工程力学天大出版第七章答案
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
大学《工程力学》课后习题解答-精品
大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。
解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。
若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。
构件重量不计,图中的长度单位为cm 。
已知F =200 N ,试求支座A 和E 的约束力。
解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。
试求在与O D平行的力F作用下,各杆所受的力。
已知F=0.6 kN。
解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。
求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。
各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。
工程力学答案第7章
工程力学(第2版)第7章 弯 曲题 库: 主观题7-1 长度为250mm ,截面尺寸为0.8mm 25mm h b ⨯=⨯的薄钢板卷尺,由于两端外力偶的作用而弯成中心角为030的圆弧。
已知弹性模量52.110MPa E =⨯。
试求钢尺横截面上的最大正应力。
解:由题知302250mm 360πρ⋅= ,故480mm ρ= 卷尺最外层纤维应变最大,且为4max 0.428.3310480hερ-===⨯ 由拉压胡克定律可知 54max max 2.1108.3310176MPa E σε-==⨯⨯⨯=即钢尺横截面上的最大正应221(0.250.23)760.573kN /m 4q π=-⨯=力为176MPa .知识点:1.梁横截面的应力。
参考页: P145。
学习目标: 2(掌握梁横截面上的应力计算方法,会利用应力计算公式计算正应力) 难度: 1.0提示一:该题考察知识点:1. 梁横截面上的应力计算。
提示二:无 提示三:无 提示四(同题解) 题解:1、利用正应力计算公式计算正应力。
7-2 一外径为250mm ,壁厚为10mm ,长度l=12m 的铸铁水管,两端搁在支座上,管中充满着水,如图所示。
铸铁的容量3176kN /m γ=,水的容重3210kN /m γ=。
试求管内最大拉、压正应力的数值。
解:每米铸铁水管的重量 每米水柱的重量22220.2310.231100.415kN /m 44q y ππ=⨯⨯⨯=⨯⨯⨯=故水管所受均布荷载120.988kN /m q q q =+=在水管中部有弯矩最大值22max 110.9881217.784kN m 88M ql ==⨯⨯=⋅最大弯曲正应力为3max max343217.7841040.7MPa 2300.25[1()]250z M W σπ⨯⨯===⨯⨯-故管内最大拉、压正应力的数值为,max ,max 40.7MPa t c σσ==。
知识点:1.梁横截面的应力。
工程力学天大出版第七章答案演示教学
此文档仅供收集于网络,如有侵权请联系网站删除第七章 剪 切7−1 在冲床上用圆截面的冲头,需在厚t =5mm 的薄钢板上冲出一个直径d =20mm 的圆孔来,钢板的剪切强度极限为320MPa 。
求(1)所需冲力F 之值。
(2)若钢板的挤压强度极限为640MPa ,问能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为多少?解:(1)根据钢板的剪切强度条件[]F τA SSτ=≤,得 []6320100.0050.02100.5kN S S F A τπ≥=⨯⨯⨯=因此,所需冲力F 为100.5kN 。
(2)根据钢板的挤压强度条件[]bsbs bs bsF A σσ=≤,得 []62bs bs bs 640100.024201.1kNF A σπ≤≤⨯⨯÷=根据钢板的剪切强度条件[]F τA SSτ=≤,如果钢板不被剪坏,应满足[]SS F A dt πτ=≥[]36201.1100.01m 0.0232010S F t d πτπ⨯≥==⨯⨯因此,能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为10mm 。
7−2 两块厚度t =10mm ,宽度b =60mm 的钢板,用两个直径为17mm 的铆钉搭接在一起(见图),钢板受拉力F =60kN 。
已知铆钉和钢板的材料相同,许用切应力[τ]=140MPa ,许用挤压应力[σbs ]=280MPa ,许用拉应力[σ]=160MPa 。
试校核该连接的强度。
解: 为保证接头强度,需作出三方面的校核。
(1) 铆钉的剪切强度校核每个铆钉所受到的力等于F /2。
