初中七年级数学第一章重难点突破

合集下载

北师大版-数学-七年级上册-等式的性质 重难点突破

北师大版-数学-七年级上册-等式的性质 重难点突破

初中-数学-打印版
等式的性质重难点突破
等式性质的理解
突破建议:
1.等式的性质包括两条,文字形式表示为:性质1.等式两边加(或减)同一个数(或式子),结果仍相等;性质2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.式子形式表示为:性质1.如果,那么;性质2.如果,那么;如果(),那么.
2.等式的性质是对等式进行变形的重要依据,应用时需要把握如下三点:一是对等式两边变形要做到两个“同”,即等式两边同加、或同减、或同乘、或同除以;二是等式两边同加、或同减时,可以是同一个数(或式子),而同乘、或同除时,只说是同一个数,且同除时的除数不能为0.这一点容易忽略,要特别注意;三是对等式进行变形时,要明白变形的目的,做到步步有据,这样才能保证变形结果的正确性.
3.为了降低学习难度,新课标教材没有涉及方程的同解理论,而以相对比较容易理解的等式性质作为解方程的主要根据.教学时不必向学生介绍方程的同解理论,以防适得其反.
例1已知,则下列各式:①;②;③;④中,正确的个数有( ).
A.1个B.2个C.3个D.4个
解析:本题考查等式的性质.
根据等式的性质1和等式的性质2,把等式两边同减去3,得;把等式两边同乘以3,得;把等式两边同乘以,得;由于的取值可以为0,所以等式的两边不能同时除以,故由不能得到.答案应选择C.
例2已知,你能利用等式的性质比较和的大小吗?写出你的理由.
解析:本题考查等式性质的应用.
根据等式的性质,先把等式的两边同加上整式,得.再把等式两边同时除以2,得.因为,所以.
初中-数学-打印版。

七年级数学(上)重点、难点突破

七年级数学(上)重点、难点突破

七年级数学(上)重点、难点突破第一部分知识点讲解第一章有理数一.有理数1.按整数、分数的关系分类2.按正数、负数与0的关系分类正整数正整数整数0 正有理数负整数正分数有理数有理数零正分数负整数分数负有理数负分数负分数2.0非正非负,0是整是偶。

3.分数与有限小数和无限循环小数可以互化,但并不是所有的小数都能表示成分数。

4.整数也可以分为奇数和偶数两类。

如:-4、-2、0、2、4是偶数,-5、-3、-1、1、3是奇数。

5.数看结果,式看原形。

如:93是分数(×)3π是分数(×)(因为π是无理数)6.你所知道的数可以分成哪些种类?你是按照什么划分的?像0、1、2、3…这样的自然数;像-4、-3、-2、-1、0、1、2、3、4…这样的整数;像-35、-13、12、29…这样的分数;像-5.2、-0.7、0.1、1.3、5.9…这样的小数;像1%、70%、84%…这样的百分数;另外还有质数、合数;奇数、偶数;其中我们把能被2整除的数称为偶数,不能被2整除的数称为奇数;只有1和它本身两个因数的数称为质数,除1和它本身外还有其它因数的数称为合数;小数数位是有限个的为有限小数,小数数位是无限个的为无限小数;小数数位循环的为循环小数,小数数位不循环的为不循环小数。

二.数轴1.所有的有理数都可以用数轴上的点来表示(∨);反过来数轴上的点都表示有理数(×)实际上,实数(有理数和无理数统称为实数)与数轴上的点是一一对应的关系。

2.数轴上与表示+1的点距离是3个单位长度的点可表示的数是+4和-2。

与它类似的是a =2,则a=±2,结果都是两个。

3.用数轴表示点,一般表示单位长度的数在下方,表示点的数在上方。

三.相反数1.相反数的两种含义代数定义:只有符号不同的两个数,称一个数是另一个数的相反数,这两个数互为相反数。

(也可以说互为相反数是绝对值相等,符号相反的两个数)几何定义:在数轴上,位于原点两旁且到原点距离相等的两个点所表示的两个数,就互为相反数。

青岛版七年级数学上册重点、难点、目标知识点归纳

青岛版七年级数学上册重点、难点、目标知识点归纳
ⅲ大于-2.5而不大于3的整数是 _____ _________;大于-3 的负整数是 ________
1.加法 ⑴加法法则:(+5)+(+2)=( ) (-5)+(-2)=( )
①_______________________________________________________
C.
“二三一型”
(有 6 种) (有 3 种)
D.
A.
B.
⑤如图,是一个正方体的表面展开图,则原正方体中 “梦”字所在的面相对的面上标的字是( ) 二、线段、射线、直线 1. 线段、射线、直线的区别和联系
1
延伸性 端点 长度 图形
表示
作图描述
线
段 射
线 直
线 2.递推①五个人若其中每两个人都握一次手,他们总共握多少次手?
长度到达点 C.若点 C 表示的数为 1,则点 A 表示的数( )
ⅲ数轴上点 A,B 分别表示数-2 和 1,点 C 是线段 AB 的中点,则 C 表
示的数是( )
2.相反数
②-2010 的相反数是____;-(-2014)=_____;- |-2014|=____:(-2) 3 的相反数
是___
初一数学上册总复习
第一章基本的几何图形 重点:基本的几何图形。这部分的主要内容是图形的初步认识,从
“二二二型” (有 1 种)
“三三型”(有 1 种)
学生生活周围熟悉的立体图形入手,使学生队物体形状的认识由模糊、
感性的上升到抽象的数学图形通过立体图形的展开图介绍立体图形与平 面图形的关系,从而引人组成立体图形和平面图形的最基本的图形—— 点、线和面的介绍,进而以此为基础介绍线段、射线和直线,

