2016年安徽省中考数学试卷(含答案)
安徽省2016年中考数学试题

新课标第一网系列资料
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。
望长城内外,惟余莽莽;
大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,
欲与天公试比高。
须晴日,看红装素裹,分外妖娆。
江山如此多娇,引无数英雄竞折腰。
惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,
只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。
薄雾浓云愁永昼,瑞脑消金兽。
佳节又重阳,玉枕纱厨,半夜凉初透。
东篱把酒黄昏后,有暗香盈袖。
莫道不消魂,帘卷西风,人比黄花瘦。
安徽省合肥市高新区中考数学一模试题(含解析)-人教版初中九年级全册数学试题

某某省某某市高新区2016届中考数学一模试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m63.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.94.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.5.在数轴上标注了四段X围,如图,则表示的点落在()A.段① B.段② C.段③ D.段④6.2013年某某市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140 160 169 170 177 180人数 1 1 1 2 3 2则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是1777.不等式组的解集在数轴上表示正确的是()A.B.C. D.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.210.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=.12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32015的末位数字是.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号(注:将你认为正确结论的序号都填上).三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.16.解方程: =.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.18.一方有难八方支援.某某地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.20.(2015•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,某某数p的取值X围.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值X围.2016年某某省某某市高新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.故选:A.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m6【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:(m3)2÷m3=m6÷m3=m3,故选B.【点评】本题考查同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】本题给出了正视图与左视图,由所给的数据知凭据三视图的作法规则,来判断左视图的形状,由于正视图中的长与左视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.【解答】解:几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.在数轴上标注了四段X围,如图,则表示的点落在()A.段① B.段② C.段③ D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】2222=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.6.2013年某某市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)成绩(个/分钟)140 160 169 170 177 180人数 1 1 1 2 3 2则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是177【考点】方差;加权平均数;中位数;众数.【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,则方差= [(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;∵177出现了三次,出现的次数最多,∴众数是177;∴下列说法错误的是A;故选A.【点评】此题考查了平均数、方差、中位数和众数,掌握平均数、方差、中位数和众数的定义是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.2【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【专题】数形结合.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x ﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2= 3(2x+y)(2x﹣y).【考点】提公因式法与公式法的综合运用.【分析】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应提公因式,再用公式.【解答】解:12x2﹣3y2=3(2x﹣y)(2x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32015的末位数字是9 .【考点】尾数特征.【专题】规律型.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32015的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2015÷4=503…3,∴3+32+33+34…+32015的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故答案为:9.【点评】此题主要考查了尾数特征以及数字变化规律,根据已知得出数字变化规律是解题关键.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.【点评】本题考查了切线的性质定理以及圆周角定理的运用,熟记和圆有关的各种性质定理是解题关键.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号①②④(注:将你认为正确结论的序号都填上).【考点】三角形中位线定理;全等三角形的判定与性质.【专题】压轴题.【分析】根据三角形的中位线定理和三角形全等的判定,此处可以运用排除法逐条进行分析.【解答】解:根据三角形的中线的概念得AE=2AB=2AC,①正确;②作CE的中点F,连接BF.根据三角形的中位线定理得AC=2BF,又AC=AB=2BD,所以BF=BD.根据三角形的中位线定理得到BF∥AC,则∠CBF=∠ACB=∠ABC.根据SAS得到△BCD≌△BCF,所以CF=CD,即CE=2CD.②正确;③根据②中的全等三角形得到∠BCD=∠BCE,若∠ACD=∠BCE,则需∠ACD=∠BCD.而CD只是三角形的中线.错误;④正确.故正确的是①②④.【点评】考查了三角形的中线的概念,能够熟练运用三角形的中位线定理,掌握全等三角形的判定和性质.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用去括号法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,第四项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+1﹣+1+2﹣=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程: =.【考点】解分式方程.【分析】因为3x﹣3=3(x﹣1),所以可确定方程的最简公分母为3(x﹣1),确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘3(x﹣1),得:3x=2,解得x=.经检验x=是方程的根.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式中有常数项的注意不要漏乘常数项.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.【考点】作图-平移变换.【分析】(1)直接把△A1B1C1是向左平移4个单位,再写出点A,B,C的坐标即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,A(﹣3,1),B(0,2),C(﹣1,4);(2)S△AOA1=×4×1=2.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.一方有难八方支援.某某地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过C作CD⊥AB,设CD=x米,则DB=CD=x米,AD=CD=x﹣x=2.1,再解即可.【解答】解:过C作CD⊥AB,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2.1米,∴x﹣x=2.1,解得:x=3.答:命所在点C与探测面的距离是3米.【点评】此题主要考查了解直角三角形的应用,关键是正确分析出CD、AD、BD的关系.五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为: =.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2015•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【专题】证明题.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,某某数p的取值X围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先把B(﹣3,﹣2)代入反比例函数解析式中确定k2,然后把A(2,m)代入反比例函数的解析式确定m,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据函数的图象即可求得;(3)分两种情况结合图象即可求得.【解答】解:(1)把B(﹣3,﹣2)代入数y=中,∴k2=6,∴反比例函数解析式为y=,把A(2,m)代入y=得,m=3,把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:解得k1=1,b=1,∴一次函数解析式为y=x+1.(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分两种情况:当P在第三象限时,要使y1>y2,p的取值X围为p<﹣2;当P在第一象限时,要使y1>y2,p的取值X围为p>0;故P的取值X围是p<﹣2或p>0.【点评】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了反比例函数和一次函数的交点问题,函数和不等式的关系.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.【考点】四边形综合题.【分析】(1)过F作FM⊥CD,垂足为M,连接GE,由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由GE为菱形的对角线,利用菱形的性质得到一对内错角相等,利用等式的性质即可得证;(2)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(3)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得.【解答】(1)证明:过F作FM⊥CD,垂足为M,连接GE,∵CD∥AB,∴∠AEG=∠MG E,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;(2)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和△AEH中,,∴Rt△HDG≌△AEH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:过F作FM⊥CD于M,在△AHE与△MFG中,,∴△AHE≌△MFG,∴MF=AH=x,∵DG=2x,∴C G=6﹣2x,∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,y最大=.【点评】本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值X围.【考点】二次函数的应用.【分析】(1)根据抛物线的顶点在直线y=kx上,抛物线为y=ax2+bx,k=1,且喷出的抛物线水线最大高度达3m,可以求得a,b的值;(2)根据k=1,喷出的水恰好达到岸边,抛物线的顶点在直线y=kx上,可以求得抛物线的对称轴x 的值,从而可以得到此时喷出的抛物线水线最大高度;(3)抛物线的顶点在直线y=2x上可得b的值,根据喷出的抛物线水线不能到岸边,而出水口离岸边18m可知其对称轴﹣<9,可得a的X围.【解答】解:(1)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=kx上,k=1,抛物线水线最大高度达3m,∴﹣=, =3,解得,a=﹣,b=2,即k=1,且喷出的抛物线水线最大高度达3m,此时a、b的值分别是﹣,2;(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18m,抛物线的顶点在直线y=kx上,∴此时抛物线的对称轴为x=9,y=x=9,即此时喷出的抛物线水线最大高度是9米;(3)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=2x上,∴﹣×2=﹣,解得:b=4,∵喷出的抛物线水线不能到岸边,出水口离岸边18m,∴﹣<9,即:﹣<9,解得:a>﹣,又∵a<0,∴﹣<a<0.【点评】本题考查二次函数的应用,解题的关键是明确题意,根据题目给出的信息列出相应的关系式,找出所求问题需要的条件.。
2016年安徽省中考数学试题及答案解析