根据剪切强度条件式(7−2)得习题7−1图习题7−2图此文档仅供收集于网络,如有侵权请联系网站删除()[]2323τ/2/430101710/4266.1MPa S SF A F πd πτ-==⨯=⨯⨯⨯=≤满足剪切强度条件。
(2) 铆钉的挤压强度校核 上、下侧钢板与每个铆钉之间的挤压力均为F bs =F /2,由于上、下侧钢板厚度相同,所以只校核下侧钢板与每个铆钉之间的挤压强度,根据挤压强度条件式7−4得[]333bs F σA F /2d t301017101010288.2MPa bs bs bs σ--==⋅⨯=⨯⨯⨯⨯=≤满足挤压强度条件。
(完整版)工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
工程力学第7章答案
⼯程⼒学第7章答案第7章简单的弹性静⼒学问题7-1 有⼀横截⾯⾯积为A 的圆截⾯杆件受轴向拉⼒作⽤,若将其改为截⾯积仍为A 的空⼼圆截⾯杆件,其他条件不变,试判断以下结论的正确性:(A )轴⼒增⼤,正应⼒增⼤,轴向变形增⼤;(B )轴⼒减⼩,正应⼒减⼩,轴向变形减⼩;(C )轴⼒增⼤,正应⼒增⼤,轴向变形减⼩;(D )轴⼒、正应⼒、轴向变形均不发⽣变化。
正确答案是 D 。
7-2 韧性材料应变硬化之后,材料的⼒学性能发⽣下列变化:(A )屈服应⼒提⾼,弹性模量降低;(B )屈服应⼒提⾼,韧性降低;(C )屈服应⼒不变,弹性模量不变;(D )屈服应⼒不变,韧性不变。
正确答案是 B 。
7-3 关于材料的⼒学⼀般性能,有如下结论,试判断哪⼀个是正确的:(A )脆性材料的抗拉能⼒低于其抗压能⼒;(B )脆性材料的抗拉能⼒⾼于其抗压能⼒;(C )韧性材料的抗拉能⼒⾼于其抗压能⼒;(D )脆性材料的抗拉能⼒等于其抗压能⼒。
正确答案是 A 。
7-4 低碳钢材料在拉伸实验过程中,不发⽣明显的塑性变形时,承受的最⼤应⼒应当⼩于的数值,有以下四种答案,试判断哪⼀个是正确的:(A )⽐例极限;(B )屈服强度;(C )强度极限;(D )许⽤应⼒。
正确答案是 B 。
7-5 根据图⽰三种材料拉伸时的应⼒—应变曲线,得出的如下四种结论,试判断哪⼀种是正确的:(A )强度极限)3()2()1(b b b σσσ>=,弹性模量E(1)>E(2)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(B )强度极限)2()1()3(b b b σσσ<<,弹性模量E(2)>E(1)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(C )强度极限)3()1()2(b b b σσσ>>,弹性模量E(3)>E(1)>E(2),延伸率δ(3)>δ(2)>δ(1)⽐例极限;(D )强度极限)3()2()1(b b b σσσ>>,弹性模量E(2)>E(1)>E(3),延伸率δ(2)>δ(1)>δ(3)⽐例极限;正确答案是 B 。
天津大学版工程力学习题集答案解析部分
---------------------考试---------------------------学资学习网---------------------押题------------------------------ACMql=2m。
4kN/m,处的约束力。
已知=8kN·m,3-10求图示多跨梁支座=、qqMAC C B BFF BCl 2l2 2llla)((b)qMM AA CBFF CAl2 2ll(c)10 图习题3-??l?3?2l?qM?0,F?0CB BC(b))取梁所示。
列平衡方程为研究对象。
其受力如图(解:1l322?4?9ql9kN??18F?C44所示。
列平衡方程)取整体为研究对象。
其受力如图(c)(2?0l??Fq?3F?0,F?CyA kN?64?2ql3??18?3?F??F?CA?0?5l??3l3.?,?0MM?M?F4l?q CAA22m?32kN5?4?2?1045lF?MM??4?10.ql8??18??2?.CAF ACCDC,05=所示。
设(a)用铰链组合梁11-3及连接而成,受力情况如图kN Mq m。
求各支座的约束力。
=50kNkN/m=25,力偶矩·MFqACB11m2m22m(a)MF q q′F C D AC C B FFFF C2m 2m1m1m DA B 2m(b) (c)一一图-11 习题3CD为研究对象。
其受力如图(c)所示。
列平衡方程(1)取梁解:?M?0,F?4?q?2?1?M?0 DC2q?M2?25?50??25kNF?D44?M?0,?F?4?q?2?3?M?0CD6q?M6?25?50??F?25kN C44ACFF=25kN。
列平衡方程(b)所示,其中′(2)取梁=为研究对象。
其受力如图CC ???2?0?F?2?F?1?q?2M?0,?1?F CBA?F?2q?2F25???25250?2C??F??25kN(?)A22???4?0F?2?F?1?q?2?3?M0,?F CBA?F?6q?4F25?4?650??25C F???150kNB226?1作图示杆件的轴力图。
