101中学坑班2012年春季五年级第六讲行程综合(一)及答案1
数学行程问题公式大全及经 典习题答案
过桥问题:关键是确定物体所运动的路程,参照以上公式。 仅供参考: 【和差问题公式】 (和+差)÷2=较大数; (和-差)÷2=较小数。 【和倍问题公式】 和÷(倍数+1)=一倍数; 一倍数×倍数=另一数, 或 和-一倍数=另一数。 【差倍问题公式】 差÷(倍数-1)=较小数; 较小数×倍数=较大数, 或 较小数+差=较大数。 【平均数问题公式】 总数量÷总份数=平均数。 【一般行程问题公式】 平均速度×时间=路程; 路程÷时间=平均速度; 路程÷平均速度=时间。 【反向行程问题公式】 反向行程问题可以分为“相遇问题”(二人从两地出发,相向而 行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的 公式解答: (速度和)×相遇(离)时间=相遇(离)路程; 相遇(离)路程÷(速度和)=相遇(离)时间; 相遇(离)路程÷相遇(离)时间=速度和。 【同向行程问题公式】 追及(拉开)路程÷(速度差)=追及(拉开)时间; 追及(拉开)路程÷追及(拉开)时间=速度差; (速度差)×追及(拉开)时间=追及(拉开)路程。 【列车过桥问题公式】 (桥长+列车长)÷速度=过桥时间; (桥长+列车长)÷过桥时间=速度; 速度×过桥时间=桥、车长度之和。)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题
五年级上奥数试题——第十讲 行程问题(一) (含答案)沪教版【精品】
升五年级思维数学第十讲【精品】行程问题(一)学习目标思维目标:学会掌握路程、速度、时间,这三者之间的关系,并利用它进行问题的解决。
数学知识:熟练小数乘小数的竖式计算方法,进一步理解竖式计算算理。
知识梳理思维:解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
数学:小数乘小数,因数的小数部分共有几位,积的小数部分就有几位。
精讲精练例1:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?金钥匙:根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。
要求几小时能行完36千米,就是求36千米里面有几个12千米。
所以,36÷12=3小时。
点金术:这是一道相背问题。
所谓相背问题是指两个运动的物体作背向运动的问题。
在相背问题中,相遇问题的基本数量关系仍然成立。
试金石:1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。
经过3小时后,两人相隔60千米。
南北两庄相距多少千米?3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。
两人的速度各是多少?例2:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。
几小时后甲可以追上乙?金钥匙:这是一道追及问题。
根据题意,甲追上乙时,比乙多行了24千米(路程差)。
甲骑自行车每小时行13千米,乙步行每小时走5千米,甲每小时比乙多行13-5=8千米(速度差),即甲每小时可以追上乙8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米。
因此,24÷8=3小时甲可以追上乙。
小学五年级奥数专题讲座24:行程问题(一)...
小学五年级奥数专题讲座24:行程问题(一)...小学五年级奥数专题讲座24:行程问题(一)小升初数学广角第24讲行程问题(一)路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。
这一讲就是通过例题加深对这三个基本数量关系的理解。
例1 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。
由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。
故车队长度为460-200=260(米)。
再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。
例2骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。
这就需要通过已知条件,求出时间和路程。
假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。
B到乙地时,A距乙地还有10×2=20(千米),这20千米是B 从甲地到乙地这段时间B比A多行的路程。
因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是20÷(15-10)=4(时)。
由此知,A,B是上午7点出发的,甲、乙两地的距离是15×4=60(千米)。
要想中午12点到,即想(12-7=)5时行60千米,速度应为60÷(12-7)=12(千米/时)。
例3 划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。
