初中三角函数知识点总结(中考复习)

合集下载

初中九年级数学中考锐角三角函数知识点总结

初中九年级数学中考锐角三角函数知识点总结

初中九年级数学中考锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)A 90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 CA 90B 90∠-︒=∠︒=∠+∠得由B A6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

初中三角函数知识点总结

初中三角函数知识点总结

初中三角函数知识点总结三角函数是数学中重要的概念,对于初中学生来说,掌握三角函数的基本知识是非常重要的。

本文将对初中阶段常见的三角函数知识点进行总结,包括正弦函数、余弦函数和正切函数的定义、性质和应用等方面。

1. 正弦函数(sine function)正弦函数是一个周期函数,用sin表示。

在单位圆中,正弦函数的值等于对应角度的点在单位圆上的纵坐标。

性质:- 正弦函数的值域为[-1, 1],即sin(x) ≤ 1,sin(x) ≥ -1。

- 正弦函数的周期为2π,即sin(x + 2π) = sin(x)。

- 正弦函数在特殊角度上的值为:sin(0) = 0,sin(π/6) = 1/2,sin(π/4) = √2/2,sin(π/3) = √3/2,sin(π/2) = 1。

2. 余弦函数(cosine function)余弦函数是一个周期函数,用cos表示。

在单位圆中,余弦函数的值等于对应角度的点在单位圆上的横坐标。

性质:- 余弦函数的值域为[-1, 1],即cos(x) ≤ 1,cos(x) ≥ -1。

- 余弦函数的周期为2π,即cos(x + 2π) = cos(x)。

- 余弦函数在特殊角度上的值为:cos(0) = 1,cos(π/6) = √3/2,cos(π/4) = √2/2,cos(π/3) = 1/2,cos(π/2) = 0。

3. 正切函数(tangent function)正切函数是一个周期函数,用tan表示。

在单位圆中,正切函数的值等于对应角度的点在单位圆上的纵坐标与横坐标之比。

性质:- 正切函数的定义域为除去所有余弦函数为零的点,即cos(x) ≠ 0的点。

在这些点上,tan(x) = sin(x) / cos(x)。

- 正切函数的值域为全体实数。

- 正切函数的周期为π,即tan(x + π) = tan(x)。

- 正切函数在特殊角度上的值为:tan(0) = 0,tan(π/6) = √3/3,tan(π/4) = 1,tan(π/3) = √3,tan(π/2) 不存在。

初中三角函数知识点总结中考复习

初中三角函数知识点总结中考复习

初中三角函数知识点总结中考复习三角函数是数学中的一门重要分支,通过研究角的度量和三角比的关系来研究几何形状的属性。

在初中阶段,三角函数主要涉及正弦函数、余弦函数和正切函数,以及它们的定义、性质和应用。

下面是初中三角函数的知识点总结,供中考复习参考。

一、角的度量:1. 角的度量单位:度(°)和弧度(rad)。

2. 角度和弧度之间的换算:1周= 360° = 2π rad。

3.角的终边与坐标轴的位置关系:正角、负角、终边在各象限的情况。

4. 角度和弧度的转换公式:度数转弧度:θ(rad) = θ(°) ×π/180;弧度转度数:θ(°) = θ(rad) × 180/π。

二、三角比的定义:1. 正弦函数(sine function):在直角三角形中,对于一个锐角A,正弦函数的值定义为对边与斜边的比值,记作sinA = a/c。

2. 余弦函数(cosine function):在直角三角形中,对于一个锐角A,余弦函数的值定义为邻边与斜边的比值,记作cosA = b/c。

3. 正切函数(tangent function):在直角三角形中,对于一个锐角A,正切函数的值定义为对边与邻边的比值,记作tanA = a/b。

三、三角比的性质:1. 正弦函数的周期性性质:sin(θ+2kπ) = sinθ,其中k为整数。

2. 余弦函数的周期性性质:cos(θ+2kπ) = cosθ,其中k为整数。

3. 正切函数的周期性性质:tan(θ+π) = tanθ。

4. 正弦函数和余弦函数的关系:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ。

5. 正切函数与正弦函数、余弦函数的关系:tanθ = sinθ/cosθ。

四、特殊角的三角比:1. 零度角和360度角的三角比:sin0° = 0,sin360° = 0;cos0° = 1,cos360° = 1;tan0° = 0,tan360° = 0。

三角函数中考知识点总结

三角函数中考知识点总结

三角函数中考知识点总结一、基本概念1. 三角函数的定义:正弦函数、余弦函数、正切函数、余切函数等的定义和图像。

2. 周期性:三角函数的周期和图像的性质。

3. 奇偶性:三角函数的奇偶性质。

4. 三角函数的定义域和值域。

5. 三角函数的相关位置:在平面坐标系和单位圆中的位置。

二、三角恒等式1. 三角函数的互化公式。

2. 三角函数的和差化积公式。

3. 三角函数的倍角公式。

4. 三角函数的半角公式。

三、三角函数的性质1. 三角函数的增减性。

2. 三角函数的周期性。

3. 三角函数的奇偶性。

4. 三角函数的反函数。

四、三角函数的函数图像1. 正弦函数的图像和性质;2. 余弦函数的图像和性质;3. 正切函数的图像和性质;4. 余切函数的图像和性质;5. 正割函数和余割函数的图像。

