热电偶课程设计

热电偶课程设计
热电偶课程设计

课程设计报告

学生姓名:学号:

学院:自动化工程学院

班级:

题目:热电偶温度传感器信号调理电路设计与仿真指导教师:职称:

2012 年 12 月 15 日

目录

1设计目的 (1)

2设计要求 (2)

3设计内容 (3)

3.1总体设计 (3)

3.2工作原理分析 (3)

3.3器件选型说明 (4)

3.4原理图设计 (4)

3.5电路仿真 (6)

3.6PCB电路设计 (7)

3.7可靠性和抗干扰设计 (7)

4设计心得和体会 (8)

【参考文献】 (9)

附录1:电路原理图 (9)

附录2:PCB图 (10)

附录3:PCB效果图 (10)

1设计目的

(1)了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成

电路);

(2)了解印刷电路板的设计和制作过程;

(3)掌握电子元器件选型的基本原理和方法;

(4)了解电路焊接的基本知识和掌握电路焊接的基本技巧;

(5)掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调

试。

选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求:

(1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号;(2)对信号调理电路中采用的具体元器件应有器件选型依据;

(3)电路的设计应当考虑可靠性和抗干扰设计内容;

(4)电路的基本工作原理应有一定说明;

(5)电路应当在相应的仿真软件上进行仿真以验证电路可行性(不限制EDA 软件类型)。

3.1总体设计

本设计需要测量温度为100到300度,选用K型热电偶,在将测量所得电压进行放大处理。

K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。K型热电偶

K型热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。K型热电偶是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。正极(KP)的名义化学成分为:Ni:Cr=92:12,负极(KN)的名义化学成分为:Ni:Si=99:3,其使用温度为-200~1300℃。K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。K 型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛.,热电偶测量输出的信号为4.096-12.209mV,我们用信号调理电路将其转换为0-5V直流电压信号

此信号调理电路由一个减法放大器和一个同相比例放大器组成,减法放大器一端电压接 4.096 mV,这样在经过减法器的时候电压变化范围就会变成4.096-8.113mV,再由比例放大器输出,就会得到0-5V直流电压信号.

3.2工作原理分析

热电温度计是由热电偶、补偿导线及测量仪表构成的。其中热电偶是敏感元件, 它由两种不同的导体A 和B 连接在一起, 构成一个闭合回路, 当两个连接点1 与 2 的温度不同时, 由于热电效应,回路中就会产生零点几到几十毫伏的热电动势, 记为EAB 。接点1 在测量时被置于测场所, 故称为测量端或工作端。

接点2 则要求恒定在某一温度下,称为参考端或自由端, 如图1 所示。

图1 热电偶原理图

实验证明, 当电极材料选定后, 热电偶的热电动势仅与两个接点的温度有关, 即

d E

AB ( t1 , t2 ) = S

Ab

×d t ,

比例系数SAB 称为热电动势率, 它是热电偶最重要的特征量。当两接点的温度分别为t1 , t2 时, 回路总的热电动势为

式中eAB ( t1 ) 、eAB ( t2 ) 分别为接点的分热电动势。

对于已选定材料的热电偶, 当其自由端温度恒定时, eAB ( t2 ) 为常数, 这样回路总的热电动势仅为工作温度t1 的单值函数。所以, 通过测量热电动势的方法就可以测量工作点的实际温度

3.3器件选型说明

表1所用元器件清淡表

器件类型数量单价合计

K型热电偶 1 200.0 200.0

电阻 6 0.01 0.06

放大器 2 2.00 4.00

3.4 原理图设计

同相输入放大电路

如图2所示,信号电压通过电阻R S加到运放的同相输入端,输出电压v o通过电阻R1和R f反馈到运放的反相输入端,构成电压串联负反馈放大电路。

根据虚短、虚断的概念有v N= v P= v S,i1= i f

于是求得所以该电路实现同相比例运算。

同相比例运算电路的特点如下

1.输入电阻很高,输出电阻很低。

2.由于v N= v P= v S,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。

图2同相比例放大电路

减法电路

电路原理:差分式减法运算电路是利用一级运放实现的电路,图1所示。要进行运算的两路信号分别由运放的同相和反相输入端送入,这是一种差分输入方式。由于存在着负反馈,电路属于线性电路,因此,可以利用叠加定理分析求解电路输出电压与输入电压之间关系。

图3 减法电路图

当令ui1单独作用时,ui2=0,电路实质是一个反相输入比例电路,如图所示,输出端电压

uo1=-R3*ui1/R2

电阻R2//R3,只起平衡作用,不影响电路输入输出关系。当u2单独作用时,令ui1=0,此时电路实质是所分析的同相输入比例电路。分析结果得: uo2=(1+R3/R2)*Rf*ui2/(R+Ri)

最后,利用叠加定理就可以求出输入信号ui1和ui2共同作用时,输出电压为

uo=uo1+uo2=-R3*ui1/R2+R3*ui2/R2=R3(ui2-ui1)/R2 若取R3=R2,则有 uo=ui2-ui1从而实现对输入信号的减法运算。减法运算也可以看成是对两个输入信号的差进行放大,所以此电路也广泛应用于自动检测仪器中,实现对输入信号的检测。

3.5电路仿真

3.6PCB电路设计

图5 PCB图

3.7可靠性和抗干扰设计

抗干扰的应用包括避免强磁场,补偿导线加屏蔽动力电缆,与信号线、分开布线、保持距离。系统产生干扰的原因有很多,在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,它们之间的信号传输既有微弱到毫伏级、微安级的小信号,又有几十伏,甚至数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间信号传输互相干扰,造成系统不稳定甚至误操作。出现这种情况除了

每个仪表、设备本身的性能原因如抗电磁干扰影响外,还有一个十分重要的因素

就是由于仪表和设备之间的信号参考点之间存在电势差,因而形成“接地环路”造成信号传输过程中失真。因此,要保证系统稳定和可靠的运行,“接地环路”问题是在系统信号处理过程中必须解决的问题。解决“接地环路”的方法根据理论和实践分析,有三种解决方案:第一种方案:所有现场设备不接地,使所有过程环路只有一个接地点,不能形成回路,这种方法看似简单,但在实际应用中往往很难实现,因为某些设备要求必须接地才能保证测量精度或确保人生安全,某些设备可能因为长期遭到腐蚀和磨损后或气候影响而形成新的接地点。第二种方案:使两接地点的电势相同,但由于接地点的电阻受地质条件及气候变化等众多因素的影响,这种方案其实在实际中无法完全能做到。第三种方案:在各个过程环路中使用信号隔离方法,断开过程环路,同时又不影响过程信号的正常传输,从而彻底解决接地环路问题

4设计心得和体会

通过本次课程设计。我了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路),增加了自己的知识面对自己所学的知识有了新的认识,并且运用到实践,对软件的掌握也更加熟练,了解了印刷电路板的设计和制作过程,掌握了电子元器件选型的基本原理和方法,了解了电路焊接的基本知识和掌握电路焊接的基本技巧,并利用仿真软件进行电路的调试,但是对于软件使用方面仍有不足,在今后应该加强.

【参考文献】

[1]徐德炳译,《传感器的接口及信号调理电路》,北京:国防工业出版社,1984

[2]刘宏,《电子工艺实习》,广州:华南理工大学出版社,2009年

[3]俞雅珍,《电子工艺技术》,上海:复旦大学出版社,2007年

[4]康华光,《模拟电子技术》,北京:高等教育出版社,2004年

附录1:电路原理图

附录2:PCB图

附录3:PCB效果图

相关主题
相关文档
最新文档