第五章-铰接法计算荷载横向分布系数

合集下载

探讨横向分配系数计算方法

探讨横向分配系数计算方法

探讨横向分配系数计算方法桥梁荷载横向分配系数的计算主要有铰接板(梁)法、刚接板(梁)法、偏心压力法、修正偏压法、比拟正交异性板法(G-M法)、弹性支承连续梁法、考虑抗扭的弹性支承连续梁法等[1]。

如何正确选择适用方法是广大设计人员面对的一个重要问题。

1、荷载横向分配系数计算理论在荷载横向分配计算中,结构的横向连接刚度起着至关重要的作用。

横向连接刚度越大,荷载横向分布作用越显著,各主梁所分配的荷载也越趋均匀。

因此需要根据实际的横向结构拟定出较为合理的简化计算模型,从而确定相应的计算方法。

对于城市宽桥,需要用梁格法,通过有限元计算来得到桥梁的横向分配系数[2]。

梁格系理论是将桥梁上部结构用一个等效梁格来代替分析,等效梁格后再将其结果还原到结构中就可得到所需的计算结果。

此法易于理解,便于使用,而且比较精确。

一般说来等效梁格的网格越密,计算结果的精确度就越高。

梁格法主要应用简支梁桥挠度参数跟横向分配系数的关系来求得横向分配系数。

通过最不利荷载的布置求得各片主梁的挠度,再由在单片主梁上跨中加载所得的挠度,从而得出各片主梁的荷载横向分配系数[2]。

2、应用梁格法的实例橄榄河桥位于省道S214线上,原桥为5-15m双曲拱桥,由于该桥病害严重,相关单位对该桥进行了重建。

2014年重建桥梁为4跨预应力混凝土连续梁桥,主梁结构为4片预应力混凝土连续小箱梁。

桥跨布置为19.92m+20m+20m+19.92m。

梁格法采用Midas/civil结构分析软件进行计算,图1为计算模型。

全桥模型在横向最不利汽车荷载布置下各片梁所承受内力值与跨中各片梁内力值之和的比值即为该片梁的横向分配系数。

同时采用刚性梁法计算该桥在最不利汽车荷载作用下的横向分配系数。

主梁从左往右编号为1-4号见图2。

表1为两种方法计算出的1-4号梁的荷载横向分配系数。

3、结语采用刚接梁法及梁格法对一座4片小箱梁构成的主梁的横向分配系数进行了计算。

经过对计算结果比较,可以得到如下结论:1)因刚接梁法主要考虑箱梁翼缘及各片箱梁之间湿接缝的刚接,横隔板的刚度平均分配到梁的纵向,故其横向分配系数计算结果偏大。

横向分布系数计算

横向分布系数计算
R1’ R2’ R3’ R4’ R5’ R1’
其中, 数。
48E l3
为常
w1’
精品课件
由竖向静力平衡条件:
5
5
Ri i Ii 1
i1
i1
i
1
5
Ii
i1
P=1
w1’ w2’ R1’ R2’ R3’ R4’ R5’
R
i
Ii
5
Ii
i1
………………………………………(a)
精品课件
(2) 偏心力矩 M=e 作用
1
2
+1
图 双主梁桥
精品课件
人群
por
1
2
3
4
pr
汽车
a
Pq Pq
22
1
r
1号梁
1
2号梁
图 杠杆原理法计算横向分布系数
➢假定荷载横向分布影响线的 坐标为η ,车辆荷载轴重为 P ,轮重为 P/2,按最不利情 况布载,则分布到某主梁的最 大荷载为:
Pm ax P 212P
➢则汽车荷载横向分布系数为:
某梁上某截面的内力(弯矩、剪力)影响面:η=ηx, y
精品课件
梁桥由承重结构(主梁)及传力结构(横隔梁、 桥面板)两大部分组成。多片主梁依靠横隔梁和 桥面板连成空间整体结构。公路桥梁桥面较宽, 主梁的片数往往较多,当桥上的车辆处于横向不 同位置时,各主梁不同程度的要参与受力,精确 求解这种结构的受力和变形,需要借助空间计算 理论。但由于实际结构的复杂性,完全精确的计 算较难实现 ,目前通用的方法是引入横向分布 系数,将复杂的空间问题合理的简化为平面问题 来求解—空间理论的实用计算方法。
分担的荷载比值变化曲线,也称为该主梁的荷 载横向分布影响线。

第五章横向分布系数计算例

第五章横向分布系数计算例

a12 I1 ⎫ R11 = n + n ⎪ 2 ∑ I i ∑ ai I i ⎪ ⎪ i =1 i =1 ⎬ I1 a12 I1 ⎪ R51 = n − n 2 ⎪ ∑ I i ∑ ai I i ⎪ i =1 i =1 ⎭ I1
2010年5月13日 《桥梁工程概论》第五章 25
②利用荷载横向影响线求主梁的荷载横向分布系数m
平衡
∑ R′ = αw′∑ I
i =1 i i i =1
n
n
i
=1
Ij
α=
48 E l3
偏心力矩M = 1·e的作用
αwi′ =
1
∑I
i =1
n
R′j =
i
∑I
i =1
n
i
2010年5月13日
《桥梁工程概论》第五章
23 两者叠加的结果

图d) 偏心力矩M = 1·e的作用 挠度: w '' i = a tgϕ
单向板
悬臂板
铰接板
2010年5月13日
《桥梁工程概论》第五章
6
四边简支板的荷载分布
• 在均布荷载q作用下,长边跨中挠: •短边跨中挠度:
2 q2 l2 Δ2= k EI
q1l12 Δ1 = k EI
•由位移协调条件: Δ1 =Δ 2 •力平衡条件: q = q1 + q2
4 l2 •因此: q1 = 4 4 l1 + l2
2010年5月13日
跨中弯矩 M 中 = +0.7 M 0 ⎫ ⎪ ⎬ 支点弯矩 M 支 = −0.7 M 0 ⎪ ⎭
11
《桥梁工程概论》第五章
弯矩
单 向 板 内 力 计 算 图 式

