集合的概念ppt
合集下载
集合的概念ppt课件

反之,如果X是一个奇数,那么X除以2的余数为1,它能表示为 X=2k+1(k∈Z)的形式。所以,X=2k+1(k∈Z)是所有奇 数的一个共同特征,于是奇数集可以表为 {X∈Z|X=2k+1, k∈Z}.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.
再如,实数集,有限小数和无限循环小数都具有q╱p(p, q∈Z,p≠0)的形式,这些数组成有理数集,我们将它表示为 Q={X∈R|X=q╱p,p,q∈Z,p≠0}. 其中,X=q╱p(p,q∈Z,p≠0)就是所有有理数具有的共同 特征。
例如,
不等式X-7<3的解是X<10,因为满足X<10的实数有无数个, 所以X-7<3的解集无法用列举法表示。但是我们可以利用解集中 元素的共同特征,即:X是实数,且X<10,把解集表示为 {X∈R|X<10}.
又如,整数集Z可以分为奇数集和偶数集。对于每一个X∈Z,如 果它能表示为X=2k+1(k∈Z)的形式,那么X除以2的余数为1, 它是一个奇数;
(1)小于10的所有自然数组成的集合
解:设小于10的所有自然数组成的集合为A,那么A={0,1,2,3, 4,5,6,7,8,9}.
注,由于元素完全相同的两个集合相等,而与列举的顺序无关,因 此一个集合可以有不同的列举方法,故以上例题的集合还可以写成 A={9,8,7,6,5,4,3,2,1,0}.
集合E={X∈Z|X=2k+1,k∈Z}也可表示为E={X| X=2k+1,k∈Z}.
练习
1.判断下列元素的全体是否组成集合,并说明理由: (1)A,B是平面α内的定点,在平面α内与A,B等距离的点; (2)高中学生中的游泳能手. 2.用符号“∈”或“∉”填空: 0_N; -3_N; 0.5_Z; √2_Z; 1╱3_Q; π_R.
高一数学集合ppt课件

3. 如果A⊆B且B和C是两个互不相交的集 合(即B与C没有交集),那么A与C也是 互不相交的。
2. 如果A⊆B且B⊆C,那么A⊆C。
子集的性质
1. 任何一个集合都是其本身的子集,即 A⊆A。
真子集的定义与性质
真子集的定义:如果 一个集合A是集合B的 一个子集,并且A和B 中至少有一个元素不 相同,那么我们称A 是B的真子集,记为 A⊈B。
集合通常用大写字母 表示,如A、B、C等 。
集合的元素
元素是集合中的个体,可以用小 写字母表示,如a、b、c等。
一个元素可以属于一个或多个集 合,不同元素可以属于同一个集
合。
空集是指不含有任何元素的集合 。
集合的表示方法
列举法
图示法
把集合中的元素一一列举出来,用大 括号{}括起来。
用一条封闭的曲线表示集合,内部可 以填充颜色或点上小点表示元素。
如果一个集合不是另一个集合 的真子集,那么称它为该集合 的真超集。
04
集合的交集、并集、补集的图形 表示
交集的图形表示
总结词
交集是指两个或两个以上集合的公共 部分,可以用符号 "∩" 表示。
详细描述
在图形表示中,交集通常用两个或多 个集合的公共部分来表示。例如,在 两个圆的重叠部分中,重叠部分的元 素就是两个圆的交集。
集合的运算性质
01
02
03
交换律
若A、B是两个集合,则A 并B等于B并A,A交B等于 B交A。
结合律
三个集合的交集和并集, 等于这三个集合分别交、 并后再合并得到的交集和 并集。
分配律
两个集合的并集与另一个 集合的交集相等,等于这 两个集合分别与另一个集 合的交集的并集。
集合的概念-课件ppt

(一)集合的概念:
各种各样的事物或一些抽象的符号,都可以看作对象。
一般地,把一些能够确定的不同的对象看成一个整体,就
说这个整体是有这些对象的全体构成的集合(或集)。 构成集合的每个对象叫做这个集合的元素(或成员)
如:小于10的自然数 0,1,2,3,4,5,6,7,8,9 构成了一个集合
集合举例
3、文氏图:用一条封闭的曲线的内部来 表示一个集合.
