基于某MATLAB地语音信号采集与处理

合集下载

基于Matlab语音信号的采集与分析

基于Matlab语音信号的采集与分析

基于MATLAB 的语音信号分析和处理【摘要】:本文通过用三星手机系统自带录音机采集了一段语音,wav格式转换后再Matlab平台上对其进行了时域分析,频谱分析,分析语音信号的特性。

利用函数对采样频率进行控制,比较其波形。

通过对两段铃声(分别为男声、女声)进行分析初步找出男声女声的特点和区别。

应用Matlab平台对录制的语音信号加入噪声,对比加噪前后的语音信号的时域和频域特性,回放加噪语音信号。

【关键词】:语音信号;频域特性 ; 时域特性 ; 滤波器目录一、背景介绍1.1 语音信号的概述1.2 语音信号处理工具的选择二、语音信号的录制采集和分析2.1 语音信号的采集2.2 语音信号的读入与打开2.3 取不同采样频率得出的波形比较三、对男声、女声语音信号特点的分析3.1女声(vfemale.wav)男声(vmale.wav)的时域分析3.2女声(vfemale.wav)男声(vmale.wav)的频域分析四、加噪声与滤波处理分析4.1 高斯白噪声(SNR=30)4.2 单频正弦噪声五、心得与体会一、背景介绍1.1语音信号的概述语言是人类创造的,是人类区别于其他地球生命的本质特征之一。

人类用语言交流的过程可以看成是一个复杂的通信过程,为了获取便于分析和处理的语音信源,必须将在空气中传播的声波转变为包含语音信息并且记载着声波物理性质的模拟(或数字)电信号,即语音信号,因此语音信号就成为语音的表现形式或载体。

1.2语音信号处理工具的选择语音信号的进一步处理分析工作选用了Matlab平台。

Matlab是一种科学计算软件,专门以矩阵的形式处理数据。

Matlab将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,不断完善Matlab产品以提高产品自身的竞争能力Matlab的数据分析和处理功能十分强大,运用它来进行语音信号的分析、处理和可视化相当便捷。

在编程效率、程序可读性、可移植性和可扩充性上Matlab远远优于其它的高级编程语言,而且编程易学、直观,代码非常符合人们的思维习惯。

基于MATLAB的语音信号的采集与处理详解

基于MATLAB的语音信号的采集与处理详解

数字信号处理课程设计题目:基于MATLAB的语音信号的采集与处理学院:皖西学院专业:通信工程班级:通信1001班学号:2010013461 2010013494姓名:刘敏纵大庆指导教师:何富贵摘要:本次课程设计题目为<<基于MATLAB的语音信号的采集与处理>>。

首先我们利用计算机上的录音软件获得语音信号,然后利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号!1.背景2. 设计目的 (2)3. 设计原理 (2)4. 设计过程 .......................................... ,,, 35. 实验代码及结果 (4)5.1 语音信号的采集 (4)5.2 语音信号加噪与频谱分析 ..................................... ,,,, 7 5.3 巴特沃斯滤波器的设计 .. (9)5.4 比较滤波前后语音信号波形及频谱 (10)6. 收获与体会 (12)参考文献 (13)1. 引言数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。

它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。

具有灵活、精确、抗干扰强、度快等优点。

数字滤波器,是数字信号处理中及其重要的一部分。

随着信息时代和数字技术的发展,受到人们越来越多的重视。

数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。

数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应(FIR, Finite Impulse Response)滤波器和无限冲激响应(IIR,Infin ite Impulse Resp on se) 滤波器。

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。

本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。

二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。

在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。

通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。

三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。

通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。

2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。

预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。

3. 特征提取在语音信号处理中,特征提取是一个关键步骤。

通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。

4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。

通过模型训练,可以实现对不同语音信号的自动识别和分类。

四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。

这些模块相互配合,构成一个完整的系统架构。

2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。

良好的界面设计可以提升系统的易用性和用户体验。

五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。

基于MATLAB的语音信号的采集与分析

基于MATLAB的语音信号的采集与分析

基于MATLAB的语音信号的采集与分析摘要:我们通过学习使用MA TLAB仿真软件实现语音信号分析,加深对信号与系统这门课程所学习内容的理解,锻炼自学能力和动手能力。