工程力学(张定华主编)课后答案 第7章
第七章平面弯曲内力1.试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
2.试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
3.试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
4.试求图示梁指定截面上的剪力和弯矩。
设q,a均为已知。
M max。
设q,l均为已知。
M max。
设l,Me均为已知。
M max。
设l,F均为已知。
8.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S和,maxM max。
设q,F,l均为已知。
9.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S和,max M max。
设q,l均为已知。
和10.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S,max M max。
设q,l,F,M e均为已知。
11.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。
解:(1)由静力平衡方程得:F A=F,M A= Fa,方向如图所示。
(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。
(3)梁最大绝对值剪力在AB段内截面,大小为2F。
梁最大绝对值弯矩在C截面,大小为2Fa。
12.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。
解:(1)由静力平衡方程得:F A=3q l/8(↑),F B=q l/8(↑)。
(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。
(3)梁的最大绝对值剪力在A右截面,大小为3q l/8。
梁的最大弯矩绝对值在距A端3l/8处截面,大小为9q l2/128。
13.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。
解:(1)由静力平衡方程得:F B=2qa,M B=qa2,方向如图所示。
(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。
(3)梁的最大绝对值剪力在B左截面,大小为2qa。
《工程力学》课后习题答案全集
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力和的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。
(b )同上。
由于力和的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。
2.不计杆重,画出下列各图中AB 杆的受力图。
解:(a )取杆AB 为研究对象,杆除受力外,在B 处受绳索作用的拉力,在A 和E 两处还受光滑接触面约束。
约束力和的方向分别沿其接触表面的公法线,并指向杆。
其中力与杆垂直,力通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力和,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且=。
研究杆AB ,杆在A 、B 两点受到约束反力和,以及力偶m 的作用而平衡。
根据力偶的性质,和必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力和,在B 点受到支座反力。
和相交于O 点,根据三力平衡汇交定理,可以判断必沿通过pB RpB Rp B T A N E N E N A N B N C N BN CN A N B N A N B N A T C T B N A T C TB NB、O两点的连线。
见图(d).第二章 力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
(完整版)工程力学课后详细答案
(完整版)⼯程⼒学课后详细答案第⼀章静⼒学的基本概念受⼒图第⼆章平⾯汇交⼒系2-1解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos 2944RYR RF F P F '∠==o v v2-2解:即求此⼒系的合⼒,沿OB 建⽴x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故:223R RX RY F F F KN=+= ⽅向沿OB 。