洛阳市七年级数学上册第一章有理数重难点归纳

洛阳市七年级数学上册第一章有理数重难点归纳

洛阳市七年级数学上册第一章有理数重难点归纳单选题1、中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃答案:C分析:零上温度记为正,则零下温度就记为负,则可得出结论.解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.小提示:此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2、下列说法正确的个数是()的倒数是2022.①-2022的相反数是2022;②-2022的绝对值是2022;③12022A.3B.2C.1D.0答案:A分析:根据相反数、绝对值、倒数的定义逐个判断即可.①-2022的相反数是2022,故此说法正确;②-2022的绝对值是2022,故此说法正确;的倒数是2022,故此说法正确;③12022正确的个数共3个;故选:A.小提示:本题考查相反数、绝对值、倒数的含义,只有符号相反的两个数叫做互为相反数,数轴上一个数所对应的点与原点的距离叫做该数的绝对值,乘积为1的两个数互为倒数,熟知定义是解题的关键.3、某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃答案:B分析:根据有理数减法计算−3−7=−10℃即可.解: ∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B .小提示:本题考查有理数的减法,掌握有理数的减法法则是解题关键.4、规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作( )A .+5B .-5C .15D .-15答案:B分析:根据题意,在表示相反意义的量中,规定其中一个为正,则另一个为负,即可得出答案.解:因为(→2)表示向右移动2,记作+2,∴则(←5)表示向左移动5,记作-5;故选B小提示:本题考查正负数的概念,解题的关键在于理解相反意义的量.5、计算1−2+3−4+5−6+7−8+⋅⋅⋅+2017−2018的结果是( )A .-1009B .-2018C .0D .-1答案:A分析:利用加法的结合律将原式整理成(1−2)+(3−4)+⋅⋅⋅+(2017−2018)即可求解.解:1−2+3−4+5−6+7−8+⋅⋅⋅+2017−2018,=(1−2)+(3−4)+(5−6)+(7−8)+⋅⋅⋅+(2017−2018),=(−1)+(−1)+(−1)+(−1)+⋅⋅⋅+(−1),=−1009,故选:A .小提示:本题考查了有理数的加减法,解题的关键是掌握相应的运算法则.6、如图所示的运算程序中,若开始输入的x 值为36,我们发现第1次输出的结果为18,第2次输出的结果为9,……则第2022次输出的结果为( )A.3B.6C.9D.18答案:B分析:根据设计的程序进行计算可以发现其中的规律,遵循规律即可求出第2022次输出的结果.解:通过程序可以发现第1次输出的结果为18,第2次输出的结果为9,第3次输出的结果为12,第4次输出的结果为6,第5次输出的结果为3,第6次输出的结果为6,第7次输出的结果为3,第8次输出的结果为6,∴从第4次输出开始,当是偶数次输出时结果为6,奇数次输出时结果为3,∴第2022次输出的结果为6,故选:B.小提示:本题考查在程序流程图中有理数的计算,解题的关键是发现其中的规律,利用规律进行解答.,-1,0中,最小的数是()7、在有理数1,12C.-1D.0A.1B.12答案:C分析:根据负数小于0,0小于正数即可得出最小的数.,-1,0这四个数中只有-1是负数,解:1,12所以最小的数是-1,故选:C.小提示:本题考查了有理数的大小比较.理解0大于任何负数,小于任何正数是解题关键.8、若a是最大的负整数,b是相反数等于它本身的数,c的绝对值是1,则a+b﹣c=()A.﹣1或0B.0或﹣2C.﹣2D.﹣1答案:B分析:根据题意a是最大的负整数,a是-1;b=0;c的绝对值是1,c=±1。

【初中数学】+数+轴+考点梳理及难点突破+课件+人教版(2024)数学七年级上册

【初中数学】+数+轴+考点梳理及难点突破+课件+人教版(2024)数学七年级上册
第一章 有理数
考点梳理及难点突破
1.2.2 数 轴
● 考点清单解读
● 重难题型突破
● 易错易混分析
● 方法技巧点拨
返回目录






■考点一
数轴的定义及画法
规定了原点、正方向和单位长度的直线叫作数
定义
轴;原点将数轴(原点除外)分成两部分,其
中正方向一侧的部分叫作数轴的正半轴;另一
侧的部分叫作数轴的负半轴
A. 文具店
B. 玩具店
C. 文具店西 40 m 处
D. 玩具店西 60 m 处
返回目录
解题通法
根据运动的方向和距离在数轴上表示出每


题 次运动结束的位置,运用转化思想将复杂的实际问题转化
型 成数学问题,借助数轴上的点与有理数的对应关系简单直

破 观地解答.
返回目录
易 ■忘记分类讨论,导致漏解图示三要素原点、正方向和单位长度
返回目录
续表






步骤
(1)画:画一条水平(或竖直)
的直线
(2)取:在直线上任取一个点
画法
表示数0,这个点叫作原点
(3)定:通常规定直线上从原
点向右(或上)为正方向,用
箭头表示出来
图示
返回目录






续表
步骤
画法
(4)选:选取适当的长度为单
位长度
图示
返回目录
明跑步用的时间是9 000÷250=36(min).
答:小明跑步一共用了 36 min.
返回目录
变式衍生 文具店、书店和玩具店依次坐落在一条东西

【初中数学】绝+对+值+考点梳理及难点突破+课件++人教版(2024)数学七年级上册

【初中数学】绝+对+值+考点梳理及难点突破+课件++人教版(2024)数学七年级上册

破 ,C 的距离相等,此时点B 表示的数是-1;
(3)因为点 P 表示的数到原点的距离是 3,所以点 P
表示的数是3 或-3.又因为 P,Q 在数轴上表示的数互为相
反数,所以点 Q 表示的数是-3 或 3.
返回目录
变式衍生 数轴上点 A 表示的数的绝对值是 3,且在


题 原点的左侧,B,C 两点表示的数互为相反数,且点 B 到
D.-[-(+8)]=8,故 D 项错误.
[答案]B
返回目录
重 ■题型一 绝对值非负性的应用

例 1 已知 |a-3| 与 |2b-4| 互为相反数.


(1)求 a 与 b 的值;


(2)若|x|=2a+4b,求 x 的相反数.
返回目录






[答案] 解:(1)因为|a-3|与 |2b-4|互为相反数,

易 正确;若 a<0,则 |a| =-a,故②正确;③若|a|=|b| ,则

分 a=±b,故③错误;④正确.

[答案] C
[易错] D
[错因]|a| = |b| ,忽略了 a=-b 这种情况.
返回目录
易错警示 两个数的绝对值相等时,这两个数可能相等


易 也可能互为相反数.