五、三角函数的应用1. 在三角形中的应用;2. 在物理问题中的应用;3. 在数学分析中的应用;4. 在工程计算中的应用。

六、三角函数的求值1. 三角函数解析式的计算;2. 三角函数的运算;3. 三角函数的积分和微分。

七、三角函数的变换1. 三角函数的平移变换;2. 三角函数的伸缩变换;3. 三角函数的反转和反转。

八、三角函数的等价变形1. 三角函数的等价变形和化简;2. 三角函数的同角变形;3. 三角函数的双角变换。

九、常见的三角函数解法1. 三角函数的二次方程求解;2. 三角函数的绝对值求解;3. 三角函数的等差数列求和。

十、其它1. 三角函数的极限和级数;2. 三角函数的方程和不等式求解。

以上是三角函数中的一些重要知识点总结,希望对大家的学习有所帮助。

在复习备考时,建议大家要多做题、多总结、多练习,才能更好地掌握三角函数中的知识点。

同时,要善于归纳整理知识点,掌握三角函数的基本概念和相关规律,这样才能在考试中得心应手。

祝大家学习进步,考试顺利!。

初中数学三角函数基础知识点总结

初中数学三角函数基础知识点总结

初中数学三角函数基础知识点总结初中数学三角函数基础知识点总结总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以使我们更有效率,因此,让我们写一份总结吧。

我们该怎么去写总结呢?下面是小编为大家整理的初中数学三角函数基础知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学三角函数基础知识点总结篇1三角和的公式sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)倍角公式tan2A = 2tanA/(1-tan2 A)Sin2A=2SinA?CosACos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A三倍角公式sin3A = 3sinA-4(sinA)3;cos3A = 4(cosA)3 -3cosAtan3a = tan a ? tan(π/3+a)? tan(π/3-a)三角函数特殊值α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞三角函数记忆顺口溜1三角函数记忆口诀“奇、偶”指的是π/2的倍数的`奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

初三三角函数知识点归纳总结

初三三角函数知识点归纳总结

初三三角函数知识点归纳总结
•三角函数基础知识:①三角函数的定义:三角函数是一类特殊的函数,可以通过一个角或一个角的弧度来描述。

②三角函数的公式:sinθ=opp/hyp;cosθ=adj/hyp;tanθ=opp/adj。

③三角函数的图形:三角函数的图形可以分为正弦图形和余弦图形。

•坐标变换:①极坐标系:极坐标系是一种坐标系,它由极点、极轴和极半径构成,用来表示曲线的位置。

②直角坐标系:直角坐标系是一种坐标系,它由原点、横坐标轴和纵坐标轴构成,用来表示点在空间中的位置。

•三角函数的性质:①正弦定理:sinα/a=sinβ/b=sinγ/c;②余弦定理:a^2=b^2+c^2-2bc*cosα;③正弦余弦定理:sinα/a=cosβ/b;④正切定理:tanα/a=tanβ/b;⑤正切余弦定理:tanα/a=cosβ/b;⑥正切正弦定理:tanα/a=sinβ/b。

初三三角函数知识梳理

初三三角函数知识梳理

初三三角函数知识梳理三角函数是数学中一种重要的函数,它与三角形的各边以及角度之间的关系密切相关。

在初三阶段,学习三角函数是必不可少的内容之一。

下面将对初三三角函数的知识进行梳理,帮助大家系统地理解这一部分知识。

首先,我们来了解一下三角函数的基本概念。

在一个单位圆上,以圆心为原点,半径为1,任取一点P的坐标(x,y),则P点对应的角度为该点与x轴正方向的夹角θ。

根据三角函数的定义,我们可以得到三个基本的三角函数:正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

它们的定义如下:正弦函数:sinθ=y余弦函数:cosθ=x正切函数:tanθ=y/x接着,我们来了解一些与三角函数相关的重要公式和性质。

其中,最基本的公式就是勾股定理,即直角三角形中的两个直角边a、b和斜边c之间的关系:a²+b²=c²。

这个公式在解决三角形问题时经常用到。

此外,三角函数还有一些重要的性质需要注意。

其中,正弦函数和余弦函数的周期都为2π(或360°),即在每个周期内,它们的值会周期性地重复。

而正切函数的周期是π(或180°),即每个周期内正切函数的值会重复。

在应用三角函数解决问题时,我们通常会用到两个重要的角度:锐角和直角。

锐角是指介于0°和90°之间的角度,而直角则是指90°。

在解决三角函数问题时,我们需要了解不同角度对应的三角函数值,可以通过查表或用计算器来获取。

同时,我们也需要掌握如何利用已知角度的三角函数值求解其他未知角度的方法,例如利用反函数、特殊角的三角函数值等。

最后,我们需要了解如何应用三角函数来解决实际问题。

三角函数在几何、物理等领域中有广泛的应用。

例如,在解决三角形问题时,我们可以利用正弦定理、余弦定理、正切定理等来求解未知边长和角度。

在物理中,三角函数可以用来表示波动、振动等周期性的现象,例如用正弦函数来表示声音的波动、用余弦函数来表示机械振动等。

初中数学中的三角函数知识点归纳

初中数学中的三角函数知识点归纳

初中数学中的三角函数知识点归纳三角函数是初中数学中的一个重要知识点,它是研究角和角的函数关系的一门数学工具。

三角函数包括正弦函数、余弦函数和正切函数等常见的函数。

在初中数学中,对三角函数的学习主要涉及到下面几个方面的内容:一、角的概念和三角函数的定义1.角的概念:角是由两条半射线构成的一个几何图形,通常用一个大写字母来表示角,如∠A。