2-3 解:所有杆件均为⼆⼒杆件,受⼒沿直杆轴线。
(a )由平衡⽅程有:0X =∑sin 300AC AB F F -=o0Y =∑cos300AC F W -=o0.577AB F W=(拉⼒)1.155AC F W=(压⼒)(b )由平衡⽅程有:0X =∑ cos 700AC AB F F -=o0Y =∑sin 700AB F W -=o1.064AB F W=(拉⼒)0.364AC F W=(压⼒)(c )由平衡⽅程有:0X =∑cos 60cos300AC AB F F -=o o0Y =∑sin 30sin 600AB AC F F W +-=o o 0.5AB F W= (拉⼒)0.866AC F W=(压⼒)(d )由平衡⽅程有:0X =∑sin 30sin 300AB AC F F -=o o0Y =∑cos30cos300AB AC F F W +-=o o0.577AB F W= (拉⼒)0.577AC F W= (拉⼒)2-4 解:(a )受⼒分析如图所⽰:由x =∑ 22cos 45042RA F P -=+o15.8RA F KN∴=由0Y =∑22sin 45042RA RB F F P +-=+o7.1RB F KN∴=(b)解:受⼒分析如图所⽰:由x =∑cos 45cos 45010RA RB F F P ? --=o o0Y =∑sin 45sin 45010RA RB F F P ?+-=o o联⽴上⼆式,得:22.410RA RB F KN F KN==2-5解:⼏何法:系统受⼒如图所⽰三⼒汇交于点D ,其封闭的⼒三⾓形如图⽰所以:5RA F KN= (压⼒)5RB F KN=(与X 轴正向夹150度)2-6解:受⼒如图所⽰:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-?=--2-7解:受⼒分析如图所⽰,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CBRA F F '-=o o联⽴后,解得:0.707RA F P=0.707RB F P=由⼆⼒平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为⼆⼒杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ?--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联⽴上⼆式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反⼒全为拉⼒,以D ,B 点分别列平衡⽅程(1)取D 点,列平衡⽅程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡⽅程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联⽴上⼆式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα=+取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P P F ααααα??=+= ?2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联⽴后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=?oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND ADP F F F KN '∴===?=o o o o o2-12解:整体受⼒交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联⽴上⼆式得:2.92RA F KN=1.33DC F KN=(压⼒)列C 点平衡x =∑405DC AC F F -?=0Y =∑ 305BC AC F F +?=联⽴上⼆式得: 1.67AC F KN=(拉⼒)1.0BC F KN=-(压⼒)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联⽴⽅程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联⽴上⾯各式得: 22RA FQ =2RB F Q P=+(3)取BCE 部分。
423002[工程力学] 天津大学考试 参考资料答案
工程力学复习题参考的答案 天津大学1、利用对称性,计算下图所示各结构的内力,并绘弯矩图。
解:取半结构如图(a)所示,为2次超静定结构。