领悟提能 求含字母的式子的绝对值时,要根据式子的
A. 2
C. 2 或-2
B. -2
D. 2 或-



返回目录






[解题思路]

七年级数学上学期 绝对值重难点突破(含解析)

七年级数学上学期 绝对值重难点突破(含解析)

初中数学人教版七年级上学期第一章有理数绝对值重难点突破一、解答题1.(8分)(2020七上·硚口期中)已知是有理数.(1)当时,先判断的正、负符号,再求的值;(2)当时,直接写出的值.2.(8分)(2021七上·相城月考)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|3.(10分)(2021七上·苏州月考)如图所示,有理数a,b,c在数轴上的对应点分别是A、B、C,原点为点O.①化简:|a﹣c|+2|c﹣b|﹣|b﹣a|.②若B为线段AC的中点,OA=6,OA=4OB,求c的值.4.(12分)(2020七上·金华期中)数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。

我们知道一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,如:,:表示数的点到原点的距离。

同样的,:表示数的点到表示数3的点的距离。

请结合数轴解决下列问题:①当时,表示什么意思?________;②若,则________;③若,则的值是________;④求使的值最小的所有符合条件的整数.二、综合题5.(10分)(2021七上·薛城期中)数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则点A、B两点间的距离表示为.利用上述结论,回答以下问题(1)若点A在数轴上表示-3,点B在数轴上表示1,那么AB=;(2)若数轴上两点C、D表示的数为x、-1①C、D两点之间的距离可用含x的式子表示为;②若该两点之间的距离是3,那么x值为;(3)若数轴上表示a的点位于-5和2之间,化简.6.(11分)(2021七上·建昌期中)“数形结合”是重要的数学思想.如:表示与差的绝对值,实际上也可以理解为与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用,表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上表示和两点之间的距离是.(2)可理解为与两数在数轴上所对应的两点之间的距离;可理解为与两数在数轴上所对应的两点之间的距离.(3)若,则.(4)若表示一个有理数,的最小值为.(5)直接写出所有符合条件的整数x,使得,的值为7.(10分)(2021七上·温岭期中)点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为|AB|.数轴上A、B两点之间的距离|AB|=|a-b|回答下列问题:(1)数轴上表示-1和-4的两点之间的距离是;(2)数轴上表示x和-1的两点A之和B之间的距离是,如果|AB|=2,那么x的值是;(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=;(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是.8.(15分)(2020七上·武汉期中)(问题背景)在数轴上,点表示数在原点的左边,点表示的数在原点的右边,如图1,所示,则有:①;②线段的长度等于.(问题解决)点、点、点在数轴上的位置如图2所示,三点对应的数分别为,、.①线段的长度为▲;②若点为线段的中点,则点表示的数是▲;③化简:.(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应的数为,点对应的数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要1秒,完全经过线段需要2秒,求的值;②已知,当式子取最小值时,相应的的取值范围是▲,式子的最小值是▲.(用含、的式子表示)9.(16分)(2020七上·孝南期中)已知是最小的正整数,且,满足,请回答:(1)请直接写出,,的值:=,=,=;(2)在(1)的条件下,若点为一动点,其对应的数为,点在0到1之间运动,即时,化简:;(3)在(1)(2)的条件下,,,分别对应的点、、开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.答案解析部分一、解答题1.【答案】(1)解:,;(2)解:当同正时,;当两正一负时,;当一正两负时,;当同负时,;综上:或±1.【考点】绝对值及有理数的绝对值,代数式求值【解析】【分析】(1)利用有理数的乘法法则可知a,b同号,再利用有理数的加法法则,结合已知可得到a,b同为负数,然后化简绝对值,可求出结果。

人教版七年级数学上册重难点分析

人教版七年级数学上册重难点分析

人教版七年级数学上册第一章 有理数主要内容:主要内容是有理数的有关概念及其运算。

首先,从实例引入负数,接着引进关于有理数的一些概念(数轴、相反数、绝对值、倒数等),在此基础上,介绍有理数的加减法、乘除法和乘方运算的意义、法则和运算律。

重点:有理数的运算。

数轴的绘画以及运用。

绝对值以及相反数的运用。

科学记数法的掌握 难点:对有理数运算法则的理解,特别是对有理数乘法法则的理解。

实例:20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识 1. ._______2=-6.20XX 年北京奥运会的主场馆----“鸟巢”的建筑面积是258000平方米,将258000用 科学记数法表示应是____________________。

13.解集在数轴上表示如图所示的不等式组是(A.21x x ≤-⎧⎨≥⎩B.21x x ≥-⎧⎨≥⎩C.21x x ≤-⎧⎨≤⎩D. 1x x ≥-⎧⎨≤⎩20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1.3-的相反数是 .2.20XX 年莆田市参加初中毕业、升学考试的学生总人数约为43000人,将43000用 科学记数法表示是___________.3. 不等式组2410x x <⎧⎨+>,的解集在数轴上表示正确的是( )A B . C D 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2-的倒数是( ) A. 2 B.12 C. 12- D. 15- 10. 20XX 年我国全年国内生产总值约335000亿元,用科学记数法表示为__________元18. 解不等式213436x x --≤,并把它的解集在数轴上表示出来. 20XX 年莆田市初中毕业升学考试中涉及到有理数中的知识1. 2011-的相反数是( )A . 2011-B . 12011-C . 2011D . 120113. 已知点P (1a a -,)在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )9. 一天有86400秒,用科学记数法表示为____________ 秒;分析:从08到11年试卷的试题中出现的有关有理数的知识可以看出,每年的试题类型的 差不多这几种。

七年级上册数学应用题重难点突破之经济问题(讲义及答案)

七年级上册数学应用题重难点突破之经济问题(讲义及答案)