桥梁荷载横向分布系数的各种计算方法综述

桥梁荷载横向分布系数的各种计算方法综述

桥梁荷载横向分布系数的各种计算方法综述姓名:XXX 学号:50XXXXXXX3摘要:公路桥梁荷载横向分布有多种计算模型,其中比较实用的有:1)杠杆原理法;2)偏心压力法、修正偏心压力法;3)铰接板(梁)法;4)刚接板(梁)法等。

这些理论方法有各自的适用范围,应按具体情况选用适当的方法来运用。

关键词:混凝土简支梁桥;荷载横向分布系数;影响线;影响因素1 引言随着国民经济的发展,对交通的需求日益提高,众多的高速公路及城市快速干道相继修建。

公路桥梁上行驶车辆的轴重加重、速度提高,车流密度也相应提高。

使之在设计过程中如何确保桥梁结构在使用寿命期限内的安全性,准确计算各片梁所需承担的最大活载弯矩就显得尤为重要。

特别是对于中小跨多片梁型的桥梁,当跨数较多时,用测试横向分布状态的方法对桥梁运营状态进行评价,具有简洁、实用、可靠等优点,具有较高的推广价值。

所谓荷载横向分布系数(Lateral Distribution Factor of Live Load)是指公路车辆荷载在桥梁横向各主梁间分配的百分数。

普通简支桥梁中它和各主梁间的联结方式(铰接或刚接),有无内横梁及其数目,断面的抗弯刚度和抗扭刚度,以及车辆荷载在桥上的位置等有关。

它是一个复杂的空间结构问题,在桥梁设计中常简化为平面问题而引用荷载横向分布系数。

[1]目前广泛采用的是利用主梁的纵向影响线和它的荷载横向分布影响线相结合的方法,荷载横向分布系数是在荷载横向分布影响线的基础上按荷载的最不利位置布载,并将荷载位置相应的影响线竖标值求和得到的最后数值结果。

对于混凝土简支梁桥,荷载横向分布系数的影响因素主要有桥粱跨度(Z)、主梁间距(S)、桥面板的厚度(t0)、主梁刚度(K0)、横隔梁(板)的数量及位置、车载类型及布栽位置、车辆间距、栏杆及横跨比等。

[2][3][4][9]2 计算方法及其适用范围荷载横向分布理论在桥梁设计中占有重要地位。

目前桥梁荷载横向分布系数常用的计算方法主要有杠杆原理法、偏心压力法(修正偏心压力法)、铰接板(梁)法、刚接梁法和比拟正交异性板法(G-M法)等。

桥梁博士常见问题解答

桥梁博士常见问题解答

横梁计算(1) 计算方法概述横梁按照一次落架的施工方法采用平面杆系理论进行计算,考虑长度为6倍顶板厚度的顶底板参与横梁受力,根据荷载组合要求的内容进行内力、应力、极限承载力计算,按钢筋混凝土构件(钢筋混凝土横梁)/预应力构件(预应力混凝土横梁)验算结构在施工阶段、使用阶段应力、极限承载力是否符合规范要求。

(2) 荷载施加方法横梁重量按实际施加,同时将纵向计算时永久作用和除汽车、人群以外的可变作用引起的支反力标准值作为永久荷载平均施加在横梁的各腹板位置,汽车、人群荷载在其实际作用范围按最不利加载。

当然,用户可以采用其他的荷载施加方法,不必拘泥于上述内容。

(3) 将纵向一列车的支反力作为汽车横向分布调整系数时(注意城市荷载纵向计算的车道数大于4时,计算剪力时荷载乘1.25,故用多列车支反力除横向分布系数较真实),横向加载有效区域需手动扣除车轮距路缘石的距离。

(4) 每m宽人群纵向支反力作为人群横向系数,人行道宽度为纵向宽度,填1,人群集度填1,加载有效区域按实际填。

(5) 满人横向系数与人群相同,满人总宽填1预应力构件中单元应力验算应以主应力控制还是正应力控制?主应力主要用来控制构件腹板内部斜裂缝的,铁路规范明确定义截面重心轴处及翼缘板与腹板交接处需要进行主拉应力验算,桥博的计算结果中虽然也给出了主应力值,但是对于单元顶、底缘的主应力可以不受控制,因为一般主应力在单元内部发生。

正应力主要是用来控制单元顶、底缘的。

使用刚接板梁计算横向分布系数左板和右板惯矩怎么计算出来的啊?对于小箱梁和T梁,就是将上部结构沿纵桥向取1m,在这1m的范围内上部结构拼接处的悬臂接触面积。

以T梁为例,就是图中阴影部分的面积计算惯性矩即可。

部分支座的反力为0?Q:桥博计算的收缩支反力中部分支座的反力为0,结构自重在各支座处产生的支反力均不为0,可为何支反力汇总列表中收缩反力为0的支座,支反力汇总也为0。

A:程序计算各项反力后,将各作用产生的支反力叠加,若某个支座支反力为负,即出现支座脱空时,程序就将这个支座拆除,在其上反向增加一个外荷载,荷载大小等于除收缩之外其余荷载及作用产生的支反力合力,重新计算其余支座的支反力,在各支座支反力汇总时,被拆除的支反力为0,其余支反力为各作用的合力汇总。

横向分布系数计算(多种方法计算)

横向分布系数计算(多种方法计算)

实用文档标准文案横向分布系数的示例计算一座五梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图,计算跨径L=19.5m ,主梁翼缘板刚性连接。