2016年安徽省中考数学试题及答案解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2B.2C.±2D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4D.46.2014年我财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,△B=△DAC,则线段AC的长为()A.4B.4C.6D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB△BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足△PAB=△PBC,则线段CP长的最小值为()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知△O的半径为2,A为△O外一点,过点A作△O的一条切线AB,切点是B,AO的延长线交△O于点C,若△BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①△EBG=45°;②△DEF△△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得△CAB=90°,△DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得△DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且△MON为钝角,现以线段OA,OB为斜边向△MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE△△EDQ;(2)延长PC,QD交于点R.①如图1,若△MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB△△PEQ,求△MON大小和的值.2016年中考数学答案解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2B.2C.±2D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2014年我财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我财政收入和2014年我财政收入比2013年增长8.9%,求出2014年我财政收入,再根据出2015年比2014年增长9.5%,2015年我财政收为b亿元,即可得出a、b之间的关系式.【解答】解:△2013年我财政收入为a亿元,2014年我财政收入比2013年增长8.9%,△2014年我财政收入为a(1+8.9%)亿元,△2015年比2014年增长9.5%,2015年我财政收为b亿元,△2015年我财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,△B=△DAC,则线段AC的长为()A.4B.4C.6D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA△△CAD,得出=,求出AC即可.【解答】解:△BC=8,△CD=4,在△CBA和△CAD中,△△B=△DAC,△C=△C,△△CBA△△CAD,△=,△AC2=CD•BC=4×8=32,△AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB△BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足△PAB=△PBC,则线段CP长的最小值为()A.B.2C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的△O上,连接OC与△O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:△△ABC=90°,△△ABP+△PBC=90°,△△PAB=△PBC,△△BAP+△ABP=90°,△△APB=90°,△点P在以AB为直径的△O上,连接OC交△O于点P,此时PC最小,在RT△BCO中,△△OBC=90°,BC=4,OB=3,△OC==5,△PC=OC=OP=5﹣3=2.△PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知△O的半径为2,A为△O外一点,过点A作△O的一条切线AB,切点是B,AO的延长线交△O于点C,若△BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角△BOC的大小,然后利用弧长公式即可解决问题.【解答】解:△AB是△O切线,△AB△OB,△△ABO=90°,△△A=30°,△△AOB=90°﹣△A=60°,△△BOC=120°,△的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①△EBG=45°;②△DEF△△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得△1=△2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得△3=△4,BH=BA=6,AG=HG,易得△2+△3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF 中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于△A=△D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:△△BCE沿BE折叠,点C恰落在边AD上的点F处,△△1=△2,CE=FE,BF=BC=10,在Rt△ABF中,△AB=6,BF=10,△AF==8,△DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,△DE2+DF2=EF2,△(6﹣x)2+22=x2,解得x=,△ED=,△△ABG沿BG折叠,点A恰落在线段BF上的点H处,△△3=△4,BH=BA=6,AG=HG,△△2+△3=△ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,△GH2+HF2=GF2,△y2+42=(8﹣y)2,解得y=3,△AG=GH=3,GF=5,△△A=△D,==,=,△≠,△△ABG与△DEF不相似,所以②错误;△S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,△S△ABG=S△FGH,所以③正确;△AG+DF=3+2=5,而GF=5,△AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1△(x﹣1)2=5△x=1±△x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,根据数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,△a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得△CAB=90°,△DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得△DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,△△DEB=60°,△DAB=30°,△△ADE=△DEB﹣△DAB=30°,△△ADE为等腰三角形,△DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,△DF△AF,△△DFB=90°,△AC△DF,由已知l1△l2,△CD△AF,△四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,△y=.OA==5,△OA=OB,△OB=5,△点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:△y=2x﹣5.(2)△点M在一次函数y=2x﹣5上,△设点M的坐标为(x,2x﹣5),△MB=MC,△解得:x=2.5,△点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE△AD,CF△x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S 的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE△AD,CF△x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,△S关于x的函数表达式为S=﹣x2+8x(2<x<6),△S=﹣x2+8x=﹣(x﹣4)2+16,△当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且△MON为钝角,现以线段OA,OB为斜边向△MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE△△EDQ;(2)延长PC,QD交于点R.①如图1,若△MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB△△PEQ,求△MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,△OC,CE=OD,CE△OD,推出四边形ODEC是平行四边形,于是得到△OCE=△ODE,根据等腰直角三角形的定义得到△PCO=△QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到△ARC=△ORC,△ORQ=△BRO,根据四边形的内角和得到△CRD=30°,即可得到结论;②由(1)得,EQ=EP,△DEQ=△CPE,推出△PEQ=△ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=△PEQ=90°,根据四边形的内角和得到△MON=135°,求得△APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:△点C、D、E分别是OA,OB,AB的中点,△DE=OC,△OC,CE=OD,CE△OD,△四边形ODEC是平行四边形,△△OCE=△ODE,△△OAP,△OBQ是等腰直角三角形,△△PCO=△QDO=90°,△△PCE=△PCO+△OCE=△QDO=△ODQ=△EDQ,△PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,△△PCE△△EDQ;(2)①如图2,连接RO,△PR与QR分别是OA,OB的垂直平分线,△AP=OR=RB,△△ARC=△ORC,△ORQ=△BRO,△△RCO=△RDO=90°,△COD=150°,△△CRD=30°,△△ARB=60°,△△ARB是等边三角形;②由(1)得,EQ=EP,△DEQ=△CPE,△△PEQ=△CED﹣△CEP﹣△DEQ=△ACE﹣△CEP﹣△CPE=△ACE﹣△RCE=△ACR=90°,△△PEQ是等腰直角三角形,△△ARB△△PEQ,△△ARB=△PEQ=90°,△△OCR=△ODR=90°,△CRD=△ARB=45°,△△MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且△APB=90°,△AB=2PE=2×PQ=PQ,△=.。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年安徽省中考数学试卷-答案

安徽省2016年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是:2,故选B.【提示】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【考点】绝对值2.【答案】C【解析】10280a a a a ÷≠=(),故选C.【提示】直接利用同底数幂的除法运算法则化简求出答案.【考点】同底数幂的除法,负整数指数幂3.【答案】A【解析】783628362 00008.36210==⨯万,故选A.【提示】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数4.【答案】C【解析】圆柱的主(正)视图为矩形,故选C.【提示】根据三视图的定义求解.【考点】简单几何体的三视图5.【答案】D【解析】去分母得:2133x x +=-,解得:4x =,经检验4x =是分式方程的解,故选D.【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】分式方程的解6.【答案】C【解析】∵2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为(18.9%)a +亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b 亿元,∴2015年我省财政收为(18.9%)(19.5%)b a =++;故选C.【提示】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b 亿元,即可得出a 、b 之间的关系式.【考点】列代数式7.【答案】D 【解析】根据题意,参与调查的户数为:648010%35%30%5%=+++(户),其中B 组用户数占被调查户数的百分比为:110%35%30%5%20%----=,则所有参与调查的用户中月用水量在6吨以下的共有:8010%20%24⨯+=()(户),故选D. 【提示】根据除B 组以外参与调查的用户共64户及A 、C 、D 、E 四组的百分率可得参与调查的总户数及B 组的百分率,将总户数乘以月用水量在6吨以下(A 、B 两组)的百分率可得答案.【考点】扇形统计图8.【答案】B【解析】∵8BC =,∴4CD =,在△CBA 和△CAD 中,∵B DAC C C ∠=∠∠=∠,,∴CBA CAD △∽△, ∴AC CD BC AC=, ∴2•4832AC CD BC ==⨯=,∴AC = B.【提示】根据AD 是中线,得出4CD =,再根据AAS 证出CBA CAD ∆∆∽,得出AC CD BC AC =,求出AC 即可.【考点】相似三角形的判定与性质9.【答案】A【解析】解:由题意,甲走了1小时到了B 地,在B 地休息了半个小时,2小时正好走到C 地,乙走了53小时到了C 地,在C 地休息了13小时.由此可知正确的图象是A ,故选A.【提示】分别求出甲乙两人到达C 地的时间,再结合已知条件即可解决问题.【考点】函数的图象10.【答案】B【解答】∵90ABC ∠=︒,∴90ABP PBC ∠+∠=︒,∵PAB PBC ∠=∠,∴90BAP ABP ∠+∠=︒,∴90APB ∠=︒,∴点P 在以AB 为直径的⊙O 上,连接OC 交⊙O 于点P ,此时PC 最小,在R t △BCO 中,∵9043OBC BC OB ∠=︒==,,,∴5OC ,∴532PC OC OP ====﹣. ∴PC 最小值为2,故选B .【提示】首先证明点P 在以AB 为直径的⊙O 上,连接OC 与⊙O 交于点P ,此时PC 最小,利用勾股定理求出OC 即可解决问题.【考点】点与圆的位置关系,圆周角定理二、填空题11.【答案】3x ≥【解析】不等式21x≥﹣ 解得:3x ≥故答案为:3x ≥【提示】不等式移项合并,即可确定出解集.【考点】解一元一次不等式12.【答案】(1)(1)a a a +-【解析】原式2(1)(1)(1)a a a a a ==+--,故答案为:(1)(1)a a a +-【提示】原式提取a ,再利用平方差公式分解即可.【考点】提公因式法与公式法的综合运用13.【答案】43π 【解析】∵AB 是⊙O 切线,∴AB OB ⊥,∴90ABO ∠=︒,∵30A ∠=︒,∴9060AOB A ∠=︒∠=︒﹣, ∴120BOC ∠=︒,∴BC 的长为120241803ππ=,故答案为43π.【提示】根据已知条件求出圆心角∠BOC 的大小,然后利用弧长公式即可解决问题.【考点】切线的性质,弧长的计算14.【答案】①③④【解析】∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴12∠=∠,10CE FE BF BC ===,,在R t △A BF 中,∵610AB BF ==,,∴8AF ,∴1082DF AD AF =-=-=,设EF x =,则6CE x DE CD CE x ==-=-,,在Rt △DEF 中,∵222DE DF EF +=,∴22262x x -+=(),解得103x =, ∴83ED =, ∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴346BH BA AG HG ∠=∠===,,,∴2345ABC ∠+∠=∠=︒,所以①正确;1064HF BF BH =-=-=,设AG y =,则8GH y GF y ==-,,在Rt △HGF 中,∵222GH HF GF +=,∴22248y y +=-(),解得3y =,∴35AG GH GF ===,, ∵6133842AB AG A D DE DF ∠=∠=÷==,,, ∴AB AG DE DF≠, ∴△ABG 与△DE F 不相似,所以②错误; ∵16392ABG S ∆==,1134622FGH GH S HF ==⨯⨯= ∴32ABG FGH S S ∆∆=,所以③正确; ∵325AG DF +=+=,而5GF =,∴AG DF GF +=,所以④正确.故答案为①③④.【考点】相似形综合题三、解答题15.【答案】020********tan ︒=-+=(-)【提示】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【考点】实数的运算,零指数幂,特殊角的三角函数值16.【答案】配方22141x x +=+﹣∴215x =(﹣)∴1x =∴1211x x ==【提示】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【考点】解一元二次方程-配方法,零指数幂17.【答案】(1)点D 以及四边形ABCD 另两条边如图所示.