例1:用列举法表示下列集合
(1)A {x N | 0 x 5} A {1,2,3,4,5} (2)B={2,3}
例2:用描述法表示下列集合
(1){1,1}; (2)大于3的全体偶数构成的集合;
(二)“元素”与“集合”:
1. 集合通常用大写英语字母A,B,C,…来表示,元 素通常用小写英语字母a,b,c,…来表示;
2、元素与集合的关系 (1)属于:如果a是集合A的元素,就说a属于A,记作 a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A, 记作要注意“∈”的方向,不能把a∈A颠倒过来写.
问题:正偶数的集合怎么表示, 能否使用列举法?
{x R | x能被2整除,且大于0} 或{x R | x 2n, n N}
问题解决:用集合中元素的特征性 质来描述
2、描述法: 在集合I中,属于集合A的任意元素x都 具有性质p(x),而不属于集合A的元 素都不具有性质p(x),则性质p(x)叫做 集合A的一个特征性质,于是集合A 可以表示如下:
3.空集
(1)考虑方程x+1=x+2的解的全体构成的集合.显然这 个集合不含任何元素.
(2)一般地,我们把不含任何元素的集合叫做空集, 记作Ф
知识探究
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
第5讲 集合(PPT)

方法三:在数轴上,分别标出2n+1和4k〒1所表示的点,可 以看出它们都对应数轴上的奇数, 故A=B,选C. 方法四:按余数分类,被2除余1的整数是奇数2n+1(n∈Z), 被4除余1或3(即-1)的整数也是全体奇数,∴选C. 方法归纳:同一个集合会有多种表示法,需要我们把握本质 属性,相互转换.
描述法:用集合所含元素的共同特征表示集合的方法. 具体方法是:在花括号内先写上表示这个集合元素的一般符号 及数值(或变化)范围,再画一条竖线,在竖线后写出这个集 合中元素所具有的共同特征. 例如:{x|x>0}就表示所有大于0的数构成的集合; 而{(x,y)|x>0,y>0}就表示第一象限所有点的坐标构成的集合.
集合间的基本关系 1.子集的概念 如果集合A的任何一个元素都是集合B的元素,我们说这两个集 合有包含关系,称集合A是集合B的子集.记作 :AB或 B A . 读作:A包含于B,或B包含A. 即任取xA都有xB AB . 2.子集的分类: 集合相等: ⑴两个集合中元素都相同. ⑵ AB且 BA A=B .
⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了. ⑵互异性:集合中的元素是互不相同的. ⑶无序性:集合中的元素是不需要考虑顺序的.
集合的表示 1.集合一般用大写的字母A,B,C,…,表示集合,用小写的字 母a,b,c,…,表示集合中的元素. 2.如果a是集合A的元素,就说a属于集合A,记作aA;如果a不 是集合A的元素,就说a不属于集合A,记作aA. 3.具体的集合一般有三种表示方法: 列举法:把集合里的元素一一列举出来,并用花括号“{ }”括起来 表示集合的方法.例如{中国,美国,英国,法国,俄罗斯}.
【解析】:其实{x|x=2m-3,m∈Z}就是全体奇数组成
人教版高中数学必修一课件:1.1《集合》 (共23张PPT)

(2)互异性:
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
一个给定集合中的元素是互不相同的.即集合 中的元素是不重复出现的。
(3)无序性:
元素完全相同的两个集合相等,而与列举顺序 无关。
【注】两个集合相等当且仅当构成
这两个集合的元素是完全一样的.
三、元素与集合的关系
常见数集:
1. 自然数集(非负整数集): N 2. 正整数集: N*或N+ 3. 整数集: Z 4. 有理数集: Q 5. 实数集: R
(2) 描述法:
{ x I | P( x)}
元素符号 范围 元素的特征
【例2】试分别用列举法和描述法表示下列 集合 (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
【思考题】用列举法表示集合:
ab 1) A { x | x ,
a, b为非零实数}
3.
方程组
x x
y9 y3
的解集用列举
法或描述法表示为
。
4、已知x2∈ {1, x, 0}, 求实数x的值.
52、) 补充 : 含有三个实数的集合可
表示为{ a, b , 1 }, 也可表示为 a
{a 2 , aabb,,00},}求, 求a 2a0120006 b b . 20120006.
6、已知集合A={x∈R|mx2-2x+3=0, m∈R}且A中只有一个元素,求m的值.
