。

下面是一些重要的传感器公式:1. 传感器的灵敏度(Sensitivity):灵敏度是指传感器输出的变化量与输入变化量之间的关系。

通常用一个比例系数来表示,可以通过以下公式计算:Sensitivity = ΔY/ΔX其中,ΔY是传感器输出量的变化量,ΔX是对应的输入量的变化量。

在改变输入量的情况下,观察输出量的变化,可以通过计算斜率来获得灵敏度。

2. 传感器的线性度(Linearity):线性度是指传感器输出与输入之间的直线关系的程度,可通过下面的公式计算:Linearity = (Measured value - Ideal value) / Ideal value × 100%线性度的值越接近100%,说明传感器输出与输入之间的关系越直线。

3. 传感器的误差(Error):传感器的误差实际上是输出值与真值之间的差异。

误差可以分为绝对误差和相对误差。

绝对误差是指输出值与期望值之间的差异,可以通过以下公式计算:Error = Measured value - Ideal value相对误差是绝对误差与期望值之比,可以通过以下公式计算:Relative Error = (Measured Value - Ideal Value) / IdealValue × 100%4. 传感器的分辨率(Resolution):分辨率是指能够被传感器检测到的最小变化量。

通常用最小可测量的输入量来表示。

分辨率可以通过以下公式计算:Resolution = (Max input - Min input) / Number of steps其中,Max input是传感器能够测量的最大输入值,Min input是传感器能够测量的最小输入值,Number of steps是可以测量的离散步数。

5. 传感器的灵敏度范围(Sensitivity Range):灵敏度范围是指传感器能够测量的输入范围。

传感器测试方法

传感器测试方法

传感器测试方法一、引言传感器是一种用于感知和测量环境中各种物理量的装置,被广泛应用于各个领域,如工业、农业、医疗等。

为了确保传感器的性能和可靠性,需要进行传感器测试。

本文将介绍传感器测试的方法和流程。

二、传感器测试的目的传感器测试的主要目的是评估传感器的准确度、灵敏度、线性度、稳定性、响应时间等性能指标,以确保传感器能够在实际应用中达到预期的效果。

三、传感器测试的方法1. 准确度测试准确度是指传感器输出值与实际值之间的偏差程度。

准确度测试可以通过与已知准确值的比较来进行。

一种常用的方法是使用标准参考传感器或仪器,将其与待测试传感器同时连接到同一测试系统中,通过比较两者的输出值来评估待测试传感器的准确度。

2. 灵敏度测试灵敏度是指传感器输出值对被测物理量变化的敏感程度。

灵敏度测试可以通过改变被测物理量的大小,观察传感器输出值的变化来进行。

测试时需要注意控制其他影响因素的变化,以确保测试结果的准确性。

3. 线性度测试线性度是指传感器输出值与被测物理量之间的线性关系程度。

线性度测试可以通过改变被测物理量的大小,并记录传感器输出值,然后绘制传感器输出值与被测物理量之间的关系曲线来进行。

若曲线接近一条直线,则说明传感器具有较好的线性度。

4. 稳定性测试稳定性是指传感器在一定时间内输出值的变化程度。

稳定性测试可以通过将传感器连接到稳定的信号源,并记录传感器输出值的变化情况来进行。

测试时需要注意排除外部干扰因素的影响。

5. 响应时间测试响应时间是指传感器从感知到物理量变化到输出值稳定的时间。

响应时间测试可以通过改变被测物理量的大小,并记录传感器输出值的变化情况来进行。

测试时需要注意控制被测物理量变化的速度,以及排除外部因素的干扰。

四、传感器测试的流程传感器测试的一般流程如下:1. 确定测试目的和测试指标。

2. 准备测试设备和测试环境,包括标准参考传感器或仪器、稳定的信号源、测试系统等。

3. 进行预热和校准,确保测试设备和传感器处于稳定状态。

什么叫传感器

什么叫传感器

学习要点1.传感器是能以一定精确度把某种被测量(主要为各种非电的物理量,化学量,生物量等)按一定规律转化为(便于人们应用,处理)另一参量(通常为电参量)的器件或测量装置。