我们通过电脑的声卡采集声音信号,借助已有的知识和MATLAB对采集的声音信号进行时域波形和频域频谱的显示,研究男女声信号的差别,通过查找资料提取声音信号的基音频率,并通过大量测试确定门限值来自动判别男女声信号,最后对信号进行降采样处理并播放,重新绘制频谱图分析,验证抽样定理。

关键词:MA TLAB仿真、频谱分析、基音频率、降采样、抽样定理。

1.音频信号的采集我们所要分析的语音信号需要自行采集,所以信号分析的第一步就是采集音频信号。

实现音频信号的采集最简单的办法就是通过电脑的声卡直接进行采集,这样采集到的音频信号虽然已经被转化成了数字量存储在电脑中,但通过查询我们了解到电脑录音所使用的采样频率是为44100Hz,完全保证了人类耳朵能听到所有声音频率分量的无失真采集,如果通过MA TLAB软件采集还能够调节采样频率,所以能够完全满足我们实验的要求。

1.1使用MATLAB采集语音信号通过上网查询,我们了解到MATLAB有自带的音频信号采集函数audiorecord(),通过它可以在程序运行时即时采集音频信号进行存储并处理,并且可以通过改变输入参数来改变采样频率,可以直接模拟降采样的过程,直观地验证抽样定理。

但鉴于我们需要重复进行试验和演示,即时采集信号显得繁琐且不必要,而且会增加我们非界面化编程的难度,所以我们放弃了这种方法。

1.2使用电脑录音机采集语音信号通过电脑自带的录音机软件可以实现更简单的音频信号采集操作,虽然采样频率不可调节,但其固有的采样频率完全满足了我们对所采集信号的要求,可以通过MATLAB的降采样处理的到较低采样频率的信号。

这样采集的音频信号会直接以文件的形式存储在电脑中,方便我们随时进行调用,方便分析与演示,所以我们决定采用这种方式实现语音信号的采集。

matlab语音信号采集与处理

matlab语音信号采集与处理

matlab语音信号采集与处理Matlab是一种功能强大的数学软件,特别适合音频信号的处理和分析。

本文将介绍Matlab如何用于音频信号采集和处理的方法。

1. 音频信号采集Matlab可以在Windows和Mac OS X操作系统上直接访问音频硬件,比如麦克风。

Matlab的音频输入功能允许用户在Matlab中直接访问音频硬件,并处理输入的信号。

Matlab提供了许多函数和工具箱,方便用户采集和处理音频信号。

可以使用Matlab 的命令窗口和MATLAB代码框架,采集音频信号数据并保存为.mat文件。

以下是在Matlab中实现音频采集的示例代码:%% 定义音频采样率Fs和采样时间TFs = 8000; % HzT = 2; % s%% 创建一个录音器对象recorderrecorder = audiorecorder(Fs, 16, 1);%% 开始录制音频disp('开始录制音频...');recordblocking(recorder, T);%% 将信号保存为.mat文件disp('将信号保存为.mat文件...');filename = 'audioData.mat';save(filename, 'audioData', 'Fs');在这个示例代码中,定义音频采样率Fs和采样时间T。

开始录制音频,使用recordblocking函数,它采样时间为T。

使用getaudiodata函数获取录音器对象recorder的音频数据。

最后,使用save函数将音频数据保存为.mat文件。

Matlab是一种强大的工具,可用于处理和分析音频信号,例如过滤,时域和频域分析,频谱分析和语音识别等。

%% 加载.mat文件,分别为音频数据audioData和采样率Fsload('audioData.mat');%% 频谱分析disp('进行频谱分析...');N = length(audioData);xf = fft(audioData);Pxx = 1/(Fs*N) * abs(xf).^2;f = linspace(0, Fs/2, N/2+1);%% 滤波器设计disp('设计一个50Hz低通滤波器...');fc = 50; % HzWn = fc/(Fs/2);[b,a] = butter(4, Wn, 'low');%% 信号滤波disp('低通滤波信号...');y = filter(b, a, audioData);%% 绘图figure();subplot(2,1,1);plot(audioData);title('原始信号');xlabel('时间(s)')ylabel('幅值')在这个示例代码中,首先使用load函数加载以前保存的音频数据,分别为音频数据audioData和采样率Fs。

