商的变化规律

合集下载

商的变化规律的口诀三条

商的变化规律的口诀三条

商的变化规律的口诀三条
(1)被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。

(2)除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n 倍。

(3)被除数与除数同乘以来自或同除以一个数(零除外360问答),商不变。

扩展资料:
积的变化规律是指因数的变化所引起的积的变化。

(1)如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。

(2)一个因数扩大n倍,另一个因数缩小n倍,则积不变。

除法运算肥天裂性质
(1)若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数
不变。

例如:68÷17×17=68(或68×17÷1绿钱规云歌投建以玉7=68)。

(2)一个数除以几个数的积兴得乡讲从养属得都花你,可以用这个
数依次除以积里的各个因数。

例如:320÷(2×5×8)=320÷2÷5÷8=4。

(3)几个数的积除以一个数,可以让积里的任何一致段机个因数除
以这个数,再与光其他的因数相乘。

例如:8×管苦洲视联72X4÷9=72÷9×8×4=256。

四年级下册商的变化规律

四年级下册商的变化规律

四年级下册商的变化规律
商的变化规律是四年级下册数学学习的内容,具体包括以下两个规律:
1. 商不变的规律:在除法中,被除数和除数同时乘或除以一个相同的数(0 除外),商不变。

2. 商随除数或被除数变化的规律:在除法中,除数不变,被除数乘或除以一个数(0 除外),商也乘或除以同一个数;被除数不变,除数乘或除以一个数(0 除外),商反而除以或乘同一个数。

通过学习商的变化规律,学生可以更好地理解除法的本质,提高计算能力和解决实际问题的能力。

《商的变化规律》

《商的变化规律》

旅行预订
旅行者可以通过比较不同旅行 社或在线预订平台的报价,来 选择价格更合理的旅游产品。 这同样需要使用商的变化规律 来比较不同报价之间的差异。
商业中的应用
01
市场调研
商家在进行市场调研时,需要了解竞争对手的产品价格、促销策略和
市场占有率等信息。这需要使用商的变化规律来分析竞争对手的商业
策略。
02
要点二
详细描述
单项式乘以单项式,把他们的系数相乘作为积的系数, 相同字母的幂分别相乘后作为积中的相应项,其余字母 连同他的指数不变,作为积的因式。例如,$(2x^2) \cdot (3x^3)$等于$6x^5$。
除法运算律
总结词
一个数除以一个不为0的数等于这个数乘以 这个数的倒数。
详细描述
在进行除法运算时,一个数除以一个不为0 的数等于这个数乘以这个数的倒数。例如,
性质
小数商具有连续性和无限性,即两个整数相除得到的小数商是一个无限循环或不循环小数。此外,小数商还具 有传递性和封闭性,即任何两个整数的小数商都只有一个确定的值,并且如果a除以b得到的小数商是c,那么 b除以a得到的小数商就是c的倒数。
02
商的性质
传递性
定义
如果a·b=c·d,那么a:d=b:c,称为商的传递性。
扩大或缩小不同倍数
总结词
当两个数扩大或缩小的倍数不同时,商会发生变化。
详细描述
例如,当90除以10得到9,而9扩大20倍得到180,这时 商变为18,这表明当两个数扩大或缩小的倍数不同时, 商会发生变化。
零除法法则
总结词
零除法法则是指当被除数为零时,商也为零。
详细描述
例如,当90除以0得到0,这表明当被除数为零时,商 也为零。

四年级上册数学积和商的变化规律

四年级上册数学积和商的变化规律

四年级上册数学积和商的变化规律一、积的变化规律。

1. 规律内容。

- 一个因数不变,另一个因数乘几或除以几(0除外),积也乘几或除以几。

- 例如:- 在3×5 = 15这个算式中,如果3不变,5乘2变为10,那么积3×10 = 30,15也乘2得到30;如果3不变,5除以5变为1,那么积3×1 = 3,15也除以5得到3。