应用题重难点突破之经济问题(讲义)1. 几折表示十分之几或百分之几十.例如,打9折出售表示按原价的______或_______出售.2. 随着市场经济的不断发展,人们经营的理念在不断地增强,“打折销售”成为一个很流行的营销模式.如果你是一个商人,如何打折,这其中都是有学问的.一家商店以成本150元/件购进了一批服装,为了促销,商店准备打出8折优惠的政策,还想每件仍获利50元,请问商店应该给每件服装标价多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的标价为x 元,那么每件服装的实际售价为__________元; 每件服装的利润为__________元;因此,列出方程为________________________. 解方程,得x =_______.因此,这种服装每件的标价为______元.1. 经济问题关注的量及等量关系:六个概念:成本(进价)、标价、售价、折扣、利润、利润率; 两个公式:利润=________________________;利润率=______________________.2. 经济问题的思考步骤:①理解题意,找关键词,比如进价(成本)、标价、售价、折扣、利润、利润率等; ②梳理信息,列表,提取数据,列出售价、成本、利润; ③根据等量关系列方程.1. 为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(x >200),则购买该商品实际付款的金额是( )元.A .80%x -20B .80%(x -20)C .20%x -20D .20%(x -20)2. “五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ·30%·80%=2 080C .2 080×30%×80%=xD .x ·30%=2 080×80%课前预习知识点睛精讲精练3.校门口一文具店把一个足球按进价提高80%标价,然后再按7折出售,这样每卖出一个足球可盈利6.5元.设一个足球进价为x元,根据题意可以列一元一次方程,正确的是()C.80%x×70%-x=6.5 D.(1+80%)x-(1-70%)x=6.54.一家商店把某商品按标价的9折出售仍可获利15%,已知该商品的进价是35元,若设标价为x元,则可列方程为____________________.5.一件商品按成本价提高20%后标价,又以9折销售,售价为270元.这种商品的成本价是多少?6.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?7.某商店开张,为了吸引顾客,所有商品一律优惠20%出售,已知某种运动鞋进价为每双120元,优惠后商家想使所获取的利润率为40%,则这种运动鞋标价是每双多少元?8.某种商品因换季准备打折出售,如果按定价的7.5折出售将赔25元,而按定价的9折出售将赚20元.这种商品的定价是多少?9.某商场购进某种商品的进价是每件8元,销售价是每件10元.现为了扩大销售量,决定打折出售,但要求卖出一件商品所获得的利润是打折前所获得利润的50%,请问打了几折?10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定11.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元12.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元.参考答案1.91090% 2. 80%x ⋅ 50 80%·x -150=50 250 2501. 售价-成本=利润利润率=100%⨯利润成本1. A2. A3.4.5. 6. 解:设这种服装每件的成本是x 元,根据题意得x (1+40%)·80%=x +15 解得 125x =答:这种服装每件的成本是125元.7. 解:设这种运动鞋的标价是每双x 元,根据题意得x (1-20%)=120+120×40% 解得 210x =答:这种运动鞋标价是每双210元.8. 300元9. 解:设打了x 折,根据题意得课前预习精讲精练知识点睛50%·(10-8)=10·10x -8 解得 9x = 答:打了九折.10. B 11. C12. 解:设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得90%(1+50%)x+90%(1+40%)(500-x )-500=157 解得 300x = 500-x =200答:甲服装的成本是300元,乙服装的成本是200元.。

七年级数学(上)重难点

七年级数学(上)重难点

1.3.2有理数的减法(二)重点:依据运算法则和运算律准确迅速地进行有理数的加减混合运算难点:省略加号的代数和的计算1.3.1有理数的加法(二)重点:有理数加法运算律及其运用难点:灵活运用运算律1.3.2有理数的减法(一)重点:有理数减法法则及应用难点:运用有理数减法法则解决数学问题1.3.1有理数的加法(一)重点:有理数的加法法则难点:异号两数相加的法则难点:根据相反数的意义化简符号重点:绝对值的概念难点:绝对值的几何意义1.2.4绝对值1.2.3相反数重点:求已知数的相反数1.2.1有理数1.2.2数轴第一章 有理数七年级(上)数学重难点重点:正、负数的概念难点:正确区分两种不同意义的量,深化对正负数概念的理解重点:正确理解有理数的概念难点:有理数的分类重点:正确理解数轴的概念和用数轴上的点表示有理数难点:数轴的概念和用数轴上的点表示有理数1.1正数和负数本章复习重点:有理数概念和有理数运算难点:对有理数运算法则和理解1.4.1有理数的乘法(一)重点:有理数的乘法法则难点:积的符号的确定1.4.1有理数的乘法(二)重点:多个有理数相乘的顺序,以及积的符号与负因数的个数关系难点:积的符号由负因数的个数确定难点:运用乘法法则和乘法运算律进行乘法运算教学过程:1.4.2有理数除法(一)重点:除法法则和除法运算难点:根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定1.4.2有理数除法(二)重点:运算顺序的确定难点:灵活运用运算律进行有理数混合运算1.4.1有理数的乘法(三)重点:运用乘法运算律进行乘法运算1.5.3近似数重点:近似数、精确度、有效数字概念。

难点:由给出的近似数求其精确度及有效数字。

1.5.1乘方(一)重点:正确理解乘方的意义,能利用乘方的运算法则进行难点:会进行有理数的乘方运算,弄清(-a )n 与-an 的区别1.5.1乘方(二)重点:有理数的混合运算的运算顺序难点:学会有理数混合运算1.5.2科学记数法重点:正确使用科学记数法表示大于10的数难点:正确掌握10n 的特征以及科学记数法中n 与数位的关系本章复习重点:有理数概念和有理数运算难点:对有理数运算法则和理解1.4.1有理数的乘法(一)重点:有理数的乘法法则难点:积的符号的确定1.4.1有理数的乘法(二)重点:多个有理数相乘的顺序,以及积的符号与负因数的个数关系难点:积的符号由负因数的个数确定难点:运用乘法法则和乘法运算律进行乘法运算教学过程:1.4.2有理数除法(一)重点:除法法则和除法运算难点:根据除法是乘法的逆运算,归纳出除法法则及商的符号的确定1.4.2有理数除法(二)重点:运算顺序的确定难点:灵活运用运算律进行有理数混合运算1.4.1有理数的乘法(三)重点:运用乘法运算律进行乘法运算1.5.3近似数重点:近似数、精确度、有效数字概念。

有理数的加法 -2021-2022学年七年级数学上册重难点突破(浙教版)(解析版) (1)

 有理数的加法 -2021-2022学年七年级数学上册重难点突破(浙教版)(解析版) (1)

