第10章--回归分析PPT课件

合集下载

第10章 线性相关与回归

第10章 线性相关与回归

直线回归方程的用途 1.两变量间存在直线关系时,直 线方程可定量地描述两变量间的线性 依存关系。 2.根据直线回归方程由已知变量 值估计未知变量值:如统计预测。
应用直线回归方程时应注意的问题 1.求出样本资料的直线回归方程 后应进行假设检验。 2.应用直线回归方程时,要注意 方程只适用于自变量X的样本数据波动 范围,不能任意外延其应用范围。
在进行假设检验时,无效假设H0 为:ρ=0,即两变量间无直线相关关系; 备择假设H1为:ρ≠0,两变量间有直 线相关关系。常用的假设检验方法是t 检验,检验统计量t值的计算公式如下:
r0 tr Sr
r 1 r n2
2
,v n2
例9-2 就例9-1资料,问某地4岁 儿童体重与体表面积间是否有直线关系?
反双曲正切变换:
z tanh r

1
1 1 r z ln 2 1 r
z u
Z的1-α可信区间计算公式:
2
n 3 , z u 2
n3

缩写
z u
a2
n3

ρ的1-α可信区间计算公式:
tanh z u 2
缩写

n 3 , z u 2
XY (3) 58.113 62.5282 64.296 65.0916 73.3862 82.3918 83.952 90.9198 92.34 102.576 ∑XY=775.5946
X
2
Y
2
(4) 121.00 139.24 144.00 151.29 171.61 187.69 207.36 222.01 231.04 256.00 2 ∑X =1831.24
5.4 5.2

回归分析 PPT课件

回归分析 PPT课件
7.3.3回归检验 1.R检验
检验规则:复相关系数检验根据给定的显著性水平查
出相关系数的临界值,然后与复相关系数进行比较!以判断
回归方程的有效性。
2018/7/7
18
7.3 多元线性回归分析法
7.3.3回归检验 2.T检验
T检验的一般步骤如下:①计算T值;②对于给定的显著
水平a,查自由度为n-k-1的T分布的临界值表,得临界 值: , ③比较ti值与 值的大小,如果 |ti|> ta ,则
2018/7/7 4
7.1回归分析概述
7.1.3 回归分析法的应用步骤 (1)根据对客观现象的定性认识确定变量之间是 否存在相关关系;
(2)判断相关关系的大致类型;
(3)绘制散点图,并初步推测回归模型;
(4)进行回归分析并拟合出回归模型;
(5)对回归模型的可信度进行检验;
(6)运用模型进行预测。
2018/7/7 5
检验规则:当|R|=1,表示x和y完全相关;当0 ≤ |R| ≤ 1,
表示x和y完全相关;当|R|=0,表示x和y不相关。
2018/7/79Βιβλιοθήκη 7.2 一元线性回归分析法

T
2018/7/7
10
7.2 一元线性回归分析法
7.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
ˆt a bxi 4885.71 542.86 xi y
④求出相关系数 R 为 0.961 ,说明 x 与 y 有很强的正 相关关系。 ⑤F检验。 ,给定显著水平a =0.05 , 查 F 分 布 表 F0.05(1,5)=6.61, 则 F > F0.05(1,5)。所以,建立一元线性回归模型成立。 ⑥计算预测值。