2.角的度量:角的度量单位通常有两种,一种是度,另一种是弧度。

在初中数学中,我们主要使用度来度量角。

3.三角函数的定义:在直角三角形中,定义了正弦函数、余弦函数和正切函数。

其中,正弦函数sinA等于角A的对边与斜边的比值,余弦函数cosA等于角A的邻边与斜边的比值,正切函数tanA等于角A的对边与邻边的比值。

二、三角函数的性质和应用1.三角函数的周期性:正弦函数、余弦函数和正切函数都是周期函数,它们的周期都是2π。

2.三角函数的性质:正弦函数、余弦函数和正切函数在定义域内有一些基本的性质,如正弦函数和余弦函数的取值范围是[-1,1],正切函数的定义域是全体实数除去使得tanA不存在的角度。

3.三角函数的运算关系:三角函数之间有一些运算关系,如三角函数的基本关系sin^2A+cos^2A=1,tanA=sinA/cosA等。

4.应用问题:三角函数的知识可用于解决一些实际问题,如物体的运动问题、建筑物高度的测量问题等。

三、三角函数的图像和性质1.正弦函数的图像:正弦函数的图像为一条以原点为中心的周期为2π的正弦曲线,曲线在原点处取得最小值0,在π/2和3π/2处取得最大值1和-12.余弦函数的图像:余弦函数的图像为一条以原点为中心的周期为2π的余弦曲线,曲线在原点处取得最大值1,在π/2和3π/2处取得最小值0和-13.正切函数的图像:正切函数的图像为一组以π为一个周期的势函数曲线,曲线在0和π处有垂直渐近线。

总之,三角函数是初中数学中一个极为重要的知识点,掌握三角函数的基本概念、性质和运算关系对学生发展数学思维和解决实际问题具有重要意义。

初中三角函数知识点总结

初中三角函数知识点总结

初中三角函数知识点总结初中三角函数知识点总结三角函数是数学中的一个重要分支,它研究的是角和角度与其它数学量之间的关系。

在初中数学中,我们主要学习了三角函数的定义、性质、图像和一些基本公式等知识点。

接下来我将从以下几个方面对初中三角函数的知识点进行总结。

一、三角函数的定义和性质1. 弧度制与角度制:在三角函数中,我们可以用弧度制和角度制两种方式来度量角度。

- 弧度制:规定半径为1的单位圆上的弧长所对应的角度为1弧度。

- 角度制:规定整个圆周分为360度,每度又分为60分,每分又分为60秒。

2. 常用的三角函数:初中阶段我们主要学习了正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角A,其对应的正弦函数值等于该锐角的斜边与斜边的对边之比。

- 余弦函数(cos):在直角三角形中,对于一个锐角A,其对应的余弦函数值等于该锐角的斜边与斜边的邻边之比。

- 正切函数(tan):在直角三角形中,对于一个锐角A,其对应的正切函数值等于该锐角的对边与邻边之比。

3. 基本性质:- 三角函数的定义域:由于三角函数的值与角度相关,所以其定义域为实数集。

- 三角函数的值域:正弦函数和余弦函数的值域是[-1, 1],正切函数的值域是实数集。

二、三角函数的图像1. 正弦函数和余弦函数的图像:- 正弦函数图像:正弦函数的图像是一条连续的正弦曲线,其振幅为1,周期为2π,在弧度制下,一周期为2π。

- 余弦函数图像:余弦函数的图像也是一条连续的余弦曲线,其振幅为1,周期为2π。

2. 正切函数的图像:- 正切函数的图像是一条连续的切线曲线,没有振幅和周期限制,它在一些角度上无定义,即tanθ不存在的情况。

三、三角函数的基本公式1. 三角函数的基本关系:- 三角函数之间的关系可以通过基本的三角恒等式推导得到,如sin²θ + cos²θ = 1,tanθ = sinθ / cosθ等。

初中三角函数知识点总结

初中三角函数知识点总结

初中三角函数知识点总结三角函数是高中数学中的重要知识点之一,也是初中数学中的一部分内容。

在初中阶段,学习三角函数可以帮助学生更好地理解角度、比例和正弦/余弦等概念,为进一步学习数学打下坚实的基础。

下面是对初中三角函数的知识点进行总结。

一、角度的概念与运算:1.角度的定义:角是由两条射线共同端点形成的图形。

2.角度的度量单位:角度可以用度(°)进行度量。

3.角度的运算:加减角度:两个角的和与差。

4.角度的名词:零角、平角、直角、锐角、钝角。

二、三角比的概念与计算:1.弧度制:角度可以用弧度制进行度量。

2.弧度与角度的转化关系:1弧度=180°/π。

3. 正弦、余弦、正切的定义:正弦(sin)、余弦(cos)、正切(tan)是三角比的基本定义。

三、正弦、余弦、正切的关系与性质:1. 三角比的定义公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。