再取半结构的基本体系如图(b)所示,基本方程为1111221P 2112222P 00X X X X δδ∆δδ∆++=⎧⎪⎨++=⎪⎩ 系数和自由项分别为119EIδ=,1221552EIδδ==,223613EIδ=,1P 13603EI ∆=,2P 1900EI∆=解得17.04kN X =-,214.18kN X =-。
原结构弯矩图如图(f)所示。
C BA10kN/m4m3m4mCBA10kN/m2X1X1X=1112X=133710kN/m80807.04202030.4230.4230.4230.4226.326.31(b) 基本体系M图(c)(a) 半结构PM(e)M图(kN·m)(f)2M图(d)图(kN·m)2、用结点法或截面法求图示桁架各杆的轴力。
解:(1)判断零杆(12根)。
(2)节点法进行内力计算,结果如图。
3、分析如图所示体系的几何构造。
解:从A点开始依次去掉二元体,可知为几何不变体系且无多余约束。
4、试求图示刚架在水压力作用下C、D两点的相对水平位移,各杆EI为常数。
解:(1)作荷载作用下弯矩图:在C、D两点加一对反向的单位水平力,并作弯矩图如下:则:5、某条形基础,宽B=2m ,埋深d=1m 。
基底附加压力p=100kPa ,基底至下卧层顶面的距离Z=2m ,下卧层顶面以上土的重度3/20m kN =γ,经修正后,下卧层地基承载力设计值kPa f 110=,扩散角 22=θ,试通过计算,验算下卧层地基承载力是否满足要求?(4.0tan =θ) 解:kPa d cz 60203)2(=⨯=⨯+=γσ kPa Z b b p z 6.554.02222100tan 20=⨯⨯+⨯=⨯+⨯=θσf kPa z cz >=+=+6.115606.55σσ,故不能满足要求。
工程力学-第七章-扭转
取 ef 截面左边部分,研究该隔离体的 平衡方程。
∑ Fη = 0
σ α dA + (τ dA cos α )sin α + (τ ′dA sin α )cos α = 0
∑ Fξ = 0
τ α dA − (τ dA cos α )cos α + (τ ′dA sin α )sin α = 0
利用切应力互等定理
τ α , max = τ
不同材料的等直圆杆扭转时的破坏形式也不相同: (a)低碳钢拉压强度高,剪切强度低,因此扭转破坏是剪断; (b)铸铁拉伸强度低于剪切强度,因此扭转破坏是沿与杆轴线 成 45o 倾角的拉断。
算例: 例题3-2
实心圆截面轴I和空心圆截面轴II(图a,b)的材料、
扭转力偶矩Me 和尺度 l 均相同,最大切应力也相等。若空心圆 截面内、外直径之比 α = 0.8 ,试求空心圆截面的外径与实心圆 截面直径之比及两轴的重量比。 思路: 已知条件:两杆的最 大切应力相等
§7-1概论
1.扭转构件
汽车的转向操纵杆
机器的传动轴
2. 扭转构件的计算简图
受力特征:
外力偶矩的作用面与杆件的轴线相垂直 变形特征: 受力后杆件表面的纵向线变形成螺旋线,即杆件任意两 个横截面绕杆件轴线发生相对转动 本章主要介绍等直圆杆的扭转,简单介绍非圆截面杆的 扭转。 在介绍等直圆杆的扭转之前,先研究较简单的薄壁圆筒 的扭转问题,由此来介绍有关切应力、切应变及其关系式。
短边中点的切应力是该边上切应力的最大值
τ = vτ max
(3)矩形截面杆单位长度扭转角的计算公式:
T ϕ= G It I t 称为截面的相当极惯性矩,其计算公式为:
It = α b
工程力学教程课后题答案
P155 7-8 横截面面积A=200mm2的杆受轴向拉力F=10kN作用,试求斜截面m-n上的正应力及切应力。
1
F=10kN
3
m
2
300
4
n
5
解:
P155 7-10 等直杆如图示,其直径为d=30mm。已知F=20kN, l=0.9m,E=2.1×105MPa,试作轴力图,并求杆端D的水平位移ΔD以及B、C两横截面的相对纵向位移ΔBC。
B
P156 7-16 试判定图示杆系是静定的,还是超静定的;若是超静定的,试确定其超静定次数,并写出求解杆系内力所需的位移相容条件(不必具体求出内力)。图中的水平杆是刚性的,各杆的自重均不计。
拉杆头部满足剪切强度条件
50kN
P156 7-18 试校核图示拉杆头部的剪切强度和挤压强度。 已知:D=32mm,d=20mm,h=12mm,材料的许用切应力 []=100Mpa,许用挤压应力[bs]=240Mpa。
P183 8-5 空心钢圆轴的外直径D=80mm,内直径d=62.5mm,外力偶之矩为Me=10N.m,但转向相反。材料的切变模量G=8×104MPa。试求:(1)横截面上切应力的分布图;(2)最大切应力和单位长度扭转角。
3
D
7
τA
10
T
P184 8-10 轴的许用切应力 ,切变模量 ,单位长度杆的许用扭转角 。试按强度条件及刚度条件选择此实心圆轴的直径。
xy平面内
4m
B
解:求得支座约束力
A支座右侧截面
C右侧截面
(e)
0.5m
P229:9-4,9-5,9-6
9-4 绘出图示各梁的剪力图和弯矩图。
+
剪力图
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学第7章习题答案..