2. 应用示例。

- 已知12×15 = 180,如果12不变,15扩大3倍变为45,那么积也扩大3倍,12×45 = 12×15×3=180×3 = 540。

- 已知20×30 = 600,如果20缩小为原来的(1)/(10)变为2,30不变,那么积也缩小为原来的(1)/(10),2×30 = 60。

3. 拓展。

- 两个因数同时变化时:- 两个因数都乘一个数(0除外),积就乘这两个数的乘积。

例如2×3 = 6,如果2乘2变为4,3乘3变为9,那么4×9 = 36,6乘2×3 = 6得到36。

- 两个因数都除以一个数(0除外),积就除以这两个数的乘积。

例如16×20 = 320,如果16除以2变为8,20除以4变为5,那么8×5 = 40,320除以(2×4)=8得到40。

- 一个因数乘一个数,另一个因数除以相同的数(0除外),积不变。

例如4×9 = 36,如果4乘3变为12,9除以3变为3,那么12×3 = 36,积不变。

二、商的变化规律。

1. 规律内容。

- 被除数不变,除数乘几或除以几(0除外),商就除以几或乘几。

- 例如:- 在12÷3 = 4这个算式中,如果12不变,3乘2变为6,那么商12÷6 = 2,4除以2得到2;如果12不变,3除以3变为1,那么商12÷1 = 12,4乘3得到12。

商的变化规律和商不变的规律

商的变化规律和商不变的规律
应用场景:商的变化规律适用于解决一些与比例和倍数有关的问题,如计算利息、折扣 等;商不变规律则更多用于代数运算和方程求解
注意事项:使用商的变化规律时,需要注意被除数和除数扩大的倍数必须相同;而商不 变规律中,除数不能为0,否则会导致分母为0的情况,不符合数学规则
商的变化规律和商不变规律的适用范围
商的变化规律 适用于除数不 为0的情况,被 除数和除数同 时乘或除以相 同的数(0除 外),商不变。
商不变规律是指被除数和除数同时乘或除以同一个不 为零的数,商不变。
单击此处添加项标题
数学表达式为:a ÷ b = (a × k) ÷ (b × k) 或 a ÷ b = (a ÷ k) ÷ (b ÷ k),其中 a、b、k 均 为正数。
单击此处添加项标题
商不变规律是数学中一个重要的定理,它在除法、分 数、比等数学概念中有广泛应用。
商不变规律的证明方法
证明方法一:利 用除法的定义进 行证明
证明方法二:利 用商的性质进行 证明
证明方法三:利 用代数恒等式进 行证明
证明方法四:利 用几何图形进行 证明
01
商的变化规律和商不变规律的对比
商的变化规律和商不变规律的异同点
相同点:两者都是描述除法运算中商的变化情况
不同点:商的变化规律是指被除数和除数同时扩大或缩小相同的倍数,商不变;而商不 变的规律是指除数不能为0,被除数和除数同时乘或除以同一个不为0的数,商不变
当除数扩大若干倍时,商也扩大相同的倍数 当除数缩小若干倍时,商也缩小相同的倍数 除数不为0,当除数扩大或缩小若干倍时,商也相应地扩大或缩小相同的倍数 商随被除数的变化而变化,当被除数扩大或缩小若干倍时,商也扩大或缩小相同的倍数
商的变化规律在实际中的应用