沪教版五年级下册5.1---问题解决-行程1
小学数学五年级下电子教案执教:课题问题解决-行程⑴教学目标1.借助线段图分析行程问题中相遇问题的等量关系。
2.提高用方程、算术法解决实际问题的能力。
3、经历解决问题的过程,体验数学与日常生活密切关系。
教学重难点能正确区分行程问题中的相遇和追击的情况并正确解答。
相关链接课件内容教学过程一、新课导入情景引入相遇问题中要注意出发的时间、方向、地点和最后的结果二、新课探索探究一上海到宁波的高速公路全长296千米,一辆轿车和一辆客车分别从上海和宁波两地出发相向而行。
轿车先行56千米后,客车再出发。
轿车平均每小时行108千米,客车平均每小时行92千米。
客车经过几小时与轿车在途中相遇?线段图如右图一、新课导入1.我们已经学过了行程问题中的相遇问题,两辆车从两地同时出发,怎样行驶?结果会怎样?(相距、相遇、相遇后相距三种)2.演示:两车两地相向而行相遇3.小结:行程问题中要注意出发的时间、方向、地点和最后的结果。
建议小结数量关系4.出示:甲乙两地相距210千米,汽车以每小时80千米的速度从甲地开往乙地,同时,客车以60千米/时的速度从乙地开往甲地,两车多少时间后相遇?(1)师:题目中告诉了我们那些条件?要求的是什么?数量关系是怎样的?(2)出示:总路程÷速度和= 相遇时间(3)解:设两车x小时后相遇。
或 210÷(80+60)80x+60x=210 =210÷140140x=210 =1.5(小时)x=1.5 答:两车1.5小时后相遇。
答:两车1.5小时后相遇。
师:如果在行驶途中遇到问题耽误了时间,或出发有先后时,该如何解决呢?建议这个问题先不出,因为没有具体的问题出现,学生不知求时间、速度、还是路程,可直接揭示课题二、揭示课题:问题解决-行程⑴二、新课探索1.探究一两车出发时间不同甲地乙地甲地乙地。
行程问题(题 答案)
一、相遇与追及1、路程和路程差公式【例 1】如下图,某城市东西路与南北路交会于路口A.甲在路口A南边560米的B点,乙在路口A.甲向北,乙向东同时匀速行走.4分钟后二人距A的距离相等.再继续行走24分钟后,二人距A的距离恰又相等.问:甲、乙二人的速度各是多少?【考点】行程问题【难度】3星【题型】解答【关键词】2003年,明心奥数挑战赛【解析】本题总共有两次距离A相等,第一次:甲到A的距离正好就是乙从A出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140÷= (米/分)。
第二次:两人距A的距离又相等,只能是甲、乙走过了A点,且在A点以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了=,显然÷=(米/分),甲速+乙速140 42428+=(分钟),两人的速度差:5602820甲速要比乙速要快;甲速-乙速20=,解这个和差问题,甲速()(米/分),乙速1408060=-=(米/分).14020280=+÷=【答案】甲速80米/分,乙速60米/分2、多人相遇【例 2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题【难度】2星【题型】解答【解析】甲、丙6分钟相遇的路程:()+⨯=(米);1007561050甲、乙相遇的时间为:()÷-=(分钟);10508075210东、西两村之间的距离为:()+⨯=(米).1008021037800【答案】37800米3、多次相遇【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【考点】行程问题【难度】2星【题型】解答【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【答案】260千米二、典型行程专题1、火车过桥【例 4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【考点】行程问题之火车问题【难度】3星【题型】解答a)根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。
101中学坑班2012年春季四年级第七讲行程问题(一)及答案
101中学坑班2012年春季四年级第七讲行程问题(一)及答案一、知识要点1、路程、时间和速度这三者的关系:常用公式:速度×时间=路程;路程÷速度=时间;路程÷时间=速度;常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比.2、掌握相向相遇及同向追及问题的常规解法:相遇问题中的基本数量关系:相遇距离=速度和×相遇时间。
追及问题中的基本数量关系:追及距离=速度差×追及时间。
3、反向相离问题:两个运动物体由于反向运动而相离,就是相离问题。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间4、环形路程内的相遇和追及问题两次相遇时两者所走的路程之和(差)=跑道一圈的路程5、火车过桥问题路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间-车长车长=车速×通过时间-桥长二、典型例题:例1、已知甲的步行的速度是乙的1.4倍。