《工程力学》(第5版)习题 解答步骤(第7章)7-1略 7-2略7-3.解:M=9549nP =9549×3605.7=198.9375N.M AC 段: m ax τ=1P I M ×2D =324D M π×2D =316D M π=3314.39375.19816⨯⨯=37.544MPa m in τ=0CB 段:max τ=2P I M ×2D =32)(44d DM -π×2D =)π(44d 16-D MD =)(44231433937519816-⨯⋅⨯⋅⨯ =46.786MPa m in τ=2P I M ×2d =)(1644d D Md -π=)23(143293751981644-⨯⋅⨯⋅⨯=31.19MPa 7-4.解:A τ=P A I TP =465010512101⨯⋅⋅⨯⨯=20MPa m ax τ=Wt T =365020101⨯⋅⨯=40MPa 7-5.解:A M =9549×n P A =9549×63060=909.4285N.m C M =9549×n P C =9549×63020=303.1428 N.m m ax τ=Wt T =[]τ≤16d 3πT ∴d []03252500691252443714310428590916163333⋅=⋅=⨯⋅⨯⋅⨯=≥τπT mm ∴d 取50mm 7-6.解:孔段:m ax τ=Wt T =)21(1643-D M A π=)801(5014310300016433⋅-⨯⨯⋅⨯⨯=207.13MPaDC 段:max τ=Wt T =16d 3πA M =334014310300016⨯⋅⨯⨯=238.85MPa 又∵[τ]=100MPa ∴强度不足 7-7.解:①实心轴、T=M=9549n P =9549×12014=1114.05N.m m ax τ=Wt T =16d 31πT ≤[τ] ∵d 1≥[]316τπT =33601431005111416⨯⋅⨯⋅⨯=10×361146594⋅=45.5667mm ∴取d 1=46mm②空心轴:m ax τ=Wt T =)21(1643-D T π≤[τ] ∴D ≥[]34)21(16-τπT =343)801(601431005111416⋅-⨯⨯⋅⨯⋅⨯=10×324977160⋅=54.3mm 取D=56mm d=56×0.8=44.8mm 7-8.解:①轴的拉矩图如图②可知,AB T =2000N.m BC T =-5000N.mP I =32d 4π=0.14d =0.1×(10043)-=1×1045m - AB ϕ=︒⋅=⋅⨯⨯⨯⨯︒⨯⋅⨯⨯=︒⨯∙-0701431010108180501021805643πP AB GI l T =BC ϕ︒⋅-=︒⨯∙179140180πP BC GI l T ∴︒⋅=︒⋅︒⋅=+=1090-179140-070BC AB AC ϕϕϕ 7-9.解: ①扭矩图如图 ②m ax τ=a 07812107516100016d 33-3max max MP T Wt T ⋅=⨯⨯⨯==)(ππ ③AB ϕ=rad GI l T P AB AB 00805032)1075(14310810002439⋅=⨯⨯⋅⨯⨯⨯=∙-=BC ϕrad 00240⋅=∙PBC BC GI l T ∴rad 010465000240008050⋅=⋅+⋅=+=BC AB CA ϕϕϕ7-10.解:m N n P M ⋅=⨯=70247024111 m N nP M ⋅⋅=⨯=62809702422 m N n P M ⋅⋅=⨯=44214702433 AB 段:=AB τ][τ≤=16d 3AB πAB AB T Wt T ][mm 963679107014370241616363⋅=⨯⨯⋅⨯=≥τπAB AB T d =AB φ][φ≤⨯⨯︒⨯=︒⨯32d G 1801804πππABP AB T GI T []mm 6280841143108018070243218032d 42942⋅=⨯⋅⨯⨯⨯⨯=︒⨯≥φπG T AB AB ∴m m 85d 取AB同理BC 段:[]mm 44396716d 3⋅=≥τπBC BC T []mm 48227418032d 42⋅=︒⨯≥φπG T BC BC ∴m m 75d 取BC7-11.解:对轴:m ax τ=Wt T =16d 3πT =[]MPa MPa 60180147)1030(14.32501633=⋅=⨯⨯⨯-τ 对套筒:m ax τ=Wt T =[]τ MPa T 1229)7501()1040(14.32501616)21(D 43343⋅=⋅-⨯⨯⨯⨯=--π ∴强度足够7-12.解:① =AB τ333)1070(14329361616d -⨯⨯⋅⨯==πABAB T Wt T =43.6166MPa=BC τMPa Wt T BC 95.71)1050(14317651633=⨯⨯⋅⨯=- ∴BC 端有最大剪应力m ax τ=71.95MPa ②rad 1008511070143104803270293632d 2-43-94⨯⋅=⨯⨯⋅⨯⨯⋅⨯⋅⨯=⨯⋅=⋅=)(πG l T GI l T AB AB P AB AB AB φ 同理 rad BC 210791-⨯⋅=φ∴ rad BC AB 2max 108752-⨯⋅=+=ϕϕϕ7-13.解:① T=F.D=300×520×103-=15N.m m ax τ=Wt T =16d 31πT ≤[]τ []mm 723mm 66223m 248413101060143156161632-3631⋅≈⋅=⋅=⨯⨯⋅⨯=≥τπT d② m ax τ=Wt T =)21(16D 43-πT ≤[]τ []mm 228m 44221080-11060143156162-11632-34634⋅=⋅=⋅⨯⨯⨯⋅⨯=≥)()(πτT D d=0.8D=0.8×28.2=22.56mm ③51.07235622-228d 4d 4222212212=⋅⋅⋅=-==π)(π实空D A A G G。