课堂练习 P5 练习1、2
小结
1. 集合的概念; 2. 元素与集合的关系; 3. 集合的元素特征; 4. 集合的表示方法;
ab
2) B {k N | 6 Z} 3k
思考:B { 6 Z | k N }呢? 3k
1. 已知集合S中有三个元素 a, b, c
集合的概念ppt课件

04
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质
差集的应用举例:在数据筛选中,可以使用差集运算找出满足某一条 件但不满足另一条件的记录。
补集及其运算
补集的定义:对于全集U 和它的一个子集A,由全 集U中所有不属于A的元 素组成的集合称为A的补 集,记作∁UA或~A。
补集的运算性质:满足德 摩根定律,即 ∁U(A∩B)=(∁UA)∪(∁UB) , ∁U(A∪B)=(∁UA)∩(∁UB) 。
集合的包含关系
01
集合包含的定义
对于两个集合A和B,如果集合A的每一个元素都是集合B的元素,则称
集合B包含集合A。
02
集合包含的性质
如果集合B包含集合A,则A是B的子集,即A⊆B。
03
集合包含的符号表示
B⊇A表示集合B包含集合A。
04
集合的应用
集合在数学中的应用
01
02
03
描述数学对象
集合论是数学的基础,用 于描述各种数学对象及其 性质,如数、点、线、面 等。
偏序集的概念
偏序集的定义
偏序集是一种具有部分顺序关系的集合,其中元素之间的比较不是完全的,而是部分的。 偏序关系通常表示为≤。
偏序集的性质
偏序集具有一些重要的性质,如自反性、反对称性和传递性。此外,偏序集还可以有最大 元、最小元、上界和下界等概念。
偏序集的应用
偏序集在数学、计算机科学、经济学等领域有着广泛的应用,如用于描述数据结构中的排 序问题、经济学中的偏好关系等。
THANKS FOR WATCHING
感谢您的观看
似,但要考虑隶属度的影响。
幂集的概念
幂集的定义
给定集合A,由A的所有 子集(包括空集和A本 身)组成的集合称为A 的幂集,记作P(A)。
幂集的性质
集合的概念与表示ppt课件

由此能总结出集合元素有什么特性?
互异性 一个集合中的任何两个元素都互不相同。
也就是说,集合中的元素互不相同
探究3: 将某学校高一(1)班全体学生组成的集合记为集合A, 改变这个班同学的座次,集合A是否发生改变?
集合A不发生改变,即不管班里的学生怎么改变座次,学生改 变座次后的集合仍然还是学生改变座次之前的集合.
描述法 通过描述元素满足的条件表示集合的方法叫作描述法。
一般地可将集合表示为{x及x的范围|x满足的条件}
例如,集合 D={x∈R|x<10}也可表示为D={x|x<10}; 集合E={x∈Z|x=2k+1,k∈Z}也可表示为E={x|x=2k+1,k∈Z}.
思考:你能用列举法表示不等式 x-7<3的解集吗?
如上述思考中不等式x-7<3的解是x<10,因为满足x<10的实数 有无数个,所以x-7<3的解集无法用列举法表示,
但是,我们可以利用解集中元素的共同特征,即:x是实数, 且x<10,因此把解集表示为{x|x<10}.
整数集Z可以分为奇数集和偶数集。 对于每一个x∈Z,如果它能表示为x=2k+1(k∈Z)的形式,那么它 是一个奇数;反之,如果x是一个奇数,那么它能表示为x=2k+1(k∈Z) 的形式。 所以,x=2k+1(k∈Z)是所有奇数的一个共同特征,于是奇数集可 以表示为:{x|x=2k+1,k∈Z}.
5、集合的表示方法
思考:从上面的例子看到,我们可以用自然语言描述一个集合。 除此之外,还可以用什么方式表示集合呢? 列举法 把集合的所有元素一一列举出来,并用花括号“{ }”括起来 表示集合的方法叫做列举法。
“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋, 印度洋,北冰洋}; “方程x2-3x+2=0的所有实数根”组成的集合可以表示为{1,2}.
互异性 一个集合中的任何两个元素都互不相同。
也就是说,集合中的元素互不相同
探究3: 将某学校高一(1)班全体学生组成的集合记为集合A, 改变这个班同学的座次,集合A是否发生改变?
集合A不发生改变,即不管班里的学生怎么改变座次,学生改 变座次后的集合仍然还是学生改变座次之前的集合.