(2)得到的四边形A′B′C′D ′如图所示.【提示】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【考点】作图平移变换18.【答案】(1)21357164+++==,设第n 幅图中球的个数为a n ,观察,发现规律:222123132135313574a a a =+==++==+++=,,,…,∴2113521n a n n =+++⋯+=﹣(﹣). 故答案为:24;2n .(2)观察图形发现:图中黑球可分三部分,1到n 行,第n +1行,n +2行到2n +1行,即:11222135(21)[2(1)1](21)531135(21)(21)(21)531(21)21221n n n n n n n n a n a n n n n n +++⋯+++++⋯+++=+++⋯+++++⋯+++=+++=+++=++﹣﹣﹣﹣﹣﹣﹣故答案为:21n +;2221n n ++.【提示】(1)根据135716+++=可得出2164=;设第n 幅图中球的个数为n a ,列出部分n a 的值,根据数据的变化找出变化规律2113521n a n n =+++⋯+=﹣(﹣),依此规律即可解决问题; (2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第1n +行,2n +行到21n +行,再结合(1)的规律即可得出结论.【考点】规律型:图形的变化类19.【答案】过点D 作1l 的垂线,垂足为F ,∵6030DEB DAB ∠=︒∠=︒,,∴30ADE DEBDAB ∠=∠∠=︒﹣, ∴△ADE 为等腰三角形,∴20DE AE ==.在Rt △DEF 中,1•6020102EF DE cos =︒=⨯= ∵DF AF ⊥,∴90DFB ∠=︒,∴AC ∥DF.由已知1l ∥2l ,∴CD ∥AF .∴四边形ACDF 为矩形,30CD AF AE EF ==+=.答:C 、D 两点间的距离为30m.【提示】直接利用等腰三角形的判定与性质得出20DE AE ==,进而求出EF 的长,再得出四边形ACDF 为矩形,则CD AF AE EF ==+求出答案.【考点】两点间的距离20.【答案】(1)把点A (4,3)代入函数a y x =得:3412a =⨯=, ∴12y x=.5OA ==,∵OA OB =,∴5OB =.∴点B 的坐标为(0,5)-.把B (05)-,,A (4,3)代入y kx b =+得:543b k b =-⎧⎨+=⎩解得:25k b =⎧⎨=-⎩ ∴25y x =-.(2)∵点M 在一次函数25y x =-上,∴设点M 的坐标为(,25)x x -,∵MB MC ==解得:52x =,∴点M 的坐标为5(,0)2.【提示】(1)利用待定系数法即可解答;(2)设点M 的坐标为(,25)x x -,根据MB MC =答.【考点】反比例函数与一次函数的交点问题21.【答案】(1)画树状图:共有16种等可能的结果数,它们是:11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率63168P == 【提示】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【考点】列表法与树状图法;算术平方根.22.【答案】(1)将A (2,4)与B (6,0)代入2y ax bx =+, 得4243660a b a b +=⎧⎨+=⎩,解得:123a b ⎧=-⎪⎨⎪=⎩; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,11•24422OAD S OD AD ∆==⨯⨯=; 11•422422ACD S AD CE x x ∆==⨯⨯-=-(); 2211•43622BCD S BD CF x x x x ∆==⨯⨯+=-+(-), 则2242468OAD ACD BCD S S S S xx x x x ∆∆∆=++=+-+=-+﹣. ∴S 关于x 的函数表达式为2826S x x x =-+(<<),∵228(x 4)16S x x =-+=--+.∴当4x =时,四边形OACB 的面积S 有最大值,最大值为16.【提示】(1)把A 与B 坐标代入二次函数解析式求出a 与b 的值即可;(2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,分别表示出三角形OAD ,三角形ACD ,以及三角形BCD 的面积,之和即为S ,确定出S 关于x 的函数解析式,并求出x 的范围,利用二次函数性质即可确定出S 的最大值,以及此时x 的值.【考点】待定系数法求二次函数解析式,二次函数的最值23.【答案】(1)证明:∵点C 、D 、E 分别是OA ,OB ,AB 的中点,∴DE OC CE OD ==,,CE ∥OD∴四边形ODEC 是平行四边形,∴OCE ODE ∠=∠.∵△OAP ,△OBQ 是等腰直角三角形,∴90PCO QDO ∠=∠=︒.∴PCE PCO OCE QDO ODQ EDQ ∠=∠+∠=∠=∠=∠. ∵1122PC AO OC ED CE OD OB DQ ======, 在△PCE 与△EDQ 中,PC DE PCE EDQ CE DQ =⎧⎪∠=∠⎨⎪=⎩∴PCE EDQ ∆∆≌.(2)①如图2,连接RO ,∵PR 与QR 分别是OA ,OB 的垂直平分线,∴AP OR RB ==,∴ARC ORC ORQ BRO ∠=∠∠=∠,.∵90150RCO RDO COD ∠=∠=︒∠=︒,,∴30CRD ∠=︒,∴60ARB ∠=︒.∴△ARB 是等边三角形.②由(1)得,EQ EP DEQ CPE =∠=∠,,∴90PEQ CED CEP DEQ ACE CEP CPE ACE RCE ACR ∠=∠-∠-∠=∠-∠-∠=∠-∠=∠=︒, ∴△PEQ 是等腰直角三角形.∵ARB PEQ ∆∆∽,∴90ARB PEQ ∠=∠=︒,∴9045OCR ODR CRD ARB ∠=∠=︒∠=∠=︒,.∴135MON ∠=︒.此时P ,O ,B 在一条直线上,△P AB 为直角三角形,且90APB ∠=︒.∴22AB PE ===,∴AB PQ=【考点】相似形综合题。
2016年安徽省中考数学试卷(含答案)

2016年安徽省中考数学试卷一、选择题(本大题共 小题,每小题 分,满分 分).( 分)( 安徽)﹣ 的绝对值是().﹣ . . . .( 分)( 安徽)计算( )的结果是() . . ﹣ . . ﹣ .( 分)( 安徽) 年 月份我省农产品实现出口额万美元,其中 万用科学记数法表示为().....( 分)( 安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是() . . ...( 分)( 安徽)方程的解是().﹣ . .﹣ . .( 分)( 安徽) 年我省财政收入比 年增长, 年比 年增长,若 年和 年我省财政收入分别为 亿元和 亿元,则 、 之间满足的关系式为(). ( ) . ( ) . ( )( ) .( ) ( ).( 分)( 安徽)自来水公司调查了若干用户的月用水量 (单位:吨),按月用水量将用户分成 、 、 、、 五组进行统计,并制作了如图所示的扇形统计图.已知除 组以外,参与调查的用户共 户,则所有参与调查的用户中月用水量在 吨以下的共有()组别月用水量 (单位:吨) <<<<. 户 . 户 . 户. 户.( 分)( 安徽)如图, 中, 是中线, ,,则线段 的长为() . . . . .( 分)( 安徽)一段笔直的公路 长 千米,途中有一处休息点 , 长 千米,甲、乙两名长跑爱好者同时从点 出发,甲以 千米 时的速度匀速跑至点 ,原地休息半小时后,再以 千米 时的速度匀速跑至终点 ;乙以 千米 时的速度匀速跑至终点 ,下列选项中,能正确反映甲、乙两人出发后 小时内运动路程 (千米)与时间 (小时)函数关系的图象是().....( 分)( 安徽)如图, 中, , , , 是 内部的一个动点,且满足 ,则线段 长的最小值为(). . ..二、填空题(本大题共 小题,每小题 分,满分 分).( 分)( 安徽)不等式 ﹣ 的解集是..( 分)( 安徽)因式分解: ﹣ ..( 分)( 安徽)如图,已知 的半径为 , 为 外一点,过点 作 的一条切线 ,切点是 ,的延长线交 于点 ,若,则劣弧的长为..( 分)( 安徽)如图,在矩形纸片 中, ,,点 在 上,将 沿 折叠,点 恰落在边 上的点 处;点 在 上,将 沿 折叠,点 恰落在线段 上的点 处,有下列结论:;;;.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共 小题,每小题 分,满分分).( 分)( 安徽)计算:(﹣ ) . .( 分)( 安徽)解方程: ﹣ .四、(本大题共 小题,每小题 分,满分 分).( 分)( 安徽)如图,在边长为 个单位长度的小正方形组成的网格中,给出了四边形 的两条边 与 ,且四边形 是一个轴对称图形,其对称轴为直线 .( )试在图中标出点 ,并画出该四边形的另两条边;( )将四边形 向下平移 个单位,画出平移后得到的四边形..( 分)( 安徽)( )观察下列图形与等式的关系,并填空:( )观察下图,根据( )中结论,计算图中黑球的个数,用含有 的代数式填空:( ﹣ )() ( ﹣ ).五、(本大题共 小题,每小题 分,满分 分).( 分)( 安徽)如图,河的两岸 与 相互平行, 、 是 上的两点, 、 是 上的两点,某人在点 处测得 ,,再沿 方向前进 米到达点 (点 在线段 上),测得,求 、 两点间的距离..( 分)( 安徽)如图,一次函数 的图象分别与反比例函数 的图象在第一象限交于点( , ),与 轴的负半轴交于点 ,且 .( )求函数 和 的表达式;( )已知点 ( , ),试在该一次函数图象上确定一点 ,使得,求此时点 的坐标.六、(本大题满分 分).( 分)( 安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是 , , , .现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.( )写出按上述规定得到所有可能的两位数;( )从这些两位数中任取一个,求其算术平方根大于 且小于 的概率.七、(本大题满分 分).( 分)( 安徽)如图,二次函数 的图象经过点 ( , )与 ( , ).( )求 , 的值;( )点 是该二次函数图象上 , 两点之间的一动点,横坐标为 ( < < ),写出四边形 的面积 关于点 的横坐标 的函数表达式,并求 的最大值.八、(本大题满分 分).( 分)( 安徽)如图 , , 分别在射线 , 上,且 为钝角,现以线段 , 为斜边向 的外侧作等腰直角三角形,分别是 , ,点 , , 分别是 , , 的中点.( )求证: ;( )延长 , 交于点 .如图 ,若 ,求证: 为等边三角形;如图 ,若 ,求 大小和的值.年安徽省中考数学试卷参考答案一、选择题..........二、填空题.. ( )( ﹣ ). . .解: 沿 折叠,点 恰落在边 上的点 处,, ,,在 中, ,,,﹣ ﹣ ,设 ,则 , ﹣﹣ ,在 中,,( ﹣ ) ,解得 , ,沿 折叠,点 恰落在线段 上的点 处,, , , ,所以 正确;﹣ ﹣ ,设 ,则 , ﹣ ,在 中,,( ﹣ ) ,解得 , , ,, , ,,与 不相似,所以 错误;,,,所以 正确;,而 , ,所以 正确.故答案为 .三、.(﹣ ) ﹣..解:配方 ﹣( ﹣ ), ﹣.四、.解:( )点 以及四边形另两条边如图所示.( )得到的四边形 如图所示..; .五、.解:过点 作 的垂线,垂足为 ,, , ﹣ , 为等腰三角形,,在 中,,,,,由已知 ,,四边形 为矩形,,答: 、 两点间的距离为 . .解:( )把点 ( , )代入函数 得: ,.,,,点 的坐标为( ,﹣ ),把 ( ,﹣ ), ( , )代入得:解得:﹣ .( ) 点 在一次函数 ﹣ 上, 设点 的坐标为( , ﹣ ),,解得: ,点 的坐标为( , ).六、.解:( )画树状图:共有 种等可能的结果数,它们是: , , , , , , , , , , , , , , , ;( )算术平方根大于 且小于 的结果数为 ,所以算术平方根大于 且小于 的概率.七、.解:( )将 ( , )与 ( , )代入 ,得,解得:;( )如图,过 作 轴的垂直,垂足为 ( , ),连接 ,过 作, 轴,垂足分别为 , ,;( ﹣ ) ﹣ ;(﹣ ) ﹣ ,则﹣ ﹣ ﹣ , 关于 的函数表达式为 ﹣( < < ),﹣ ﹣( ﹣ ),当 时,四边形 的面积 有最大值,最大值为 .八、.( )证明: 点 、 、 分别是 , , 的中点,, , ,,四边形 是平行四边形,,, 是等腰直角三角形, ,,,,在 与 中,,;( ) 如图 ,连接 ,与 分别是 , 的垂直平分线,,, , ,,,,是等边三角形;由( )得, ,,﹣ ﹣﹣ ﹣﹣,是等腰直角三角形,,,,,,此时 , , 在一条直线上, 为直角三角形,且 ,, .。
《2016年安徽省中考数学试卷》

2016年安徽省初中毕业学业考试数学注意事项:1.你拿到的试卷满分为150分,考试试卷为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1. -2的绝对值是()A.-2B. 2C.±2D.12答案:选B2. 计算a10¸a2(a¹0)的结果是()A.a5B.a-5C.a8D.a-8答案:选C3. 2016年3月份我省农产品实现出口额8362万美元.其中8362万用科学记数法表示为()A.8.362´107B. 83.62´106C.0.8362´108D.8.362´108答案:选A4. 如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.答案:选C5. 方程2x+1x-1=3的解是()A. -45B.45C. -4D.4答案:选D6. 2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式是( )A . b =a (1+8.9%+9.5%)B . b =a (1+8.9%´9.5%)C . b =a (1+8.9%)(1+9.5%)D .b =a (1+8.9%)2(1+9.5%)答案:选C7. 自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )A . 18户B .20户C .22户D .24户答案:选D 8. 如图,ABC ∆中,AD 是中线,BC =8,B ∠=DAC ∠,则线段AC 的长为( )A . 4B .C .6D .答案:∵ÐB =ÐCAD ,CAD ∴∆∽CBA ∆,CA CD CB CA ∴=,2CA CB CD ∴=⋅,即284=32CA =⨯,CA ∴=B .9. 一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图象是( )A .B .C .D .答案:∵甲在B 原地休息半小时,∴可排除B D 、,又∵当甲行至B 时用时15=115h ∴当时间为131+=22h 时,31218152y =⨯=>乙,∴此时乙在甲前方,故选A .10. 如图,Rt ABC ∆中,AB BC ⊥,AB =6,BC =4,P 是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠.则线段CP 长的最小值为( )A . 32B .2C .13D .13答案:∵PAB PBC ∠=∠∴90APB ∠=︒∴点P 始终在以AB 中点O 为圆心,以3OA OB ==为半径的圆上∴当P 在CO 与∵O 的交点时CP 最小∴=CP CO OP -32=,故选B .二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x -2³1的解集是.答案:3x ≥12. 因式分解:3a a -=.答案:(1)(1)a a a -+13. 如图,已知∵O 的半径为2,A 为∵O 外一点,过点A 作∵O 的一条切线AB ,切点是B ,AO 的延长线交∵O 于点C ,若30BAC ∠=︒,则劣弧BC 的长为.答案:连接OB ,则OB AB ⊥,∴60BOA ∠=︒∴120BOC ∠=︒∴120241803l ππ⨯⨯==. 14.如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将D BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将D ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①45EBG ∠=︒; ②DEF ∆∽ABG ∆; ③32ABG FGH S S ∆∆=; ④AG DF FG += 其中正确的是.(把所有正确结论的序号都选上) 答案:11145222EBG EBF GBH FBC FBA ABC ∠=∠+∠=∠+∠=∠=︒,故①正确;∵翻折∴10BF BC ==,6BA BH ==,∴4HF BF BH =-=,AF =8AF =,设GH x =,则8GF x =-,在R t G H F ∆中,2224(8)x x +=-∴3x =∴5GF =∴3AG =,同理在R t F D E ∆中,222F D E F E D =-得810,33ED EF ==∴423ED AB FD AG=≠=∴DEF ∆与ABG ∆不相似,故②错误;16392ABG S ∆=⨯⨯=,13462FGH S ∆=⨯⨯=,∴9362ABG FGH S S ∆∆==,故③正确;∵3,2,5AG FD GF ===∴ GF AG FD =+,故④正确,所以填①③④.三、(本大题共两小题,每题8分,满分16分)15.计算:答案:解:原式=1+(-2)+1=016.解方程:224x x -=答案:解:四、(本大题共两小题,每题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12⨯12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后的到的四边形''''A B C D答案:(1)点D 和另外两边如图所示;(2)四边形''''A B C D 如图所示 -2016()0+tan45°x 2-2x +1=5x -1()2=5x-1=x 1=1,x 2=118.(1)观察下列图象与等式的关系,并填空:1+3=221+3+5=321+3+5+7=__________;1+3+5+7+…+(2n-1)=__________。