基于MATLAB的语音信号录制采集和分析的程序设计

基于MATLAB的语音信号录制采集和分析的程序设计

目录摘要 (2)1 课程设计实现 (3)1.1整体设计思路 (3)1.2整体实现过程 (3)1.2.1 信号的采样 (3)1.2.2 语音信号的读取 (5)1.2.3 语音信号的频谱分析 (6)1.2.4 噪声信号的构建 (7)1.2.5 加入噪声的语音信号的频谱 (8)2 数字滤波器的设计 (9)2.1滤波器的设计原理 (9)2.2滤波器的性能指标 (10)2.3IIR数字滤波器设计 (10)2.4FIR数字滤波器设计 (12)2.5滤波器对信号滤波 (13)2.6语音信号回放 (17)3 心得体会 (17)4 主要参考资料 (18)附录 (20)摘要MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据 ,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等 , 信号处理是MATLAB 重要应用的领域之一。

本课程设计介绍了基于Matlab的对语音信号采集、处理及滤波器的设计,并使之实现的过程。

理解与掌握课程中的基本概念、基本原理、基本分析方法,用Matlab进行数字语音信号处理,并阐述了课程设计的具体方法、步骤和内容。

综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。

关键词: MATLAB 工具信号语音采集滤波器1 课程设计实现1.1整体设计思路Matlab 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据 ,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等 , 信号处理是 Matlab 重要应用的领域之一。

本文是用 Matlab对含噪的的语音信号同时在时域和频域进行滤波处理和分析。

基于MATLAB的语音信号采集与处理.

基于MATLAB的语音信号采集与处理.

基于MATLAB的语音信号采集与处理.
MATLAB是一种非常有用的工具,可以用于语音信号的采集和处理。

语音信号的采集和处理对于语音识别、音频转换和人机交互等领域非常重要。

MATLAB提供了许多工具和函数进行语音信号的采集和处理。

语音信号的采集可以通过外部设备实现,如麦克风或录音设备。

MATLAB可以通过音频输入功能进行语音信号的采集和处理。

该功能提供了多个采样率和位深度设置,可以按照需要进行设置。

采集的语音信号可以通过MATLAB的图形用户界面进行实时显示和处理。

MATLAB提供了很多工具和函数进行语音信号的处理,如语音分析、信号过滤、音量调整和时域和频域分析等。

MATLAB的语音信号处理工具箱提供了很多预处理和分析函数,可以进行预处理、语音识别、特征提取等操作。

这些工具和函数可以帮助开发人员更好地理解和分析语音信号,提高语音识别的准确性和鲁棒性。

MATLAB还提供了图形用户界面(GUI)、应用程序接口(API)、命令行和脚本等方式进行语音信号处理。

GUI可以方便地进行交互式处理和调试,API可以方便地集成到其他应用程序中,命令行和脚本可以进行批处理和复杂的操作。

MATLAB的语音信号处理工具还可以与其它工具箱,如数字信号处理工具箱和统计学工具箱进行整合,以开发更强大和可靠的语音处理应用程序。

基于matlab的语音信号采集及处理

基于matlab的语音信号采集及处理

基于MATLAB的语音信号采集与处理一、实验的目的和要求1. MATLAB软件功能简介MATLAB的名称源自Matrix Laboratory,1984年由美国Mathworks公司推向市场。