描述法 通过描述元素满足的条件表示集合的方法叫作描述法。
一般地可将集合表示为{x及x的范围|x满足的条件}
例如,集合 D={x∈R|x<10}也可表示为D={x|x<10}; 集合E={x∈Z|x=2k+1,k∈Z}也可表示为E={x|x=2k+1,k∈Z}.
思考:你能用列举法表示不等式 x-7<3的解集吗?
如上述思考中不等式x-7<3的解是x<10,因为满足x<10的实数 有无数个,所以x-7<3的解集无法用列举法表示,
但是,我们可以利用解集中元素的共同特征,即:x是实数, 且x<10,因此把解集表示为{x|x<10}.
整数集Z可以分为奇数集和偶数集。 对于每一个x∈Z,如果它能表示为x=2k+1(k∈Z)的形式,那么它 是一个奇数;反之,如果x是一个奇数,那么它能表示为x=2k+1(k∈Z) 的形式。 所以,x=2k+1(k∈Z)是所有奇数的一个共同特征,于是奇数集可 以表示为:{x|x=2k+1,k∈Z}.
5、集合的表示方法
思考:从上面的例子看到,我们可以用自然语言描述一个集合。 除此之外,还可以用什么方式表示集合呢? 列举法 把集合的所有元素一一列举出来,并用花括号“{ }”括起来 表示集合的方法叫做列举法。
“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋, 印度洋,北冰洋}; “方程x2-3x+2=0的所有实数根”组成的集合可以表示为{1,2}.
集合的概念与表示方法ppt课件

③互异性,即同一集合中的元素是互不相同的.
能够确定的不同的对象所构成的整体叫做集合(简称集)。
练习1
1、下列说法中,正确的有______.(填序号)
2
①单词 book 的所有字母组成的集合的元素共有 4 个;
②集合 M 中有 3 个元素 a,b,c,其中 a,b,c 是△ABC 的三
边长,则△ABC不可能是等腰三角形;
5
∉
A
集合与元素的关系
集合与元素的关系:
①属于,如果 a 是集合 A 的元素,就说 a 属于集合 A,记作a∈A
;
②不属于,如果 a 不是集合 A 中的元素,就说 a 不属于集合 A,记
作 a∉A.
0
∉
Ф
集合的三大特性
集合三要素:
①确定性,即同一集合中的元素必须是确定的;
②无序性,即同一集合中的元素之间不考虑顺序;
4
6
习题:
能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}
关系的Venn 图是(B)。
总结
集合
THANK YOU
习题:
1、被 3 除余 2 的正整数集合;
解:(1)
{x|x=3n+2,n∈N}
2、平面直角坐标系中坐标轴上的点组成的集合.
(2)
{(x,y)|xy=0}
三、韦恩图:用平面上封闭曲线的内部代表集合,这种图称
为韦恩图,一般画成椭圆或矩形.
问题3 使用韦恩图表示中0-10之间的偶数集合。
0
10
2
8ቤተ መጻሕፍቲ ባይዱ
集合
集合的概念与表示方法
你眼中的
集合
你眼中的
集合
集合的概念ppt课件

(2) 设x B, 则x是整数,则x Z,且10 x 20. 因此, 用描述法表示为: B { x Z | 10 x 20}
因此,用列举法表示为 B {11, 12, 13, 14, 15, 16, 17, 18, 19}.
学习新知
我们约定, 如果从上下文的关系看, x R, x Z 是明确的, 那么, x R, x Z 可以省略, 只写其元素x.
学习新知
在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如:
自然数的集合
有理数的集合
不等式的解的集合
到一个定点的距离 等于定长的点的集合
到一条线段的两个端点 距离相等的点的集合
......
学习新知
观察下列实例:
1 1~10以内的所有奇数 2 方程x2-9=0的实数根 3 小于8的素数
集合
设A是一个集合,我们把集合A中,所有具有共同特征P(x)的元素x所组成的
集合表示为:
x A P(x)
我们称这种方法为描述法。
x为该集合的代表元素
P(x)表示该集合中的元素x所具有的性质
学习新知
例如,实数集R 中,有限小数和无限循环小数都具有 q ( p, q Z, p 0) 的 p
形式,这些数组成有理数集,我们将它表示为:
{0}.
(4) b
{a,b,c}.