甲、乙两人分别由A,B两地同时出发。
如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时?例2、甲、乙、丙三人从同一地点A地前往B地,甲、乙二人早上8点一起从A地出发,甲每小时走6千米,乙每小时走4千米,丙上午11点才从A地出发。
晚上8点,甲、丙同时到达B地。
求:丙在几点钟追上了乙?例3、甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米?例4、甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?例5、A 、B 两地相距21千米,甲从A 地出发,每小时行4千米,同时乙从B 地出发相向而行,每小时行3千米.在途中相遇以后,两人又相背而行.各自到达目的地后立即返回,在途中二次相遇.两次相遇点间相距多少千米?例6、一列客车和一列货车同时从两地相向开出,经过18小时两车在某处相遇,已知两地相距1488千米,货车每小时比客车少行8千米,货车每行驶3小时要停驶1小时,客车每小时行多少千米?例7、 一排解放军从驻地出发去执行任务,每小时行5千米。
五升六行程问题答案
第一讲:相遇问题例1.南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解 :392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2 .李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解: 相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3. 甲乙二人分别从A出、B两地发相向而行,第一次相遇地点为C点,距离两地中点500米处,然后各自到达目的地后返回再次相遇的地点D距离B地300米,求AB两地的距离。
解: 500×2=1000.1000×3=3000, 300+3000+300=3600答:两地距离是3600米。
例4.甲乙二人上午8点分别开车从A、B两地出发,相向而行,10点时两人相距160千米,11点时两人相距40千米,问两人是在几点的时候相遇的?解: 160-40=120, 40÷120×60=20(分钟)所以是11:20例5. 如图,甲、乙两辆汽车在周长为360米的圆形道上行驶,甲车每分钟行驶20米.它们分别从相距90米的A,B两点同时出发,背向而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车经过B点后恰好又回到A点.此时甲车立即调头前进,乙车经过B点继续行驶.请问:再过多少分钟甲车与乙车再次相遇?3解:360÷2=180 180÷20=9 180-90=90 甲速度适宜的2倍。
20÷2=10 90÷(20+10)=3例6. 甲、乙、丙3辆车同时出发,甲、乙两车的速度分别为每小时60千米和48千米;有一辆迎面开来的卡车分别在他们出发后的6小时、7小时、8小时先后与甲、乙、丙3辆车相遇.求丙车的速度是多少?解:(60-48)×6=72 车速=72-48=24 72×7÷8=63. 63-24=39例7.两地间的路程为360km,甲车从A地出发开往B地,每小时行72km;甲车出发25分钟后,乙车从B地出发开往A地,每小时行使48km,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时?解:72÷60×25=30(千米)360-30=330(千米)(330+100)÷(72+48)+25÷60=4答:甲车共行使了4h.例题8.甲乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟步行70千米。
六年级行程问题练习册及答案
甲、乙两车的速度分别为 千米/时和 千米/时,它们同时从 地出发到 地去,出发后
小时,甲车遇到一辆迎面开来的卡车, 小时后乙车也遇到了这辆卡车.那么这辆卡车的
速度是每小时
千米.
九、比例法解行程
【练习33】
甲乙两人的速度比为 ,两人同时出发,行走的时间比为
:
.
A.
B.
C.
,则甲,乙走的路程比为 D.
【练习34】
(迎面碰到和追上都算相遇)?
A. 次
B. 次
C. 次
D. 次
七、时钟问题
【练习25】 右图显示 点 分这个时刻,那么此时钟表盘面上时针与分针的夹角是
度.
【练习26】
点钟以后, 点
分分针与时针第一次成直角?
A.
B.
C.
D.
【练习27】
一个时钟现在显示的时间是 点整,请问:多少分钟后,时针与分针第一次重合?
【练习18】
甲、乙、丙三辆车同时从 地出发去 地,甲、乙两车的速度分别是 千米/小时和 千米/
小时.在它们出发时,有一辆卡车同时从 地出发开往 地,分别在他们出发后的 小时、
小时、 小时先后与甲、乙、丙三辆车相遇.那么丙车的速度是
千米/小时.
【练习19】
汽车 从甲站出发开往乙站,同时汽车 、 从乙站出发与 相向而行开往甲站,途中 与
【练习6】
甲、乙两人在 米长的环形跑道上跑步,他俩同时同地同向出发,甲的速度是每秒 米,
乙的速度是每秒 米,那么过
秒后甲第二次追上乙.
答案
解析 甲第二次追上乙时多走了 圈,即
所需时间是
秒.
