2020-2021学年河南省新乡市辉县一中八年级(上)期中数学试卷(Word+答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年河南省新乡市辉县一中八年级(上)期中数学试卷

一、选择题(本题共计10小题,每题3分,共计30分)

1.(3分)下列说法正确的是()

A.的平方根是3

B.(﹣1)2010是最小的自然数

C.两个无理数的和一定是无理数

D.实数与数轴上的点一一对应

2.(3分)在实数:3.14159,,,1.010010001,4.,,0,﹣,﹣中,无理数有()A.1个B.2个C.3个D.4个

3.(3分)下列等式中正确的个数是()

①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.

A.0个B.1个C.2个D.3个

4.(3分)若a,且a、b是两个连续整数,则a+b的值是()

A.1B.2C.3D.4

5.(3分)如果a是2021是算术平方根,则的算术平方根是()

A.B.C.±D.

6.(3分)下列各式能用完全平方公式分解因式的有()

①4x2﹣4xy﹣y2;

②﹣1﹣a﹣;

③m2n2+4﹣4mn;

④a2﹣2ab+4b2;

⑤x2﹣8x+9

A.1个B.2个C.3个D.4个

7.(3分)对假命题“若a>b,则a2>b2”举反例,正确的反例是()

A.a=﹣1,b=0B.a=﹣1,b=﹣1C.a=2,b=1D.a=﹣1,b=﹣2

8.(3分)如图,在△ADF和△CBE中,点A、E、F、C在同一直线上,由下列四个论断中选哪三个作为条件不能证明△ADF和△CBE全等的是()

①AD=CB

②AE=CF

③∠B=∠D

④AD∥BC

A.①②③B.①②④C.②③④D.①③④

9.(3分)如图,在△ABC中已知∠B、∠C的平分线相交于点F,过点F作DE∥BC,交AB于点D,交AC点E,若AB=9,AC=7,则△ADE的周长为()

A.13B.14C.15D.16

10.(3分)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是()

A.4个B.3个C.2个D.1个

二、填空题(本题共计5小题,每题3分,共计15分)

11.(3分)已知2x+1的平方根是±5,则5x+4的立方根是.

12.(3分)化简(﹣)2+|1﹣|+的结果为.

13.(3分)若(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为.

14.(3分)已知:m2+n2=6m﹣2n﹣10,则的值是.

15.(3分)如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.

三、解答题(本题共计75分)

16.(8分)分解因式:

(1)6m(p﹣3)﹣4n(3﹣p);

(2)(x﹣1)(x﹣3)+1.

17.(15分)计算:

(1)(2ab2﹣b3)2÷b3;

(2)﹣12020﹣|1﹣|++;

(3)已知3x=15,3y=5,求(x﹣y)2.

18.(12分)(1)若与|a+b﹣8|互为相反数,求4b﹣a的立方根.

(2)先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=1,y=﹣2.

19.(7分)如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E,若CE=5cm,求BD的长.

20.(7分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.

(2)若AB=CF,∠B=30°,求∠D的度数.

21.(8分)从边长为a的正方形中减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).

(1)上述操作能验证的等式是;

(2)运用你从(1)写出的等式,完成下列各题:

①已知,x2﹣4y2=12,x+2y=4,求x﹣2y的值;

②计算:.

22.(9分)如图1,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D.

(1)求证:△BCE≌△CAD;

(2)猜想:线段AD,DE,BE之间有怎样的数量关系,并证明;

(3)当CE绕点C到图2位置时,猜想:线段AD,DE,BE之间的数量关系(不需证明).

23.(9分)阅读材料:数学课上,吴老师在求代数式x2﹣4x+5的最小值时,利用公式a2±2ab+b2=(a±b)2,对式子作如下变形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,

因为(x﹣2)2≥0,

所以(x﹣2)2+1≥1,

当x=2时,(x﹣2)2+1=1,

因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.

通过阅读,解下列问题:

(1)代数式x2+6x+12的最小值为;

(2)求代数式﹣x2+2x+9的最大或最小值;

(3)试比较代数式3x2﹣2x与2x2+3x﹣7的大小,并说明理由.

2020-2021学年河南省新乡市辉县一中八年级(上)期中数学试卷

试题解析

一、选择题(本题共计10小题,每题3分,共计30分)

1.解:A、=9,不符合题意;

B、(﹣1)2010=7,不是最小的自然数;

C、两个无理数的和不一定是无理数+=8;

D、实数与数轴上的点一一对应,

故选:D.

2.解:3.14159是有限小数,属于有理数;

=7,是整数;

1.010010001是有限小数,属于有理数;

4.是循环小数;

是分数,属于有理数;

0是整数,属于有理数;

﹣=﹣4,属于有理数;

无理数有,﹣共2个.

故选:B.

3.解:①∵a5+a5=8a5,故①的答案不正确;

②∵(﹣a)6•(﹣a)8•a=﹣a10      故②的答案不正确;

③∵﹣a4•(﹣a)5=a6,故③的答案不正确;

④25+65=2×65=26.

所以正确的个数是1,

故选:B.

4.解:∵的整数部分是2,

∴3<﹣2<3,

相关文档
最新文档