2.1 有理数加法【热考题型】【重难点突破】考查题型一有理数加法运算典例1.比﹣2大5的数是()A.﹣7 B.﹣3 C.3 D.7【答案】C【解析】解:比﹣2大5的数是:﹣2+5=3.故选:C.变式1-1.若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【解析】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.变式1-2.如图,下列结论中错误的是()A.a+b<0 B.c+d>0 C.b+c>0 D.c+a<0【答案】C【解析】由数轴可得a<b<0<c<d,|a|>|c|,|b|>|c|,所以a+b<0,c+d>0,b+c<0,c+a<0,故A、B、D 正确,C错误,故选C.变式1-3.如果x<0,y>0,x+y<0,那么下列关系式中,正确的是( )A.x>y>-y>-x B.-x>y>-y>xC.y>-x>-y>x D.-x>y>x>-y【答案】B【解析】由于x<0,y>0,x+y<0,则|x|>y,于是有y<-x,x<-y,易得x,y,-x,-y的大小关系为:x<-y<y<-x.故选:B.考查题型二有理数加法的符号问题典例2.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个【答案】C【解析】∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.变式2-1.若ab≠0,则a ba b+的结果不可能是()A.﹣2 B.0 C.1 D.2 【答案】C【解析】∵aa=±1,bb=±1,∴a ba b+=2或﹣2或0.故选C.变式2-2.若两个数的和是负数,那么一定是()A.这两个数都是负数B.两个加数中,一个是负数,另一个是0C.一个加数是正数,另一个加数是负数,且负数的绝对值较大D.以上三种均有可能【答案】D【解析】A、两个数的和是负数,这两个数不一定为负数,例如-3+2=-1,两加数为-3和2,本选项错误;B、两个数的和是负数,这两个数不一定一个是负数,另一个是0,例如-3+2=-1,两加数为-3和2,本选项错误;C、两个数的和是负数,这两个数不一定一个加数是正数,另一个加数是负数,且负数的绝对值较大,例如-2+0=-2,本选项错误,所以D正确.故选:D.变式2-3.把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是().A.﹣3﹣5+1﹣7 B.3﹣5﹣1﹣7 C.3﹣5+1﹣7 D.3+5+1﹣7【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7,故选C. 变式2-4.如果a b 、是有理数,则下列各式子成立的是( ) A .如果00a b <<、,那么0a b +> B .如果0,0a b <>,那么0a b +> C .若00a b ><、,则0a b +< D .若0,0a b <>,且a b >,则0a b +<【答案】D【解析】解:A 、如果00,a b <<、那么0a b +<,故A 错误;B 、如果0,0a b <>,那么不能判断a b +的符号,故B 错误;C 、若00,a b ><、不能判断a b +的符号,故C 错误;D 、若a <0,b >0,且|a|>|b|,那么a +b <0,正确;故选:D .变式2-5.|a |+|b |=|a +b |,则a ,b 关系是( ) A .a ,b 的绝对值相等 B .a ,b 异号C .a +b 的和是非负数D .a 、b 同号或a 、b 其中一个为0 【答案】D【解析】解:A 、当a 、b 的绝对值相等时,如11a b ==-,,|a |+|b |=2,|a +b |=0,即|a |+|b |≠|a +b |,故本选项不符合题意;B 、当a 、b 异号时,如a =1,b =-3,|a |+|b |=4,|a +b |=2,即|a |+|b |≠|a +b |,故本选项不符合题意;C 、当a +b 的和是非负数时,如:a =﹣1,b =3,|a |+|b |=4,|a +b |=2,即即|a |+|b |≠|a +b |,故本选项不符合题意;D 、当a 、b 同号或a 、b 其中一个为0时,|a |+|b |=|a +b |,故本选项符合题意;故选:D .考查题型三 有理数加法在实际生活中的应用典例3.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间1月7日8时时,纽约的时间是( ) A .1月6日21时 B .1月7日21时C .1月6日19时D .1月6日20时【答案】C【解析】解:24﹣[8+(﹣13)]=19,故选:C .变式3-1.某大米包装袋上标注着“净含量10 kg±150 g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( ) A .100 g B .150 gC .300 gD .400 g【答案】D【解析】解:根据题意得:10+0.15=10.15(kg ),10﹣0.15=9.85(kg ),因为两袋两大米最多差10.15﹣9.85=0.3(kg ),=300(g ),所以这两袋大米相差的克数不可能是400g ; 故选D .变式3-2.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【答案】C【解析】有理数的加法:-0.1-0.3+0.2+0.3=0.1,0.1+5×4=20.1变式3-3.一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【解析】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.变式3-3.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的()天数是A.4天B.5天C.6天D.7天【答案】B【解析】从井里距井口18处,第一天,向上爬行6米,晚上下滑3米,最后距井口15米;第二天,向上爬行6米,晚上下滑3米,最后距井口12米;第三天,向上爬行6米,晚上下滑3米,最后距井口9米;第四天,向上爬行6米,晚上下滑3米,最后距井口6米;第五天,向上爬行6米,到井口,则蜗牛爬出井口需要的天数是5天,故选B.考查题型四有理数加法运算律典例4.计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【解析】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选D.变式4-1.的结果是()A.0 B.1009 C.-1009 D.-2018【答案】C【解析】原式= (1-2)+(3-4)+(5-6)+…+(2015-2016)+(2017-2018)=(-1)+(-1)+(-1)+…+(-1)+(-1) =(-1)×1009=-1009.故选C.变式4-2.计算314+(–235)+534+(–825)时,运算律用得最为恰当的是()A.[314+(–235)]+[534+(–825)] B.(314+534)+[–235+(–825)]C.[314+(–825)]+(–235+534)D.(–235+534)+[314+(–825)]【答案】B【解析】原式=(314+534)+[–235+(–825)]=9+(-11)=-2,故选B.变式4-3.计算(-20)+379+20+(-79),比较合适的做法是()A.把第一、三两个加数结合,第二、四两个加数结合B.把第一、二两个加数结合,第三、四两个加数结合C.把第一、四两个加数结合,第二、三两个加数结合D.把第一、二、四这三个加数结合【答案】A【解析】计算(-20)+379+20+(-79),比较合适的做法是把一、三两个加数结合,二、四两个加数结合.故选A.。