2.传感器通常由敏感器件和转换期间组合而成。

3.传感器的静态特性是指被测量的值处于稳定状态时的输出-输入关系。

只考虑传感器的静态特性是,出入量与输出量之间的关系式中不含有时间变量。

4.传感器的动态特性是指输出与随时间变化的输入量之间的响应特性。

5.传感器的线性度是指传感器的输出与输入之间数量关系的线性程度。

6.传感器的灵敏度S是指传感器的输出量增量与引起输出量增量的输入量增量的比值。

S=。

7.在相同测量条件下多次测量同一物理量,其误差大小和符号保持或按一定规律变化,此类误差称作系统误差。

8.检测是指利用传感器把被测信息检取出来,并转换成测量仪表或以其所能接受的信号,再进行测量以确定量值的过程。

9.传感器标定就是利用精度高一级的标准器具对传感器进行定标的过程。

从而确定传感器输出量和输入量的对应关系。

同时也确定不同使用条件下的误差关系。

电阻式应变传感器:1.导体或半导体在受到外界力的作用时,产生机械形,机械变形导致其阻值变化,这种因形变而使阻值发生变化的现象称为应变效应。

2.应变片的电阻值是指应变片没有粘贴且未受应变时,在室温下测定的电阻值,即初始电阻值。

3.测量电桥的作用是将应变片的电阻的变化转换成为电压或电流的变化。

电感式传感器及电容式传感器:1.电感式传感器是利用线圈的自感,互感或阻抗的变化来实现非电量检测的一种装置。

2.一种利用线圈自感和互感的变化实现非电量电测的装置叫做电感式传感器。

3.变磁阻式传感器即自感式电感传感器是利用线圈自感量的变化来实现测量的。

4.在实际使用中,常采用两个相同的传感线圈共用一个衔铁,构成差动式自感传感器。

5.利用金属导体在在交流磁场中的电涡流效应为原理的传感器称为电涡流式传感器。

6.电涡流式传感器可分为高频反射式和低频透射式两类。

传感器线性度的概念及表示方法

传感器线性度的概念及表示方法

传感器线性度的概念及表示方法1传感器线性度的概念线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。

线性度又称非线性,表征传感器输出—输入校准曲线(或平均校准曲线)与所选定的作为工作直线的拟合直线之间的偏离程度。

这一指标通常以相对误差表示如下。

%100.max ⨯∆±=SF L y L ξ (1) 式中:m ax L ∆——输出平均校准曲线与拟合直线间的最大偏差;S F y .——理论满量程输出。

由式(1)可见,拟合直线是获得相应的线性度的基础,选择的拟合直线不同,m ax L ∆不同,计算所得的线性度数值也就不同。

2线性度表示方法线性度表示方法很多,一般常用的有以下四种方法。

2.1理论直线法理论直线法是以传感器的理论特性直线作为拟合直线,与传感器被测输出值无关。

例如:在一个标准大气压力试验条件下,设定被测温度传感器下限值为0℃,上限值为100℃,以测量范围为0℃~100℃的二等标准水银温度计作为标准计量器具,不管温度标定试验级数如何确定,均以标准水银温度计示值作为拟合直线,即试验各温度测试点温度传感器计算温度值均直接与该测试点标准水银温度计示值进行比较,从中获取m ax L ∆,m ax L ∆值即为被测温度传感器线性误差,暂名之以“理论线性度”。

理论直线法示意见图1。

图1 理论直线法示意图 0 y x2.2最佳直线法通过图解法或计算机辅助解算,获得一条“最佳直线”,使得传感器正反行程校准曲线相对于该直线的正、负偏差相等且最小,如图2所示。

由此所得的线性度称为“独立线性度”。

2.3端点直线法以传感器校准曲线两端点间的连线作为拟合直线,这种方法可为称之为端点直线法,端基直线法,相应地线性度称之为端点线性度或端基线性度。

端点直线法示意见图3。

图3 端点直线法示意图 端点直线法拟合直线方程为:kx b y += (2)2.4最小二乘直线法利用最小二乘原理获取拟合直线的方法称为最小二乘直线法。

传感器静态指标

传感器静态指标

传感器静态特性的性能指标2008-11-07 来源:Internet 浏览:853[推荐朋友] [打印本稿] [字体:大小]在检测控制系统和科学实验中,需要对各种参数进行检测和控制,而要达到比较优良的控制性能,则必须要求传感器能够感测被测量的变化并且不失真地将其转换为相应的电量,这种要求主要取决于传感器的基本特性。