求各主梁对于车辆荷载和人群荷载的分布系数?杠杆原理法:解:1绘制1、2、3号梁的荷载横向影响线如图所示2再根据《公路桥涵设计通用规范》(JTG D60-2004) 规定,在横向影响线上确定荷载沿横向最不利布置位置。

如图所示: 对于1号梁: 车辆荷载:484.0967.02121=⨯==∑ηcq m 人群荷载:417.1==r cr m η 对于2号梁: 车辆荷载:5.012121=⨯==∑ηcq m 人群荷载:417.0==r cr m η 对于3号梁: 车辆荷载:5.012121=⨯==∑ηcq m 人群荷载:0==r cr m η4、5号梁与2、1号梁对称,故荷载的横向分布系数相同。

偏心压力法(一)假设:荷载位于1号梁 1长宽比为26.25.155.19>=⨯=b l ,故可按偏心压力法来绘制横向影响线并计算横向分布系数c m 。

本桥的各根主梁的横截面积均相等,梁数为5,梁的间距为1.5m ,则:5.220)5.11(2)5.12(2222524232221512=+⨯+⨯=++++=∑=a a a a a ai i2所以1号5号梁的影响线竖标值为:6.0122111=+=∑i a a n η 2.0122115-=-=∑i a a n η由11η和15η绘制荷载作用在1号梁上的影响线如上图所示,图中根据《公路桥涵设计通用规范》(JTG D60-2004)规定,在横向影响线上确定荷载沿横向最不利布置位置。

进而由11η和15η绘制的影响线计算0点得位置,设0点距离1号梁的距离为x ,则:4502.015046.0=⇒-⨯=x xx 0点已知,可求各类荷载相应于各个荷载位置的横向影响线竖标值3计算荷载的横向分布系数 车辆荷载:()533.0060.0180.0353.0593.02121=-++⨯==∑ηcq m 人群荷载:683.0==r cr m η (二)当荷载位于2号梁时 与荷载作用在1号梁的区别以下:4.0122112=+=∑i a a a n η实用文档标准文案0122552=-=∑ia a a n η 其他步骤同荷载作用在1号梁时的计算修正偏心压力法(一)假设:荷载位于1号梁 1计算I 和T I :2.3813018)2814(150)18150()2814(1301821)(2122221=⨯++⨯-+++⨯⨯=+-++⨯=ch bd c b d ch y8.912.3813012=-=-=y y y[][]43333313132106543)112.38)(18150(2.381508.911831))((31cm d y c b by cy I ⨯=---⨯+⨯⨯=---+⨯=对于翼板1.0073.01501111<==b t ,对于梁肋151.01191822==b t 查下表得所以:311=c ,301.02=c 433331027518119301.01115031cm t b c I i i i T ⨯=⨯⨯+⨯⨯==∑2计算抗扭修正系数β 与主梁根数有关的系数ε则n=5,ε=1.042 G=0.425E875.055.15.1910654310275425.0042.111)(112332=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯+=+=E E B l EI GI T εβ 3计算荷载横向影响线竖标值11η和15η55.0122111=+=∑i a a n βη 15.0122115-=-=∑ia a n βη 由11η和15η绘制荷载作用在1号梁上的影响线如上图所示,图中根据《公路桥涵设计通用规范》(JTG D60-2004)规定,在横向影响线上确定荷载沿横向最不利布置位置。

第五章-铰接法计算荷载横向分布系数

第五章-铰接法计算荷载横向分布系数
l x
gi ( x) gi sin l
五、铰接板法(1)
3. 铰接板桥的荷载横向分布
✓ 单位正弦荷载作用在1号板梁轴线上,分析荷载在各条板内的横
向分布:取单位板宽进行研究
p( x) 1 sin x
l x
p( x) p0 sin l
gi
(x)
gi
sin
x
l
图 铰接板桥受力示意图
五、铰接板法(1)
假如采用具有峰值po 的半波正弦荷载:
x
使得荷载、挠度、内力变化规律协调。 p( x) p0 sin l
五、铰接板法(1)
2. 基本假定
➢ 假定1:竖向荷载作用下结合缝内只传递竖向剪力 g(x) 。 ➢ 假定2:采用半波正弦荷载分析跨中荷载横向分布的规律。
PP
图 铰接板桥受力示意图
P
p( x) psin x
P
铰缝处传递的作
用力,有:
竖 向 剪 力 :g( x)
横 向 弯 矩 :m( x)
纵 向 剪 力 :t( x)
法 向 力 :n( x)
五、铰接板法(1)
注意:把空间问题,借助按横向挠度分布规律来确定荷载横向分布 的原理,简化为平面问题来处理,应严格满足:
1( x) M1( x) Q1( x) P1( x) 常数 2( x) M2( x) Q2( x) P2( x)
例题6:
板号
单位荷载作用位置( i 号板中心)
ki
1
2
3
4
5
6
7
8
9
0.02 236 194 147 113 088 070 057 049 046
1 0.04 306 232 155 104 070 048 035 026 023 1000