它是一种科学计算软件,专门以矩阵的形式处理数据。

MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制系统和信息处理等领域的分析、仿真和设计工作。

MATLAB软件包括五大通用功能,数值计算功能(Nemeric)、符号运算功能(Symbolic)、数据可视化功能(Graphic)、数字图形文字统一处理功能(Notebook)和建模仿真可视化功能(Simulink)。

其中,符号运算功能的实现是通过请求MAPLE内核计算并将结果返回到MATLAB命令窗口。

该软件有三大特点,一是功能强大;二是界面友善、语言自然;三是开放性强。

目前,Mathworks公司已推出30多个应用工具箱。

MATLAB在线性代数、矩阵分析、数值及优化、数值统计和随机信号分析、电路与系统、系统动力学、次那好和图像处理、控制理论分析和系统设计、过程控制、建模和仿真、通信系统以及财政金融等众多领域的理论研究和工程设计中得到了广泛应用。

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。

由于信号与系统课程的许多内容都是基于公式演算,而MATLAB借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。

例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。

MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等内容。

数值计算仿真分析可以帮助学生更深入地理解理论知识,并为将来使用MATLAB进行信号处理领域的各种分析和实际应用打下基础。

2. 本题目的意义本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB 的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。

基于matlab语音信号的采集与分析

基于matlab语音信号的采集与分析

毕业论文(设计)题目:基于matlab语音信号的采集与分析姓名:学院:理学与信息科学学院专业:电子信息科学与技术班级:学号:指导教师:目录摘要 (I)ABSTRACT. .......................................................................................................................................... I I 1 绪论 (1)1.1选题的背景和意义 (1)1.2语音信号处理的进展 (2)2 系统设计的可行性研究 (4)2.1语音信号处理的概念 (4)2.2语音信号的特点 (4)2.3语音信号处理的要求及可行性 (5)2.4M ATLAB仿真软件简介 (5)3 系统设计 (7)3.1系统设计的理论依据 (7)3.2系统的详细设计 (9)3.2.1图形用户界面制作 (9)3.2.2 系统功能的实现 (10)4 系统调试及运行 (16)总结 (25)致谢 (27)参考文献: (28)基于matlab语音信号的采集与分析电子信息科学与技术专业马晓敏指导教师曹红波摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。

语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等[1]。

本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制一段声音,采集语音信号后,在MATLAB软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

利用MATLAB来读入(采集)语音信号,将它赋值给某一向量。

再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波。

(完整word版)基于matlab的语音信号分析与处理

(完整word版)基于matlab的语音信号分析与处理

基于matlab的语音信号分析与处理摘要:滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。

Matlab功能强大、编程效率高, 特别是Matlab具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。

基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR 数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

关键词:数字滤波器;MATLAB;切比雪夫Abstract:Filter design in digital signal processing plays an extremely important role, FIR digital filters and IIR filter is an important part of filter design. Matlab is powerful, programming efficiency, Matlab also has a particular signal analysis toolbox, it need not have strong programming skills can be easily signal analysis, processing and design. MATLAB based on the noise issue speech signal processing design and implementation of digital signal processing integrated use of the theoretical knowledge of the speech signal plus noise, time domain, frequency domain analysis and filtering. The corresponding results obtained through theoretical derivation, and then use MATLAB as a programming tool for computer implementation.Implemented in the design process, using the windowfunction method to design FIR digital filters with Butterworth, Chebyshev and bilinear Reform IIR digital filter design and use of MATLAB as a supplementary tool to complete the calculation and graphic design Drawing.Keywords:digital filter; MATLAB; Chebyshev语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。

基于matlab的语音信号的采集与处理

基于matlab的语音信号的采集与处理

目录第1章前言 0第2章语音信号分析处理的目的和要求 (1)2.1MATLAB软件功能简介 .............................................................................................. - 1 -2.2课程设计意义................................................................................................................ - 2 -第3章语音信号的仿真原理.. (2)第4章语音信号的具体实现 (3)4.1语音信号的采集.............................................................................................................. - 3 -4.2语音信号加噪与频谱分析............................................................................................. - 5 -4.3设计巴特沃斯低通滤波器............................................................................................. - 6 -4.4用滤波器对加噪语音滤波............................................................................................. - 7 -4.5比较滤波前后语音信号波形及频谱............................................................................ - 7 -第5章总结.................................................................................................................................. - 9 -参考文献..................................................................................................................................... - 10 -附录.............................................................................................................................................. - 11 -语音信号的采集与处理第1章前言数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。