《回归分析》PPT课件

《回归分析》PPT课件
在回归分析中,若自变量间中/高相关,则某些与因变量有关系的变量会被排除在回 归模型之外
多元共线性
即数学上的线性相依,指在回归模型中 预测变量本身间有很高的相关。
有很多评价指标,如容差(容忍度)、 VIF,特征值
特征值若小于0.01,预测变量间可能存在多元共线性;
方差比例:若有两个或多个自变量在一个特征值上高于0.8 或 0.7以上,表示 可能存在多元共线性
整理成表格
表1 福利措施、同侪关系、适应学习对组织效能的影响
Beta
t
福利 0.180 5.513*
措施
**
同侪 0.264 8.166*
关系
**
适应 0.369 12.558
学习
***
R=0.73 R2=0.5 F=464.
阶层回归
如第一层自变量为福利措施 第二层为同辈关系 第三层为适应学习
学习完毕请自行删除
什么是回归分析
用一定的数学模型来表述变量相关关系 的方法。
一元线性回归
最简单的回归是只涉及一个因变量和一个自变量一元 线性回归,此时的表达式为:
y= 0+ 1 x+ y为因变量,x为自变量或预测变量, 0为截距即当
x=0时y的值, 1为斜率即1个单位的x变化对应 1个单 位y的变化。 是误差,服从N(0, σ2)的正态分布,不 同观察值之间是相互。
练习
“组织效能.sav”
15回归系数及检验组织效能0180福利措施0264同侪关系0369适应学习在回归分析中若自变量间中高相关则某些与因变量有关系的变量会被排除在回归模型之外容差及方差膨胀系数vif检验多元回归分析的共线性问题
《回归分析》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用

第10章 相关与回归分析_PPT幻灯片

第10章 相关与回归分析_PPT幻灯片

直线相关
相关 ---- 变量间的互依关系
直 线 相 关 (linear correlation) : 简 单 相 关 (simple correlation),用于双变量正态分布资料。
图10-2 相关系数示意图
散点呈椭圆形分布,
X、Y 同时增减---正相关
(positive correlation);
2. 计算检验统计量
0.8012
t
4.017
1 (0.8012 )2
11 2
n 2 11 2
3. 确定 P 值下结论(根据 t 值或查附表 11 r 界值表)
t=4.017>t0.05(9)=3.69,按 =0.05 水准拒绝 Ho,…
五、总体相关系数的区间估计(了解)
必须先对 r 作 z 变换
170
47
173
42
160
44
155
41
173
47
188
50
178
47
183
46
180
49
165
43
166
44
பைடு நூலகம்
1891
500
Xy 7990 7266 7040 6355 8131 9400 8366 8418 8820 7095 3174 86185
x2 28900 29929 25600 24025 29929 35344 3684 33489 32400 27225 28561 326081
变量间关系问题:年龄~身高、肺活量~体重、药物剂 量与动物死亡率等。
两种关系:
依存关系:应变量(dependent variable) Y 随自变量 (independent variable) X变化而变化。

第十章 直线回归与相关分析

第十章 直线回归与相关分析

115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5

图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)

《管理统计学》第十章PPT课件

《管理统计学》第十章PPT课件
Forward:向前选择法。
Stepwise:逐步进入法,根据Option对话框中设定的 判据及方差分析结果,选择符合判据的自变量与因 变量相关程度最高的进入回归方程。依据 Forward选入自变量,依据Backward 将模型中F值最小且符合剔除判据的变量剔除,重复
WSL选项是存在异方差时,利用加权最小二 乘法替代普通最小二乘法估计回归模型参数。通 过WSL可以选定一个变量作为加权变量。
12
回归效果的检验——F检验
FS SS S//n k E R 1 kn k k 11 RR 22
式中:n:样本容量
k:自变量的个数
R 2 :判定系数
13
回归系数的显著性检验——T检验
H0 :j 0 H1:j 0
t ˆ j j ~ t(nk) ˆ j
当 t t (nk) 时 H 1 成立,即 j 显著异于0。 2
四、回归分析的任务
(1)通过分析大量的样本数据,确定变更量之间 的数学表达式; (2)对确定的数学关系式的可信度进行统计检验 找出对某一特定变量影响较为显著的变量和不显 著的变量; (3)利用确定的数学关系式,根据自变量预测或 控制因变量的取值,并找出这种预测或控制的精 确度。
6
五、回归分析的种类
11
回归效果的检验——判定相关系数检验 ————F检验
R 2S SS S 1 T R S SS S ˆ1 T E 2n n
x2 ( y2 (
x)2 y)2
若全部观测值都落在回归直线上,则 R2 1
若x完全无助于解释y的变动,则 R2 0
判定相关系数越接近1,表明回归平方和占总离 差平方和的比例越大,用x的变动解释y值变动的 部分就越多,回归的效果就越好。
解释了人类身高在一定时间内相对稳定的现象。