考点
行程问题 相遇与追及问题 两人相遇与追及问题
101中学坑班2012年春季五年级第六讲行程综合(一)及答案
101中学坑班2012年春季五年级第六讲行程综合(一)及答案一、知识要点:主讲火车过桥、流水行船、电梯、发车问题;1.行船问题①顺水速度=船速+水速②逆水速度=船速-水速由公式①可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式②可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
另外,船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
2.火车过桥问题路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间-车长车长=车速×通过时间-桥长3.电梯问题应该与一般行程中的相遇与追及问题类似,只是比一般的行程问题理解起来有点难而已。
解决此类问题,既可以列方程,也可以通过比例法来求解,大体上可以分2类:1)人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,此时扶梯都是帮助人在行走,共同走过了扶梯的总级数:(V人+V梯)*时间=扶梯级数;2)人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。
这种情况人走过的级数大于电梯的总级数,电梯帮倒忙,抵消掉一部分人走的级数,(V人—V梯)*时间=扶梯总级数.4.发车问题二、典型例题例1、一辆火车全长280米,每秒行驶25米,要经过一座全长920米的大桥,求全车通过这座大桥需要多少秒?例2、一列客车通过840米长的大桥需要52秒,用同样的速度穿过640米长的隧道需要44秒.求这列客车的速度及车身长度各是多少?例3、一列火车身长400米,铁路旁边的电线杆间隔40米,这列火车从车头到达第一根电线杆到车尾离开第51根电线杆用了2分钟,求这列火车的车速.例4、慢车车长为125米,车速为17米/秒,快车车长140米,车速为22米/秒,慢车在前面行驶,快车在后面追上到完全超过需要多少时间?例5、解放军某部出动80辆车参加工地劳动,在途中要经过一个长120米的隧道,如果每辆车长10米,相邻两车间隔为20米,那么,车队以每分钟500米的速度通过隧道要多长时间?例6、李刚驾驶一只小船在河中行驶,顺流划行的速度是每小时10千米,逆流划行的速度是每小时6千米,水流的速度是多少?例7、汽船在静水中的速度是每小时32千米,汽船由甲城开出逆流而上,开行8小时到达相距224千米的乙城,汽船自乙城开回甲城需要多少小时?例8、一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前一小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达. 求甲乙两地之间的距离及火车原来速度.例9、王红的家离学校10千米,他每天早晨骑车上学都以每分钟250米的速度骑,正好能准时到校。
北京101中学坑班 几何知识串讲+答案详解
北京101坑班几何专题
(有答案详解)
一、填空题
1、算出圆内正方形的面积为.
解:由图示可知,正方形两条对角线的长都是6厘米,
正方形由两个面积相等的三角形构成.三角形底为6厘米,
三角形ABC的面积为628+28=656(平方厘米).
BC的长为656×2÷40=32.8(厘米).
6、如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积为.
12、如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影
14、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?
而①、②、③、④四部分的面积和为②、③部分的面积和的2倍,即为9.12×2=18.24(平方厘米).
所以,原题中阴影部分的面积共有18.24平方厘米.
2、已知右图中大正方形边长是6厘米,中间小正方形边长是4厘米.求阴影部分的面积.。
五年级上奥数试题——第六讲行程问题(一)(含答案)沪教版
五年级思维数学讲义(64期)第六讲行程问题(一)思维目标:知道行程应用题是专门研究物体运动的速度、时间、路程三者关系的数学问题。
掌握行程问题的基本解决方法。
数学知识:掌握除数是整数的小数除法的计算方法。
思维:行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
数学:在遇到被除数的整数部分不够除时,我们可以在商的个位上写0,点上小数点再继续除,如果除到被除数末尾仍有剩余时则要在剩余部分后面添0继续除。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?金钥匙:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
点金术:32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
试金石:1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?学习目标精讲精练知识梳理2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?3,甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。
东村到西村的路程是多少米?例2 快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?金钥匙:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
小学五年级奥数第7课行程问题试题附答案-精品
小学五年级上册数学奥数知识点讲解第7课《行程问题》试题附答案笫七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程二速度X时间;总路程二速度和义时间;路程差二速度差X追及时间。