传感器的基本特性主要分为静态特性和动态特性,下面介绍反映传感器静态特性的性能指标。

静态特性是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。

主要包括线性度、灵敏度、迟滞、重复性、漂移等。

(1) 线性度指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。

(2) 灵敏度灵敏度是传感器静态特性的一个重要指标。

其定义为输出量的增量Δy 与引起该增量的相应输入量增量Δx 之比。

它表示单位输入量的变化所引起传感器输出量的变化,显然,灵敏度S 值越大,表示传感器越灵敏.(3) 迟滞传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。

也就是说,对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。

(4) 重复性重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。

(5) 漂移传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。

产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。

最常见的漂移是温度漂移,即周围环境温度变化而引起输出量的变化,温度漂移主要表现为温度零点漂移和温度灵敏度漂移。

温度漂移通常用传感器工作环境温度偏离标准环境温度(一般为20℃)时的输出值的变化量与温度变化量之比(6) 测量范围(measuring range)传感器所能测量到的最小输入量与最大输入量之间的范围称为传感器的测量范围。

(7) 量程(span)传感器测量范围的上限值与下限值的代数差,称为量程。

武汉大学传感器技术课件-传感器一般特性

武汉大学传感器技术课件-传感器一般特性
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
线性度(Linearity)
在规定的条件下,传感器静态校准曲线(实际曲线)与拟合直线间最大偏差 与满量程输出值的百分比称为线性度。
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
迟滞
传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入 输出特性曲线不重合的现象称迟滞。
例:某电子秤: 增加砝码
电桥输出 减砝码输出
0 g —— 50g —— 100g —— 200g 0.5 mv --- 2.0mv -- 4.0mv --- 8.0mv 0.6 mv --- 2.2mv ---4.5mv --- 8.0mv
H
H max
/Y FS
100%
产生这种现象的主要原因是由于传感器敏感元件材 料的物理性质和机械另部件的缺陷所造成的,例如弹 性敏感元件弹性滞后、运动部件摩擦、传动机构的间 隙、紧固件松动等。
准确度
说明传感器输出值与真值的偏离程度。准确度是系统误差大小的标志。
精确度
是精密度与准确度两者的综合优良程度。
低精密度, 低正确度
高精密度, 低正确度
低精密度, 高正确度

线性温度传感器使用指南

线性温度传感器使用指南

线性NTC温度传感器/温度补偿元件使用指南1.什么是线性NTC温度传感器?线性温度传感器就是线性化输出的负温度系数(简称NTC)热敏元件,它实际上是一种线性温度-电压转换元件,就是说在通以工作电流(100uA)的条件下,元件的电压值随温度呈线性变化,从而实现了非电量到电量的线性转换。

2.线性NTC温度传感器的主要特点是什么?这种温度传感器其主要特点就是在工作温度范围内温度-电压关系为一直线,这对于二次开发测温、控温电路的设计,将无须线性化处理,就可以完成测温或控温电路的设计,从而简化仪表的设计和调试。

3.线性NTC温度传感器的测温范围是如何规定的?就总的而言,测温范围可在-200~+200℃之间,但考虑实际的需要,一般无须如此宽的温度范围,因而规定三个不同的区段,以适应不同封装设计,同时在延长线的选用上亦有所不同。

而对于温度补偿专用的线性热敏元件,则只设定工作温度范围为-40℃~+80℃。

完全可以满足一般电路的温度补偿之用。

4.延长线的选用应遵循什么原则?一般的在-200~+20℃、-50~+100℃宜选用普通双胶线;在100~200℃范围内应选用高温线。

5.基准电压的含义是什么?基准电压是指传感器置于0℃的温场(冰水混合物),在通以工作电流(100μA)的条件下,传感器上的电压值。

实际上就是0点电压。

其表示符号为V(0),该值出厂时标定,由于传感器的温度系数S相同,则只要知道基准电压值V(0),即可求知任何温度点上的传感器电压值,而不必对传感器进行分度。

其计算公式为:V(T)=V(0)+S×T (其特性曲线如下图)示例:如基准电压V(0)=700mV;温度系数S=-2mV/℃,则在50℃时,传感器的输出电压V(50)=700—2×50=600(mV)。