基于matlab的语音信号分析与处理

基于matlab的语音信号分析与处理
降采样是降低特定信号的采样率的过程,通常用于降低数据 传输速率或者数据大小。 降采样因子(常用表示符号为M) 一般是大于1的整数或有理数。这个因子表达了采样周期变成 原来的几倍大,或者等价地表示采样率变成原来的几分之 一。 由于降采样降低了采样率,因此需要保证在新的较低的 采样率下奈奎斯特采样定理仍然成立。
男生时域波形:
女生时域波形:
话音信号的最高频率限制在3400HZ,根据来奎斯特采 样定理
1 fs 2 fm Ts
可知,
抽样频率大于等于两倍信号最高频率, fS=6800HZ 所以电话可以对语音信号采用8KHz的采样速率,信号
可无失真恢复。
对女生信号进行1/2降采样: X1=x(1:2:length(x));
主要内容:采集男声和女声来自号; 对语音信号进行频域分析;
分析男声和女声在频域上的差别;
对采样后的序列进行不同程度的降采样处理,
验证是否会对信号的质量产生影响。
男生频谱图:
根据图可知 男生声音频 率大约在 500hz左右
女生频谱图:
女生声音频率集 中在1khz左右
女声的主要频率在高频段明显多于男声, 因而辨别男生和女声: 用仪器对声音进行频谱分析高频段明显较多的 即为女声,反之则为男声。
对女生信号进行1/5降采样:
观察频谱图,与原声音并无明显变化 声音文件的采样频率为44.1khz,进行1/2降采样后得到的采 样频率为22khz 抽样定理:当抽样频率f S≥2 f h时,抽样后的信号就包含 原连续信号的全部信息,而不会有信息丢失,当需要时,可 以根据这些抽样信号的样本来还原原来的连续信号。
对声音进行采集并进行频域分析的主要程序:
Fs = 44100; y1 = wavrecord(5*Fs,Fs,'double'); wavplay(y1,Fs); Y1=y1(:,1); %采样频率% yt1=fft(y1); %傅里叶变换% df=Fs/length(yt1); Fx=df*(0:length(yt1)-1); %将横轴变为频率轴% subplot(1,1,1); %subplot将图像画在一张图上% plot(y1);title('语音时域波形'); %画语音信号的时域波形z subplot(1,1,1); plot(Fx,abs(yt1)); axis([0 5000 0 800]);title('频谱图 ');xlabel('frequency/Hz'); %频谱图%

基于MATLAB对语音信号进行分析和处理

基于MATLAB对语音信号进行分析和处理

基于MATLAB对语音信号进行分析和处理一、设计目的1.学会MATLAB的使用,掌握MA TLAB的程序设计方法;2.掌握在Windows环境下语音信号采集的方法;3.掌握数字信号处理的基本概念、基本理论和基本方法;4.掌握MATLAB设计FIR和IIR数字滤波器的方法;5.学会用MA TLAB对信号进行分析和处理。

二、设计过程1、语音信号采集与分析运用windows下的录音机,录制一段自己的话音,时间为两秒。

然后在MATLAB 软件平台下,利用函数wavread对语音信号进行采样,再运用plot函数画出语音信号的时域波形,最后在语音信号频谱分析时运用fft对信号进行快速傅里叶变换,得到频谱特性图形。

人为设计一个固定频率5500Hz的噪声干扰信号。

噪声信号通常为随机序列,在本设计中用正弦序列代替,干扰信号构建命令函数为d=[Au*sin(2*pi*5500*t)]',给出的干扰信号为一个正弦信号,针对上面的语音信号 ,采集了其中一段。