例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A1也乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:甲、乙用遇于C点.此时丙在D点甲、丙相遇于E例3甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?例4甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?例5甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又己知乙每分钟行50米,求A、B两地的距离。
例6一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的 3 倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例7甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?答案第七讲行程问题这一讲中,我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下己学过的基本数量关系:路程二速度X时间;总路程二速度和X时间;路程差二速度差X追及时间。
行程问题辅导讲义 解析版讲解
一.没一般行程问题D10–002一辆货车以每小时65千米的速度前进,一辆客车在它后面1500米,以每小时80千米速度同向行驶,客车超过货车前1分钟,两车相距__米。
题说:南京市第三届“兴趣杯”少年数学邀请赛初赛C卷第9题答案:250(米)解析:要求客车超过火车前1分钟两车相距多少米,只需求两车行驶1分钟所产生的路程差即可,但是要注意的问题是要先进行单位换算:(80-65)×160=0.25(千米)=250(米)D10–003 两辆汽车同时从某地出发到同一目的地,路程165千米,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车离目的地24千米。
甲车行驶全程用了多少小时?题说:第一届《小数报》数学竞赛第二试第4题答案:4.7小时解析:根据题意可知乙行驶24千米所用时间是0.8小时,所以乙的速度是24÷0.8=30千米/小时,乙行驶全程所用时间是165÷30=5.5小时,甲行驶全程所用时间是5.5-0.8=4.7小时。
D10–006一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程。
然后,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
题说:第五届《小数报》数学竞赛决赛第2题答案:18000(米)解析:由题意可知此人10分钟所行驶的路程是50×20+2000=3000米,从而求出此人的速度:3000÷10=300米/分钟,那么县城到乡办厂之间的总路程是300×30×2=18000米。
D10–007小明每天早晨6:50从家出发,7:20到校。
老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家距学校多远?题说:第六届《小数报》数学竞赛初赛第1题答案:3000(米)解析:小明24分钟比原来多行驶25×24=600米,那么它行驶的正常速度是600÷6=100米/分钟,所以小明家距学校100×30=3000米。
101中学坑班2012年春季五年级第七讲行程问题(二)及答案
101中学坑班2012年春季五年级第七讲行程问题(二)及答案一、知识要点多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
要求:学会画图解行程题;能够利用柳卡图解决多次相遇和追及问题;能够利用比例解多人相遇和追及问题。
1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2.多人多次相遇追及的解题关键:多次相遇追及的解题关键——几个全程,多人相遇追及的解题关键——路程差。
二、典型例题1.甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
2.有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?3.甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.4.李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。
半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。
又过了1.5小时,张明从学校骑车去营地报到。
结果三人同时在途中某地相遇。
问骑车人每小时行驶多少千米?5.张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?6.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
【小升初】小学数学《行程问题专题课程》含答案
17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。
【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。
【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。
考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。
101中学坑班2021年春季五年级第八讲行程综合(三)及答案
101中学坑班2021年春季五年级第八讲行程综合(三)及答案一、知识要点:主讲环形跑道问题及钟面问题;1.环形路程内的相遇和追及问题两人相遇两次时距离之和(差)=跑道一圈的距离2.研究时钟的长针(分针)与短针(时针)成直线、成直角与重合的问题,叫做时钟问题。