桥梁博士V4工程案例教程05_桥博V4-横向分布系数解决方案

桥梁博士V4工程案例教程05_桥博V4-横向分布系数解决方案
计算双主梁桥的荷载横向分布系数;
第二章 刚性横梁法
二、桥梁博士V4横向分布系数—刚横梁法
1.适用范围
荷载横向分布适用于桥梁上具有可靠的横 向联结,且桥的宽跨比B/L小于或接近0.5 的情况时(窄桥),一般采用此计算方法; 基本前提是:a、汽车荷载作用下,中间横 隔梁可近似地看作一根刚度为无穷大的刚 性梁,横隔梁仅发生刚体位移;b、忽略主 梁的抗扭刚度,即不计入主梁扭矩抵抗活 载的影响。(如图)
考虑负反力;
要点:针对多车道以上勾选;
15公路通规4.3.1-7;
断面形式
杠杆原理法:把横向结构(桥面板和横隔梁)视作在主梁上断开而简支在其上的简支梁 刚性横梁法:把横隔板视作刚性极大的梁。 刚(铰)接板梁法:把相邻板(梁)之间视为铰接,指传递剪力为铰接板梁法;相邻主
梁之间视为刚性连接,即传递剪力和弯矩视为刚接板梁法。 比拟正交异性板法:将主梁和横隔梁的刚度换算成正交两个方向刚度不同的比拟弹性平
二、桥梁博士V4横向分布系数—刚横梁法
2.荷载横向分布影响线公式
考虑主梁抗扭刚度的修正偏心压力法公式:
二、桥梁博士V4横向分布系数—刚横梁法
2.荷载横向分布影响线公式
不计主梁抗扭刚度的偏心压力法:
第三章 刚(铰)接板梁法
三、桥梁博士V4横向分布系数—刚(铰)接板梁法
1.铰接板梁法适用范围
铰接板法、梁法是分别用来求算两种简支桥梁荷载横向分布系数的方法,当结构 是用现浇混凝土纵向企口缝连接的装配式板梁时,便应用铰接板法;当结构为无 中横梁而仅在翼缘板间用焊接钢板或伸出交叉钢筋连结的装配式T梁桥时,便用铰 接梁法。(如下图)
要点:
1) 轮重:特殊车辆横向各轮轮重,非 特殊荷载,如机场、
轴重;

荷载横向分布计算

荷载横向分布计算

R R1 R2
1
P 2
2
P 2
i P 2
m q P
P/2
P/2
1
2
3
R1 R2
η1
η2
支座反力影响线
10
3、计算实例 见教材P115
11
(二)偏心压力法
1、基本假设
横梁刚性极大,刚性横梁的微小变形可以忽略不计
PP
P/2
P/2
L f f >>f’
B f f’
12
2、基本假设的适用范围 试验证明,当B/L<0.5(称为窄桥)及具有多道横隔梁时, 刚性横隔梁假设是成立的。
i1
i1
P w
说明只需要对上式中的第二项
φ
Pe
进行修正
28
3、修正偏心压力法原理
偏心力矩M=Pe=e作用下, 弯矩静力平衡:
M=Pe=e
5
5
Ri''ai MTi1e
i1
i1
ai wi’’
φ
MT1 R1’’
R2’’ MT2 MT3
R4’’ R5’’ MT4 MT5
29
材料力学关于简支梁跨中的 扭矩与扭转角的关系
各梁竖向挠度:
M=Pe=e
wi'' aitg
根据位移与荷载的关系,
Ri'' Iiwi''
ai wi’’
φ
R1’’ R2’’
R i''Iiw i''Iia itg a iIi
R4’’ R5’’
18
弯矩静力平衡:
M=Pe=e
5
5
Ri''ai ai2Ii 1e

铰接板梁法横向分布系数的计算分析

铰接板梁法横向分布系数的计算分析
第 2 卷第 3 O 期
21 0 0年 9月
湖 南 工 程 学 院 学 报
Vo . O No 3 12 。 .
Sp. 00 e t2 1
J u n l fH u a n t u eo gn e i g o r a n n I s i t fEn i e rn o t
铰 接 板 梁 法 横 向分 布 系数 的 计 算 分 析

梁单元 进行 荷载横 向 分 布 的求 解 , 计 算 结 果 将更 其
符合 实际情 况 , 能 真实 的反 映桥 梁 的工作状 态. 更
土空 心板 组成 , 的横 截 面布 置 及 空 心板 横 断 面 如 桥
图 l所 示 :

70 0馕

OO OO OO OO OO OO OO OO
向分布 的方法 分析 梁 桥 , 实 质 是 将 原 内力 影 响面 其
近 似简化 为两 个单 值 函数 的乘 积 , 就是 变量 分 离 也 的方 法 , 而把 空 间结 构 的 内力 计 算 问题 转 化 为 平 从 面 问题 来解 决 , 但是 荷 载横 向分 布 的 求解 属 空 问 问 题, 因此这 在一 定程 度 上 , 在一 定 的误 差. 着 有 存 随 限元 理论 和大 型有 限元 软 件 ( ANS 、 GOR、 如 YS AL MI AS等) 术 的 发 展 , 用 不 同 的单 元 ( 实 体 D 技 采 如 单元 、 梁单元 、 壳单 元 等 ) 以 将分 析对 象 根 据 不 同 可 的需要 进行 模拟 , 行空 间分 析 , 进 因此可 以采 用空 间
杨 忠 , 高 峰 ,刘 义 河 ,陈 维
( 林 省 公 路 勘 测 设 计 院 , 春 10 2 ) 吉 长 3 0 1