《回归分析 》课件

《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。

生物统计学:第10章 多元线性回归分析及一元非线性回归分析

生物统计学:第10章 多元线性回归分析及一元非线性回归分析
的检验。在多元线性回归模拟中,随机误差是服从正 态分布的随即变量。因此,Y亦为独立正态随机变量。 在多元线性回归中,关于回归显著性检验的假设是:
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,

第10章事物间的因果关系回归分析

第10章事物间的因果关系回归分析

多元回归常使用调整的确定 系数R2 :此时说明x1和x2两 个自变量能共同解释90.7% 的因变量的变化。
对回归模型的显著性检验
如果p值小于0.05,说明至少 一个自变量的回归系数不为0, 所建立的回归模型有统计意 义。
回归系数
自变量 的回归 系数
标准化回归系数 表明年轻人人数 对销售收入的影 响更大。

本科新生(参照类) 其他高年级本科生
xusex=1,else=0
xugrade1=1,else=0
grade=3
grade=4
硕士研究生
博士研究生
xugrade2=1,else=0
xugrade3=1,else=0

用recode命令建立新的虚拟变量。
转换后,增加了4个虚拟变量
以参加社团活动的时间为因变量,以新建的四个虚拟变量为自 变量,迚行回归分析。设想的回归方程为: time=b0+b1· xusex+b2 · xugrade1+b3 · xugrade2+b4 · xugrade3
第10章
10.1 回归分析概述 10.2 一元线性回归 10.3 多元线性回归
10.4 引入虚拟变量迚行回归
3

为确定变量之间的联系,用一些变量的变化说明另一个变 量的变化,幵迚一步对另一个变量的取值迚行预测,这就 是回归分析。
y b0 b x1 b2 x2 bk xk e 1
25

以上所列回归分析,其因变量和自变量都为定距变量戒定 比变量,即数量型的变量;


而在社会科学的研究中,会大量地涉及到名义型的变量即 定类变量。如性别、职业、学历等; 对于定类变量,可以引入虚拟变量来迚行回归分析。

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

回归分析 ppt课件

回归分析 ppt课件
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”4Fra bibliotek回归分析
•按照经验公式的函数类型: 线性回归和非线性回归;
•按自变量的个数: 一元回归和多元回归;
•按自变量和因变量的类型: 一般的回归分析、含有哑变量的回归分
析、Logistic回归分析
5
回归分析
6
回归分析
•对数据进行预处理,选择合适的变量进行回归分析; •做散点图,观察变量间的趋势,初步选取回归分析方法; •进行回归分析,拟合自变量与因变量之间的经验公式; •拟合完毕之后检验模型是否恰当; •利用拟合结果进行预测控制。
通过以上的简单线性回归分析,可知通货膨胀和失业 的替代关系在我国并不存在。
13
回归分析
我们经常会遇到变量之间的关系为非线性的情况,这时 一般的线性回归分析就无法准确的刻画变量之间的因果关系, 需要用其他的回归分析方法来拟合模型。曲线回归分析是一 种简便的处理非线性问题的分析方法。适用于模型只有一个 自变量且可以化为线性形式的情形,基本过程是先将因变量 或自变量进行变量转换,然后对新变量进行直线回归分析, 最后将新变量还原为原变量,得出变量之间的非线性关系。
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

第10章 回归分析

第10章 回归分析

7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:

第10章 线性相关与回归

第10章 线性相关与回归
r = rXY =
∑( X X)(Y Y) ∑( X X) ∑(Y Y)
2 i i
=
LXY LXX.LYY
2
相关系数r没有测量单位,其数值为-1≤≤+1 没有测量单位,其数值为-
相关系数的计算方法
计算时分别可用下面公式带入相关系数r 计算时分别可用下面公式带入相关系数r的 计算公式中
∑ (X ∑ (Y ∑ (X
四,进行线性相关分析的注意事项
⒊ 依据公式计算出的相关系数仅是样本相关系
数,它是总体相关系数的一个估计值,与总体 它是总体相关系数的一个估计值, 相关系数之间存在着抽样误差,要判断两个事 相关系数之间存在着抽样误差, 物之间有无相关及相关的密切程度, 物之间有无相关及相关的密切程度,必须作假 设检验. 设检验.
蛙蛙蛙 蛙蛙蛙
20
10
0 0 10 20 30
温度
2.计算回归系数与常数项 2.计算回归系数与常数项
在本例中:
∑ X = 132
∑ Y = 246
∑X ∑Y
2
= 2024
= 6610
X = 12
2
Y = 22.363
∑ XY = 3622
l b = XY = l XX

XY

( ∑ X )( ∑ Y ) (132)(246) 3622 670 n 11 = = = 1.523 2 2 (∑ X ) 132 440 2 2024 X 11 n
X2
4 16 36 64 100 144 196 256 324 400 484 2024
Y2
25 121 121 196 484 529 1024 841 1024 1156 1089 6610
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用一定模型来表述变量相关关系的方法就称为 回归分析。
.
9
一、回归分析与相关分析的关系
回归分析是以数学方式表示数量间的关系,而 相关分析则是检验或度量这些关系的密切程度,两 者相辅相成。如果通过相关分析显示出变量间的关 系非常密切,则通过所求得的回归模型可获得相当 准确的推算值。
.
10
相关分析中,所有变量置于相同地位是寻求对等关系的, 不是寻求谁决定谁或谁预测谁的关系。但现实中,却经常发生 根据相关关系进行预测的情况,这时变量是不对等的。
.
19
四、回归系数与相关系数的关系
r (X X )(Y Y) N SX SY
(X X )(Y Y)
bYX
(X X )2
bYX
r N SX SY (X X )2
r N SX SY
N
S
2 X
r SY SX
.
20
五、一元线性回归的基本假设
1.线性关系假设
2.正态性假设:指回归分析中的Y服从正态分布。
.
5
.
6
.
7
在实际分析中,可以根据测量变量的个数、变量 的类型以及变量间的相关关系,将回归分析划分为 :一元线性回归分析、多元线性回归分析、非线性 回归分析、曲线估计、时间序列曲线估计、含虚拟 自变量的回归分析和逻辑回归分析等类型。
.
8
第一节 线性回归模型的建立方法
回归分析是探讨随机变量间数量关系的一种常 用统计方法。它通过建立变量间的数学模型对变 量进行预测和控制。
-0.13
5 44.4 49.2 -14.04 197.12 -6.08
平均 平均 30.36 43.12
85.36
.
18
⑵ 计算a和b
b (X(XX)X(Y)2Y)
14.4150.29; 49.292
aYbX43.120.2930.3634.32 则一元线性回归:Y方 ˆ 0程 .29为 X34.32
令 SSe 2bX 2 2 XY 2aX b
2b X 2 2 XY 2a Y 0
b X 2 XY a Y 0 b X 2 a Y XY
Na b X Y b X 2 a Y XY
a
Y
b X
N
Y
bX
b
N
N
XY X2
X X
Y
2
cov XY
.
4
当前的“回归”,则指在大样本数据下的散点图 中,找到一条特定的直线或曲线,使得被预测的变量 的各点距离该直线或曲线的变异总体上最小,则这条 直线或曲线叫做测量变量与被预测变量之间关系的回 归线,它能够最理想的反映变量间的预测关系。 (用容 易测量的变量,预测不易测量的变量;用当前的变量,预 测将来的变量)
最小二乘法:使得误差平方和最小