再对噪音信号进行频谱变换得到其频谱图。

2、滤波器设计和运用滤波器进行滤波1 )窗函数和等波纹逼近法设计FIR滤波器及滤波首先根据阻带最小衰减选定窗口类型,然后调用fir1函数设计线性相位FIR数字滤波器,再用freqz函数画出其频谱图形,最后运用fftfilt函数对信号进行滤波。

而等波纹逼近法中则运用remez和remezord直接设计FIR滤波器,然后运用fftfilt函数对信号进行滤波。

2 )双线性变换法社设计IIR数字滤波器及滤波首先将数字滤波器的技术指标运用预畸校正法转换成模拟滤波器的设计指标:Ωph=2/T*tan(wp/2),然后用butter、cheby1设计各种模拟滤波器,再用bilinear函数进行模拟滤波器和数字滤波器之间的转换,最后用filter函数对语音信号进行滤波,并运用函数sound播放滤波后语音。

三、结果及分析1、用MATLAB对原始语音信号进行分析,画出它的时域波形和频谱时域波形和频谱:图1 原始语音信号图2 语音信号频率响应图图3 原始语音信号FFT与信号频谱2、给原始的语音信号加上一个高频余弦噪声,频率为5500hz。

基于matlab的语音信号录制采集和分析的程序课程设计

基于matlab的语音信号录制采集和分析的程序课程设计

目录第一章Matlab课程设计方案的提出 (1)第一节设计的主要内容及基本要求 (1)一主要内容 (1)二基本要求 (1)第二节设计方案 (1)第二章语音信号及其加噪 (2)第一节语音信号 (2)一语音信号的采集 (2)二语音信号的时域及频谱分析 (2)第二节语音信号的加噪和分析 (4)一语音信号的加噪 (4)第三章滤波器的选择 (9)第一节滤波器的基本概念 (9)一滤波器的功能 (9)二四种基本的滤波器.................................................. 错误!未定义书签。

第二节数字滤波器的基本知识 (10)一FIR数字滤波器 (10)二IIR数字滤波器 (10)第三节数字滤波器的选取 (11)心得体会 (12)参考文献 (13)附录 (14)第一章Matlab课程设计方案的提出第一节设计的主要内容及基本要求一主要内容要求录制一段自己的语音信号后,在MATLAB软件中采集语音信号,回放语音信号并画出语音信号的时域波形和频谱图;对所采集的语音信号加入干扰噪声,对加入噪声后的信号进行播放,并画出时域和频谱分析;对比加噪声前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。

二基本要求学会使用MATLAB,掌握MATLAB的程序设计方法;掌握在Windows环境下语音信号的录制方法;掌握在MATLAB环境下语音信号的采集方法;用randn函数给原始信号加入高斯随机噪声;并会用MATLAB对信号进行分析和处理。

第二节设计方案录制一段语音信号;然后,利用MATLAB中的wavread命令来读入语音信号,将它赋值给某一向量。

再将该向量看做一个普通的信号,对其进行FFT变换实现频谱分析;随后,利用随机函数randn产生噪声加入其中,对其进行频谱分析。

并用sound函数回放加噪声前后的语音。

最后,分析比较加噪声前后的语音信号的波形及频谱。

第二章语音信号及其加噪第一节语音信号一语音信号的采集首先,打开电脑;在计算机中Windows XP的操作系统中,点击开始→附件→录音机,就会启动计算机中录音机。

基于MATLAB语音信号处理(语音信号处理的综合仿真)

基于MATLAB语音信号处理(语音信号处理的综合仿真)

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 基于MATLAB语音信号处理(语音信号处理的综合仿真)摘要:针对目前在嘈杂的环境中手机接听电话时人声不清楚的缺点,本文介绍了一个基于MATLAB的算法来对语音信号进行处理。

该算法通过计算机录音系统来实现对语音信号的采集,并且利用MATLAB的计算和信号处理能力进行频谱分析和设计滤波器,最终通过仿真得到滤波前后的波形,从而达到保留语音信号中的大部分人声并且滤除掉嘈杂噪声的目的。