初一上册数学重难点

初一上册数学重难点

初一上册数学重难点初一上册数学重难点数学在初中一年级的课程中占据了重要的地位,它是培养学生逻辑思维能力、分析解决问题能力的重要工具。

下面我们来回顾一下初一上册数学中的重难点。

一、整数和有理数在初一上册的数学课程中,学生将学习并深入了解整数和有理数的概念。

整数包括正整数、负整数和零,有理数则是整数和分数的统称。

学生需要学会在数轴上表示整数和有理数,并学习它们之间的加减乘除的运算规则。

在学习整数的加法和减法的时候,需要掌握正整数和负整数的加减法。

在乘法和除法中,学生要熟练掌握运算规则,尤其是负数的乘除法。

二、分数和小数分数和小数是初中数学中的重要概念,也是初一上册数学的重难点。

学生需要学会将分数和小数相互转化,并学习它们之间的运算。

在进行分数和小数的加减乘除运算的时候,学生需要找到它们的公约数和公倍数,学会化简和约分。

此外,学生还需要掌握如何进行分数和小数的比较大小。

三、代数式初一上册数学中学生将开始学习代数式的概念和运算。

代数式是由常数、变量和运算符组成的表达式。

学生需要学会识别代数式中的常数项、变量项和系数,并学习代数式的求值。

此外,学生还需要学会进行代数式的化简和展开,掌握代数式的加减乘除运算。

四、方程与不等式在初一上册数学中,学生需要学习方程和不等式的概念和解法。

方程是含有未知数的等式,不等式则表示两个数之间的大小关系。

学生需要学会解一元一次方程和一元一次不等式,并应用它们解决实际问题。

解方程和不等式的过程中,需要掌握整数运算和分数运算的技巧。

五、几何基础初一上册数学中的几何基础包括线段、角、平面图形等。

学生需要掌握线段的长度、角的度量和平面图形的性质。

在计算线段的长度和角的度量时,学生需要掌握相应的计算公式。

在学习平面图形的时候,需要认识和了解三角形、四边形、圆等基本图形的性质,并掌握它们的计算方法。

六、统计与概率初一上册数学中的统计与概率是数学中的一个重要分支。

学生需要学会收集、整理和分析数据,并根据数据绘制统计图表。

人教版七年级初一数学上册【重难点知识】汇总

人教版七年级初一数学上册【重难点知识】汇总

人教版七年级数学上册【重难点知识】汇总第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。

3、相反数只有符号不同的两个数互为相反数。

(如2的相反数是-2,0的相反数是0)4、绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

乘法交换律、结合律、分配律。

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

初中数学重难点全解 七年级 用最简单的方法解最难的题

初中数学重难点全解 七年级  用最简单的方法解最难的题

㊃1㊃本章的主要知识点可以概括为有理数的有关概念和有理数的运算两部分.有理数的有关概念包括有理数分类的原则和方法㊁相反数㊁数轴㊁绝对值的概念和特点.可以利用数轴来认识和理解有理数的有关概念.有理数的运算和运算律是本章的重点.运算包括有理数的加㊁减㊁乘㊁除㊁乘方及简单的混合运算;运算律包括加法交换律㊁加法结合律㊁乘法交换律㊁乘法结合律㊁乘法分配律等.科学计数法与乘方有关,近似数和有效数字在实际生活中有广泛意义.1.有理数是初中数学的基础内容,也是中考的重要考点之一,主要和其他知识联合考查.中考试题中分值约为3~6分,多以选择题㊁填空题㊁计算题的形式出现,属于简单题.近几年主要考查以下几个方面:(1)相反数,绝对值,倒数等相关概念;(2)负数的乘方,加减及混合运算.本章的重点是有理数概念的理解及有理数的运算和运算律.基本概念的考查频率很高,几乎每个地区的中考卷都会涉及.有理数运算和运算律一般融入其他运算一并考查,近似数和有效数字考试中涉及略少.例1 下面说法正确的是( ).A.0不是整数B .有理数包括正整数㊁负整数㊁正分数㊁负分数C .一个整数不是正整数,就是负整数D.整数和分数统称为有理数ʌ解析ɔ 此题必须明确有理数的意义和分类.整数包括正整数㊁0㊁负整数,因此选项A ㊁选项C 不正确.0是有理数,因此选项B 不正确.整数和分数统称为有理数,故选项D 正确.ʌ说明ɔ 有理数的分类方式有两种,可分为整数㊁分数;也可分为正数㊁0和负数.因此,有理数分类要按统一标准分类,做到既不重复,也不遗漏.另外,整数可以看作分母是1的分数.因此,有理数都可以化成分数,而能够化成分数的数就是有理数.π=3.1415926 是无限不循环小数,它不能化成分数,所以π不是有理数.练习1 下列说法中正确的有( ).①最小的自然数是1;②最小的正数是1;③最小的非负数是0;④0既不是奇数,也不是偶㊃2 ㊃数;⑤0表示没有海拔高度.A.1个B .2个C .3个 D.4个例2 在中央电视台 开心辞典 栏目中,主持人问嘉宾这样一道题目: 若数轴上的点A 和点B 表示互为相反数的两个数,并且它们到原点的距离之和是9.6,那么点A 和点B 表示两个什么样的数(A >B ) 你能帮嘉宾解决问题吗?ʌ解析ɔ 互为相反数的两个数,它们的绝对值相等,所以它们到原点的距离相等.两个数到原点的距离和是9.6,那么它们到原点的距离均为4.8,因此大数A 是4.8,小数B 是-4.8.ʌ说明ɔ 绝对值㊁相反数㊁数轴的概念难度不大,但极易混淆.有时也和定义新运算这类题目联系起来考查.数轴上任意两点间的距离是有关高中知识 空间距离 学习的基础.例如,表示数a的点A 与表示数b 的点B 之间的距离A B =a -b 或A B =|b -a |,与表示数m 的点的距离为a (a >0)的点有两个,分别是m +a 和m -a .练习2 数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上任意画一条长为2015厘米的线段,则该线段盖住的整点的个数是( ).A.2012或2013 B .2013或2014 C .2014或2015 D.2015或2016例3 计算-17+17ː(-1)11-53ˑ(-0.2)3.ʌ解析ɔ 原式=-17+17ː(-1)-125ˑ(-0.008)=-17+(-17)-(-1)=-17-17+1=-33.ʌ说明ɔ 有理数运算是初中数学运算的基础,熟练地进行有理数运算是初一数学的重点.有理数混合运算区别于小学混合运算的根本点是符号的处理.