2. 三角比的相互关系:tanθ=sinθ/cosθ。

3. 正弦、余弦的关系:sinθ=cos(90°-θ)。

4. 交替关系:sin(-θ)=-sinθ,cos(-θ)=cosθ。

5. 余角关系:sin(90°-θ)=cosθ,cos(90°-θ)=sinθ,tan(90°-θ)=1/tanθ。

四、三角函数的图像与性质:1. 正弦曲线:y=sinθ,定义域为实数集合,值域为[-1,1],周期为2π。

2. 余弦曲线:y=cosθ,定义域为实数集合,值域为[-1,1],周期为2π。

3. 正切曲线:y=tanθ,定义域为实数集合,值域为(-∞,∞),周期为π。

4. 反函数关系:sin^-1(x)、cos^-1(x)、tan^-1(x)。

五、特殊角的诱导公式:1. 30°-60°-90°特殊角:sin30°=1/2,cos30°=√3/2,tan30°=1/√3;sin60°=√3/2,cos60°=1/2,tan60°=√32. 45°特殊角:sin45°=cos45°=1/√2,tan45°=13. 0°和90°特殊角:sin0°=0,cos0°=1,tan0°=0;sin90°=1,cos90°=0,tan90°不存在。

初中三角函数公式,初中三角函数知识点归纳总结

初中三角函数公式,初中三角函数知识点归纳总结

初中三角函数公式,初中三角函数知识点归纳总结1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

2、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)3.任何锐角的正弦值等于其余角的余弦值;任何锐角的余弦都等于其余角的正弦。

4.任何锐角的正切等于它的余角的余切;任何锐角的余切都等于它的余角的正切。

5、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

6、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。

7、初中三角函数两角和与差的三角函数:cos(αβ)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβsinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(αβ)=(tanαtanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1tanα·tanβ)8、初中三角函数倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]9、初中三角函数三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα10、初中三角函数半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1cosα)/2tan^2(α/2)=(1-cosα)/(1cosα)tan(α/2)=sinα/(1cosα)=(1-cosα)/sinα11、初中三角函数万能公式:sinα=2tan(α/2)/[1tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]12、初中三角函数积化和差公式:sinα·cosβ=(1/2)[sin(αβ)sin(α-β)]cosα·sinβ=(1/2)[sin(αβ)-sin(α-β)]cosα·cosβ=(1/2)[cos(αβ)cos(α-β)]sinα·sinβ=-(1/2)[cos(αβ)-cos(α-β)]13、初中三角函数和差化积公式:sinαsinβ=2sin[(αβ)/2]cos[(α-β)/2]sinα-sinβ=2cos[(αβ)/2]sin[(α-β)/2]cosαcosβ=2cos[(αβ)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(αβ)/2]sin[(α-β)/2]完整初中三角函数值表完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。

初中三角函数知识点总结

初中三角函数知识点总结

初中三角函数知识点总结一、角和弧度制角是由一条射线绕着一个固定点旋转形成的。

角的单位有度和弧度两种,其中度是最常用的单位。

角的度数决定了它所对应的弧长。

一个角的弧长和它所对应的弧度数之间有一个固定的关系:1弧度等于180°/π。

二、正弦、余弦和正切在直角三角形中,我们可以根据三角形的边长来定义三个比率:正弦、余弦和正切。

1. 正弦(sine)的定义为:sinθ = 对边/斜边。

2. 余弦(cosine)的定义为:cosθ = 邻边/斜边。

3. 正切(tangent)的定义为:tanθ = 对边/邻边。

三、特殊角的三角函数值在一个单位圆上,特殊角的三角函数值有着特定的规律。

1.0°、90°、180°和270°分别对应的三角函数值是:sin0° = 0, sin90° = 1, sin180° = 0, sin270° = -1;cos0° = 1, cos90° = 0, cos180° = -1, cos270° = 0;tan0° = 0, tan90° = 无穷大, tan180° = 0, tan270° = 无穷大。

2.对于30°、45°和60°,它们在单位圆上对应的三角函数值还有特殊的规律:sin30° = 1/2, sin45° = √2/2, sin60° = √3/2;cos30° = √3/2, cos45° = √2/2, cos60° = 1/2;tan30° = 1/√3, tan45° = 1, tan60° = √3四、三角函数的性质三角函数有一些重要的性质:1. sin(-θ) = -sinθ,cos(-θ) = cosθ,tan(-θ) = -tanθ。