工程力学习题 及最终答案
工程力学习题及最终答案(总63页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论思 考 题1) 现代力学有哪些重要的特征2) 力是物体间的相互作用。
按其是否直接接触如何分类试举例说明。
3) 工程静力学的基本研究内容和主线是什么 4) 试述工程力学研究问题的一般方法。
第二章 刚体静力学基本概念与理论习 题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
习题2-1图NN22-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角?。
使 a )合力F R =, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和?角。
2习题2-2图(b )F 1F 1F 2习题2-3图(a )F 1习题2-4图2-6 画出图中各物体的受力图。
F12习题2-5图(b) B(a)A(c)(d)(eA42-7 画出图中各物体的受力图。
) 习题2-6图(b ))(d(a ) A BC DB ABCB52-8 试计算图中各种情况下F 力对o 点之矩。
2-9 求图中力系的合力F R 及其作用位置。
习题2-7图习题2-8图P(d )(c ))) 1F 362-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
q 1=600N/m2习题2-9图F 3F 2( c1F 4F 372-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
第三章 静力平衡问题q=4kN/m( b )q( c )习题2-10图B习题2-11图8习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若?=30?, 求工件D 所受到的夹紧力F D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
第七章 剪 切
7−1 在冲床上用圆截面的冲头,需在厚t =5mm 的薄钢板上冲出一个直径d =20mm 的圆孔来,钢板的剪切强度极限为320MPa 。
求
(1)所需冲力F 之值。
(2)若钢板的挤压强度极限为640MPa ,问能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为多少?
解:(1)根据钢板的剪切强度条件[]F τA S
S
τ=
≤,得 []6320100.0050.02100.5kN S S F A τπ≥=⨯⨯⨯=
因此,所需冲力F 为100.5kN 。
(2)根据钢板的挤压强度条件[]bs
bs bs bs
F A σσ=
≤,得 []62bs bs bs 640100.024201.1kN
F A σπ≤≤⨯⨯÷=
根据钢板的剪切强度条件[]F τA S
S
τ=≤,如果钢板不被剪坏,应满足
[]
S
S F A dt πτ=≥
[]3
6
201.1100.01m 0.0232010S F t d πτπ
⨯≥==⨯⨯ 因此,能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为10mm 。
7−2 两块厚度t =10mm ,宽度b =60mm 的钢板,用两个直径为17mm 的铆钉搭接在一起(见图),钢板受拉力F =60kN 。
已知铆钉和钢板的材料相同,许用切应力[]=140MPa ,许用挤压应力[bs ]=280MPa ,许用拉应力[]=160MPa 。
试校核该连接的强度。
解: 为保证接头强度,需作出三方面的校核。
(1) 铆钉的剪切强度校核
每个铆钉所受到的力等于F /2。
根据剪切强度条件式(7−2)得
t
F
习题7−1图
F
F t
F
F 习题7−2图
b
.
()
[]
23
2
3τ/2/4
30101710
/42
66.1MPa S S
F A F πd πτ-==⨯=
⨯⨯⨯=≤
满足剪切强度条件。
(2) 铆钉的挤压强度校核 上、下侧钢板与每个铆钉之间的挤压力均为F bs =F /2,
由于上、下侧钢板厚度相同,所以只校核下侧钢板与每个铆钉之间的挤压强度,根据挤压强度条件式7−4得
[]
3
33bs F σA F /2d t
30
1017101010288.2MPa bs bs bs σ--==
⋅⨯=
⨯⨯⨯⨯=≤
满足挤压强度条件。
(3) 钢板的抗拉强度校核
由于上、下侧钢板厚度相同,故验算下侧钢块即可,画出它的受力图及轴力图(图c ,d)。
截面n −n 截面n −n 为危险截面。
对于截面n −n :
()()42A b md t 0.060.0170.01 4.310m -=-=-⨯=⨯
N 3
4
F σA
60104.310
139.5MPa [σ]
-=
⨯=⨯=< 满足抗拉强度条件。
综上所述,该接头是安全的。
7−3 图示一混凝土柱,其横截面为0.2×0.2m 2的正方形,竖立在边长为a =1m 的正方例题7−1图
F/2 F
匀分布的,混凝土的许用切应力为[]=1.5MPa ,问为使柱不会穿过混凝土板,板应有的最小厚度t 为多少?