四年级积商的变化规律5条

四年级积商的变化规律5条

四年级积商的变化规律5条一、积的变化规律。

1. 一个因数不变,另一个因数乘几,积也乘几。

- 例如:在算式3×5 = 15中,如果3不变,5变为5×2 = 10,那么积就变为3×10=30,15×2 = 30,积也乘了2。

- 在实际解决问题时,比如一个长方形的长不变,宽扩大到原来的3倍,根据长方形面积公式S =长×宽,面积也会扩大到原来的3倍。

2. 一个因数不变,另一个因数除以几(0除外),积也除以几。

- 例如:4×6 = 24,如果4不变,6变为6÷2 = 3,那么积就变为4×3 = 12,24÷2=12,积也除以了2。

- 假设每箱苹果的个数不变,箱数减少为原来的一半,那么苹果的总个数也会减少为原来的一半。

3. 两个因数同时乘一个数(0除外),积乘这个数的平方。

- 例如:2×3 = 6,如果2变为2×2 = 4,3变为3×2 = 6,那么新的积为4×6 = 24,而6×2^2=6×4 = 24。

- 在计算长方形面积时,如果长和宽都扩大到原来的2倍,那么面积就会扩大到原来的2×2 = 4倍。

4. 两个因数同时除以一个数(0除外),积除以这个数的平方。

- 例如:12×8 = 96,如果12变为12÷2 = 6,8变为8÷2 = 4,新的积为6×4 = 24,而96÷2^2 = 96÷4 = 24。

- 像把一个长方形的长和宽都缩小为原来的一半,面积就会缩小为原来的(1)/(4)。

二、商的变化规律。

1. 被除数不变,除数乘几(0除外),商就除以几。

- 例如:12÷3 = 4,如果被除数12不变,除数3变为3×2 = 6,那么商变为12÷6 = 2,4÷2 = 2,商除以了2。

商的变化规律

商的变化规律

商的变化规律哎呀,说起这商的变化规律,那可真是数学世界里一个特别有趣又实用的玩意儿!咱们先从最简单的例子说起。

比如说,你和小伙伴一起去买糖果,一包糖果 10 块钱,你有 20 块钱,能买到 2 包糖果,这时候商就是 2。

但要是糖果突然打五折,一包只要 5 块钱,那 20 块钱能买到 4 包糖果,商就变成了 4。

瞧,价格变了,能买到的糖果数量也就跟着变啦,这就是商的变化规律在生活中的小体现。

在咱们的数学教材里啊,商的变化规律主要有这么几条。

首先是被除数不变,除数变化引起商的变化。

就像刚才说的买糖果,被除数 20 块钱不变,除数从 10 变成 5,商就从 2 变成了 4。

除数变小,商反而变大。

然后是除数不变,被除数变化引起商的变化。

还是拿买糖果举例,如果一包糖果还是 10 块钱,你一开始有 20 块钱能买 2 包,后来你又多了 30 块钱,一共 50 块钱,那就能买 5 包了。

被除数变大,商也跟着变大。

还有被除数和除数同时变化的情况。

比如说被除数乘以 2,除数乘以 3,那商就会变小。

这就好比原本你有 20 块钱能买 2 包 10 块钱的糖果,现在你有 40 块钱,但是糖果变成一包 15 块钱了,那你能买到的糖果就少啦。

我记得有一次在课堂上,我给孩子们出了一道题:“如果120÷30=4,那(120×2)÷(30×2)等于多少?”孩子们都开始埋头苦算,有个小家伙特别机灵,一下子就喊出来:“老师,还是 4 !”我问他怎么这么快就想出来了,他一脸骄傲地说:“您刚讲的被除数和除数同时乘以一个数,商不变呀!”那一刻,我心里别提多开心了,这孩子把知识学活啦!在实际解题的时候,掌握了商的变化规律可太有用啦。

比如说计算560÷70,我们可以把被除数和除数同时除以 10,变成 56÷7,一下子就能算出商是 8 。

总之啊,商的变化规律就像是数学世界里的一把神奇钥匙,能帮我们打开很多难题的大门。

6第六讲 商的变化规律

6第六讲 商的变化规律
第六讲
商的变化规律
商的变化规律 1、两个数相除,如果被除数乘几,除数不变, 则商就乘几。 2、两个数相除,如果被除数除以几,除数不变, 则商就除以几。 3、两个数相除,如果被除数不变,除数乘几, 则商就除以几 4、两个数相除,如果被除数不变,除数除以几, 则商就乘几。
1、两个数相除,如果被除数乘几,除 数不变,则商就乘几。
3×120=360 答:商是7,余数是360。
答:商是8,余数是6。
1、两个数相除,如果被除数乘几,除数不变 ,则商就乘几。
练习二
1、两个数相除,商是450,如果被 除数乘5,除数不变。新的商是多少?
450×5=2250 答:新的商是2250。
3、两个数相除,商是27,如果被 除数乘12,除数乘6。新的商是多 少?
12÷6=2
2、两个数相除,商是450,如果被除 数不变,除数乘3,新的商是多少?
450÷3=150 答:新的商是150。
拓 展3 在除法算式128÷4中,
如果被除数乘3,除数乘6。商有
什么变化?
分析与解答:128÷4=32,被除数
乘3,即128×3,除数乘6,即4×6,
商为: (128×3)÷(4×6)
32×3÷6
=384÷24
=96÷6
=16
=16
128÷4=32 也就是 6÷3=2
32÷2=16 答:商就除以2,由原来的32变为16。
拓 展4 在除法算式144÷12中,
拓 展5 在除法算式128÷4中,
被除数乘6,除数除以3。商有什
如果被除数除以4,除数乘2。商
么变化?
有什么变化?
分析与解答:144÷12=12,在除法
分析与解答:128÷4=32,被除数