仿真实验表明,采用低通滤波器保留人声的效果显著,失真较少。

本算法具有操作简单,运行速度快等优点。

关键词:语音信号;MATLAB;滤波;低通;噪声Speech Signal Processing Based on MATLAB1 / 17Abstract: At present, in view of the shortcomings of that the voice is not clear when people answering the phone in a noisy environment, this paper introduces a algorithm for speech signal processing based on MATLAB. The algorithm realizes the acquisition of the speech signal through a computer recording system. And the software can realize the capabilities of frequency spectrum analysis and filter design by the use of calculation and signal processing capabilities of MATLAB. Finally it can get the waveform before and after filtering through the simulation. So that we can retain most of the voices in the speech signal and at the same time remove noisy noise through filter. Simulation results show that the low pass filter has a remarkable effect of keeping voices and the distortion is little. This algorithm has the advantages of simple to operate and fast.Key Words: Speech signal; MATLAB; Filtering; Low pass; Noise目录---------------------------------------------------------------范文最新推荐------------------------------------------------------ 摘要1引言11.研究意义及研究现状21.1研究意义21.2研究现状22. 语音信号处理的总体方案2.1 研究的主要内容本课题主要介绍的是的语音信号的简单处理,目的就是为以后在手机上的移植打下理论基础。

基于matlab的语音信号的采集和处理

基于matlab的语音信号的采集和处理

电子科技大学课程设计报告课程名称:信号与系统设计名称:语音信号的采集和处理姓名:肖燕平学号: *************班级:通信九班指导教师:**起止日期:2012.12.15-2012.12.20基于MATLAB的语音信号的采集和处理摘要:本文介绍了一种基于matlab的语音信号的采集和处理设计实现方案。

声音是由物体的振动产生,以声波的形式在介质中传播,介质主要可分为固体,液体以及气体。

声波振动内耳的听小骨,这些振动被转化为微小的电子脑波,它就是我们觉察到的声音。

内耳采用的原理与麦克风捕获声波或扬声器的发音一样,它是移动的机械部分与气压波之间的关系。

在国际标准中,人声的频率范围是300Hz~3400Hz,不同的人或乐器产生的声音频率不一致,通过对声音信号的研究能够更好的处理声音信号的处理以及传输。

Matlab 作为一款主要面对科学计算、可视化以及交互式程序设计的高科技计算软件,能够很好的完成对声音信号的分析和处理,快速的得出声音信号的时域图以及频域图。

关键字:声音|、频率、时域图、频域图1绪论1.1课题研究目的及意义掌握语音信号采集的方法掌握一种语音信号基音周期提取方法了解Matlab的编程方法1.2本课题的设计要求及设计方案概述一:使用wavrecord录入自己的语音信号,使用save函数进行保存后使用wavplay 函数进行播放。

二:使用plot再画出该语音信号的时域波形,对原始波形进行用fft函数傅里叶变换后,使用plot画出其频谱。

三:设计切比雪夫的低通,高通,带通滤波器对原始信号进行滤波。

四:画出滤波后的信号时域、频域图五:考虑到国际标准人声的频率范围在300Hz~3400Hz,于是给原始语音信号加入3800hz的正弦高频噪声,再分析语音信号的特点。

六:设计低通计滤波器将高频噪声滤除。

2设计过程2.1本课题的设计要求1,使用wavrecord录入自己的语音信号,保存到一个数组后,再使用save函数进行保存文件,后使用wavplay函数进行播放。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程设计论文题目:基于MATLAB的语音信号采集与处理姓名:班级:学号:指导老师:一.选题背景1、实践意义:语音信号是一种非平稳的时变信号,它携带着各种信息。

在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。

语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。

所以理解并掌握语音信号的时域和频域特性是非常重要的。

通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。

语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等.语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值.数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。