这一点正是线性温度传感器优于其它温度传感器的可贵之处。

6.温度系数S的含义是什么?温度系数S是指在规定的工作条件下,传感器的输出电压值的变化与温度变化的比值,即温度每变化1℃传感器的输出电压变化之值: S=△V/△T(mV/℃)。

传感器线性度计算方法的研究

传感器线性度计算方法的研究

传感器线性度计算方法的研究
传感器的线性度是指传感器输出的响应与输入的物理量之间的关系的近似程度。

线性度是评价传感器性能的一个重要指标,它决定了传感器的精确度和可靠性。

传感器线性度的计算方法主要有以下几种:
1. 最小二乘法(Least Squares Method):最小二乘法是一种常用的线性度分析方法。

它通过拟合一个最优的直线或曲线来近似描述传感器的输出响应与输入之间的关系。

通过最小二乘法可以计算出传感器的斜率和截距,从而评估传感器的线性度。

2. 分段直线法(Piecewise Linear Method):分段直线法是一种简化的线性度分析方法。

它将输入范围分为若干段,分别计算每段的斜率和截距,并比较各段之间的差异来评估传感器的线性度。

3. 多项式拟合法(Polynomial Fitting Method):多项式拟合法是一种基于多项式函数的线性度分析方法。

它通过拟合一个最优的多项式函数来近似描述传感器的输出响应与输入之间的关系。

通过选择适当的多项式阶数,可以更精确地评估传感器的线性度。

4. 残差分析法(Residual Analysis Method):残差分析法是一种基于统计学的线性度分析方法。

它通过计算传感器输出值与理论值之间的残差(即观测值与期望值之间的差异)来评估传感器的线性度。

通过分析残差的分布和趋势,可以判断传感器的线性度好坏。

传感器线性度的计算方法可以根据具体情况选择不同的分析方法,以获得准确的线性度评估结果。

传感器的基本特性

传感器的基本特性

传感器的特性
使用传感器的目的是希望它的输出信号能够准确地反映被测量 (输入信号)的数值或变化情况。
传感器的特性:
传感器的输出量和输入量之间对应关系的描述就称为传感器的
特性。
传感器技术与应用
1.10
传感器的一般特性
静态输入量 传感器的输入量 动态输入量 静态输入量:不随时间变化或变化很慢的输入信号。
传感器技术与应用
1.13
传感器的动态特性体现着传感器的输出值能够真实 再现变化着的输入量的能力。
传感器技术与应用
1.14
传感器的静态特性
2 n
不考虑迟滞及蠕变效应,其输出量和输入量之间的关系为:
Y a 0 a1X a 2 X ... a n X
(1-1)
Y为输出量;
X为输入量;
由此可见,在选用测量仪表的时候,不能单纯追求精度等级,还 要考虑到量程是否合适等因素。
传感器技术与应用
1.7
教学内容
1.2 传感器的基本特性
传感器技术与应用
1.8
教学要求
掌握传感器的静态特性和动态特性的概念 熟练掌握传感器的静态特性
线性度、灵敏度、分辨率、精度
迟滞、重复性、漂移
传感器技术与应用
1.9
在100.2kg时输出的电压值仍为35mV,但在100.3kg时输出的 电压值为36mV,则其分辨率为 0.3kg
分辨率也与测量仪表有关 如果采用精度更高的电压表来测量。同样在100.0kg时输
出电压35.0mV,但在100.1kg时输出电压值为35.1mV,那么其 分辨率变为 0.1kg
传感器技术与应用
1.17
传感器的静态特性
传感器静态特性的主要指标:

传感器知识整理

传感器知识整理

传感器技术把被测非电量转换成与非电量有一定关系的电量,再进行测量的方法就是非电量电测法。

实现这种转换的器件叫传感器。

一个完整的自动测控系统一般由传感器、测量电路、显示记录装置和电源四部分组成。

自动测控系统通常可分为开环和闭环两种。

传感器技术是以研究传感器的原理、传感器的材料、传感器的制作、传感器的应用为主要内容;以传感器的敏感材料的电、磁、光、声、热、力等物理效应、现象,化学中的各种反应以及生物学中的各种机理为理论基础。