荷载横向分布系数的计算

荷载横向分布系数的计算
荷载横向分布影响线为三角形
适用情况 ①只有邻近两根主梁参与受力 ②虽为多主梁,但计算梁端支承处荷载 ③无中间横隔梁
2、荷载横向分布系数的计算方法
(1)杠杆分配法
作业1:画 及出单3车、辆4荷号载梁作的用荷下载3横、向4分号布梁影荷响载线横,向
0.75m
分布系数 7m
0.75m
1
2 2m
3
4
(2)刚性横梁法(偏心受压法) 假定 ①横梁是刚性的:宽跨比B/l≤0.5 ②忽略主梁抗扭刚度
▪ 该方法视梁系为超静定结构,用力法求解, 适用于翼缘板之间是刚性连接的肋梁桥。
④ 比拟正交异性板法(G-M法)
▪ 适用情况:对于由主梁、连续桥面板及多根横隔板 组成的钢筋混凝土桥中,当其宽跨比>1/2。
▪ 每根主梁的截面抗弯惯矩和抗扭惯矩分别为Ix、ITx, 横隔梁的截面抗弯惯矩和抗扭惯矩分别为Iy、ITy。
▪ 三、荷载横向分布的计算
5、荷载在顺桥跨不同位置时主梁荷载横向分布系数 的取值
荷载在桥跨纵向作用位置不同,对某一主梁产生 的横向分布系数也不同。
处理方法:通常用杠杆原理法确定支点处的横向 分布系数m0,用其他各方法计算荷载位于跨中的横 向分布系数mc。
▪ 三、荷载横向分布的计算
5、荷载在顺桥跨不同位置时主梁荷载横向分布系数 的取值
荷载横向分布系数:
ηki
Ik
n
β ak Ike n
Ii
ai2 Ii
i 1
i 1
修正系数:
β
1
1 Gl2
12E
1 ITi ai2 I i
竖向反力与扭矩的关系
转动时的扭矩平衡
e、ai
同侧取正号, 异侧取负号

荷载横向分布计算详细总结(全)

荷载横向分布计算详细总结(全)
⑥ 和 分别作用在1号边梁和 号边梁上时,各片梁的荷载横向分布系数调整值为:
将式(a)与式(b)相加后,与式7-2联立,可得如下方程组:
= 式(7-2)
(式7-2)的具体推导过程见下图:
图6.6
⑦解上述方程组,解得:
(式7-3)
—第 片主梁的抗扭惯性矩。
G—材料的剪切模量,对于混凝土结构,G=0.425E。
注:修正偏心压力法作出的荷载横向分布影响线是一条直线。
5.铰接板(梁)法:(①中梁和边梁抗弯刚度相等或者接近②跨中)
☆适用条件:现浇砼纵向企口缝连结的装配式桥、仅在翼板间用钢板或钢筋连接的无中间横隔梁的装配式T梁桥。此类桥横向有一定连结构造,但刚性弱,板(梁)之间的连接可以看成是铰接。
矩阵B是 阶三对角方阵,其组成规律为:主对角线上的元素均为 ,剩余两条对角线元素均为 。
矩阵C为 阶方阵,组成规律为:主对角线上元素均为0,主对角线上侧第一条对角线上元素均为 ,主对角线下册第一条对角线上元素均为 (可以将矩阵C看成是一个主对角线元素为0的特殊三对角矩阵)。具有n片主梁时,矩阵C的一般形式见下图6.2:
注:铰接板(梁)法作出的荷载横向分布影响线是一条光滑曲线。
6.刚接板(梁)法:(①中梁和边梁抗弯刚度相等或者接近;②跨中)
☆适用条件:各种桥面板刚接的肋梁桥。对于整体式板桥,使用刚接梁法计算时,把整体式板划分成 块等宽度 的板(一般 ),当做彼此之间刚接的板桥来计算其荷载的横向分布。需要注意的是,将整体式板划分成 块等宽度为 的板时,每一块板的宽跨比 不宜大于1/4。
其中: —每片主梁的抗弯惯性矩。
—每片主梁的抗扭惯性矩。
—单位宽度翼缘板的抗弯惯性矩。
—梁(板)截面宽度。
—翼缘板的悬出长度。

荷载横向分布的计算

荷载横向分布的计算

三、荷载横向分布的计算
2、荷载横向分布系数的计算方法 常用的计算方法: ◆ 杠杆原理法 ◆ 刚性横梁法 ◆ 修正的刚性横正交异性板法(G-M法) 从分析荷载在桥上的横向分布出发,求得各梁 的荷载横向分布影响线,再通过横向最不利加载来 计算荷载横向分布系数
多主梁桥的内力计算
S P ( x, y) P 2 ( y) 1 ( x)
三、荷载横向分布的计算
1、荷载横向分布系数的概念
荷载横向分布系数表示某根主梁所承担的最大荷载与轴 重的比值
车轮荷载的横向分布
三、荷载横向分布的计算
1、荷载横向分布系数的概念 荷载横向分布系数与各主梁之间的横向联系有直 接关系。
三、荷载横向分布的计算
2、荷载横向分布系数的计算方法 荷载横向分布影响线:P=1在梁上横向移动时,某 主梁所相应分配到的不同的荷载作用力。 对荷载横向分布影响线进行最不利加载Pi,可 求得某主梁可行最大荷载力

荷载横向分布系数:将Pi除以车辆轴重。
三、荷载横向分布的计算
2、荷载横向分布系数的计算方法 (1)杠杆分配法
二、行车道板的计算
1、车辆活载在板上的分布 公路汽车荷载

轮压一般作为分布荷载处理 车轮着地面积:a1×b1
桥面板荷载压力面:a2×b2
荷载在铺装层内按45°扩散 沿纵向:a2=a1 +2h


沿横向:b2=b1+2h
桥面板的轮压局部分布荷载:
公路桥面板上车轮荷载的扩散
P p 2a2b2
三、荷载横向分布的计算
1、荷载横向分布系数的概念 公路桥梁桥面较宽,主梁片数往往较多并与桥 面板和横隔梁联结在一起。当桥上车辆处于横向不 同位置时,各主梁参与受力的程度不同,属空间问 题,求解难度大。 应将空间问题简化为平面问题。

横向分布系数计算(多种方法计算)

横向分布系数计算(多种方法计算)