商的变化规律及应用

商的变化规律及应用
消费者需求会随着时间和社会变化而变化,商必须根据市场需求做出调整。
1
农耕时代
人们通过交换农产品和手工制品进行商业活动。
2
工业革命
机械化生产促进商业发展,出现了现代工厂和大规模生产。
3
数字时代
互联网技术催生了电子商务,改变了商业模式和消费行为。
商的周期性变化规律
商业活动会随着经济周期波动,如经济扩张阶段下商业活动增加,而在经济 衰退阶段商业活动减少。
商的差异,取决于当地经济发展水平、文化背景和市 场需求。
商的产业链变化规律
商业活动涵盖了各个产业环节,包括原材料供应、生产、分销和销售。产业链的变化会影响商业模式和竞争力。
商的市场竞争变化规律
市场竞争是商的核心。竞争可以推动创新改进,同时也会对企业经营产生影响。
商的消费者需求变化规律
商的变化规律及应用
本次演讲旨在探讨商的变化规律及应用领域。通过深入剖析商的定义、历史 发展、周期性变化、地区性变化、产业链变化等,揭示商的多个方面对我们 生活和经济的影响。
商的定义及种类
商是一种社会经济活动,涉及商品或服务的买卖交易。在不同领域中,商可以分为零售商、批发商、制造商等 多种类型。
商的历史发展变化

商的变化规律

商的变化规律

商的变化规律商是两数相除的结果.根据除法的意义,“已知两个因素的积与其中的一个因数,求另一个因数的运算叫除法.”可知,乘除法有着密切的关系:被除数相当于两个因数的积.除数相当于已知的一个因数.商相当于另一个因数.1.商的性质(1)两个数相除,如果商存在,必定是唯一的.【例1】54÷9=6 65÷5=13(2)某数先除以一个数,再乘以同一个数,其数不变.【例2】72÷8×8=7235÷5×5=35(3)某数先乘以一个数,再除以同一个数,某数不变.【例3】15×5÷5=1528×3÷3=282.商的变化(1)运算中了解商的变化.根据72÷9=8计算下列各题,并观察商发生了什么变化.(72×2)÷9=16(7÷2)+9=472÷(9×2)=472÷(9÷3)=24(72×2)÷(9×2)=8(72÷3)÷(9÷3)=8通过计算我们发现,商有的扩大了,也有的缩小了,还有的不变.(2)在分类中认识商的变化与谁有关.我们将被除数变化,除数不变的这种除法定为第一类;(72×2)÷9=16(72÷2)÷9=4我们将被除数不变,除数变化的这种除法定为第二类;72÷(9×2)=472÷(9÷3)=24将被除数变了,除数也变了的这种除法定为第三类;(72×2)÷(9×2)=8(72÷3)÷(9÷3)=8通过分类我们初步认识到商的变化与被除数,除数的变化有关.(3)分析中理解商的变化规律:分析第一类:根据72÷9=8,那么(72×2)÷9=16【分析】被除数扩大2倍,除数不变,商扩大2倍.根据72÷9=8,那么(72÷2)÷9=4【分析】被除数缩小2倍,除数不变,商缩小2倍.分析第二类:根据72÷9=8,那么72÷(9×2)=4【分析】被除数不变,除数扩大2倍,产反而缩小2倍.根据72÷9=8,72÷(9÷3)=24【分析】被除数不变,除数缩小3倍,商反而扩大3倍.分析第三类:根据72÷9=8(72×2)÷(9×2)=8(72÷)3÷(9÷3)=8【分析】被除数扩大2倍,除数扩大2倍,商不变,被除数缩小3倍,除数缩小3倍,商也不变.(4)归纳概括中掌握商的变化规律.商的变化规律概括如下:A.如果被除数扩大(或者缩小)若干倍,除数不变,那么它们的商也扩大(或者缩小)同数倍.B.如果除数扩大(或者缩小)若干倍,被除数不变,那么商反而缩小(或者扩大)同数倍.C.被除数和除数都扩大(或者都缩小)同数倍(0除外),那么它们的商不变.我们在平时的计算中,就可以应用商的变化规律和性质进行简算.。