传感器与通信技术、计算机技术一起分别构成了信息技术系统的感官、神经、和大脑,接口电路的作用是把转换元件输出的电信号转换为便于处理、显示、记录和控制的电信号。

经常采用的接口电路有电桥电路和其他特殊电路,如高阻抗输入电路、脉冲电路、震荡电路等。

应该指出的是:并不是所有的传感器必须包括敏感元件和转换元件。

有的传感器需要外加电源才能工作,如差动变压器、应变片组成的电桥等;有的不需要外加电源便能工作;如压电晶体。

传感器的分类;常见的有温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。

这种分类方法将被测量分为基本被测量和派生被测量。

电学式传感器有:电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡式传感器。

电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器。

主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。

具体请参见教材第4面传感器的静态特性:传感器的线性度是指传感器实际静态特性曲线与拟合直线之间的最大偏差与传感器满量程输出的百分比值。

公式为:线性度又称非线性误差,从特性上看线性度越小越好。

灵敏度:是指传感器在稳态下的输出变量dy与dx之比,对于线性传感器灵敏度就是它的静态特性的斜率。

公式为:K=dy/dx迟滞:传感器的迟滞是指传感器的正向星城(输入量增大)和反向行程(输入量减小)期间,输出-输入特性曲线不一致的程度。

6.2传感器的主要性能指标

6.2传感器的主要性能指标
图5
四、精度
精度是指传感器的测量输出值与实际被测量值之间的误差。
此款激光测距传感器的 精度为:0.2mm
图6
此款位移传感器的精 度为:0.01mm
图7
五、重复性
重复性是指传感器在对输入信号按同一方式进行全量程连续多次测量 时,相应测试结果的变化程度。
图8
六、分辨率
分辨率是指传感器在整个测量范围内所能辨别的被测量的最小变化量, 或者所能辨别的不同被测量的个数。
工业机器人传感器 ——主要性能指标
工业机器人用的传感器和普通传感器一样,有很多性能指标,如: 灵敏度、线性度、测量范围、精度、重复性、分辨力、响应时间、抗 干扰能力等。
一、灵敏度
灵敏度是指传感器在稳态下输出变化值与输入变化值之比,可用
如下的公式表示:
������ = ������������
������������
(K 代表灵敏度)
图1
图2
二、线性度
线性度:线性度反映传感器输出信号与输入信号之间的线性程度。假设传 感器的输出信号为 y,输入信号为 x,则 y与x 的关系可表示为:y=bx
图3
三、测量范围
测量范围是指被测量的最大允许值和最小允许值之差。
此款拉杆式位移传感器 测量范围:0-400mm
图4
此款超声波测距模块 测量范围:2-450cm
精度
图11
重复性 分辨率 响应时间 抗干扰能力
分辨率为0.01V
图9
七、响应时间
响应时间是传感器的动态特性指标,是指传感器的输入信号变化后,其输 出信号随之变化并达到一个稳定值所需要的时间。
输入
延时
输出
延时有多长呢?
八、抗干扰能力

传感器的线性度名词解释

传感器的线性度名词解释

传感器的线性度名词解释传感器的线性度概念与术语一直是工业中最重要的一部分。

它可以帮助工程师们更好地掌握设备的机能,更好地满足客户需求,更好地满足行业质量标准,也有助于传感器本身的可靠性。

理解传感器线性度的概念和术语是传感器设计和应用的基础。

首先,线性度是指传感器测量结果与被测量参数之间的相关性程度。

一般而言,越接近1,说明线性度越高,表示传感器测量结果与参数之间的关系越强,这也是所期望的。

相反,当结果越接近0,说明线性度越低,表示传感器测量结果与参数之间的关系越弱,这也是不希望看到的。

第二,线性度表示传感器与其他类型设备之间的特性比较。

现在,大多数传感器被认为具有良好的线性性能,但仍存在一些低线性度产品,这些产品在测量结果与参数之间存在较大偏差。

因此,工程师们在选择传感器时,应考虑传感器的线性度,以确保传感器的满意性和可靠性。

第三,用于衡量传感器线性度的两个重要指标是精度和线性度误差。

精度是指传感器在测量范围内能够提供的最大允许偏差。

线性度误差是指传感器在测量范围内的最大允许偏差。

一般情况下,越低的精度和线性度误差,表示传感器的线性度越高,更好地满足工程应用要求。

第四,除了精度和线性度误差外,还有一些其他量化指标,用于衡量传感器的线性度,如滞后误差、灵敏度变化率以及温度系数。

这些指标共同构成传感器性能的整体印象,用于评估传感器的质量。

综上所述,传感器的线性度概念和术语一直是工业中的关键部分,工程师们需要了解传感器线性度的数量指标,以便合理选择传感器,确保传感器的有效性和可靠性。

只有通过正确的线性度指标,才能对传感器和系统整体性能进行有效测量和控制。

传感器与自动检测技术习题参考答案

传感器与自动检测技术习题参考答案

第一章习题参考解1.1 什么是传感器?传感器特性在检测系统中起什么作用?答:传感器(Transducer/sensor)的定义为:“能感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。