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)
C 、非正数 D 、不能确定
(2)比较函数值大小 例 1.如图是一次函数 y1=kx+b 和反比例函数 y2=
x 的取值范围
m 的图象,观察图象写出 y1>y2 时, x
例 2.如图,一次函数y =x-1 与反比例函数y = 2),则使y >y 的x的取值范围是( A. x>2 B. x>2 或-1<x<0 )
为 S1、S 2、S3、S 4、S5, 则 S 5 的值为 例 6.如图,A、B 是函数 y 轴,△ABC 的面积记为 S ,则( A. S 2 B. S 4 .
2 的图象上关于原点对称的任意两点,BC∥ x 轴,AC∥ y x
) C. 2 S 4 D. S 4
(2)矩形面积: S 矩形OBAC
1 2
45°
2 2 2 2
60°
3 2
1 2
90° 1 0 不存在 0
sin
cos
tan cot
3 2 3 3
1 1
3
3 3
3
6、正弦、余弦的增减性: 当 0°≤ ≤90°时,sin 随 的增大而增大,cos 随 的增大而减小。 7、正切、余切的增减性: 当 0°< <90°时,tan 随 的增大而增大,cot 随 的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
3 m 2
例 2.当 m 取什么值时,函数 y (m 2) x
是反比例函数?
例 3.若函数 y (2m 1) x
m2 2
是反比例函数,且它的图像在第二、四象限,则 m 的值是___________
例 4.已知函数 y=y1+y2,y1 与 x 成正比例,y2 与 x 成反比例,且当 x=1 时,y=4;当 x=2 时,y=5 (1)求 y 与 x 的函数关系式 (2)当 x=-2 时,求函数 y 的值

初三数学三角函数知识点

初三数学三角函数知识点

初三数学三角函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初三数学三角函数知识点初三数学三角函数知识点考点关于知识点,初三数学三角函数知识点分别是什么的呢?小伙伴们可有了解过?不妨一起来关注下吧!以下是本店铺为大家带来的初三数学三角函数知识点考点,欢迎参阅呀!初三数学三角函数知识点考点锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

初中九年级数学中考锐角三角函数知识点总结

初中九年级数学中考锐角三角函数知识点总结

九年级数学中,锐角三角函数是一个重要的知识点。

锐角三角函数是指对于锐角的正弦、余弦和正切函数。

下面我将对锐角三角函数的基本概念、性质和应用进行总结。

一、基本概念1.弧度和角度:角度是常用的角度度量单位,弧度是角度的另一种度量单位。

1个弧度对应360°/2π≈57.3°。

角度和弧度之间的关系式:弧度=角度×π/180°。

2.锐角:指角度小于90°的角。

3. 三角函数:对于一个锐角A,定义其正弦(sin A)为对边与斜边的比值,余弦(cos A)为邻边与斜边的比值,正切(tan A)为对边与邻边的比值。

二、性质1.正弦函数的性质:(1)对于锐角A,0 < A < 90°,sin A > 0;(2)sin A = sin (180° - A) = sin (A + 360°);(3)sin (90° - A) = cos A;(4)sin A ≠ 0,当且仅当A是锐角。

2.余弦函数的性质:(1)对于锐角A,0 < A < 90°,cos A > 0;(2)cos A = cos (180° - A) = cos (360° + A);(3)cos (90° - A) = sin A;(4)cos A ≠ 0,当且仅当A是锐角。

3.正切函数的性质:(1)对于锐角A,0 < A < 90°,tan A > 0;(2)tan A = tan (180° + A);(3)tan (90° - A) = 1/tan A;(4)tan A ≠ 0,当且仅当A是锐角。

4.三角函数的关系:(1)sin^2 A + cos^2 A = 1;(2)tan A = sin A / cos A。

三、应用1.解三角形:利用已知角的正弦、余弦和正切的值,可以求解未知边长或角度的三角形问题。

初中数学三角函数知识点总结

初中数学三角函数知识点总结

初中数学三角函数知识点总结三角函数是初中数学中重要的内容之一,它是研究三角形中各个边和角之间关系的一门学科。

通过学习三角函数,我们可以计算未知边长和角度的大小,解决实际生活中的问题。

本文将对初中数学三角函数的知识点进行总结。

一、正弦函数正弦函数是最基本的三角函数之一,用sin记作。

在直角三角形中,正弦函数被定义为对边与斜边的比值。

具体地说,对于一个直角三角形,如果已知一个角的度数为θ,那么三角形中对应的一边长度与斜边的比值就是sinθ。

正弦函数的值域为[-1,1]。

二、余弦函数余弦函数是另一个非常重要的三角函数,用cos记作。

在直角三角形中,余弦函数被定义为邻边与斜边的比值。

具体地说,对于一个直角三角形,如果已知一个角的度数为θ,那么三角形中对应的一边长度与斜边的比值就是cosθ。

余弦函数的值域也是[-1,1]。

三、正切函数正切函数是sin和cos的比值,用tan表示。

在直角三角形中,正切函数被定义为对边与邻边的比值。

具体地说,对于一个直角三角形,如果已知一个角的度数为θ,那么三角形中对应的一边长度与另一边的比值就是tanθ。

正切函数的定义域为除了90度的整数倍的角度之外的所有实数。

四、三角函数的特点与性质1. 周期性:三角函数都具有周期性,即对于任意角θ,sin(θ+2π) = sinθ,cos(θ+2π) = cosθ,tan(θ+π) = tanθ。