2016年安徽蚌埠中考数学试题免费版含答案

2016年安徽省蚌埠市中考数学试题(免费版 含答案)为了方便您的阅读请点击全屏查看一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.-2的绝对值是A .-2B .2C .2±D .212.计算)0(210≠÷a a a 的结果是 A .5a B .5-a C .8a D .8-a3. 2016年3月份我省农产品实现出口额8362万美元. 其中8362万用科学记数法表示为A .710362.8⨯B .61062.83⨯C .8108362.0⨯D .810362.8⨯4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是5.方程 3112=-+x x 的解是A .54-B .54C .4-D .46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%.若2013年和2015我省财政收入分别为a 亿元和b 亿元和b 亿元,则a 、b 之间满足的关系式是 A.b=a (1+8.9%+9.5%)B.b=a (1+8.9%⨯9.5%)C.b=a (1+8.9%)(1+9.5%)D.b=a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A. 18户B. 20户C. 22户D. 24户数学试题卷第1页(共4页)8.如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为A .4B .24C .6D .349.一段笔直的公路AC 长为20千米,途中有一处休息点AB B ,长为15千米.甲、乙两名长跑爱好 者同时从点A 出发.甲以15千米/时的速度匀速跑至点,B 原地休息半小时后,再以10千米/时 的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、 乙两人出发后2小时内运动路程 y (千米)与时间 x (小时)函数关系的图像是10.如图,ABC Rt ∆中,P BC AB BC AB .4,6,==⊥是ABC ∆内部的一个动点,且满足.PBC PAB ∠=∠则线段CP 长的最小值为A .23B .2C .13138D .131312二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式12≥-x 的解集是 .12.因式分解:=-a a 3 .13.如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B . AO 的延长线交⊙O 于点C .若︒=∠30BAC ,则劣弧的长为 .14.如图,在矩形纸片ABCD 中,10,6==BC AB .点E 在CD 上,将BCE ∆沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF上的点H 处.有下列结论:其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)[来源:]15.计算:︒+-+-45tan 8)2016(30. 16.解方程:422=-x x .数学试题卷第2页(共4页)四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的1212⨯网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点四边形D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:()12(531+-+⋅⋅⋅+++n =+++⋅⋅⋅+-+135)12()n五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某人在点A 处测得︒=∠︒=∠30,90DAB CAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得︒=∠60DEB ,求C 、D 两点间的距离.数学试题卷第3页(共4页)19.如图,一次函数b kx y +=的图像分别与反比例函数x a y =的图像在第一象限交于点)3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和x a y =的表达式;(2)已知点)5,0(C ,试在该一次函数图像上确定一点M ,使得MC MB =.求此时点M 的坐标.[来源:Z§xx§]六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均 匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数bx ax y +=2的图象经过点)4,2(A 与)0,6(B .(1)求b a ,的值;(2)点C 是该二次函数图象上B A ,两点之间的一动点,横坐标为)62(<<x x .写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.八、(本题满分14分)22.如图1,B A ,分别在射线ON OM ,上,且MON ∠为钝角.现以线段OB OA ,为斜边向MON ∠的外侧作等腰直角三角形,分别是OBQ OAP ∆∆,,点E D C ,,分别是AB OB OA ,,的中点.(1)求证:EDQ PCE ∆≅∆;(2)延长DQ PC ,交于点R .① 如图2,若︒=∠150MON ,求证:ABR ∆为等边三角形;② 如图3,若ARB ∆∽PEQ ∆,求MON ∠大小和PQ AB的值.数学试题卷第4页(共4页)2016年安徽省蚌埠市中考数学中考试题答案解析。
2010-2019年安徽省中考数学试卷及答案(共10套)

2010-2019年安徽省中考数学试卷及答案(共10套)目录1、2010年安徽省中考数学试卷及答案2、2011年安徽省中考数学试卷及答案3、2012年安徽省中考数学试卷及答案4、2013年安徽省中考数学试卷及答案5、2014年安徽省中考数学试卷及答案6、2015年安徽省中考数学试卷及答案7、2016年安徽省中考数学试卷及答案8、2017年安徽省中考数学试卷及答案9、2018年安徽省中考数学试卷及答案10、2019年安徽省中考数学试卷及答案2010年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是A.-1B.0C.1D.22.计算(2x)3÷x的结果正确的是A.8x2B.6x2C.8x3D.6x33.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为A.50°B.55°C.60°D.65°4. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是A.2.89×107B.2.89×106C.28.9×105D.2.89×1045.如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是6.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为A.0,5B.0,1C.-4,5D.-4,18.如图,☉O 过点B 、C,圆心O 在等腰直角三角形ABC 的内部,∠BAC=90°,OA=1,BC=6,则☉O 的半径为A.√10B.2√3C.√13D.3√29.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.当第一位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是A.495B.497C.501D.50310.甲、乙两人准备在一段长为1 200 m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4 m/s 和6 m/s,起跑前乙在起点,甲在乙前面100 m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图象是A B C D二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:√3×√6-√2= .12.不等式组{-x +4<2,3x -4≤8的解集是 . 13.如图,△ABC 内接于☉O,AC 是☉O 的直径,∠ACB=50°,点D 是BAC⏜上一点,则∠D= .14.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 .(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=AC+CD;④AB-BD=AC-CD.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(1-1a -1)÷a 2-4a+4a -a ,其中a=-1.16.若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是60°,船的速度为5米/秒,求船从A 处到B 处约需几分钟?(参考数据:√3≈1.7)17.点P(1,a)在反比例函数y=k的图象上,它关于y轴的对称点在一次函数y=2x+4x的图象上,求此反比例函数的解析式.18.在小正方形组成的15×15的网格图中,四边形ABCD和四边形A'B'C'D'的位置如图所示.(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1;(2)若四边形ABCD平移后,与四边形A'B'C'D'成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2.19.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m2下降到5月份的12 600元/m2.(1)问4、5两月平均每月降价的百分率是多少?(参考数据:√0.9≈0.95)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m2?请说明理由.20.如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC.(1)求证:四边形BCEF是菱形;(2)若AB=BC=CD,求证:△ACF≌△BDE.21.上海世博会门票的价格如下表所示:门票价格一览表指定日普通票200元平日优惠票100元…………某旅行社准备了1 300元,全部用来购买指定日普通票和平日优惠票,且每种票至少买一张.(1)有多少种购票方案?列举所有可能的结果;(2)如果从上述方案中任意选一种方案购票,求恰好选到11张门票的概率.22.春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九年级(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20,且x为整数)的捕捞与销售的相关信息如下:鲜鱼销售价格(元/kg)20单位捕捞成本(元/kg) 5-x 5捕捞量(kg) 950-10x(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式;(当天收入=日销售额-日捕捞成本) (3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?23.如图,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A1B1C1的三边长分别为a1、b1、c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.2010年安徽省初中毕业学业考试答案1.B 0既不是正数也不是负数,故选B.2.A 本题应先根据积的乘方的法则计算出(2x)3的值,再根据单项式除以单项式法则得出结果为:(2x)3÷x=8x3÷x=8x3-1=8x2.3.C4.B 289万=2 890 000=2.89×106,故选B.5.D 正方体的三个视图都是正方形;球体的三个视图都是圆;选项C直三棱柱的主视图是长方形,左视图是三角形,俯视图虽也是长方形,但由于视角不同,两长方形的形状也不同;选项D圆柱的主视图是长方形,左视图为圆,俯视图为形状大小与主视图相同的长方形,所以只有圆柱符合本题条件,故选D.6.C 由折线统计图可知:1月份到2月份利润增长10万元,2月份到3月份利润增长20万元,故A错;1到4月份利润最高的是3月份为130万元,最低的是1月份为100万元,极差为30万元,1到5月份的最高利润也是130万元,最低利润仍是100万元,极差为30万元,极差相同,故B错;本题的中位数是指把5个月的利润按大小顺序排列,最中间的那个数应为115万元,所以D也错;众数是指在所有数据中出现次数最多的数,130万出现两次,最多,故C正确.7.D y=(x-2)2 +k=x2-4x+4+k,与y=x2+bx+5比较可得:一次项系数b=-4,常数项4+k=5,解得k=1.故选D.8.C 如图,过点A作AM⊥BC于M,连接OB.在Rt△ABC中,∵AB=AC,AM⊥BC于BC=3,∠ABM=45°,∴在Rt△ABM中,BM=AM=3.∵AM垂直平分弦M,BC=6,∴BM=CM=12BC,∴AM经过圆心O.∵AO=1,AM=3,∴OM=2.在Rt△BOM中,OM=2,BM=3,根据勾股定理可知BO=√13.9.A10.C 乙的速度比甲的速度快,甲在乙的前面100 m处,乙追上甲需要50 s,可把A、B排除,乙追上甲时走了300 m,距离终点还有900 m,则乙到终点还需的时间为900÷6=150 s,所以乙跑完全程共需200 s,故选C.11.2√2√3×√6-√2=√18-√2=3√2-√2=2√2.12.2<x≤4 解不等式-x+4<2,得-x<2-4,-x<-2,x>2;解不等式3x-4≤8,得3x≤8+4,3x≤12,x≤4.所以原不等式组的解集为2<x≤4.13.40° ∵△ABC 是☉O 的内接三角形,AC 是☉O 的直径,∴∠ABC=90°.在△ABC 中,∠ACB=50°,∠ABC=90°,∴∠BAC=180°-∠ACB-∠ABC=180°-50°-90°=40°,∴∠D=∠BAC=40°.14.②③④ 由①中∠BAD=∠ACD,∠ADB=∠ADC,不能证明△ABD 和△CAD 全等,从而不能得出△ABC 为等腰三角形,故①错误;②中∠BAD=∠CAD,又∠ADB=∠ADC,AD 为公共边,可推出△ADB ≌△ADC,∴AB=AC,∴△ABC 为等腰三角形;③如图(1),分别在DB 、DC 的延长线上截取BE=AB,CF=AC,连接AE 、AF.∵AB+BD=AC+CD,∴DE=DF.又∵AD ⊥BC,∴△AEF 为等腰三角形,∴∠E=∠F.又∵BE=AB,CF=AC,∴∠EAB=∠E=∠F=∠CAF.∵∠ABC=∠E+∠EAB,∠ACB=∠F+∠CAF,∴∠ABC=∠ACB,∴△ABC 为等腰三角形.④如图(2),在BC 上分别截取BF=AB,CE=AC,连接AE 、AF.∵AB-BD=AC-CD,∴DF=DE.又∵AD ⊥BC,∴△AEF 是等腰三角形,∴∠EAD=∠FAD,∠AEF=∠AFE.又∵BF=AB,CE=AC,∴∠BAF=∠AFD=∠AED=∠CAE,∴∠BAD=∠BAF-∠FAD,∠CAD=∠CAE-∠EAD,∴∠BAD=∠CAD.又∵AD ⊥BC,∴△ABC 是等腰三角形.图(1) 图(2) 15.原式=a -2a -1·a(a -1)(a -2)2(3分) =aa -2.