时钟的分针每小时走60个小方块,而时针每小时只走5个小方块;分针每分钟移动一个小网格,而时针每分钟只移动一次56012121111问题的每一个公式都与有关,个小格是两针在1分钟内所走的路程差。
根据两针1212对于不同的间隔要求,问题中所需的时间可以通过除法计算。
111个小格,即个小格。
每分钟分针比时针多走个小格。
时钟解决问题的规则:(1)求两针成直线所需要的时间,有:两针成直线所需要的分钟数=(原来两针间隔的格数±30)÷(1-)12(2)求两针成直角所需要的时间,有:两针成直角所需要的分钟数=(原来两针间隔的格数±15)÷(1-112121(3)求两针重合所需要的时间,有:两针重合所需要的时间=原来两针间隔的格数÷(1-)在计算所需时间并加上原始时间后,我们可以得到两个针形成不同位置的时间。
1),两针成直角所需要的分钟数=(原来两针间隔的格数±45)÷(1-1)二、典型例题1.小张和小王在周长500米的环形跑道上以一定的速度奔跑小王的速度是每分钟180米(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速每分钟多少米是学位?(2)小张和小王从同一个点出发,同时朝同一个方向跑。
小张第一次能跑多少圈才能赶上小王?2.如图,a、b是圆的直径的两端,小张在a点,小王在b点同时出发反向行走,他们在C点第一次相遇,C点距离a点80米;在距离B点60米的D点第二次相遇,找出圆的周长3.运动场的跑道一圈长400m,甲骑自行车每分钟490m;乙跑步平均每分钟跑250m。
小学奥数行程综合问题
行程综合问题教学目标1.运用各种方法解决行程内综合问题。
2.发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
知识精讲行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题【难度】2星【题型】解答【例 2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【考点】变速问题与走停问题【难度】2星【题型】解答【例 3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【考点】环形跑道与猎狗追兔【难度】5星【题型】解答【例 4】甲、乙两人沿400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用24 秒同时回到原地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲行程综合(一)一、知识要点:主讲火车过桥、流水行船、电梯、发车问题;1.行船问题①顺水速度=船速+水速②逆水速度=船速-水速由公式①可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式②可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
另外,船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
2.火车过桥问题路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间-车长车长=车速×通过时间-桥长3.电梯问题应该与一般行程中的相遇与追及问题类似,只是比一般的行程问题理解起来有点难而已。
解决此类问题,既可以列方程,也可以通过比例法来求解,大体上可以分2类:1)人沿着扶梯运动的方向行走,当然也可以不动,不管动与不动,此时扶梯都是帮助人在行走,共同走过了扶梯的总级数:(V人+V梯)*时间=扶梯级数;2)人与扶梯运动方向相反,此时人必须要走,而且速度要大于电梯的速度才能走到电梯的另一端。
这种情况人走过的级数大于电梯的总级数,电梯帮倒忙,抵消掉一部分人走的级数,(V人—V梯)*时间=扶梯总级数.4.发车问题二、典型例题例1、一辆火车全长280米,每秒行驶25米,要经过一座全长920米的大桥,求全车通过这座大桥需要多少秒?例2、一列客车通过840米长的大桥需要52秒,用同样的速度穿过640米长的隧道需要44秒.求这列客车的速度及车身长度各是多少?例3、一列火车身长400米,铁路旁边的电线杆间隔40米,这列火车从车头到达第一根电线杆到车尾离开第51根电线杆用了2分钟,求这列火车的车速.例4、慢车车长为125米,车速为17米/秒,快车车长140米,车速为22米/秒,慢车在前面行驶,快车在后面追上到完全超过需要多少时间?例5、解放军某部出动80辆车参加工地劳动,在途中要经过一个长120米的隧道,如果每辆车长10米,相邻两车间隔为20米,那么,车队以每分钟500米的速度通过隧道要多长时间?例6、李刚驾驶一只小船在河中行驶,顺流划行的速度是每小时10千米,逆流划行的速度是每小时6千米,水流的速度是多少?例7、汽船在静水中的速度是每小时32千米,汽船由甲城开出逆流而上,开行8小时到达相距224千米的乙城,汽船自乙城开回甲城需要多少小时?例8、一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前一小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达. 求甲乙两地之间的距离及火车原来速度.例9、王红的家离学校10千米,他每天早晨骑车上学都以每分钟250米的速度骑,正好能准时到校。
一天早晨,因为逆风,风速为每分钟50米,开始4千米,他仍以每分钟250米的速度骑,那么,剩下的6千米,他应以每分钟多少米的速度才能准时到校?例10、一条小河流过 A、B、C三镇。
A、B两镇间有汽船来往,汽船在静水中的速度为每小时 11 千米。
B、C 两镇间有木船摆渡,木船在静水中的速度为每小时3.5千米。
已知A、C 两地水路相距50千米,水流速度为每小时1.5千米。