这意味着在一定范围内的角度具有相同的三角函数值。

2. 正交性:正弦函数和余弦函数是正交的,即在[0,2π]区间内,它们的乘积的积分为0。

3. 对称性:sin和cos函数具有奇偶性,即sin(-θ) = -sinθ,cos(-θ) = cosθ。

这意味着sin和cos对于角的正负具有对称性。

4. 互逆关系:正弦函数和余弦函数是互逆的,即sin²θ + cos²θ = 1。

五、三角函数的应用三角函数在实际生活中有广泛的应用,特别是在测量、物理学等领域。

中考复习初中数学三角函数复习重点整理

中考复习初中数学三角函数复习重点整理

中考复习初中数学三角函数复习重点整理数学三角函数是中学数学中一个较为重要的内容,对于中考来说,复习三角函数是非常重要的。

下面是初中数学三角函数的复习重点整理。

一、基本概念1. 角度与弧度制:角度制是我们常用的度数表示方法,弧度制是更精确的表示方法,可以通过角度制与弧度制的换算进行转化。

2. 正弦、余弦和正切:正弦是一个角的对边与斜边的比值,余弦是一个角的邻边与斜边的比值,正切是一个角的对边与邻边的比值。

3. 特殊角的三角函数值:例如,30°的正弦值为1/2,余弦值为√3/2,正切值为1/√3。

二、基本关系1. 三角函数的正负:在不同象限中,正弦、余弦和正切的正负情况是不同的,要根据象限关系来确定正负值。

2. 三角函数的基本关系:在一个直角三角形中,正弦、余弦和正切之间存在一定的关系,可以通过正弦定理、余弦定理和正切定理进行推导和计算。

三、诱导公式1. 正弦和余弦的诱导公式:通过三角函数的基本关系,可以得到正弦和余弦的诱导公式,例如,sin(α±β)=sinαcosβ±cosαsinβ。

2. 正切的诱导公式:通过正切的定义和基本关系,可以得到正切的诱导公式,例如,tan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)。

四、同角三角函数间的关系1. 同角三角函数的关系:在一个直角三角形中,正弦、余弦和正切之间存在一定的关系,例如,tanα=sinα/cosα。

2. 同角三角函数的平方和关系:例如,sin²α+cos²α=1,tan²α+1=sec²α,等等。

五、解三角形问题1. 利用正弦定理和余弦定理解三角形问题:通过正弦定理和余弦定理,可以求解各种类型的三角形问题,例如,已知两边和夹角,求第三边或第三角;已知两边和一个对角,求其他未知量等等。

六、图象与性质1. 正弦曲线、余弦曲线和正切曲线:三角函数的图象具有一定的特点,通过观察和探究,可以得到正弦曲线、余弦曲线和正切曲线的性质。

初三数学三角函数知识点

初三数学三角函数知识点

初三数学三角函数知识点初三数学中,三角函数是一个比较重要且有趣的知识点。

它不仅在数学中有广泛的应用,而且在现实生活中也有许多实际的应用。

下面我们就来探索一下三角函数的一些基本知识和实际应用。

在初三数学中,我们首先要学习正弦函数、余弦函数和正切函数。

这三个函数是最基本的三角函数,它们的定义如下:正弦函数:sinθ = 对边/斜边余弦函数:cosθ = 邻边/斜边正切函数:tanθ = 对边/邻边在这里,θ代表角度,对边、邻边和斜边分别代表一个直角三角形中的三条边。