传感器的基本特性是指传感器的输入—输出关系特性,是传感器的内部结构参数作用关系的外部特性表现。

不同的传感器有不同的内部结构参数,这些内部结构参数决定了它们具有不同的外部特性。

对于检测系统来说存在有静态特性和动态特性。

一个高精度的传感器,必须要有良好的静态特性和动态特性,从而确保检测信号(或能量)的无失真转换,使检测结果尽量反映被测量的原始特征。

1.2 画出传感器系统的组成框图,说明各环节的作用。

答:传感器一般由敏感元件、变换元件和其他辅助元件组成,组成框图如图所示。

敏感元件——感受被测量,并输出与被测量成确定关系的其他量的元件,如膜片和波纹管,可以把被测压力变成位移量。

若敏感元件能直接输出电量(如热电偶),就兼为传感元件了。

还有一些新型传感器,如压阻式和谐振式压力传感器、差动变压器式位移传感器等,其敏感元件和传感器就完全是融为一体的。

变换元件——又称传感元件,是传感器的重要组成元件。

它可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量,如热电偶和热敏电阻。

传感元件也可以不直接感受被测量,而只感受与被测量成确定关系的其他非电量。

例如差动变压器式压力传感器,并不直接感受压力,而只是感受与被测压力成确定关系的衔铁位移量,然后输出电量。

一般情况下使用的都是这种传感元件。

信号调理与转换电路——能把传感元件输出的电信号转换为便于显示、记录和控制的有用信号的电路。

信号调理与转换电路根据传感元件类型的不同有很多种类,常用的电路有电桥、放大器、振荡器和阻抗变换器等。

1.3 什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标?答:传感器的静态特性是它在稳态信号作用下的输入—输出关系。

如何评估传感器及测试系统精度

如何评估传感器及测试系统精度

传感器及测试系统精度评估所谓传感器精度,通常是指传感器的总误差δ与满程输出H U 的百分比值,即:100%H U δ⨯通常用线性度、迟滞、重复性、灵敏度、分辨率和漂移等表示其精度。

(一) 线性度线性度是指传感器的输出与输入成线性关系的成度。

传感器的理想输入-输出曲线特性应该是线性的,但是传感器的实际输入-输出特性大都具有一定程度的非线性,在输入量变化范围不大的条件下,可以用切线或割线拟合、过零旋转拟合、断点平移拟合等来近似地代表实际曲线的一段,这就是传感器非线性特性的线性化。

传感器的线性度一般用非线性误差表示,即实际的工作特性曲线与理想的线性特性曲线的偏离程度。

通常以最大偏移量max ∆与而定输出值N S 的百分比值表示,即max 1100%NS δ∆=±⨯ (二) 迟滞 迟滞也叫回程误差,是指在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信号大小不相等的现象。

产生迟滞的原因:传感器机械部分存在不可避免的摩擦、间隙、松动、积尘等,引起能量的吸收和消耗。

迟滞的大小一般由实验的方法来确定。

用正反行程的最大输出差值max H ∆与满量程输出FS Y 的百分比来表示:max 100%H FSH Y γ∆=⨯(三) 重复性重复性表示传感器在输入量按照同一方向做全量程多次测试时所得的输入-输出特性曲线的一致程度。

重复性指标一般采用输出最大不重复误差max R ∆与满量程输出FS Y 之比的百分数表示:max 100%R FSR Y γ∆=±⨯ (四) 灵敏度 灵敏度是传感器在稳态下输出量变化对输入量变化的比值,用n S 来表示,即:dy =dx n S =输出量的变化输入量的变化 对于线性传感器,他的灵敏度就是它的静态特性的斜率;非线性传感器的灵敏度为一变量。