【总结提升】求解此类问题必须要做到以下两点: ①熟记常见的数集的符号; ②正确理解元素与集合之间的“属于”关系。
总结新知 判断元素与集合关系的两种方法
直接法:
如果集合中的元素是直接给出的,只要判断该元素在已知集合中是否 出现即可,此时应先明确集合是由哪些元素构成的。
总结新知 思考:除字母表示法和自然语言之外,还能用什么方法表示集合?
高一数学集合ppt课件

03
集合的性质
集合的无序性
总结词
集合中的元素无顺序要求,即集合中元素的排列顺序不影响集合本身。
详细描述
在集合中,元素的顺序并不重要,无论元素以何种顺序排列,它们都属于同一个集合。例如,集合 {1,2,3}和集合{3,2,1}表示的是同一个集合。
集合的确定性
总结词
集合中的元素具有明确性,每个元素都属于或者不属于某个集合。
集合的并集
总结词
表示两个集合中所有的元素(不考虑重复)
详细描述
并集是指两个集合中所有的元素组成的集合,记作A∪集
总结词
表示属于某个集合但不属于另一个集 合的元素组成的集合
详细描述
补集是指属于某个集合但不属于另一 个集合的元素组成的集合,记作A-B 。补集的概念对于理解集合之间的关 系非常重要。
是小于5的偶数}。
基础习题2
判断以下两个命题的真假:P1:5 不属于集合A,P2:集合A和集合 B的交集为空集。
基础习题3
已知集合M = {x | x = 3k, k ∈ Z}, N = {x | x = 2k, k ∈ Z},求M和N 的交集。
进阶习题
进阶习题1
已知集合U = {x | x 是小于10的正整数} ,A ⊆ U,B ⊆ U,且A和B的并集等于U ,求A和B的交集。
集合的表示方法
总结词
集合可以用大括号{}、圆括号()、尖 括号<>或方括号[]来表示。
详细描述
在数学中,我们通常用大括号{}、圆括 号()、尖括号<>或方括号[]来表示集 合。例如,集合A可以表示为{a, b, c} 。
集合的分类
总结词
根据元素的特点和性质,集合可以分为有限集、无限集和空 集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标
合作的意识 积极主动的表现力 勇于探索的精神和求知欲 学习数学的乐趣和信心、相关生活经验
开始学习啦!
第一章 集合与充要条件 1.1 集合的概念
高教社
创设情景 兴趣导入
问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、
水笔、橡皮、果冻、薯片、裁纸刀、尺子.
那么如何将这些商品放在指定的篮筐里:
(4)不等式x-2>0的解.
动脑思考 探索新知
元素与集合的关系
元素与集合
元素a是集合A 的. 元素,
记作a∈A, 读作a属于A.
高教社
元素a不是集合A 的元素,
记作a A,
读作a不属于A.
巩固知识 典型例题
用符号“ ”或“ ”填空:
0 N; 0.6 Z;π R;
1
3
Q; 0
.
元素a是集合A的元素, a∈A,属于
高教社
理论升华 整体建构
1 集合的表示有哪几种方法?各自有什么特点?
2
如何选择集合的表示法?
列举法、描述法.
用列举法表示集合,元素清晰明了;
食品篮筐
.
文具篮筐
.
高教社
操作
动脑思考 探索新知
集合与元素
将某些确定的对象看成一个整体就构成一个集合(简称集). 组成集合的对象叫做这个集合的元素.
观察你的文具盒,什么是集合?什么是元素 ?
.
操作
一般采用大写英文字母A,B,C…表示集合,
小写英文字母a,b,c… 表示集合的元素.
高教社
集合的类型
元素a不是集合A的元素,
a A,不属于
高教社
运用知识 强化练习
教材练习1.1.1
1.用或 填空:
(1)-3
N ,0.5
N ,3
N;
(2)1.5
Z ,-5
Z ,3
Z;
(3)-0.2 .
(4)1.5
Q,π R ,-1.2
Q ,7.21
Q;
R,π
R.
2.指出下列各集合中,哪个集合是空集?
(1)方程 x2 1 0 的解集; (2)方程 x 2 2 的解集
.
(x, y) | x R, y 0
高教社
巩固知识 典型例题 例3 用描述法表示下列各集合: (5)在直角坐标系中,由第一象限所有的点组成的集合;
分析 第(5)题是第一象限内点的横坐标与纵坐标 都是正数.
.