这个定义虽然看起来有些抽象,但是通过实际的例子,我们可以更好地理解。

三角函数的概念最早出现在三角学中,而后被广泛引入到数学中。

最初,人们是通过实际测量角度的大小和三角形边长的关系来研究三角函数的。

而随着数学的发展,人们逐渐将三角函数的定义进行抽象,从而形成了现在我们所学的形式。

三角函数在解决实际问题中发挥着重要的作用。

例如,在测量中,我们可以利用三角函数来计算不可测量的距离、高度和角度。

在建筑设计中,三角函数也被应用于测量建筑物的高度和角度。

此外,在机械工程和航空航天技术中,三角函数的应用也是不可或缺的。

除了实际应用之外,三角函数在其他学科中也有广泛的应用。

例如,在物理学中,三角函数被用来描述摆动、波动和旋转的现象。

在统计学中,三角函数能够帮助我们分析周期性数据,并进行预测和趋势分析。

学习三角函数时,我们还需要掌握一些基本的公式和性质。

例如,正弦函数和余弦函数是周期函数,周期为2π;正切函数的图像具有奇点(即值无穷大);三角函数之间有一系列的恒等关系等等。

掌握这些公式和性质有助于我们更好地理解和应用三角函数。

在学习三角函数时,我们需要进行大量的练习,通过解决各种类型的题目来提高自己的能力。

同时,我们还可以利用计算机和数学软件来对三角函数进行绘图和计算,以加深对概念的理解和直观感受。

综上所述,三角函数是初三数学中一个重要且有趣的知识点。

通过学习和应用三角函数,我们不仅可以解决实际问题,还可以提高数学思维和分析问题的能力。

初中三角函数知识点+题型总结+课后练习

初中三角函数知识点+题型总结+课后练习

锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+2、如以下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义表达式取值围关系正弦 斜边的对边A A ∠=sin caA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A(∠A 为锐角)正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切的对边的邻边A A A ∠∠=cot abA =cot0cot >A(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan 0 33 1 3 不存在 αcot不存在3133 0对边邻边 斜边 B锐角三角函数题型训练类型一:直角三角形求值1.Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2.:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.3.:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.A ∠是锐角,178sin =A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:1.:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.8AB =,10BC =,则tan EFC ∠的值为 ( ) A.34 B.43C.35D.453. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,假设1tan 5DBA ∠=,则AD 的长为( )A .2 B .2 C .1 D .224. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求∠B 的度数及边BC 、AB 的长. 类型三. 化斜三角形为直角三角形例1〔2021•〕如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例2.:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .例3.:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练 1.〔2021•〕如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.假设AB=2,求△ABC 的周长.〔结果保存根号〕2.:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形例1 〔2021•江〕如下图,△ABC 的顶点是正方形网格的格点,则sinA 的值为〔 〕 A .12 B .55 C .1010 D .255DABC对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.特殊角的三角函数值例1.求以下各式的值︒-︒+︒30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0-33tan30°-tan45°= 030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+= ︒-︒+︒60tan 45sin 230cos 2tan 45sin 301cos 60︒+︒-︒=在ABC ∆中,假设0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数 例2.求适合以下条件的锐角.(1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α〔5〕为锐角,且3)30tan(0=+α,求αtan 的值〔〕在ABC ∆中,假设0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数 例3. 三角函数的增减性 1.∠A 为锐角,且sin A <21,则∠A 的取值围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. A 为锐角,且030sin cos <A ,则 〔 〕A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. :如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD . 解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如下图): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如下图).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1):a =35,235=c ,求∠A 、∠B ,b ;(2):32=a ,2=b ,求∠A 、∠B ,c ; (3):32sin =A ,6=c ,求a 、b ;(4):,9,23tan ==b B 求a 、c ; (5):∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长. 例4.:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长. 类型二:解直角三角形的实际应用 仰角与俯角:例1.〔2021•〕如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是〔 〕 A . 200米 B . 200米 C . 220米 D . 100〔〕米例2.:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3〔昌平〕19.如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.例4.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.例5.:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号). 例5.〔2021•〕如图,为测量*物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为〔 〕 A . 10米 B . 10米 C . 20米 D .米 例6.〔2021•〕超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离大道的距离〔AC 〕为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. 〔1〕求B 、C 两点的距离;〔2〕请判断此车是否超过了大道60千米/小时的限制速度.〔计算时距离准确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒〕 类型四. 坡度与坡角A B CD EA例.〔2021•〕如图,*水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是〔 〕A .100mB .1003mC .150mD .503m类型五. 方位角1.:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少"(准确到0.1海里,732.13≈) 综合题:三角函数与四边形:〔西城二模〕1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2, tan∠BDC=63. (1)求BD 的长; (2)求AD 的长.〔2021东一〕2.如图,在平行四边形ABCD 中,过点A 分别作AE BC E AF ⊥CD 于点F . 〔1〕求证:∠BAE =∠DAF ; 〔2〕假设AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与*轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为〔 〕 A .12 B .32C .35D .45〔延庆〕19.:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D,(1) 求证:∠AOD=2∠C(2) 假设AD=8,tanC=34,求⊙O 的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中三角函数知识点总结(中考复习)1、勾股定理:直角三角形两直角边a 、a 的平方和等于斜边a 的平方。

222c b a =+2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6 当0°≤a ≤90°时,sin a 随a 的增大而增大,cos a 随a 的增大而减小。

7、正切、余切的增减性: 当0°<a <90°时,tan a 随a 的增大而增大,cot a 随a 的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222cb a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法) 2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度和水平宽度的比叫做坡度(坡比)。

用字母表示,即。

坡度一般写成的形式,如a等。

把坡面与水平面的夹角记作(叫做坡角),那么。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA、OB、OC、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。