曲线约陡峭,灵敏度越大;越平坦,灵敏度越小。

灵敏度实质上是一个放大倍数,体现了传感器将被测量的微小变化放大为显著变化的输出信号的能力,即传感器对输入变量微小变化的敏感程度。

第二章传感器的特性21传感器的静态特性

第二章传感器的特性21传感器的静态特性
传感器对各种外界干扰的抵抗能力。 是反映传感器在规定时间(t)内是否正常工作的一种综 合性质量指标。
l 可靠度R(t) : 完成规定功能的概率P(T>t)
l 可靠寿命:年,月 l 失效率 (t) 在t时刻后单位时间发生失效的概

返回
上页
下页
2.2 传感器的动态特性
传感器对随时间变化的输入量的响应特性(测量 值大小、变化规律)
返回
上页
下页
标定系统组成
标定系统框图
传感器标定时,所用测量设备的精度至少要比待标 定传感器的精度高一个数量级。
返回
上页
下页
为了保证各种被测量量值的一致性和准确性,很多 国家都建立了一系列计量器具(包括传感器)检定的组织 和规程、管理办法。我国由国家计量局、中国计量科学 研究院和部、省、市计量部门以及一些大企业的计量站 进行制定和实施。国家计量局(1989年后由国家技术监 督局)制定和发布了力值、长度、压力、温度等一系列计 量器具规程,并于1985年9月公布了《中华人民共和国 计量法》,其中规定:计量检定必须按照国家计量检定 系统表进行。计量检定系统表是建立计量标准、制定检 定规程、开展检定工作、组织量值传递的重要依据。
返回
上页
下页
静态标定的目的是确定传感器静态特性指标,如 线性度、灵敏度、滞后和重复性等。传感器的静态 特性是在静态标准条件下标定的。
静态标准条件 所谓静态标准条件主要包括没有加速度、振动、冲 击及环境温度一般为室温 (20℃±5℃) 、相对湿度不 大于85%、大气压力(101±7)kPa 等条件。
返回
上页
下页
传感器的标定有两层含义: § 确定传感器的性能指标 § 明确这些性能指标所适用的工作环境

线性度的概念

线性度的概念

线性度的概念:
线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。

在规定条件下,传感器校准曲线与拟合直线间的最大偏差(ΔYmax)与满量程输出(Y)的百分比,称为线性度(线性度又称为“非线性误差”),该值越小,表明线性特性越好。

以上说到了“拟合直线”的概念,拟合直线是一条通过一定方法绘制出来的直线,求拟合直线的方法有:端基法、最小二乘法等等。

精度:由传感器的基本误差极限和影响量(如温度变化、湿度变化、电源波动、频率改变等)引起的改变量极限确定。

表示为公式如下:δ=ΔYmax/ Y*100%
以上说到了“拟合直线”的概念,拟合直线是一条通过一定方法绘制出来的直线,求拟合直线的方法有:端基法、最小二乘法等等。

具体步骤这里不赘述。

有关精度、线性度等几个基本概念
在谈精度、线性度之前,先谈谈几个误差的概念:
1.绝对误差:实测值与理想值之差;
2.相对误差:被测点的绝对误差与被测点的理想值之比;
3.引用误差:被测点的绝对误差与基准值(量程)之比;
4.基本误差:在标准条件下,基准值(量程)范围内的引用误差;
5.线性误差:实测曲线与理想直线之间的偏差;
精度:由传感器的基本误差极限和影响量(如温度变化、湿度变化、电源波动、频率改变等)引起的改变量极限确定。

线性度:线性度概念:测试系统的输出与输入系统能否像理想系统那样保持正
常值比例关系(线性关系)的一种度量。

线性范围:传感器在线性工作时的可测量范围。

传感器静态特性的指标及公式

传感器静态特性的指标及公式

传感器静态特性的指标及公式1. 灵敏度(Sensitivity)灵敏度是指传感器输出量对输入量变化的响应程度,也可以理解为传感器输出信号的变化量与输入量变化的比值,通常用一定范围内最大输出变化与输入量变化的比值表示。