商的变化规律教案(汇总3篇)

商的变化规律教案(汇总3篇)

商的变化规律教案(汇总3篇)1.商的变化规律教案第1篇一、教学内容人教课标版数学四年级上册第五单元例5商的变化规律第三个商不变的规律。

二、教材分析商的变化规律在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。

教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。

这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。

裴老师教学的这一课,是在学生刚刚学习了除数不变,被除数和商的变化规律和被除数不变,除数和商的变化规律的基础上进行教学的。

由于有了前面学习的基础,学生在语言表述和思维方面都没有太大的困难,学习起来比较轻松。

三、教学目标、重点难点本节课的教学目标是:1、通过观察、比较、探索,使学生发现被除数和除数同时乘或除以一个相同的数(0除外),商不变的规律。

2、培养学生初步抽象、概括能力。

3、培养学生善于观察、勤于思考、勇于探索的良好习惯。

教学重点:通过观察、比较、探讨发现商的变化规律。

教学难点:理解被除数和除数的变化同步性,商不变时,被除数和除数相同的变化情况。

四、教学设想1、充分发挥学生主体作用,自主探究本节课的教学内容是在前面学习两条规律的基础上进行教学的。

通过这一节课的学习,完善了三个规律,使商的变化规律更完整,也为学生今后的数学学习打下了坚实的基础。

通过课堂教学的实施,引导学生积极参与到探究规律、总结规律的过程中,让学生在观察、思考、尝试、交流的过程中,实现师生互动、生生交流,促进学生主动参与知识的形成过程。

2、紧抓学生知识的.生长点,将学生知识、能力有效延伸本课通过研究商不变的规律,在学生初步感知到被除数、除数、商之间存在着变化的规律基础上,抓住学生这个知识的生长点,从单纯的算式计算延伸到算式内部、算式之间的联系上,延伸学生的知识范围。

商的变化规律应用

商的变化规律应用
商的变化规律应用
商的变化规律是指商业环境中不断变化的模式和趋势。了解和应用这些规律 对于企业取得成功至关重要。
商的变化规律的定义
1 市场趋势
掌握市场的变化模式和趋势,为企业发展提供指导。
2 消费行为
研究消费者的需求和行为变化,以满足市场需求。
3 技术创新
随着科技进步,企业需要适应新技术的应用和变革。
应用商的变化规律的方法与策略
数据分析
通过数据分析和市场研究来识别和解读商的变化 规律。
灵活反应
快速反应市场变化,调整企业战略和运营模式。
创新思维
培养创新思维,推动企业适应变化并寻求新的发 展机会。
合作共赢
与合作伙伴紧密合作,共同应对市场变化和挑战。
案例分析:成功运用商的变化规律的实例
公司A
通过及时调整产品策略和市场定 位,成功应对市场的快速变化。
商的变化规律的种类与特点
季节性变化
某些行业在季节变化 下的销售模式和采购 需求等。
趋势性变化
市场的长期趋势和产 业发展的演变。
周期性变化
经济周期对市场的影 响和周期性的市场波 动。
不确定性变化
政策和与外部环境相 关的突发事件带来的 变化。
应用商的变化规律的重要性
了解和应用商的变化规律可以帮助企业抓住机遇、化解风险,保持竞争优势, 并对未来做出战略规划。
公司B
通过持续的创新和投资,成功抓 住市场的新兴机会。
公司C
灵活地调整组织结构和经营模式, 适应市场的不断变化。
商的变化规律应用中的常见挑战
1 快速变化的市场
市场变化太快,企业难以及时应对。
2 不确定的外部环境
政策和经济等外部环境的不确定性带来的挑战。额争夺。