如图4,OA、OB、OC、OD的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。

反比例函数知识点整理一、反比例函数的概念1、解析式:a其他形式:①a②a例1.下列等式中,哪些是反比例函数(1)a(2)a(3)xy=21(4)a(5)a(6)a(7)y=x-4例2.当m取什么值时,函数a是反比例函数?例3.若函数a是反比例函数,且它的图像在第二、四象限,则a的值是___________例4.已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y =5(1)求y与x的函数关系式(2)当x=-2时,求函数y的值2.反比例函数图像上的点的坐标满足:a例1.已知反比例函数的图象经过点(m,2)和(-2,3)则m的值为例2.下列函数中,图像过点M(-2,1)的反比例函数解析式是( )a a例3.如果点(3,-4)在反比例函数a的图象上,那么下列各点中,在此图象上的是()A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)例4.如果反比例函数的图象经过点(3,-1),那么函数的图象应在()A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限二、反比例函数的图像与性质1、基础知识a时,图像在一、三象限,在每一个象限内,y 随着x 的增大而减小; a时,图像在二、四象限,在每一个象限内,y 随着x 的增大而增大; 例1.已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式例2.已知反比例函数a的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足a≥2k -1,若k 为整数,求反比例函数的解析式2、面积问题(1)三角形面积:a例1.如图,过反比例函数a(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定例2.如图,点P 是反比例函数x y 1=的图象上任一点,PA 垂直在x 轴,垂足为A ,设OA ∆的面积为S ,则S 的值为例3.直线OA 与反比例函数的图象在第一象限交于A 点,AB ⊥x 轴于点B ,若△OAB 的面积为2,则k = .例4.如图,若点a 在反比例函数a的图象上,a 轴于点a ,a 的面积为3,则a .例5.如图,在x 轴的正半轴上依次截取a ,过点a 分别作x 轴的垂线与反比例函数的a的图象相交于点a ,得直角三角形a 并设其面积分别为a 则a 的值为 .例6.如图,A 、B 是函数a的图象上关于原点对称的任意两点,BC ∥a 轴,AC ∥a轴,△ABC 的面积记为a ,则( ) A . a B . a C .a D .a (2)矩形面积:a例1.如图,P 是反比例函数a图象上的一点,由P 分别向x 轴和y 轴引垂线,阴影部分面积为3,则k= 。

例2.如图,已知点C 为反比例函数上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为 .例3.如图,点 、 是双曲线上的点,分别经过 、 两点向 轴、 轴作垂线段,若 则.例4、如图,矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B ( ,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E处,若点E 在一反比例函数的图像上,那么该函数的解析式是______.例3图例5.两个反比例函数y=a 和y=a 在第一象限内的图像如图3所示,•点P 在y=a的图像上,PC ⊥x 轴于点C ,交y=a 的图像于点A ,PD ⊥y 轴于点D ,交y=a 的图像于点B ,•当点P 在y=a的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上,•少填或错填不给分).3.利用图像比较大小问题 (1)比较点的坐标大小例1.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线a上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 2 例2.已知三点111()P x y ,,222()Px y ,,3(12)P -,都在反比例函数ky x =的图象上,若10x<,20x >,则下列式子正确的是( ) A .120y y << B .120y y << C .120y y >>D .120y y >>例3.反比例函数a,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是例4.点A (2,1)在反比例函数a的图像上,当1﹤x ﹤4时,y 的取值范围是 .例5.若A (a ,a )、B (a ,a )在函数a 的图象上,则当a 、 满足________时,> .例6.在反比例函数a的图象上有两点A a ,B a ,当a 时,有a ,则a 的取值范围是( )A 、aB 、aC 、aD 、a例7、已知反比例函数 的图像上有两点A( ,a ),B(a ,a ),且a ,则a 的值是 ( )A 、正数B 、 负数C 、非正数D 、不能确定(2)比较函数值大小例1.如图是一次函数y 1=kx+b 和反比例函数y 2=a的图象,观察图象写出y 1>y 2时,a 的取值范围例2.如图,一次函数ya=x-1与反比例函数ya=的图像交于点A(2,1),B(-1,-2),则使ya>aya的x的取值范围是()A. x>2B. x>2 或-1<x<0C. -1<x<2D. x>2 或x<-1三、反比例函数与一次函数的综合题(1)在同一坐标系中的图像问题在同一直角坐标系内的大致图象是()例1.一次函数a与反比例函数a(a≠0)在同一坐标系中的图象可能是()例2.函数y=-ax+a与a(2)其他类型的图象交于A、B两例1.如图,已知一次函数a的图象与反比例函数a点,且点A的横坐标和点B的纵坐标都是a,求:(1)一次函数的解析式;(2)△AOB的面积.(x>0)的图象相交于点 A、B,设点A 例2.如图,在直角坐标系中,直线y=6-x与函数y=a的坐标为(x1,,y1),那么长为x1,宽为y1的矩形面积和周长分别为( )A.4,12 B.8,12 C.4,6 D.8,6的例3.如图:已知一次函数a的图象与a轴、a轴分别交于a、a两点,且与反比例函数a图象在第一象限交于a点,a⊥a轴,垂足为a,若a(1)求点a、a、a的坐标;(2)求一次函数与反比例函数的解析式;;例4:如图,反比例函数a 的图象与一次函数a 的图象交于 , 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当 取何值时,反比例函数的值大于一次函数的值例5.如图,A 、B 是反比例函数y =a的图象上的两点。

AC 、BD 都垂直于x 轴,垂足分别为C 、D 。

AB的延长线交x 轴于点E 。

若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( )A .21B .41 C.81 D .161四、 反比例函数的应用例1.已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是( )例2.一张正方形的纸片,剪去两个一样的小矩形得到一个“a ”图案,如图所示,设小矩形的长和宽分别为a 、a ,剪去部分的面积为20,若a ,则a 与a 的函数图象是( )。

相关文档
最新文档