它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。

具有灵活、精确、抗干扰强、度快等优点。

数字滤波器, 是数字信号处理中及其重要的一部分。

随着信息时代和数字技术的发展,受到人们越来越多的重视。

数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。

数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。

FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能用较高的阶数达到高的选择性。

FIR数字滤波器的幅频特性精度较之于IIR数字滤波器低,但是线性相位,就是不同频率分量的信号经过fir 滤波器后他们的时间差不变,这是很好的性质。

FIR数字滤波器是有限的单位响应也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。

FIR滤波器因具有系统稳定,易实现相位控制,允许设计多通带(或多阻带)滤波器等优点收到人们的青睐[1]。

IIR滤波器采用递归型结构,即结构上带有反馈环路。

IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。

同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯滤波器等。

2、语音信号在国外研究现状语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。

60年代之前的发展主要有:1876年Bell发明,1939年H.Dudley研制成功第一个声码器,1942年Bell实验室发明了语谱仪,1948年美国Haskin实验室研制成功“语图回放机”,1952年Bell实验室研制成能识别十个英语数字的识别器。

60年代以后,随着计算机技术的发展,语音信号处理技术获得了长足的进步,计算机模拟实验取代了硬件研制的传统做法。

各种突破性的思想不断涌现。

20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础,主要的有Martin等人为邮局研制了邮政编码阅读机。

随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;20世纪80年代,由于矢量量化,隐马尔可夫模型和人工神经网络(ANN)的研究取得了迅速发展,并相继被应用与语音信号处理,经过不断的改进与完善,使得语音信号处理技术产生了突破型的进展。

进入20世纪90年代以来,语音信号的采集与分析在实用化这一方面取得了很多的实质性的进展。

语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。

3、软件支持:MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。

是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

它是一种科学计算软件,专门以矩阵的形式处理数据。

MATLAB 将高性能的数值计算和可视化集成在一起,并提供了大量的置函数,从而被广泛的应用于科学计算、控制系统和信息处理等领域的分析、仿真和设计工作。

MATLAB软件包括五大通用功能,数值计算功能(Nemeric)、符号运算功能(Symbolic)、数据可视化功能(Graphic)、数字图形文字统一处理功能(Notebook)和建模仿真可视化功能(Simulink)。

其中,符号运算功能的实现是通过请求MAPLE核计算并将结果返回到MATLAB命令窗口。

该软件有三大特点,一是功能强大;二是界面友善、语言自然;三是开放性强。

目前,Mathworks公司已推出30多个应用工具箱。

MATLAB在线性代数、矩阵分析、数值及优化、数值统计和随机信号分析、电路与系统、系统动力学、次那好和图像处理、控制理论分析和系统设计、过程控制、建模和仿真、通信系统以及财政金融等众多领域的理论研究和工程设计中得到了广泛应用。

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。

由于信号与系统课程的许多容都是基于公式演算,而MATLAB 借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。

例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。

MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等容。

数值计算仿真分析可以帮助学生更深入地理解理论知识,并为将来使用MATLAB进行信号处理领域的各种分析和实际应用打下基础。

MATLAB和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

二、实践原理1、采样定理:在进行模拟与数字信号的转换过程中,当采样大于最高频率的2倍时,则采样之后的数字信号完整的保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。

2、采样频率:采样频率是指计算机每秒钟采样多少个声音样本,是描述声音文件的音质、音频、衡量声卡、声音文件的质量标准。

采样频率越高,即采样的时间间隔越短,则在单位时间计算机得到的声音样本数据越多,对声音波形的表示也越准确。

3、采样位数与采样频率:采样位数即采样值或取样值,用来衡量声音波动变化的参数,是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。

采样频率是指录音设备在一秒钟对声音信号的采样次数,采样频率越高声音的还原就越真实越自然。

采样位数和采样率对于音频接口来说是最为重要的两个指标。

无论采样频率如何,理论上来说采样的位数决定了音频数据最大的力度围。

采样位数越多则捕捉到的信号越精确。

4、仿真原理利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

语音信号的“ 短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。

如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。

由于信号与系统课程的许多容都是基于公式演算,而MATLAB 借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。

例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。

MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等容。

相关文档
最新文档