(5分)当a=-1时,原式=aa -2=-1-1-2=13.(8分)16.如图,过点B 作BC 垂直河岸,垂足为C,则在Rt △ACB 中,AB=BCsin ∠BAC =900sin60°=600√3(米).(5分)因而时间t=600√35=120√3(秒), 120√3秒≈3.4分钟,即船从A 处到B 处约需3.4分钟.(8分) 17.点P(1,a)关于y 轴的对称点是(-1,a).(2分) ∵点(-1,a)在一次函数y=2x+4的图象上, ∴a=2×(-1)+4=2.(4分)∴点P为(1,2).∵点P(1,2)在反比例函数y=kx的图象上, ∴k=2.∴反比例函数的解析式为y=2x.(8分)18.(1)旋转后得到的图形A1B1C1D1如图所示.(4分)(2)将四边形ABCD先向右平移4个单位,再向下平移6个单位,四边形A2B2C2D2如图所示.(8分)(注:本题是开放型题,答案不唯一,只要正确即可给分,如将四边形ABCD先向右平移8个单位,再向下平移2个单位得到四边形A2B2C2D2)19.(1)设4、5两月平均每月降价的百分率为x,根据题意,得14 000·(1-x)2=12 600.(3分)化简,得(1-x)2=0.9.解得x1≈0.05,x2≈1.95(不合题意,舍去).因此,4、5两月平均每月降价的百分率约为5%.(6分)(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12600(1-x)2=12 600×0.9=11 340>10 000.由此可知,7月份该市的商品房成交均价不会跌破10 000元/m2.(10分)(注:第(2)小题也可通过估算加以判断,只要正确即可给分)20.(1)证明:∵AD∥FE,∴∠FEB=∠2.∵∠1=∠2,∴∠FEB=∠1.∴BF=EF.(2分)∵BF=BC,∴BC=EF.∴四边形BCEF是平行四边形.∵BF=BC,∴平行四边形BCEF是菱形.(5分)(2)证明:∵EF=BC,AB=BC=CD,AD∥FE,∴四边形ABEF、四边形CDEF均为平行四边形,∴AF=BE,FC=ED.(8分)又∵AC=2BC=BD,∴△ACF≌△BDE.(10分) 21.(1)有6种购票方案:购票方案指定日普通票张数平日优惠票张数1 1 112 2 93 3 74 4 55 5 36 6 1(6分) (2)由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是16.(12分)22.(1)该养殖场每天的捕捞量与前一天相比减少了10 kg.(2分)(2)由题意,得y=20(950-10x)-(5-x5)(950-10x)=-2x2+40x+14 250.(7分)(3)y=-2x2+40x+14 250=-2(x-10)2+14 450,∵-2<0,1≤x≤20且x为整数,(9分)∴当1≤x≤10时,y随x的增大而增大;当10<x≤20时,y随x的增大而减小;∴当x=10时,即在第10天y取得最大值,最大值为14 450元.(12分)23.(1)证明:∵△ABC∽△A1B1C1,且相似比为k(k>1),∴aa1=k,∴a=ka1.又∵c=a1,∴a=kc.(3分)(2)取a=8,b=6,c=4,同时取a1=4,b1=3,c1=2.(7分)此时aa1=bb1=cc1=2,∴△ABC∽△A1B1C1,且c=a1.(10分)(注:本题是开放型题,只要给出的△ABC和△A1B1C1符合要求即可给分)(3)不存在这样的△ABC和△A1B1C1,理由如下:若k=2,则a=2a1,b=2b1,c=2c1.又∵b=a1,c=b1,∴a=2a1=2b=4b1=4c,即a=4c,b=2c.(12分)∴b+c=2c+c<4c=a,而b+c>a,故不存在这样的△ABC和△A1B1C1,使得k=2.(14分)2011年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.-2,0,2,-3这四个数中最大的是A.2B.0C.-2D.-32.安徽省2010年末森林面积为3 804.2千公顷,用科学记数法表示3 804.2千正确的是A.3 804.2×103B.380.42×104C.3.804 2×106D.3.804 2×1073.右图是由五个相同的小正方体搭成的几何体,其左视图是A B C D4.设a=√19-1,a在两个相邻整数之间,则这两个整数是A.1和2B.2和3C.3和4D.4和55.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M:“这个四边形是等腰梯形”,下列推断正确的是A.事件M是不可能事件B.事件M是必然事件C.事件M发生的概率为15D.事件M发生的概率为256.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是A.7B.10C.9D.117.如图,☉O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧BC 的长是A.π5 B .25π C.35π D.45π8.一元二次方程x(x-2)=2-x 的根是 A.-1B.2C.1和2D.-1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上,若P 到BD 的距离为32,则点P 的个数为A.1个B.2个C.3个D.4个10.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x,△AMN 的面积为y,则y 关于x 的函数图象的大致形状是A BC D二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:a 2b+2ab+b= .12.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E=10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .13.如图,☉O 的两条弦AB 、CD 互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则☉O 的半径是 .14.定义运算:a ⊗b=a(1-b),下面给出了关于这种运算的几个结论: ①2⊗(-2)=6;②a ⊗b=b ⊗a;③若a+b=0,则(a ⊗a)+(b ⊗b)=2ab; ④若a ⊗b=0,则a=0.其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 三、(本大题共2小题,每小题8分,满分16分) 15.先化简,再求值:1x -1-2x 2-1,其中x=-2.16.江南生态食品加工厂收购了一批质量为10 000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量的3倍还多2 000千克,求粗加工的该种山货质量.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B 1 C1和△A2B2C2.(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A 2B2C2.18.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A12( , );(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.五、(本大题共2小题,每小题10分,满分20分)19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1 500 m高的C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.(参考数据:√3≈1.73)20.一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如下:(1)请补充完整下面的成绩统计分析表:平均分方差中位数合格率优秀率甲组 6.9 2.4 91.7% 16.7%乙组 1.3 83.3% 8.3%(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出三条支持乙组学生观点的理由.六、(本题满分12分)。
2016年安徽中考数学试题(附含答案解析)

2016 年安徽省中考数学试卷C. b=a( 1+8.9%)( 1+9.5%)D. b=a2( 1+8.9%)( 1+9.5%)一、选择题(本大题共10 小题,每小题 47.( 4 分)(2016?安徽)自来水公司调查了分,满分40 分)若干用户的月用水量 x(单位:吨),按月用1.( 4 分)( 2016?安徽)﹣2 的绝对值是()水量将用户分成A、B、C、D、E 五组进行统A.﹣ 2B. 2C.±2 D.计,并制作了如图所示的扇形统计图.已知除 B 组以外,参与调查的用户共64 户,则102所有参与调查的用户中月用水量在6吨以下2.( 4 分)(2016?安徽)计算 a÷a(a≠0)的结果是()的共有()A. a5B. a﹣5C. a8D. a﹣8组别月用水量 x(单位:吨)3.( 4 分)(2016?安徽) 2016 年 3 月份我省A0≤x< 3农产品实现出口额8362 万美元,其中 8362B3≤x< 6万用科学记数法表示为()C6≤x< 9A.8.362 ×10 7B.83.62 ×10 6D9≤x< 1288E x≥12C.0.8362 ×10D.8.362 ×104.( 4 分)(2016?安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.( 4 分)(2016?安徽)方程=3 的解是()A.﹣B.C.﹣ 4D. 46.( 4 分)(2016?安徽) 2014 年我省财政收入比2013 年增长8.9%,2015 年比2014 年增长 9.5%,若 2013 年和 2015 年我省财政收入分别为 a 亿元和 b 亿元,则 a、 b 之间满足的关系式为()A. b=a( 1+8.9%+9.5%)B. b=a(1+8.9%×9.5%)A.18 户 B.20 户 C.22 户 D. 24 户8.( 4 分)(2016?安徽)如图,△ ABC 中,AD是中线, BC=8,∠ B=∠DAC,则线段 AC的长为()A.4B.4 C .6D. 49.(4 分)(2016?安徽)一段笔直的公路 AC长 20 千米,途中有一处休息点 B,AB长 15 千米,甲、乙两名长跑爱好者同时从点 A 出发,甲以 15 千米 / 时的速度匀速跑至点 B,原地休息半小时后,再以 10 千米 / 时的速度匀速跑至终点C;乙以12 千米/ 时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后 2小时内运动路程 y(千米)与时间 x(小时)函数关系的图象是()A.B.11.(5 分)(2016?安徽)不等式x﹣2≥1的解集是.12.(5 分)(2016?安徽)因式分解:a3﹣a=.13.( 5 分)(2016?安徽)如图,已知⊙O的半径为 2,A 为⊙O外一点,过点 A 作⊙O 的一条切线AB,切点是B,AO的延长线交⊙O于点 C,若∠ BAC=30°,则劣弧的长为.C.D.10.(4 分)(2016?安徽)如图,Rt△ABC中,AB⊥BC, AB=6, BC=4, P 是△ ABC内部的一个动点,且满足∠ PAB=∠PBC,则线段 CP长的最小值为()A.B.2C.D.二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)14.( 5 分)(2016?安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点 E 在 CD上,将△ BCE 沿 BE折叠,点 C 恰落在边 AD上的点 F 处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段 BF 上的点 H 处,有下列结论:①∠ EBG=45°;②△ DEF∽△ ABG;③S△ABG=S△FGH;④ AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共 2 小题,每小题8 分,满分16分)15.(8 分)(2016?安徽)计算:(﹣ 2016 )0++tan45 °.16.(8 分)(2016?安徽)解方程: x2﹣2x=4.四、(本大题共 2 小题,每小题8 分,满分16分)17.( 8 分)(2016?安徽)如图,在边长为1个单位长度的小正方形组成的12×12 网格中,给出了四边形 ABCD的两条边 AB 与 BC,且四边形 ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点 D,并画出该四边形的另两条边;(2)将四边形 ABCD向下平移 5 个单位,画出平移后得到的四边形 A′B′C′D′.18.( 8 分)(2016?安徽)( 1)观察下列图形与等式的关系,并填空:( 2)观察下图,根据( 1)中结论,计算图中黑球的个数,用含有 n 的代数式填空:1+3+5+ +( 2n﹣1)+()+( 2n ﹣ 1)+ +5+3+1=.五、(本大题共 2 小题,每小题10 分,满分20 分)19.( 10 分)(2016?安徽)如图,河的两岸l 1与 l 2相互平行, A、B 是 l 1上的两点, C、D 是 l 2上的两点,某人在点 A 处测得∠CAB=90°,∠ DAB=30°,再沿AB方向前进 20 米到达点 E(点 E 在线段 AB 上),测得∠DEB=60°,求 C、 D 两点间的距离.20.( 10 分)(2016?安徽)如图,一次函数y=kx+b 的图象分别与反比例函数y=的图象在第一象限交于点 A( 4,3),与 y 轴的负半轴交于点 B,且 OA=OB.(1)求函数 y=kx+b 和 y= 的表达式;(2)已知点 C( 0, 5),试在该一次函数图象上确定一点 M,使得 MB=MC,求此时点 M 的坐标.线段 OA,OB为斜边向∠ MON的外侧作等腰直角三角形,分别是△ OAP,△ OBQ,点C, D,E 分别是 OA, OB, AB 的中点.( 1)求证:△ PCE≌△ EDQ;( 2)延长 PC,QD交于点 R.①如图 1,若∠ MON=150°,求证:△ ABR 为等边三角形;②如图 3,若△ ARB∽△ PEQ,求∠ MON大小和的六、(本大题满分12 分)21.( 12 分)(2016?安徽)一袋中装有形状值.大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7 的概率.七、(本大题满分12 分)22.( 12 分)(2016?安徽)如图,二次函数2y=ax +bx 的图象经过点A( 2, 4)与 B( 6,0).(1)求 a, b 的值;(2)点C 是该二次函数图象上A,B 两点之间的一动点,横坐标为x(2<x<6),写出四边形 OACB的面积 S 关于点 C 的横坐标 x的函数表达式,并求S 的最大值.八、(本大题满分14 分)23.( 14 分)(2016?安徽)如图1, A, B 分别在射线OA,ON上,且∠ MON为钝角,现以2016 年安徽省中考数学试卷参考答案一、选择题1. B2. C3. A4. C5. D6. C7. D8. B9. A10. B二、填空题11.x≥312. a ( a+1)( a﹣ 1)13..14.解:∵△ BCE 沿 BE折叠,点 C恰落在边 AD 上的点 F 处,∴∠ 1=∠2, CE=FE,BF=BC=10,在 Rt△ABF 中,∵ AB=6, BF=10,∴AF==8,∴D F=AD﹣ AF=10﹣ 8=2,设 EF=x,则 CE=x, DE=CD﹣ CE=6﹣x,在 Rt △DEF中,∵ DE2+DF2=EF2,∴( 6﹣ x)2+22=x2,解得 x=,∴E D= ,∵△ ABG沿 BG折叠,点 A 恰落在线段 BF 上的点 H处,∴∠ 3=∠4, BH=BA=6, AG=HG,∴∠ 2+∠3=∠ABC=45°,所以①正确;HF=BF﹣ BH=10﹣ 6=4,设 AG=y,则 GH=y, GF=8﹣ y,在 Rt△HGF中,∵ GH2+HF2=GF2,222∴y+4 =( 8﹣ y),解得 y=3,∴AG=GH=3, GF=5,∵∠A=∠D,= =,=,∴≠,∴△ ABG与△ DEF 不相似,所以②错误;∵S=?6?3=9,△ABGS△FGH= ?GH?HF= ×3×4=6,∴S△ABG=S△FGH,所以③正确;∵A G+DF=3+2=5,而 GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、15.(﹣ 2016)0++tan45 °=1﹣ 2+1=0.16.2解:配方x ﹣ 2x+1=4+1∴x=1±∴x1=1+,x2=1﹣.四、17.解:( 1)点 D 以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.2n+1; 2n2+2n+1.五、19.