某人从A镇顺流而下去B镇,吃午饭用了1个小时,接着又顺流而下去C镇,共用8个小时,那么A、B两镇间的距离是多少?例11、一条大河,河中间(主航道)水速为每小时8千米,沿岸边水速为每小时6千米,一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原出发地点,需要多少小时?例12、一条船从A地顺流而下,每小时35千米到达B地后,又逆流而上回到A 地。
逆流比顺流多用4小时,已知水速是每小时5千米,则A、B两地相距多少千米?例13.自动扶梯以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部,问扶梯露在外面的部分有多少级?例14. 自动扶梯以均匀速度由下往上行驶着,已知男孩的速度是女孩的两倍,结果男孩用了24秒到达楼下,女孩用了16秒到达楼上.问:男孩乘电梯上楼需要用多少时间?(男孩不动)例15. 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?例16. 两个孩子逆着自动扶梯的方向行走。
20 秒内男孩走27 级,女孩走了24 级,按此速度男孩2 分钟到达另一端,而女孩需要3 分钟才能到达。
则该扶梯静止时共有多少级?例17. 商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。
如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?例18、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?例19、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例20、小峰沿公交车的路线从终点站往起点站走,他出发时恰好有一辆公交车到达终点,在路上,他又遇到了14辆迎面开来的公交车,并于1小时18分后到达起点站,这时候恰好又有一辆公交车从起点开出。
已知起点站与终点站相距6000米,公交车的速度为500米/分钟,且每两辆车之间的发车间隔是一定的。
求这个发车间隔是几分钟?例21、列车每天18:00由上海站出发,驶往乌鲁木齐,经过50小时到达,每天10:00从乌鲁木齐站有一列火车返回上海,所用时间也为50小时,为保证在上海与乌鲁木齐乘车区间内每天各有一辆火车发往对方站,至少需要准备这种列车多少列?在原题的前提下,正常运行后,每天18:00从上海站开往乌鲁木齐的火车在途中,将会遇到几趟回程车从对面开来?在车速不变的前提下,为了实现有五列车完成这一区段的营运任务,每天两站互发车辆时间间隔至少需要相差多长时间?(假定乘客上下车及火车检修时间为一小时)例22. 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?例23. 从电车总站每隔一定时间开出一辆电车。
甲与乙两人在一条街上沿着同一方向步行。
甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
那么电车总站每隔多少分钟开出一辆电车?例24. 甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有平路又有上坡和下坡,车辆(包括自行车)上坡和下坡的速度分别是平路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生平路上的骑车速度是汽车在平路上速度的四分之一,那么这位学生骑车的学生在平路、上坡、下坡时每隔多少分钟遇到一辆汽车?例25. 甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙两地出发,相向而行.每辆电车都隔4分钟遇到迎面开来的一辆电车;小张每隔5分钟遇到迎面开来的一辆电车;小王每隔6分钟遇到迎面开来的一辆电车.已知电车行驶全程是56分钟,那么小张与小王在途中相遇时他们已行走了多少分钟.例26. 小峰骑自行车去小宝家聚会,一路上小峰注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,小峰只好打的去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,公交车的发车时间间隔为多少分钟?第七讲行程综合(一)三、练习题1、一座铁路桥长1200米,一列火车开过大桥需要75秒;火车开过路旁一根信号杆需要15秒。
求火车的速度和车长?2、少先队员248人排成两路纵队去参观科技展览,队伍行进的速度是每分钟28米,前后两人都相距1米,现在队伍要通过一座长45米的地下通道,整个队伍从进通道到离开通道需要几分钟?3、一列货车车头及车身共41节,每节车身及车头长都是30米,节与节间隔2米,这列货车以每分钟1千米的速度穿过山洞,恰好用了2分钟,这个山洞长多少米?4.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
5.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?6.甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?7.甲在商场中乘自动扶梯从一层到二层,并在顺扶梯运行方向向上走,同时乙站在速度相等的并排扶梯从二层到一层(乙不动,由电梯运载),当甲乙处于同一高度时,甲反身向下走,结果他走了60级到达一层,如果他到了顶端再从上行扶梯返回,则要往下走80级。
那么,自动扶梯禁止时露在外面的有多少级?8.哥哥沿向上移动的自动扶梯从顶向下走,共走了100级;此时妹妹沿向上的自动扶梯从底向上走到顶,共走了50级.如果哥哥单位时间内走的级数是妹妹的2倍.那么,当自动扶梯静止时,自动扶梯能看到的部分有多少级?9.商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒向上走2梯级,女孩每2秒向上走3梯级,结果男孩用40秒到达楼上,女孩用50秒到楼上.问当该扶梯静止时,扶梯可看到的梯级共有多少级?10.某同学沿着电车线路行走,见到每隔6分钟有一辆电车从他身后过来,而每隔2分钟有一辆电车从对面开来。
如果该同学和电车的速度始终均匀,问每隔几分钟开出一辆电车?。