解 (5)由第一象限所有的点组成的集合为
(x, y) | x 0, y 0 .
高教社
高教社
创设情景 兴趣导入
问题 不大于5的自然数所组成的集合中有哪些元素? 小于5的实数所组成的集合中有哪些元素?
只有0、1、2、3、4、5这6个元素
元素是可以一一列举的 元素有无穷多个,特征: (1) 集合的元素都是实数; (2)集合的元素都小于5.
元素无法一一列举但特征明显
高教社
动脑思考 探索新知
分析 第(3)题是奇数都能写成 2k 1(k Z) 的形式 解 (3)所有奇数组成的集合为
.
x | x 2k 1, k Z .
高教社
巩固知识 典型例题 例3 用描述法表示下列各集合: (4)在直角坐标系中,由x轴上所有的点组成的集合;
分析 第(4)题是 x 轴上点的纵坐标都是 0; 解 (4)x 轴上所有的点组成的集合为
运用知识 强化练习
教材练习1.1.2
1.用列举法表示下列各集合: (1)方程 x2 3x 4 0 的解集; (2)由小于 20 的自然数组成的集合; (3)由数 1,4,9,16,25 组成的集合; (4)正奇数的集合. 2.用描述法表示下. 列各集合: (1)大于 3 的所有实数所组成的集合;(2)小于 20 的所有自然数组成的集合; (3)大于 5 的所有偶数所组成的集合.(4)不等式 2x 5 3的解集.
.
(4)在直角坐标系中,由 x 轴上所有的点组成的集合; (5)在直角坐标系中,由第一象限所有的点组成的集合.
高教社
巩固知识 典型例题 例3 用描述法表示下列各集合: (1)小于5的整数组成的集合; 分析 第(1)题元素的取值范围是整数,需要标出;
解 (1)小.于 5 的整数组成的集合为x Z | x 5 .
人生新阶段
2020/6/14
1、学习——旅程
这段旅程可以从任何时候开始!未来的成功在现在脚下!
2、老师——导游
一起分享学习中的快乐、一起体会成长与进步的滋味!
3、目的——运用
应用数学来解决问题,形成数学的自信 每个人都可以根据自己的能力和实际需要学好自己的数学!
4、准备——必需品
轻松愉快的心情、热情饱满的精神、全力以赴的态度、 踏实努力的行动、科学认真的方法、及时真诚的交流
动脑思考 探索新知
解集 A
空集 E
关
高教社
数集
集合 自然数集 整数集 有理数集 实数集
字母 N
ZQ
R
元素的性质
动脑思考 探索新知
确定性
无序性
互异性
一个给定的 集合中的. 元 素必须是确 定的
高教社
一不个能给确定定的的对象,不能一组个成给集定合的
例1集合判中断的下元列对象是否可集以合组中成的集元合: (1)素小都于是10互的不自然数; 素排列无顺 (2)相某同班的个子高的同学; 序 (3) 方程x2-1=0的解;
用列举法表示集合时,不必考虑
分析 这两. 个元集素合的都排是列有顺序限,集但是.列举的元素 (1)题的元素不可能以出现直重接复列.举出来;{-2,0,2,4,6,8,10}; (2)题的元素需要解方程 x2 5x 6 0 得到.{-1,6}.
高教社
巩固知识 典型例题 例 3 用描述法表示下列各集合: (1)小于 5 的整数组成的集合; (2)不等式 2x 1≤0的解集; (3)所有奇数组成的集合;
列举法.把集合的元素一一列举出来,写在大括号 1 内,元素之间用逗号隔开 .
描述法. .在花括号中画一条竖线.竖线的左侧写上集合的 2 代表元素x,并标出元素的取值范围,竖线的右边侧写出
元素所具有的特征性质.
高教社
巩固知识 典型例题
例2 用列举法表示下列集合: ⑴ 大于-4且小于12的全体偶数;
⑵ 方程 x2 5x的 6解集0 .
高教社
巩固知识 典型例题
例3 用描述法表示下列各集合: (2)不等式2x+1≤0的解集;
分析 第(2)题通过解不等式可以得到
解 (2)解. 不等式 2x 1≤0得 x ≤ - 1 , 2
所以不等式 2x 1≤0的解集为
高教社
x
|
x
1 2
.
巩固知识 典型例题 例3 用描述法表示下列各集合: (3)所有奇数组成的集合;