解:过点D作 l 1的垂线,垂足为F,∵∠ DEB=60°,∠ DAB=30°,∴∠ ADE=∠DEB﹣∠ DAB=30°,∴△ ADE为等腰三角形,∴D E=AE=20,在 Rt△DEF中, EF=DE?cos60°=20× =10,∵D F⊥AF,∴∠ DFB=90°,∴AC∥DF,由已知 l 1∥l2,∴CD∥AF,∴四边形 ACDF为矩形, CD=AF=AE+EF=30,答: C、 D两点间的距离为 30m.20.解:( 1)把点 A( 4, 3)代入函数y=得:a=3×4=12,∴y= .OA==5,∴O B=5,∴点 B 的坐标为( 0,﹣ 5),把 B(0,﹣ 5), A( 4, 3)代入 y=kx+b 得:解得:∴y=2x﹣ 5.(2)∵点 M在一次函数 y=2x ﹣ 5 上,∴设点 M的坐标为( x, 2x﹣ 5),∵MB=MC,∴解得: x=2.5 ,∴点 M的坐标为( 2.5 , 0).六、21.解:( 1)画树状图:共有 16 种等可能的结果数,它们是: 11,41,71,81,14,44,74,84,17,47,77,87,18, 48, 78, 88;( 2)算术平方根大于 4 且小于 7 的结果数为 6,所以算术平方根大于 4 且小于 7 的概率== .七、22.解:( 1)将 A( 2,4)与 B(6,0)代入 y=ax 2+bx,得,解得:;(2)如图,过 A 作 x 轴的垂直,垂足为 D(2, 0),连接 CD,过 C作 CE⊥AD,CF⊥x轴,垂足分别为 E, F,S△OAD=OD?AD= ×2×4=4;∵OA=OB,S△ACD= AD?CE= ×4×( x﹣ 2) =2x﹣ 4;S△BCD= BD?CF= ×4×(﹣x2+3x)=﹣ x2+6x,则 S=S△OAD+S△ACD+S△BCD=4+2x﹣ 4﹣x2+6x= ﹣x2+8x,∴S关于 x 的函数表达式为 S=﹣ x2+8x( 2<x < 6),∵S=﹣ x2+8x=﹣( x﹣ 4)2+16,∴当 x=4 时,四边形 OACB的面积 S 有最大值,最大值为 16.∴∠ ARB=60°,∴△ ARB是等边三角形;②由( 1)得, EQ=EP,∠ DEQ=∠CPE,∴∠ PEQ=∠CED﹣∠ CEP﹣∠ DEQ=∠ACE﹣∠CEP﹣∠ CPE=∠ACE﹣∠ RCE=∠ACR=90°,∴△ PEQ是等腰直角三角形,∵△ ARB∽△ PEQ,∴∠ ARB=∠PEQ=90°,∴∠ OCR=∠ODR=90°,∠CRD= ∠ARB=45°,∴∠ MON=135°,此时 P, O, B 在一条直线上,△ PAB 为直角三角形,且∠ APB=90°,∴AB=2PE=2×PQ= PQ,∴=.八、23.(1)证明:∵点C、 D、 E 分别是 OA,OB,AB的中点,∴DE=OC,∥ OC, CE=OD,CE∥OD,∴四边形 ODEC是平行四边形,∴∠ OCE=∠ODE,∵△ OAP,△ OBQ 是等腰直角三角形,∴∠ PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ ,∵P C= AO=OC=ED, CE=OD= OB=DQ,在△ PCE与△ EDQ中,,∴△ PCE≌△ EDQ;(2)①如图2,连接 RO,∵PR与 QR分别是 OA, OB的垂直平分线,∴AP=OR=RB,∴∠ ARC=∠ORC,∠ ORQ=∠BRO,∵∠ RCO=∠RDO=90°,∠ COD=150°,∴∠ CRD=30°,(素材和资料部分来自网络,供参考。
2016年安徽省中考数学试卷及答案

2016年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.-2的绝对值是()A.-2B.2C.±2D.122.计算a10÷a2(a≠0)的结果是()A.a5B.a-5C.a8D.a-83.2016年3月份我省农产品实现出口额8 362万美元,其中8 362万用科学记数法表示为()A.8.362×107B.83.62×108C.0.836 2×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()5.方程2x+1x-1=3的解是()A.-45B.45C.-4D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013年和2015年我省财政收入分别为a亿元和b亿元,则a,b之间满足的关系式是()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A,B,C,D,E五组进行统计,并制作了如下统计表和扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为( )A.4B.4√2C.6D.4√39.一段笔直的公路AC 长20 km,途中有一处休息点B,AB 长15 km.甲、乙两名长跑爱好者同时从点A 出发.甲以15 km/h 的速度匀速跑至点B,原地休息半小时后,再以10 km/h 的速度匀速跑至终点C;乙以12 km/h 的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2 h 内运动的路程y(km)与时间x(h)之间的函数关系的图象是( )A BC D10.如图,Rt △ABC 中,AB ⊥BC,AB=6,BC=4.P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC.则线段CP 长的最小值为( )A.32 B.2C.8√1313 D.12√1313二、填空题(本大题共4小题,每小题5分,满分20分) 11.不等式x-2≥1的解集是12.因式分解:a3-a=.13.如图,已知☉O的半径为2,A为☉O外一点.过点A作☉O的一条切线AB,切点是点B.AO的延长线交☉O于点C.若∠BAC=30°,则劣弧BC的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10.点E在CD上,将△BCE沿BE折叠,点C恰好落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处.有下列结论:S△FGH;④AG+DF=FG.①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)3+tan 45°.15.计算:(-2 016)0+√-816.解方程:x2-2x=4.17.如图,在由边长为1个单位长度的小正方形组成的12×12的网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A'B'C'D'(点A,B,C,D的对应点分别为点A',B',C',D').18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中“”的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+()+(2n-1)+…+5+3+1=.19.如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点.某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C,D两点间的距离.的图象在第一象限交于点A(4,3),与y轴的负半20.如图,一次函数y=kx+b的图象分别与反比例函数y=ax轴交于点B,且OA=OB.的表达式;(1)求函数y=kx+b和y=ax(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC.求此时点M的坐标.六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数字;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数字.(1)写出按上述规定得到的所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本题满分14分)23.如图(1),A,B分别在射线OM,ON上,且∠MON为钝角.现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图(2),若∠MON=150°,求证:△ABR为等边三角形;的值.②如图(3),若△ARB∽△PEQ,求∠MON的大小和ABPQ图(1) 图(2) 图(3)2016年安徽省初中毕业学业考试参考答案1.B 【解析】 负数的绝对值是其相反数,则-2的绝对值为2.2.C 【解析】 同底数幂的除法,底数不变,指数相减,则a 10÷a 2=a 10-2=a 8(a≠0).3.A 【解析】 8 362万=8.362×107.4.C 【解析】 从圆柱的正前方观察所得到的平面图形是矩形.5.D 【解析】 去分母,得2x+1=3x-3,解得x=4.当x=4时,x-1=3≠0,故该分式方程的解是x=4.6.C 【解析】 由题意,得2014年我省财政收入为a(1+8.9%)亿元,2015年我省财政收入为a(1+8.9%)(1+9.5%)亿元.故选C.7.D 【解析】 A,C,D,E 组占调查总用户的80%,共有64户,则参与调查的用户共有64÷80%=80(户).月用水量在6吨以下的是A,B 两组用户,占调查总用户的30%,则共有80×30%=24(户). 知识归纳 认识各统计图、统计表的特点和功能:特点和功能 条形统计图 (频数分布直方图) 能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,那么一般选用条形统计图.扇形统计图 每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,如果想了解各数据所占的百分比,那么一般采用扇形统计图.折线统计图能够清晰地显示数据的增减变化,如果想了解数据增减变化的情况,那么就采用折线统计图.频数分布表 用于显示统计数据的基本工具.8.B 【解析】 ∵∠B=∠DAC,∠ACD=∠BCA,∴△ACD ∽△BCA,∴CD AC =ACBC ,即AC 2=CD×BC=4×8=32,解得AC=4√2(负值已舍去).9.A 【解析】 甲跑步1 h 后休息半小时,然后又用12 h 跑到终点C;乙中途没有休息,到达终点C 所用的时间为20÷12=53(h),故比甲提前到达终点.综上所述,选项A 中的图象符合题意.10.B 【解析】 如图所示,以AB 为直径作☉O,由AB ⊥BC,∠PAB=∠PBC,得∠APB=90°,∴点P 在☉O 上.连接OP,当点O,P,C 在一条直线上时,线段CP 的长最小.因此CP 长的最小值为OC-OP=2+BC 2-OP=√32+42-3=2.11.x≥3 【解析】 移项可得x≥1+2,合并同类项可得x≥3. 12.a(a-1)(a+1) 【解析】 原式=a(a 2-1)=a(a-1)(a+1).归纳总结 因式分解的一般思路为“一提二公式”,即一个多项式中的每一项若有公因式,则先提取公因式,再用公式法进行因式分解.注意因式分解要彻底,要分解到不能再分解为止.13.43π 【解析】 连接OB.根据切线的性质可知,∠ABO=90°,则∠BOC=∠A+∠ABO=30°+90°=120°.根据弧长公式可得=120180×π×2=43π.14.①③④ 【解析】 由折叠的性质可知,∠ABG=∠FBG,∠CBE=∠EBF,则∠EBG=12∠ABC=45°,故结论①正确;根据题中条件,无法推出Rt △DEF 和Rt △ABG 中的两个锐角分别相等,故结论②错误;由折叠的性质可知,BH=AB=6,BF=BC=10,则HF=BF-BH=10-6=4,∴S △BHG ∶S △FGH =6∶4=3∶2,∴S △ABG =S △BHG =32S △FGH ,故结论③正确;设AG=HG=x,由AF=√BF 2-AB 2=√102-62=8,可得FD=2,FG=8-x.在Rt △GHF 中,根据勾股定理可得FG 2=GH 2+FH 2,即(8-x)2=x 2+42,解得x=3,则FG=8-3=5,∴AG+DF=FG,故结论④正确.综上所述,结论①③④正确. 15.【参考答案及评分标准】 原式=1-2+1=0.(8分)16.【参考答案及评分标准】 方程两边都加上1,得x 2-2x+1=5,即(x-1)2=5,(4分) 所以x-1=±√5.所以原方程的解是x 1=1+√5,x 2=1-√5.(8分)17.【参考答案及评分标准】 (1)点D 及四边形ABCD 的另两条边如图所示.(4分)(2)四边形A'B'C'D'如图所示.(8分)18.【参考答案及评分标准】 (1)42 n 2(4分) (2)2n+1 2n 2+2n+1(8分)19.【参考答案及评分标准】 如图,过点D 作l 1的垂线,垂足为点F.∵∠DEB=60°,∠DAB=30°, ∴∠ADE=∠DEB-∠DAB=30°, ∴DE=AE=20米.(3分)在Rt △DEF 中,EF=DE·cos 60°=20×12=10(米).(6分)∵DF ⊥AF, ∴∠DFB=90°, ∴AC ∥DF.由已知l 1∥l 2,∴CD ∥AF, ∴四边形ACDF 为矩形. ∴CD=AF=AE+EF=30米.答:C,D 两点间的距离为30米.(10分)20.【参考答案及评分标准】 (1)将A(4,3)代入y=ax ,得3=a4,∴a=12.(2分) OA=√42+32=5.∵OA=OB,且点B 在y 轴负半轴上, ∴B(0,-5).将A(4,3),B(0,-5)分别代入y=kx+b, 得{3=4k +b,-5=b. 解得{k =2,b =−5.则所求函数表达式分别为y=2x-5和y=12x .(6分) (2)∵MB=MC,∴点M 在线段BC 的中垂线上,即x 轴上. 又∵点M 在一次函数的图象上, ∴点M 为一次函数图象与x 轴的交点. 令2x-5=0,解得x=52.故此时点M 的坐标为(52,0).(10分)21.【参考答案及评分标准】 (1)按规定得到的所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(6分)(2)这些两位数共有16个,其中算术平方根大于4且小于7的共有6个,分别为17,18,41,44,47,48. 则所求概率P=616=38.(12分)22.【参考答案及评分标准】 (1)将A(2,4)与B(6,0)代入y=ax 2+bx, 得{4a +2b =4,36a +6b =0.解得{a =−12,b =3.(5分)(2)由题意,得点C 的坐标为(x,-12x 2+3x).如图,过点A 作x 轴的垂线,垂足为D(2,0),连接CD,过点C 作CE ⊥AD,CF ⊥x 轴,垂足分别为点E,F.则S △OAD =12OD·AD=12×2×4=4,S △ACD =12AD·CE=12×4×(x-2)=2x-4,S △BCD =12BD·CF=12×4×(-12x 2+3x)=-x 2+6x,(8分)∴S=S △OAD +S △ACD +S △BCD =4+(2x-4)+(-x 2+6x)=-x 2+8x.即S 关于x 的函数表达式为S=-x 2+8x(2<x<6).(10分)∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)23.【参考答案及评分标准】 (1)证明:∵点C,D,E 分别是OA,OB,AB 的中点,∴DE OC,CE OD.∴四边形ODEC 为平行四边形.∴∠OCE=∠ODE.又∵△OAP,△OBQ 都是等腰直角三角形,∴∠PCO=∠QDO=90°.∴∠PCE=∠PCO+∠OCE=∠QDO+∠ODE=∠EDQ.又∵PC=12AO=CO=ED,CE=OD=12OB=DQ,∴△PCE ≌△EDQ.(4分)(2)①证明:连接OR.∵PR 与QR 分别为线段OA 与OB 的中垂线,∴AR=OR=BR,∠OCR=∠ODR=90°,∠MON=150°,∴∠CRD=30°.∴∠ARB=∠ARO+∠BRO=2∠CRO+2∠ORD=2∠CRD=60°.∴△ABR 为等边三角形.(9分)②由(1)知,EQ=PE,∠DEQ=∠CPE,∠CED=∠AOD=∠ACE.∴∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-∠CPE=∠ACE-∠RCE=∠ACR=90°,即△PEQ 为等腰直角三角形.∵△ARB ∽△PEQ,∴∠ARB=90°.∴在四边形OCRD中,∠OCR=∠ODR=90°,∠CRD=1∠ARB=45°,2∴∠MON=135°.(12分)此时点P,O,B在一条直线上,△PAB为直角三角形,且∠APB为直角, PQ=√2PQ,∴AB=2PE=2×√22=√2.(14分)即ABPQ。
2008-2017年历届安徽省中考数学试卷(附答案)