在运算中要强调符号优先的原则,任何一种运算都要遵循先定符号后算数的原则,同时还要注意不同种运算之间的相互转化.减法先变为加法,除法先变为乘法后再运算.加法法则可先确定和的符号,再做绝对值的运算.异号两数相加较易出错,应加以注意.有理数乘法的重点仍然是确定符号,先确定好符号,然后把绝对值相乘;带分数相乘时,要先把带分数化为假分数;分数与小数相乘时,要统一化成小数或分数.练习3 计算-1-(-3)3-3+0.4ˑ-112æèçöø÷éëêêùûúúː(-2){}.2.本章的难点是负数概念的建立㊁有理数有关概念的深入理解以及有理数运算法则的理解和运用.正数和负数是表示相反意义的量,正和负具有相对性.有理数的运算是一切运算的基础,也㊃3 ㊃是必考内容.考试中的难题往往把有理数有关概念与计算相结合.突破方法:(1)牢固掌握有理数有关的概念,如相反数,倒数,绝对值等,真正掌握数形结合的思想.(2)熟练掌握有理数的各种运算法则,特别是有负数的运算.在混合运算中须特别注意符号和运算顺序.例1 从前有座庙,庙里有个小和尚,每天早晨都清扫庙门前的台阶.庙的门前一共有9级台阶,当他一步只能上1级台阶或2级台阶时,走完1级台阶只有1种方法;走完2级台阶共有2种方法;走完3,4,5,6,7级台阶,共分别有3,5,8,13,21种方法.那么,当他走完这9级台阶,一共有多少种方法呢ʌ解析ɔ 这是一道找规律题,当台阶分别是1,2,3,4,5,6,7时ˌˌˌˌˌˌˌ所对应的方法有1,2,3,5,8,13,21种经观察发现,每一种方法数目都是前面两种方法数目的和,所以,走完8级台阶有13+21=34(种)方法,走完9级台阶有21+34=55(种)方法.ʌ说明ɔ 规律题也是本章的一大难点.近年来,经常出现一类由特殊到一般,由具体到抽象的规律探究中考题,它涉及有理数的运算特点.例如增加相同的加数或相同的倍数,后面的数是前面几个数的和或正负数交替出现,相应的数是序号数的平方等.这类问题思路别致,具有启发思维㊁引导创新的意义.练习4 观察下列数据的变化规律,写出第n (n ȡ1)个数-2,4,-6,8,-10 则第n 个数为.例2 如图11,数轴上的三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a +b |+|a -c |-|c -b |.OBAC图11ʌ解析ɔ 由题意得a <b <0<c ,|b |<|c |<|a |,所以a +b <0,a -c <0,c -b >0.所以原式=-(a +b )+[-(a -c )]-(c -b )=-a -b -a +c -c +b=-2a .ʌ说明ɔ 首先要全面理解绝对值的定义.绝对值有两层含义.①代数定义:正数的绝对值是它的本身,0的绝对值是0,负数的绝对值是它的相反数;②几何定义:数a 的绝对值的几何意义是实数a 在数轴上所对应的点到原点的距离.其次,绝对值的化简要注意三个问题:①符号 || 是 非负数 的标志;②数a 的绝对值只有一个;③处理任何类型的题目,只要其中有 || 出现,其关键一步是去掉 || 符号.练习5 如图12,蚂蚁妈妈在数轴上的点A 处,已知数轴上点A 表示的数为6,B 是数轴上另一点,且A B =9.蚂蚁妈妈从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.㊃4 ㊃O BA 06图12(1)写出数轴上点B 表示的数,蚂蚁妈妈在运动过程中的某一点表示的数是(用含t 的代数式表示);(2)一只小蚂蚁从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若两只蚂蚁同时出发,问蚂蚁妈妈运动到多少秒时追上小蚂蚁?例3 下列等式成立的是( ).A .100ː13ˑ(-3)=100ˑ3ˑ(-3) B .100ː13ˑ(-3)=100ˑ3ˑ3B .100ː13ˑ(-3)=-100ː13ˑ3æèçöø÷D .100ː13ˑ(-3)=100ˑ13ˑ3ʌ解析ɔ 选项B 丢了负号;选项C 搞乱了运算顺序,乘除法是同级运算,应该从左往右按顺序运算,不应该先算后面的.选项D 弄错除法法则和漏掉负号,除以一个分数等于乘以这个分数的倒数.故选A .ʌ说明ɔ 此题考查运算顺序,做有理数混合运算,必须注意运算顺序:先乘方,再乘除,最后加减;同级运算从左向右进行;如果有括号,先做括号内的运算,按小括号㊁中括号㊁大括号的顺序依次进行.在进行混合运算时,若能用运算律则用运算律,使运算简捷.练习6 计算-100ˑ18-0.125ˑ32.5+17.5ˑ(-12.5%).3.本章的易错点比较细小,也比较多.例如,符号问题㊁混合运算的顺序㊁乘方运算的意义㊁科学计数法理解不透㊁有效数字和近似数弄错等.最大的易错点就是符号,学生往往忽视了符号在运算中所起的作用.任何一种运算都要先考虑符号,尤其是乘方运算,更要在注意符号的前提下,避免底数的运算错误.例1 计算-12-34ˑ-32ˑ-23æèçöø÷2-2éëêêùûúúː(-1)2013.ʌ解析ɔ 原式=-1-34ˑ-9ˑ49-2æèçöø÷ː(-1)=-1-34ˑ(-4-2)ː(-1)=-1-34ˑ(-6)ː(-1)㊃5 ㊃=-1-92=-112.ʌ说明ɔ 有理数的乘方运算是利用有理数乘法运算进行的,根据有理数的乘法法则得出:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数;③0的任何次幂都是0.乘方运算经常在符号上出错,例如,-24=-16,(-2)4=16,前者 - 不发生4次方运算,因此结果仍然是负数,后者 - 发生了4次方运算,因此结果是正数,注意两者的区别.再者,解题一定要注意运算顺序的正确性,不可任意颠倒.练习7 计算-72+2ˑ(-2)2+(-6)ː-13æèçöø÷2.例2 一位知名企业家去看望幸福养老院的老人,带去了价值约1.35万元的日用品和价值约3.02ˑ105元的营养品.(1)请判断这两个近似数各精确到了哪一位?(2)它们各有几位有效数字?ʌ解析ɔ (1)题不要只看1.35,而忽略了单位 万 ,把1.35万还原为13500,再看数字5在哪个数位,因此答案是精确到百位.有3位有效数字.(2)题不要只看3.02,而忽略了 ˑ105 .把3.02ˑ105还原为302000,再看数字2在哪个数位,因此答案是精确到千位,有3位有效数字.ʌ说明ɔ 一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.