2
150 (14 8) 18 130
38.2
2
y2 y y1 130 38.2 91.8
抗弯惯矩 I 为:
I
1
cy
3 2
by
3 1
(b
c)( y1
d )3
1 18 91.8 3 150 38.2 3 (150 18)( 38.2 11) 3
3
3
主梁的比拟单宽抗弯惯矩
J x I x 6543 103 43620cm4 / cm
P227 附录Ⅱ的精度也达不到小数点后两
位,所以仍用 θ =0.324 的 K1 和 K 0 计算:(见下表)
0.425E 275 103
2
19.5
1 1.042 E 6543 103 1.5 5
0.875
3 计算荷载横向影响线a12 ai2
0.55
1
15
n
a12 ai2
0.15
由 11 和 15 绘制荷载作用在 1 号梁上的影响线如上图所示,图中根据《公路桥涵设计
通用规范》 ( JTG D60-2004 )规定,在横向影响线上确定荷载沿横向最不利布置位置。
I y 3320 103
JY
a
485
( 3 )主梁和横隔梁的抗扭惯矩
6640cm4 / cm
对于 T 型翼板刚性连接的情况,应由式
2-5-74 来确定。
对于主梁梁肋:
主梁翼板的平均厚度:
h1 14 8 11cm 2
tb
18
0.151 ,由表 2-5-2 查得 c=0.300
130 11
t/b
1
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

荷载横向分布系数的计算方法

荷载横向分布系数的计算方法

荷载横向分布系数的计算方法1. 嘿,你知道吗,杠杆原理就可以用来理解荷载横向分布系数的计算方法哦!就像我们挑扁担一样,重物在不同位置,两边的受力可就不一样啦。

比如有一座桥,桥上的车分布在不同位置,那么桥的各个部分承担的力也就不同啦!2. 哎呀呀,有一种很直观的方法就是比拟法呀。

可以把桥想象成一个大披萨,荷载就是上面的各种配料,分布在哪里,对每一块的影响就不同咯。

想象一下你切披萨的时候,不同部分的厚度是不是就类似荷载横向分布呀!比如一个大型商场的人群分布。

3. 哇哦,还有一种叫做刚接板梁法呢!这就好像是一群人手拉手站成一排,一个人受力后,其他人会跟着分担。

比如说火车在轨道上行驶,轨道的不同部分承担着火车的重量。

4. 嘿!那还有个方法叫铰接板梁法哟。

这就类似于多个秋千连在一起,一个动起来其他的也会受到影响。

像那种多跨的小桥,就可以用这个方法来计算荷载横向分布系数呢!5. 哈哈,还有个比拟很有趣呢,把桥梁比作一个大的拼图。

而荷载横向分布系数的计算就像是在给这个拼图分配各个板块的任务。

想想看一座大型的钢构桥,可不就是这样嘛!6. 哇塞,数值计算法也很厉害哦。

就好像是在解一道超级复杂的数学难题,但解开后就能清楚知道荷载的分布啦。

就像在分析一个复杂的建筑结构体的受力情况一样。

7. 哟呵,梁格法也别忘了哦。

可以把它想象成是一个精致的棋盘,荷载就是棋子,怎么布局就决定了横向分布情况呢。

瞧瞧那些大型的互通立交桥,就是很好的例子呀!8. 最后一个是偏心压力法啦。

这就如同一个跷跷板,一边重压,另一边就会翘起。

像那种有明显偏心荷载的结构,就很适用这个方法。

比如一个特殊造型的雕塑,上面有不均匀的荷载分布。

我的观点结论就是:这些计算方法都各有特点和适用场景,我们要根据实际情况选择最适合的方法来准确计算荷载横向分布系数呀!。

荷载横向分布计算(铰接板法)

荷载横向分布计算(铰接板法)
δ ( i −1 ) i = δ i ( i +1 )
b = − (ω − φ ⋅ ) 2

δ ( i −1) i = δ i (、 i −1)
δ ( i +1) i = δ i ( i +1)
Байду номын сангаас
在铰缝( 在铰缝(i -2)和铰缝(i +2)处: )和铰缝( ) 外荷载P在铰接缝 处引起的竖向位移: 外荷载 在铰接缝 i 处引起的竖向位移:
′′ ′′′ w1 ( x) w1 ( x) w1 ( x ) p1 ( x) = = = = 常数 (1) ) ′′ ′′′ w2 ( x ) w2 ( x ) w2 ( x ) p2 ( x )
实际上, 作用下的② 实际上,在P作用下的②号梁和在 (x)作用下的 作用下的 号梁和在g 作用下的 号梁是在不同性质的荷载( 和 ①号梁是在不同性质的荷载(P和g (x) )作用下的 两片梁,所以( )式的比例关系是不成立的。 两片梁,所以(1)式的比例关系是不成立的。 如果引入一种半波正弦荷载 P进行分析计算,那么(1)式成立、计算误差较小。 进行分析计算,那么( )式成立、计算误差较小。 进行分析计算 ∴各根板梁的挠曲线将是半波正弦曲线,所分配到的 各根板梁的挠曲线将是半波正弦曲线, 挠曲线 荷载是具有不同峰值的 荷载是具有不同峰值的半波正弦荷载 是具有不同峰值 波正弦荷载来分析跨中荷载横向分布的规律。 波正弦荷载来分析跨中荷载横向分布的规律。 这 样能很好地模拟板间荷载的传递关系。 i ( x ) = pi sin p 样能很好地模拟板间荷载的传递关系。所以采用半
w1 ( x) M 1 ( x) Q1 ( x) P ( x) = = = 1 = 常数 w2 ( x) M 2 ( x) Q2 ( x) P2 ( x)