2017年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,共40分)1.12的相反数是【 】 A .12; B .12-; C .2; D .-22.计算()23a-的结果是【 】A .6a ;B .6a -;C .5a -;D .5a 3.如图,一个放置在水平试验台上的锥形瓶,它的俯视图为【 】4.截止2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学计数法表示为【 】A .101610⨯;B .101.610⨯;C .111.610⨯;D .120.1610⨯; 5.不等式420x ->的解集在数轴上表示为【 】 6.直角三角板和直尺如图放置,若120∠=︒,则2∠的度数为【 】A .60︒;B .50︒;C .40︒;D .30︒7.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是【 】 A .280; B .240; C .300; D .2608一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x ,则x 满足【 】 A .()161225x +=; B .()251216x -=; C .()216125x +=; D .()225116x -=9.已知抛物线2y ax bx c =++与反比例函数by x=的图像在第一象限有一个公共点,其横坐标为1,则一次函数y bx ac =+的图像可能是【 】10.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足为13PAB ABCD S S =V 矩形,则点P 到A ,B 两点距离之和PA +PB 的最小值【 】A ;BC .D 二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是_____________.12.因式分解:244a b ab b -+=_________________. 13.如图,已知等边△ABC 的边长为6,以AB 为直径的⊙O 与边AC ,BC 分别交于D ,E 两点,则劣弧DE 的长为___________.14、在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为___________cm 。
-2016安徽省中考数学试卷及答案(word解析版)

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D2.计算a10÷a2(a≠0)的结果是()A.a5 B.a﹣5 C.a8 D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108 D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()ACD5的解是()AC.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5% D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户 B.20户 C.22户 D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B..6 D.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()AB.2 CD二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a= .13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON2015年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1、在―4,2,―1, 3这四个数中,比是―2小的数是( ) A 、―4 B 、2 C 、―1 D 、3 2、计算8×2的结果是( )A 、10B 、4C 、 6D 、43、移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A 、1.62×104B .1.62×106C .1.62×108D .0.162×1094、下列几何体中,俯视图是矩形的是( )5、与1+5最接近的整数是( )A 、4B 、3C 、2D 、16、我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是( )A .1.4(1+x )=4.5B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5 D .1.4(1+x )+1.4(1+x )2=4.57、某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分8、在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =1 2∠ADC D .∠ADE = 13∠ADC 9、如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .610、如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c的图象可能是( )二、填空题(本大题共4小题,每小题5分,满分20分) 11、-64的立方根是12. 如图,点A 、B 、C 在半径为9的⊙O 上,AB ⌒的长为π2,则∠ACB 的大小是13.按一定规律排列的一列数: 21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 .14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则 1 a + 1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 三.(本大题共2小题,每小题8分,满分16分)15、先化简,再求值:⎝ ⎛⎭⎪⎫a 2a ―1 +1 1―a · 1 a ,其中a =- 1 2.【解】16、解不等式: x 3>1- x -36.【解】四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△AEBCFD G H第9题图AOCB 第12题图A 2B 2C 2,使A 2B 2=C 2B 2.18. 如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).五、(本大题共2小题,每小题10分,满分20分)19. A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率;(2)求三次传球后,球恰在A 手中的概率.20. 在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值六、(本题满分12分)21. 如图,已知反比例函数y = k1x 与一次函数y =k2x +b 的图象交于点A(1,8)、B(-4,m).(1)求k1、k2、b 的值; (2)求△AOB 的面积;(3)若M(x1,y1)、N(x2,y2)是比例函数y = k1x 图象上的两点,且x1<x2,y1<y2,指出点M 、N 各位于哪个象限,并简要说明理由.七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?八、(本题满分14分)23. 如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC . (1)求证:AD =BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求 ADEF的值.AB Cl第17题图第22题图2014年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(﹣2)×3的结果是()2.x2•x3=()3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()4.下列四个多项式中,能因式分解的是()5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()6.设n为正整数,且n<<n+1,则n的值为()7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()9.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()10.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()二、填空题(本大题共4小题,每小题5分,满分20分)11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .13.方程=3的解是x= .14.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣|﹣3|﹣(﹣π)0+2013.16.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.18.如图,在同一平面内,两条平行高速公路l 1和l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.如图,在⊙O 中,半径OC 与弦AB 垂直,垂足为E ,以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与⊙O 的交点.若OE=4,OF=6,求⊙O 的半径和CD 的长.20.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元. (1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?六、(本题满分12分)21.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.七、(本题满分12分)22.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2﹣4mx+2m 2+1和y 2=ax 2+bx+5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求出当0≤x ≤3时,y 2的最大值.八、(本题满分14分)23.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)①∠MPN= ; ②求证:PM+PN=3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM=ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形?并说明理由.安徽省2013年中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( )A 、﹣B 、C 、2D 、﹣22.用科学记数法表示537万正确的是( ) A 、5.37×10 B 、45.37×105C 、5.37×106D 、5.37×1073.如图所示的几何体为圆台,其主(正)视图正确的是( )A B C D 4.下列运算正确的是( )A.235x y xy +=B.23555m m m ⋅=C.222()a b a b -=-D.236m m m ⋅= 5.已知不等式组,其解集在数轴上表示正确的是( ) A 、 B 、C 、D 、6.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( ) A 、60° B 、65° C 、75° D 、80°7.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A 、438(1+x )2=389 B 、389(1+x )2=438 C 、389(1+2x )2=438 D 、438(1+2x )2=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( )A 、B 、C 、D 、9.图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A 、当x=3时,EC <EM B 、y=9时,EC >EMC 、当x 增大时,EC •CF 的值增大D 、当y 增大时,BE •DF 的值不变10.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( )三、填空题(本大题4小题,每小题5分,满分20分) 11、12在实数范围内有意义,则x 的取值范围是 .13、14、因式分解2x y y -=15、如图P 为平行四边形ABCD 边AD 上的一点,E,F分别为PB,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为12,,S S S ,若2S =,则12S S += .第14题图16、在矩形ABCD 中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下判断:①当四边形A ’CDF 为正方形时,;②当时,四边形A ’CDF 为正方形;③当BA ’CD 为等腰梯形;④当四边形BA ’CD 为等腰梯形时,;其中正确的是 .(把所有正确结论的序号都填在横线上)三、(本大题共两小题,每小题8分,满分16分) 15、计算:22sin 30(1)|2︒+--16、已知二次函数的顶点坐标为(1,1)-,且经过原点(0,0),求该函数的解析式。
安徽省2016年中考数学试题(附解析)

1.【答案】B. 【解析】试题分析:根据绝对值的性质可得-2的绝对值是2,故答案选B. 考点:绝对值. 2.【答案】C.考点:同底数幂的除法. 3.【答案】A. 【解析】试题分析:科学计数法是指:a ×n10,且101 a ,n 为原数的整数位数减一.8362万=83620000=8.362×107.故答案选A. 考点:科学计数法.4.【答案】C.【解析】试题分析:几何体的主视图是从正面看到的图形,圆柱从正面看是一个矩形,故答案选C. 考点:几何体的三视图.5.【答案】D.考点:解方式方程.6.【答案】C.【解析】试题分析:由题意可得2014年的财政收入为a(1+8.9%),2015年的财政收入为a(1+8.9%)(1+9.5%),所以b=a(1+8.9%)(1+9.5%),故答案选C.考点:列代数式.7.【答案】D.考点:扇形统计图;用样本估计总体.8.【答案】B. 【解析】试题分析:已知AD 是直线,BC=8,所以CD=4,又因∠B=∠DAC,∠C 为公共角,可得△ACD ∽Rt △BCA ,根据相似三角形的性质可得AC CD BC AC =,即ACAC 48=,解得AC=42,故答案选B.考点:相似三角形的判定及性质.9.【答案】A. 【解析】试题分析:由题意可知,甲图中休息半个小时,可排除选项B 、D,由题意可以计算出乙35小时到达终点,甲1小时到达B 处,休息半小时后再用半个小时到达终点,符合要求的选项只有A ,故答案选A. 考点:函数图像.10【答案】B.考点:最短距离问题.11.【答案】x ≥3. 【解析】试题分析:解不等式可得x ≥3. 考点:解不等式. 12.【答案】a (a+1)(a-1). 【解析】试题分析:先提公因式a 后再利用平方差公式分解即可,即原式=a (a 2-1)=a (a+1)(a-1). 考点:因式分解. 13.【答案】34.考点:切线的性质;弧长公式. 14.【答案】①③④. 【解析】试题分析:由折叠的性质可得BC=BF=10,CE=EF,AB=BH=8,AG=GH,∠CBE=∠FBE,∠ABG=∠HBG,因∠CBE+∠FBE+∠ABG+∠HBG=90°,所以∠HBG+∠FBE=40°,即∠EBG=45°,故①正确;在Rt △ABF 中,由勾股定理求得AF=8,所以DF=AD-AF=2,在Rt △DEF 中,设CE=EF=x,则DE=6-x ,由勾股定理得22262x x =-+)(,解得x=310,即CE=EF=310,DE=38;在Rt △GHF 中,设AG=GH=y,则GF=8-y ,HF=10-6=4,由勾股定理得222)8(4y y -=+,解得y=3,即GF=5;因∠A=∠D=90°,DFAGDE AB ≠,所以△DEF 与△ABG 不相似,故②错误;因9632121=⨯⨯=⋅=∆AB AG S ABG ,6432121=⨯⨯=⋅=∆HF GH S FGH ,所以ABG S ∆=FGH S ∆23,故③正确;因AG+DF=FG=5,所以④正确.故正确答案为①③④.考点:四边形综合题.15.【答案】0.考点:零指数幂;立方根;特殊角的三角函数值. 16.【答案】51,5121-+==x x . 【解析】试题分析:用配方法解方程即可.试题解析:考点:一元二次方程的解法.17.【答案】(1)详见解析;(2)详见解析.考点:轴对称作图;平移变换作图.18.【答案】(1)24,2n ;(2)2n+1,1222++n n .【解析】试题分析:(1)观察图形,得出规律,即可得答案;(2)中间这个数为2n-1+2=2n+1;由(1)的规律可得,原式=2n +2n+1+2n =1222++n n .试题解析:(1)24,2n ;(2)中间这个数为2n-1+2=2n+1;由(1)的规律可得,原式=2n +2n+1+2n =1222++n n .考点:规律探究题.19.【答案】30米.考点:解直角三角形的应用.20.【答案】(1)x y 12,y=2x-5;(2)(25,0).考点:待定系数法求函数解析式.21.【答案】(1)11、14、17、18、41、44、47、48、71、74、77、78、81、84、87、88;(2)83. 【解析】试题分析:(1)按顺序直接列举出所有的两位数即可;(2)找出这16个数中算术平方根大于4且小于7的两位数的个数,根据概率公式即可求得答案. 试题解析:考点:用列举法求概率. 22.【答案】(1)21-=a ,b=3;(2))62(82 x x x S +-=,16.试题解析:考点:二次函数的综合题.23.【答案】(1)详见解析;(2)①详见解析;②135°,2.(2)①连接OR,由已知可得PR、RQ分别是线段OA、OB的垂直平分线,根据线段垂直平分线的性质可得RA=RO=RB,∠ARC=∠ORC,∠ORD=∠BRQ,在四边形RCOD中,根据四边形的内角和为360°可求得∠PRQ=30°,所以∠ARB=2∠PRQ=60°,再由AR=RB 即可判定△ABR为等边三角形;②由(1)得EQ=PE,∠DEQ=∠CPE,由四边形CODE是平行四边形可得∠CED=∠COD=∠ACE,所以∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-1∠CPE=∠ACE-∠ACR=90°,由△ARB∽△PEQ可得∠ARB=90°,由(2)可得∠PRQ=2∠ARB=45°,在四边形RCOD 中,根据四边形的内角和为360°可求得∠MON=135°,由此可得P 、O 、B 三点共线,△APB 为直角三角形,根据直角三角形斜边的中线等于斜边的一半可得AB=2PE,在Rt △PEC 中,由勾股定理可得PE=22PQ,所以22222=⨯==PQPQ PQPE PQ AB . 试题解析:考点:三角形与四边形的综合题.。