四年级数学上册4条商的变化规律

四年级数学上册4条商的变化规律

★请背诵下面商的变化规律:(根据后面的例子背更容易)
(1)在除法算式里,被除数、除数同时扩大(或缩小)相同的倍数,
商不变。

例:48÷12=4
48和12同时乘10,商还是4,不变。

48和12同时除以2,商还是4,也不变。

(2)在除法算式里,被除数不变时,除数乘几,商要除以几。

例如:48÷12=4
被除数48不变,除数12乘2,商4要除以2等于2。

48÷(12×2)=4÷2=2
(3)在除法算式里,被除数不变时,除数除以几,商要乘几。

例如:48÷12=4
被除数48不变,除数12除以2,商4要乘2等于8。

48÷(12÷2)=4×2=8
(4)在除法算式里,除数不变时,被除数扩大(或缩小)相同的倍数,商也要扩大(或缩小)相同的倍数。

例如48÷12=4
被除数48乘10,除数12不变,商也要乘10,等于40;
被除数48除以2,除数12不变,商也要除以2,等于2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

商的变化规律(四上)
设计说明:
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。

与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。

本节课从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?从而激起学生一探究竟的兴趣。

但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。

这既是本节课的教学设计目标,也是新课改所倡导的教学理念。

教学内容:
人教版课标实验教材小学数学四年级上册第93页例6。

教学目标:
1.通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。

2.引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。

3.培养学生善于观察、勇于发现、积极探索的好习惯。

教学重点:
帮助学生发现并理解商的变化规律。

教学难点:
正确理解被除数不变,除数和商之间的变化规律。

教具准备:
实物投影、计算器。

教学过程:
一、利用迁移、大胆猜测。

师:在前面的学习中,我们已经学习了积的变化规律谁还记得?
生1:一个因数不变,另一个因数扩大或缩小若干倍,积也随之扩大或缩小相同的倍数。

生2:一个因数扩大若干倍,另一个印数缩小相同的倍数,积不变。

师:我们都知道乘法和除法有着密切的关系,现在我们发现了乘法中有这样的规律,大家有什么想法?
生:在除法中是否也存在着类似的规律呢?
师:对呀,我也有这样的疑惑。

那么我们能不能大胆的猜测一下:除法中有没有类似的规律?如果有会是什么规律呢?
生1:我觉着除法中肯定有规律,因为乘除法个部分之间是有联系的。

生2:我同意。

而且我觉着如果被除数扩大了,除数不变,商也会跟着扩大。

生3:我觉着如果被除数不变,除数缩小、商也跟着缩小,除数扩大、商也跟着扩大。

生4:我猜被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。

生5:我不同意。

我觉着如果被除数不变,除数缩小、商会扩大,除数扩大、商会缩小。

(教师根据学生的猜测进行板书)
(评析:简简单单的复习提问,不经意间将乘、除法之间挂起钩来,打通了知识间的横
向联系,巧妙的运用了正迁移,促使学生自己提出问题,从猜测入手启动整个教学活动。


二、验证猜测、研究规律。

(一)、验证第一个猜测:除数不变,被除数和商的变化规律。

师:合理大胆的猜测是我们研究问题的重要的第一步,但仅仅停留在猜测上还不行,我们下一步应该怎么办?
生:验证。

师:你们打算怎样来验证?
生:可以列算式来试一试。

师:举例实验的方法,确实是个好方法,那么我们就来逐个的验证。

先来验证“除数不变,被除数扩大或缩小,商是否也随之扩大或缩小呢?”同学们可以小组合作,把你们所举得算式和结论写在实验报告单上。

(学生小组合作验证)
汇报:
师:哪个小组愿意说说你们的发现?
生1:我们小组举的例子是:10÷2=5,如果2不变,10扩大2倍,商就会变成10,也扩大了2倍,所以我们小组的结论是:除数不变,被除数扩大或缩小若干倍,商也随着扩大或缩小相同的倍数。