桥梁工程第二篇第5章 荷载横向分布计算02

桥梁工程第二篇第5章 荷载横向分布计算02

1
b) p=1
b
g1
g1
c) x
f f(x)=f .sinπx
2 b g2
g2
3 b g3
g3
p(x)= .sinπx
h1 d1 3
b2φ
f
4
5
b g4
g4
g=1
h1 φ
d1
与铰接板法的区别:变位系数中增加桥面板变形项
例题
跨径l=12.60m的铰接空心板桥的横截面布 置,桥面净空为净-7和2×0.75m人行道。 全桥跨由9块预应力混凝土空心板组成,欲 求1、3和5号板的汽车和人群荷载作用下的 跨中荷载横向分布系数。
11g1 12 g2 13g3 14 g4 1p 0 21g1 22 g2 23g3 24 g4 2 p 0 31g1 32 g2 33g3 34 g4 3 p 0 41g1 42 g2 43g3 44 g4 4 p 0
板梁的典型受力图式
a) gi(x)=l.sinπx
b) b l gi=1
w
c)
gi =1 mi=l.b2
b2φ
b2φ
式中, ik 铰缝k内作用单位正弦铰接力,在铰
缝i处引起 的竖向相对位移 ip :外荷载p在铰缝i处引起的竖向位移
, 求 ik、 i,p 用
表示,
设刚度参数
b
2
可由刚度参数、板块数、荷载作用位置确定gi,
Guyon ,无扭梁格: Massonnet ,有扭梁格:
α =0~1 间,用下式内插求得
参 数:
5、查表绘影响线 (1)表中只有9点值,若梁位与点位不重合必须 通过内插计算实际梁中间位置的K值
( 2 ) Kki =Kik 利用对称关系,减少查表工作量

桥梁工程讲五横向分布系数计算GM法PPT课件

桥梁工程讲五横向分布系数计算GM法PPT课件

可编辑
主讲人 : 王丽荣
3、横向分布系数计算
(1)绘制影响线的原理 A、根据荷载、挠度、内力的关系。
C、为与跨度和截面刚度相关的常数。 B、外载为单位正弦荷载。
2020/2/29
可编辑
主讲人 : 王丽荣
• 根据内、外力的平衡:等代
2020/2/29
可编辑
主讲人 : 王丽荣
位移互等定理 引入影响系数
(1)比拟
2020/2/29
可编辑
主讲人 : 王丽荣
好处:
• (1)其他方法主要在横向联结方式不同假 定不同平面问题。
• (2)实际空间结构非精确解。 • (3)弹性薄板用弹性理论分析,简化为计
算图表求解实际问题。
2020/2/29
可编辑
主讲人 : 王丽荣
2、求解板在半波正弦荷载下的挠度
• (1)弹性板的挠曲面微分方程:正交均质
桥梁工程
2020/2/29
土木与建筑工程学院 2013年3月22日
可编辑
主讲人 : 王丽荣
活载(汽车、人群)特点:横向分布
桥上的荷载→某梁的某截面内力←→ 空间问题→多个车辆纵横向移动→

实用:平面化
①横桥向上,荷载分配至各梁→ 横向分布问题。
②某梁在分得荷载的作用下,内力计算问题。
规律:不同结构→ 不同刚度→不同的算法
2020/2/29
可编辑
主讲人
正交异性定义:结构材料两个方向弹性性质不同 桥跨结构纵横向构造不同
内力与位移关系方程:
2020/2/29
可编辑
主讲人 : 王丽荣
比拟原理实质
任何纵横梁格系结构比拟成的异性板,可以 完全仿照真正的材料异性板来求解,只是方程中的 刚度常数不同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I b 2 5.8 ( ) IT l
例题6:
如图为 l 12.60m的铰接空心板桥的横截 面布置,桥面净空为净 7 2 0.75m人行道。全桥由 9块预应力混凝土空心板 组成,分别计算 1、 3、 5号板汽车荷载和人群荷 载作用下的跨中荷载横 向分布系数。
图 的计算图示
由两端无转角的边界条件求积分常数:
(a ) x 0, (0) 0 : B 0 (b) x l , ( l ) 0 : A 0
pbl x 得扭角方程: ( x) 2 sin 2 GIT l
2
l 当x 时: 2 pbl 2 跨中扭角: 2 2GIT
pl

pl 2
cos
x
l
'' (l ) 0 : A 0
因此:A B C D 0
得挠度方程为:
A Ax B

2
sin
x
l

A 2 x Bx C 3 l 2 pl 4 x A B EI ( x ) 4 sin x 3 x 2 Cx D l 6 2 EI ( x )
简支板梁轴线上作用:mT ( x ) b p sinx 2 l 根据梁的扭转理论,得微分方程: b x GIT '' ( x ) mT ( x ) p sin 2 l 将上式逐次积分,得:
pb l x cos A 2 l pb l 2 x GIT ( x ) 2 sin Ax B 2 l GIT ' ( x )
P P
P
铰缝处传递的作 用力,有: 竖向剪力:g( x ) 横向弯矩:m( x ) 纵向剪力:t ( x ) 法向力:n( x )
图 铰接板桥受力示意图
五、铰接板法(1)
注意:把空间问题,借助按横向挠度分布规律来确定荷载横向分布
的原理,简化为平面问题来处理,应严格满足:
1 ( x ) M ( x ) Q1 ( x ) P1 ( x ) 1 常数 2 ( x ) M 2 ( x ) Q2 ( x ) P2 ( x )
(2)
ik 铰接缝k内作用单位正
弦铰接力,在铰缝 i处引起 的竖向相对位移;
ip 外荷载p在铰缝i处引起
的竖向位移。
五、铰接板法(1)
方程(2)中的常系数为:
11 22 33 44
b 2( ) 2
b 12 23 34 21 32 43 ( ) 2 13 14 24 31 41 42 0
5. 刚度参数的计算
b 2
扭角 偏心正弦荷载作用下, 跨中的 竖向挠度
(1)跨中挠度 w 的计算