2016安徽省中考数学试题及答案解析

2016年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2016安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( )A.3B.-3C.31 D.31- 1. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3. 解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2. (2016安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形. 解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2016安徽,3,4分)计算32)2(x -的结果是( ) A.52x - B. 68x - C.62x - D.58x - 3. 解析:根据积的乘方和幂的运算法则可得. 解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义. 4. (2016安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m 4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 故选D .得分 评卷人点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5. (2016安徽,5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元5. 解析:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a , 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a , 解答:A .点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.6. (2016安徽,6,4分)化简xxx x -+-112的结果是( ) A.x +1 B. x -1 C.—x D. x6. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:x x x x x x x x x x x =--=--=---=1)1(11122 故选D . 点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式.7. (2016安徽,7,4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边 形与其内部小正方形的边长都为a ,则阴影部分的面积为( ) A.22a B. 32a C. 42a D.52a7. 解析:图案中间的阴影部分是正方形,面积是a 2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算. 解答:解:222242121a a a =⨯⨯+故选A . 点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.8. (2016安徽,8,4分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.32 8. 解析:第1个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一个打电话给甲的概率是31.解答: 故选B .9. (2016安徽,9,4分)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )9. 解析:利用AB 与⊙O 相切,△BAP 是直角三角形,把直角三角形的直角边表示出来,从而用x 表示出三角形的面积,根据函数解析式确定函数的图象. 解答:解:∵AB 与⊙O 相切,∴∠BAP=90°, OP=x ,AP=2-x,∠BPA=60°,所以AB=)2(3x -,所以△APB 的面积2)2(23x y -=,(0≤x ≤2)故选D . 点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值. 10. (2016安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或17210. 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C .点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A 或B ;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.二、填空题(本大题共4小题,每小题5分,满分20分)11. (2016安徽,11,5分)2015年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.11. 解析:科学记数法形式:a ×10n (1≤|a |<10,n 为整数)中n 的值是易错点,由于378 000有6位,所以可以确定n =6﹣1=5,所以378 000=3.78×105 答案: 3.78×105 12. (2016安徽,12,5分)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362=甲S ,252=乙S ,162=丙S ,则数据波动最小的一组是___________________.12. 解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小.丙组方差最小,波动最小. 答案:丙组13. (2016安徽,13,5分)如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=_______________°.13. 解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D ;又因为四边形OABC 是平行四边形,所以∠B=∠AOC ;圆内接四边形对角互补,∠B+∠D=180°,所以∠D= 60°,连接OD ,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°. 答案:60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合.14. (2016安徽,14,5分)如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上得分 评卷人其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上). 14. 解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于 ④这一选项容易漏选.三、(本大题共2小题,每小题8分,满分16分)15. (2016安徽,15,8分)计算:)2()1)(3(-+-+a a a a15. 解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式=a 2-a+3a -3+a 2-2a =2a 2-3 16. (2016安徽,16,8分)解方程:1222+=-x x x16. 解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法.先将方程整理一下,可以考虑用配方法或公式法.解:原方程化为:x 2-4x=1配方,得x 2-4x+4=1+4 整理,得(x -2)2=5∴x -2=5±,即521+=x ,522-=x .四、(本大题共2小题,每小题8分,满分16分)17. (2016安徽,17,8分)在由m ×n (m ×n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:mnm n +f1 2 3 2 1 3 4 3 2 3 5 4 2 4 7 3 5 7猜想:当m 、n 互质时,在m ×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是______________________________(不需要证明); 解:(2)当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立, 17:解析:(1)通过题中所给网格图形,先计算出2×5,3×4,对角线所穿过的小正方形个数f ,再对照表中数值归纳f 与m 、n 的关系式.(2)根据题意,画出当m 、n 不互质时,结论不成立的反例即可. 解:(1)如表:f=m+n-1(2)当m 、n 不互质时,上述结论不成立,如图2× 42×418. (2016安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC 全等且A 与A1是对应点;m n m n f 1 2 3 2 1 3 4 32 3 5 4 2 4 7 6 3 5 7 6(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:18.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出AB、AD、BD的长度,再计算角度.解:(1)答案不唯一,如图,平移即可2(2)作图如上,∵AB=10,AD=10,BD=5∴AB2+AD2=BD2 新课标一网∴△ABD是直角三角形,AD可以看作由AB绕A点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大.五、(本大题共2小题,每小题10分,满分20分)2,求19. (2016安徽,19,10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=3C45°30°ABAB 的长, 解:19. 解析:本题在一个三角形中已知两个角和一边,求三角形的边.不是直角三角形,要利用三角函数必须构筑直角三角形,过点C 作CD ⊥AB 于D,利用构造的两个直角三角形来解答. 解:过点C 作CD ⊥AB 于D,在Rt △ACD 中,∠A=30°,AC=32 ∴CD=AC ×sinA=32×0.5=3,AD=AC ×cosA=32×23=3, 在Rt △BCD 中,∠B=45°,则BD=CD=3, ∴AB=AD+BD=3+3点评:解直角三角形中,除了直角外,还知道两个元素(至少有一个是边),就能求出其余的边和角. 一般三角形中,知道三个元素(至少有一个是边),就能求出其余的边和角. 这时将三角形转化为直角三角形时,注意尽量不要破坏所给条件.20. (2016安徽,20,10分)九(1)班同学为了解2015年某小区家庭月均用水情况,随月均用水量x (t) 频数(户) 频率05x <≤ 6 0.12510x <≤ 0.241015x <≤ 16 0.321520x <≤ 10 0.20 2025x <≤ 4 2530x <≤ 2 0.04 请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比; 解:(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户? 解:20. 本题考查了数据的统计中的频数分布表和不完整的频数分布直方图.所有的频数和就是样本容量,所有频率和等于1,且有n数据总数频数频率=,(1)数据总数5012.06===频率频数 ,50×0.24=12,4÷50=0.08, (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪第20题图 月用水量(t)(3)用样本来估计总体,根据抽取的样本超过20吨的家庭数,来估计该小区的情况.. 解:(1)统计中的频数分布表和不完整的频数分布直方图,补充如下 (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪ (3)1000×(0.04+0.08)=120(户)六、(本题满分12分)21. (2016安徽,21,12分)甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年安徽省初中毕业学业考试数学试题(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请你“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户B.20户C.22户D.24户组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥128.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.49.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B. C.D.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是.12.(5分)(2016•安徽)因式分解:a3﹣a=.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.16.(8分)(2016•安徽)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案一、选择题1.B2.C3.A4.C5.D6.C7.D8.B9.A10.B二、填空题11.x≥312.a(a+1)(a﹣1)13..14.解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、15.(﹣2016)0++tan45°=1﹣2+1=0.16.解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、17.解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.2n+1;2n2+2n+1.五、19.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、21.解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、22.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、23.(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。