解:以柱下部分为脱离体, 基础板对脱离体的合力为:
3
11100100.20.24kN 11
F F A A ⨯==⨯⨯=⨯
脱离体共有4个剪切面,每个剪切面的面积为0.2t 。
每个剪切面上的剪力为:
33
112341001041024kN
44
S S S S F F F F F F -⨯-⨯====== 为使柱不会穿过混凝土板,应满足剪切强度条件
[]F τA S
S
τ=
≤,得 []
40.2S
S F A t τ=⨯≥
[]36
24104
80mm 40.2 1.51040.2
S F t τ⨯⨯≥==⨯⨯⨯⨯⨯, 为使柱不会穿过混凝土板,板应有的最小厚度t 为80mm 。
7−4两块主板覆以两块盖板的钢板连接,用铆钉对接如图所示。
主板厚度t 1=10mm ,盖板厚度t 2=6mm 。
铆钉的许用切应力[]=115MPa ,板的许用挤压应力[bs ]=280MPa 。
若接头拉力F =300kN ,采用直径d =17mm 的铆钉时,求每边所需铆钉的个数。
解:设对接口一侧有n 个铆钉,则每个铆钉受力如图7−8所示。
(1) 由剪切强度条件
][4
/2/2S S τπd n F A F τ≤==
得
习题7−4图
F F
t 2
t 2 t F S1
F S2
F
F 1
3
226
2230010 5.75[]0.01711510F n πd τπ⨯⨯≥==⨯⨯⨯个
(2) 由挤压强度条件
bs bs bs 1
/σ[σ]bs F F n
A dt =
=≤ []3
6
1bs 30010 6.30.0170.0128010
F
n dt σ⨯≥==⨯⨯⨯个 选择对接口一侧有7个铆钉。
7−5一对规格为75mm ×50mm ×8mm 的热轧角钢,用螺栓将其长肢与节点板相连。
已知作用力F =128kN ,角钢和节点板的材料都是Q235钢;节点板厚=10mm ,螺栓的直径d =16mm ,螺栓连接的许用切应力[]=130MPa ,许用挤压应力[bs ]=300MPa ,角钢的许用拉应力[]=170MPa ,试确定此连接需要的螺栓数目。
解(1) 由剪切强度条件
2/n
[τ]π/4
S S F F A d τ=
=≤
2L75×50×8 F
F
习题7−5图
习题7−4解图
(b )
b
F
F
m n p
m n p
n
m F F /7
F /7 F /7
F F /7
F /7
F /7 F /7 2F/7
(c)
5F/7
F
F N 图
得
3
226
4412810 4.897[]0.01613010F n πd τπ⨯⨯≥==⨯⨯⨯个
(2) 校核挤压强度
bs bs bs /σ[σ]bs F F n A d δ
=
=≤ []3
6
bs 12810 2.670.0160.0130010
F
n d δσ⨯≥==⨯⨯⨯个 此连接需要的螺栓数目为5个。
7−6如图两矩形截面木杆,用两块钢板连接。
截面的宽度b =250mm ,高度为h ,沿拉杆顺纹方向受轴向拉力F =50kN ,木材的顺纹许用切应力[]=1MPa ,顺纹许用压应力[ c ]=10MPa ,求接头处所需的尺寸δ和L 。
解:(1) 由剪切强度条件
/2[τ]S S F F A Lb
τ=
=≤ 得
36
/25010/2
0.1m []0.2510F L b τ⨯≥==⨯
(2) 由挤压强度条件
bs bs bs bs /2
σ[σ]F F A b δ
=
=≤ []
3
6
bs 5010/2
0.01m 0.251010
F b δσ⨯≥
=
=⨯⨯
习题7−6图
L
L
δ
F
F
h。