的计算图示
x p ( x ) p sin 简支板梁轴线上作用 l 时, 梁的挠曲线近似微分方程:
d 2 M ( x ) '' M ( x ) EI d2x EI
5. 刚度参数的计算
pl 4 x 挠度方程: ( x ) 4 sin EI l pbl 2 x 扭角方程: ( x ) 2 sin 2 GIT l
板梁的两种变形与荷载具有相 似的变化规律,这也是简支梁 荷载横向分布理论中采用半波 正弦荷载的一个重要原因。
l pl 4 pbl 2 x 时: 4 , 2 2 EI 2 GIT
(1)
Байду номын сангаас
p11
p21 p31
p41 p51
“力法”求解铰接力峰值。变形协调条件 :相邻板块在铰缝处竖向相对位移为零
图 铰接板桥计算图示
11 g1 12 g2 13 g3 14 g4 1 p 0 21 g1 22 g2 23 g 3 24 g4 2 p 0 31 g1 32 g2 33 g 3 34 g4 3 p 0 41 g1 42 g 2 43 g3 44 g4 4 p 0
EI '''' ( x ) p( x ) p sin
x
l
(1)跨中挠度 w 的计算
EI '''' ( x ) p( x ) p sin
将上式逐次积分,得:
EI ''' ( x ) EI ( x )
''
x
l
1 3 (b) x l , ( l ) 0 : Al Cl 0 6
图(a)表示荷载作用在1号板梁上,各 块板梁的挠度和所分配的荷载图示
弹性薄板: pi1 1i1
同理:
p1i 21i
1号
由变位互等定理,且每块板梁截面相同,
得:
pi 1 p1i
2号
含义:单位荷载作用在1号板梁轴线上时任一板梁所分配的荷载, 等于单位荷载作用于任意板梁轴线上时1号板梁所分配到的荷载。 这就是1号板梁荷载横向影响线的竖标值,通常用 。 1i 表示
五、铰接板法(1)
4. 铰接板桥的荷载横向影响线和横向分布系数
则1号板梁荷载横向影响线的各个竖标值为:
p11 1 g1 p21 g1 g 2 p31 g 2 g 3 p41 g 3 g4 p51 g4

11 p11 1 g1 12 p21 g1 g 2
实际上对于集中轮重或分布荷载的作用情况,都不能满足此条件。 假如采用具有峰值po 的半波正弦荷载: x p( x ) p0 sin l 使得荷载、挠度、内力变化规律协调。
五、铰接板法(1)
2. 基本假定
假定1:竖向荷载作用下结合缝内只传递竖向剪力 g(x) 。 假定2:采用半波正弦荷载分析跨中荷载横向分布的规律。
b 2 EI b 2 ( ) 2 4GIT l
对于砼取 G 0.425 E
I b 2 5.8 ( ) IT l
回顾:铰接板法
1. 适用条件:块件横向具有一定连接构造,但连接刚性很薄弱,受力 状态实际接近于数根并列而相互间横向铰接的狭长板。 2. 基本假定
假定1:竖向荷载作用下结合缝内只传递竖向剪力 g(x) 。 假定2:采用半波正弦荷载分析跨中荷载横向分布的规律。
x
l
x
l
gi ( x ) gi sin
x
l
图 铰接板桥受力示意图
五、铰接板法(1)
n条板梁 (n 1)条铰缝 (n 1)个铰接力峰值 gi
1号板 2号板 3号板 4号板 5号板
p11 1 g1 p21 g1 g 2 p31 g 2 g 3 p41 g 3 g4 p51 g4
3. 计算原理
p( x ) 1 sin
x
l
p( x ) p0 sin
x
l
x
l
gi ( x ) gi sin
p11
p21 p31
p41 p51
回顾:铰接板法
p11 1 g1 p21 g1 g 2 p31 g 2 g3 p41 g3 g 4 p51 g 4
EI ( x ) p( x ) p sin
''''
gi
pi 1 p1i
x
l
GIT '' ( x ) mT ( x )
b x p sin 2 l
pl 4 x ( x ) 4 sin EI l pbl 2 x ( x) 2 sin 2 GIT l
11 g1 12 g2 13 g3 14 g4 1 p 0
变形协调条件
21 g1 22 g2 23 g 3 24 g4 2 p 31 g1 32 g2 33 g 3 34 g4 3 p
b 0 2 0
此式表明,在桥上荷载作用下,任意两根板梁所分配到的荷载的比 值,与挠度的比值以及截面内力的比值都相同。
对于每条板梁,有: M ( x ) EI ''和Q( x ) EI '''
则:
1 ( x ) 1'' ( x ) 1''' ( x ) P1 ( x ) '' ''' 常数 2 ( x ) 2 ( x ) 2 ( x ) P2 ( x )
七、荷载横向分布系数沿桥跨的变化
五、铰接板法(1)
装配板(梁)桥的横向连接
(1)装配式板桥:现浇混凝土纵向企口缝连接 (2)无中间横隔梁的装配式桥:仅在翼板间用钢板焊接联结或伸出 交叉钢筋连接 12 N1
N2 B
20
B N3
N2 - 预埋钢板 N1 - 焊接盖板
截面 A-A
主钢筋
A
10
8
N1 N2 N3
41 g1 42 g 2 43 g3 44 g4 4 p 0
变位互等定理
2(1 ) g1 (1 ) g2 1 (1 ) g1 2(1 ) g2 (1 ) g3 0 (1 ) g2 2(1 ) g3 (1 ) g4 0 (1 ) g3 2(1 ) g4 0
'
pl 3
cos
x
pl 4 x ( x ) 4 sin EI l
l 当x 时, 2 pl 4 跨中挠度: 4 EI
由两端简支的边界条件求积分常数:
(a ) x 0, (0) 0 : D 0
相关文档
最新文档