生2:我们小组举了3个例子进行验证,4÷2=2,80÷8=10,30÷5=6,每个例子都让除数不变,让被除数扩大、缩小,看商的变化,我们利用了计算器帮助演算,也得到了同样的结论。

师:对这两个小组的汇报大家有什么意见?
生1:我们也得到了同样的结论。

生2:我觉着第2组举了3个例子,更全面一些。

师:举例验证的方法确实应尽可能的多举例,这样才能更全面、正确率才更高,如果我们把全班的例子合在一起就更能说明问题。

(评析:猜测、验证是基本的数学研究方法之一,教师将这一研究思想作为整节课的核心贯穿始终,可见用心良苦。

同时借助第一个层次的验证活动使学生体会到:列举法的应用要考虑它的全面性,仅靠一个例子是不能得结论的。


(二)验证第二个猜测:被除数不变,除数扩大或缩小,商会随之缩小或扩大吗?
师:通过举例验证的方法,我们发现刚才的第一个猜想是正确地的!再来看第二个猜测:被除数不变,除数扩大或缩小,商真的会随之缩小或扩大吗?请大家继续验证。

(学生小组合作验证)
汇报:
生1:我们小组找了2个例子,并用计算器进行了验证:
发现被除数不变,除数扩大几倍,商反而缩小相同的倍数,除数缩小几倍,商就扩大几倍。

生2:我们小组也发现刚才的猜测不对,当被除数不变时,除数与商的变化方向是不一样的。

师:大家知道为什么会这样吗?
(学生茫然)
师:其实在我们生活中,有许多事例能够很好的体现出大家所发现的规律,比如:有一个蛋糕,如果平均分给10个人吃,每人只吃它的,是一小块,如果平均分给5个人吃,每人吃它的,是一大块,如果平均分给2个人吃,每人就会吃它的,更大的一块;这就像被除数不变,除数扩大商就缩小,除数缩小商就扩大的道理是一样的。

(评析:当被除数不变时,除数与商之间的变化规律是学生最难理解的,这与乘法中的一个因数不变,另一个因数与积的变化规律正好相反。

教师巧妙的利用生活中学生熟悉的事例,变抽象为形象,突破了难点,起到了画龙点睛的作用。


师:通过验证我们发现刚才的猜测不对,正确的结论应该是:被除数不变,除数扩大或缩小若干倍,商反而缩小或扩大相同的倍数(板书)。

(三)验证第三个猜测:被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。

师:同学们,咱们还有一个猜测呢,怎么办?继续验证。

(学生小作合作,继续验证。


汇报:
生1:我们小组发现“被除数扩大或缩小若干倍,除数缩小或扩大相同的倍数,商不变”这个猜测也是错误的。

比如:20÷10=2,如果变成40÷5商是8,不是2。

我们又按照另一种方法去实验:20÷10=2,如果被除数扩大2倍变成40,要想让商不变还是2,除数只能是20,也就是说也扩大了2倍。

所以我们认为:被除数和除数同时扩大或缩小相同的倍数时,商才不会变。

生2:我们小组也是这样想的,只是我们组又举了几个例子验证了“被除数和除数同时扩大或缩小相同的倍数时商不变”是正确的。

师:这两个小组的研究思路真好,当他们小组发现有些猜测不正确时,能迅速做出合理的调整,而且还能主动地对新的调整再进行实验验证,这种研究思路值得大家学习。

希望同学们在以后遇到类似的情况时,也能像他们一样,决不轻言放弃,及时调整思路,继续深入研究。

师总结:我要忠心的祝贺大家:通过合理的猜测、反复的验证,成功地发现了除法算式中,被除数、除数、商之间的变化规律,大家真了不起!
(评析:教师借助这个层次,使学生体会到:科学研究并不都是一帆风顺的,它需要不断的修正、反复的实验,这有利于培养学生科学严谨、锲而不舍的优秀品质。

)。

相关文档
最新文档