.
14
Yˆ a bX ; SSe Y Yˆ 2 SSe Y Yˆ 2 Y a bX 2 Y 2 a2 b2 X 2 2aY 2bXY 2abX

SSe a
2a 2Y
2bX
2Na
2Y
2b
X
0
Na Y b X 0 Na b X Y
第十章 线性回归
.
1
当我们希望知道所关心的事物受哪些因素影响时, 该采用什么方法来统计分析?
相关分析? 因果关系研究? 回归分析?
.
2
一、有趣的发现
英国著名的统计学家F.Galton及其弟子 K.Pearson ,研究了1078对夫妇及其一个成年 儿子的身高关系。他们以儿子身高作为纵坐标 、夫妇平均身高为横坐标作散点图,结果发现 二者的关系近似于一条直线。经计算得到了如 下方程:
学生 1 2 3 4 5 6 7 8 9 10 X 89 75 77 73 68 78 81 90 70 74 Y 92 82 76 78 70 84 83 85 75 80
S
2 Xr SY SX Nhomakorabea.
15
a Y bX
b (X X )(Y Y) (X X)2
.
16
例1 假定我们把某一试验进行了5次,得到的数据 如下表所示,试求该一元线性回归方程。
序号 1
2
3
4
5
X
15 25.8 30 36.6 44.4
Y 39.4 42.9 41.0 43.1 49.2
.
17
解:⑴列出回归方程计算表(见下表)
回归分析中,变量之间的地位是不对等的,变量可分为自 变量和因变量。当自变量和因变量的地位互换时,回归分析的 意义就改变了,计算结果也会不同。
.
11
二、一元线性回归方程与回归系数
一次函数:Y=a+Bx
一元线性回归方程:YˆabX
a表示直线在Y轴的截矩 b表示直线的斜率,称回归系数
bYX:Y对X的回归系数(X为自变量) bXY:X对Y的回归系数(Y为自变量)
3.独立性假设
X1,Y1与X2,Y2独立,依次类推 误差项独立
4.误差等分散性假设:特定X水平的误差,除了应呈
随机化的常态分配,其变异量也应相等。yˆ i 是Xi对应y
的子总体的平均数的一个无偏估计。
.
21
简单线性回归的基本假设
中心在回归线上, 方差相等的分布
X
.
22
随堂练习
某中学为预测学生的高考数学成绩,建立了高考数学成 绩Y对平时成绩X的线性回归方程。现随机抽取10名考生的 数据如下:
.
3
由此方程可以看到 :夫妇平均身高增加或减少
一个单位,儿子的身高只增加或减少 0.516个单位,
即子代的身高就不像父辈身高那样分化 ,而是逐渐
向平均身高回归 。Galton引进“回归” 一词来表达
这种变化关系。不过后来人们研究其它变量间的关系
时,并没有发现如上所述的回归现象,但仍沿用 “
回归” 的概念以纪念统计学家F.Galton。
.
12
三、一元线性回归方程的建立方法
步骤: 1.根据数据资料做散点图,直观判断两变量之间是
否存在线性关系
2.设直线方程式为 Yˆ abX 3.选定某种方法计算表达式中的a和b(平均数法,
最小二乘法)
4.将a,b值带入表达式,得到回归方程 5.回归方程的检验
.
13
最小二乘法
如果散点图中每一点沿Y轴方向到直线的距离的平方 和最小,即误差的平方和最小,则在所有直线中这 条直线的代表性最好
编号 X Y X - X (X - X)2 Y Y (X-X)(Y-Y)
1 15.0 39.4 15.36 235.93 3.72
57.14
2 25.8 42.9 4.56 20.79 0.22
1.00
3 30.0 41.0 0.36 0.13 2.12
0.76
4 36.6 43.1 -6.34 40.20 0.02
相关文档
最新文档