灵敏度的计算公式如下:S=∆Y/∆X其中,S为灵敏度,∆Y为输出量的变化值,∆X为输入量的变化值。

2. 线性度(Linearity)线性度是指传感器输出量与输入量之间的线性关系程度,即输出量的变化是否与输入量的变化成正比。

线性度可以通过传感器的线性度误差来描述,通常用百分比或者绝对值来表示。

线性度的计算公式如下:L=,(Y实测-Y理论)/Y理论,×100%其中,L为线性度,Y实测为实际测量输出量,Y理论为理论预期输出量。

3. 零偏误差(Zero Offset Error)零偏误差是指在无输入量时,传感器的输出量和零点之间的差值。

零偏误差可以通过传感器的测量输出量和零输入量的差值来计算,常表达为绝对值或者百分比。

零偏误差的计算公式如下:E=,Y测-Y零,×100%其中,E为零偏误差,Y测为实际测量输出量,Y零为零输入量。

4. 分辨力(Resolution)分辨力是指传感器能够分辨最小输入量变化的能力,通常是输出量变化的最小有效值。

分辨力可以通过量程与分辨率的比值来计算,分辨率可以是数字量的最小变化值,也可以是模拟量的最小变化量。

分辨力的计算公式如下:R=量程/分辨率其中,R为分辨力,量程为传感器的工作范围,分辨率为传感器输出量的最小变化值。

5. 稳定性(Stability)稳定性是指传感器输出量在一定环境条件下长时间内保持不变的能力,通常用输出量的标准差来衡量。

稳定性可以通过传感器长时间测量得到的输出量数据的标准差来计算,也可以通过计算测量输出量序列的方差来估计。

稳定性的计算公式如下:S=√[Σ(Yi-Ȳ)²/(N-1)]其中,S为稳定性,Yi为第i个测量输出量,Ȳ为所有测量输出量的平均值,N为测量次数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传感器线性度的概念及表示方法
1传感器线性度的概念
线性度是描述传感器静态特性的一个重要指标,以被测输入量处于稳定状态为前提。

线性度又称非线性,表征传感器输出—输入校准曲线(或平均校准曲线)与所选定的作为工作直线的拟合直线之间的偏离程度。

这一指标通常以相对误差表示如下。

%100.max ⨯∆±=S
F L y L ξ (1) 式中:m ax L ∆——输出平均校准曲线与拟合直线间的最大偏差;
S F y .——理论满量程输出。

由式(1)可见,拟合直线是获得相应的线性度的基础,选择的拟合直线不同,m ax L ∆不同,计算所得的线性度数值也就不同。

2线性度表示方法
线性度表示方法很多,一般常用的有以下四种方法。

2.1理论直线法
理论直线法是以传感器的理论特性直线作为拟合直线,与传感器被测输出值无关。

例如:在一个标准大气压力试验条件下,设定被测温度传感器下限值为0℃,上限值为100℃,以测量范围为0℃~100℃的二等标准水银温度计作为标准计量器具,不管温度标定试验级数如何确定,均以标准水银温度计示值作为拟合直线,即试验各温度测试点温度传感器计算温度值均直接与该测试点标准水银温度计示值进行比较,从中获取m ax L ∆,m ax L ∆值即为被测温度传感器线性误差,暂名之以“理论线性度”。

理论直线法示意见图1。

图1 理论直线法示意图 0 y x
2.2最佳直线法
通过图解法或计算机辅助解算,获得一条“最佳直线”,使得传感器正反行程校准曲线相对于该直线的正、负偏差相等且最小,如图2所示。

由此所得的线性度称为“独立线性度”。

2.3端点直线法
以传感器校准曲线两端点间的连线作为拟合直线,这种方法可为称之为端点直线法,端基直线法,相应地线性度称之为端点线性度或端基线性度。

端点直线法示意见图3。

图3 端点直线法示意图 端点直线法拟合直线方程为:
kx b y += (2)
2.4最小二乘直线法
利用最小二乘原理获取拟合直线的方法称为最小二乘直线法。

这种方法的基本原理是使传感器校准数据的残差的平方和最小。

最小二乘法拟合直线以式(2)表示,设定传感器校准测试点为n ,第i 个标准数据i y 的残差i ∆为:
)(i i i kx b y +-=∆ (3)
按最小二乘法原理,应使∑=∆n i i
12
最小。

因此,以∑=∆n
i i 12
分别对b 和k 求一阶偏0 x
y 0
导数并使其等于0,即可求得b和k。

相关文档
最新文档