近似数最末尾的数字在什么数位上,就表明精确到什么数位.有效数字的位数是从左边第一个不是0的数字起到最后一个数字为止.但是一个用科学计数法表示的数,即a ˑ10n,有效数字只算a 中的位数;精确度是a 中最末一位数字,数位必须是这个数字在还原后的数中的数位.练习8 嫦娥三号 已成功发射,在行进中的某一时刻,测得距离它最近的三个星球的距离分别是下面的数值.请你用四舍五入法对下列各数按要求取近似值,并用科学计数法表示结果.(1)523600千米(精确到千位);(2)668954000千米(精确到千万位);(3)95288000千米(精确到万位).例3 计算(1)213-312+11336æèçöø÷ː-116æèçöø÷;(2)-130æèçöø÷ː12+43-16æèçöø÷.ʌ解析ɔ (1)先把除法转化为乘法,再利用乘法分配律计算.原式=73-72+4936æèçöø÷ˑ-67æèçöø÷=73ˑ-67æèçöø÷-72ˑ-67æèçöø÷+4936ˑ-67æèçöø÷=-2+3-76=-16;(2)先计算括号里面的,然后再把除法转化为乘法计算.㊃6 ㊃原式=-130æèçöø÷ː106=-130æèçöø÷ˑ610=-150.ʌ说明ɔ 灵活适当地运用运算律可以简化运算,从而提高解题速度.但减法和除法没有运算律,要先把减法转化为加法,除法转化为乘法之后,才可以使用运算律.例如上面第(2)题的除法就不能使用分配律.因此,计算不能急于求成,不能在违反运算顺序的情况下强行 简便 运算.计算题算出结果后,还要认真检查,防止出错.练习9 阅读计算过程:313-22ː12æèçöø÷2-(-3+0.75)éëêêùûúúˑ5.解:原式=313-22ː14-3+34æèçöø÷ˑ5 ①=313+4ː(-2)ˑ5②=313+25③=31115.回答下列问题:(1)步骤①错在;(2)步骤①到步骤②错在;(3)步骤②到步骤③错在;(4)此题的正确结果是.4.在充分理解有理数有关概念,正确掌握有理数运算法则和运算顺序㊁运算律后,就具备了解决一些综合性题目的能力.我们可以根据某些题目的特点,将算式灵活变形,对不同的算式可以采取运算顺序重新组合㊁因数分解㊁拆项裂项等不同的方法,达到优化解题㊁简化计算的目的.例1 若一台机器人站在数轴的原点处,按照指令分别向左右两个方向移动,右边是正方向,左边是负方向.先向右移动1米,再向左移动2米;然后再向右移动3米,向左移动4米.依次移动下去,每次方向相反,距离增加1米.当移动完2014次时,它位于原点的哪一侧?距离原点多远?ʌ解析ɔ 向右记为正数,向左记为负数.那么有1+(-2)+3+(-4)+ +2011+(-2012)+2013+(-2014),将此式中的数两两相加,原式=(-1)+(-1)+ +(-1)=-1007.即移动完2014次时,它位于原点左侧,距离原点1007米远.ʌ说明ɔ 运用加法的交换律㊁结合律,把某些具有相同属性的数分别结合在一起相加,例如,正数和负数分别相加;同分母分数相加;带分数把整数和分数部分拆开分别相加;相反数相加等.㊃7 ㊃这样可以很大程度地简化运算.练习10 计算1+2+3+4+5+6+ +998+999+1000.例2 现定义两种运算 * ә ,对于任意两个整数a ,b ,有a *b =a b -2,a әb =a +b +1,求式子5ә[(2*3)*(3ә4)]的值.ʌ解析ɔ 原式=5ә[(2ˑ3-2)*(3+4+1)]=5ә(4*8)=5ә(4ˑ8-2)=5ә30=5+30+1=36.ʌ说明ɔ 定义新运算中的符号 代表的是一种特定的运算,它是一种融合了几种基本运算在内的综合运算程序.在不同的题目中分别有不同的代表性,具体到每一道题,它首先会标明 符号 所代表的运算程序,我们只要在正确运算的基础上按照其程序运算即可.练习11 已知a ,b 为有理数,如果规定一种新的运算 ,即a b =a b +a -b +1.例如,2 3=2ˑ3+2-3+1=6.请你根据的定义计算下列各题:(1)(-2) 5; (2)(4 2) (-1).例3 已知a 1,a 2,a 3, ,a 2014都是正整数,且P =(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013+a 2014),Q =(a 1+a 2+ +a 2013+a 2014)ˑ(a 2+a 3+ +a 2013).那么P ㊁Q 的大小关系是( ).A .P >QB .P <QC .P =QD .无法确定ʌ解析ɔ P =(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013+a 2014)=(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013)+(a 1+a 2+a 3+ +a 2013)ˑa 2014,Q =(a 1+a 2+ +a 2013+a 2014)ˑ(a 2+a 3+ +a 2013)=(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013)+a 2014ˑ(a 2+a 3+ +a 2013),因为(a 1+a 2+a 3+ +a 2013)ˑa 2014>a 2014ˑ(a 2+a 3+ +a 2013),所以P >Q ,故选A .ʌ说明ɔ 这种题目就要把着眼点放在问题的整体结构上,通过对题目的整体分析,把其中的(a 1+a 2+a 3+ +a 2013)ˑ(a 2+a 3+ +a 2013)当作一个整体,只把a 2014分离出来,这样就在两个不同的式子之间找到了共同点,也就找到了突破点,然后只比较不同的部分即可.练习12 已知a ,b ,c 为整数,且a +b =26,c -a =15.若a <b ,则a +b +c 的最大值是多少?㊃8 ㊃5.在本章的学习中,基本的学习要求是熟练地掌握相反数㊁绝对值㊁数轴等定义,更重要的是了解其中蕴含的数学思想方法.本章中最常用的数学思想方法有方程思想㊁整体思想㊁数形结合思想㊁化归思想㊁分类讨论思想等.学习数学要不断去探索㊁猜想㊁不断总结规律方法,才会有所发现㊁有所创新.这就是人们常说的 举一反三 .例1 在数轴上表示p ,0,1,q 四个数的点如图13所示,已知O 为P Q 的中点.求p +q +pq+p +1的值.OPp 10Qq 图13ʌ解析ɔ 此题充分利用数轴的直观形象,理解一对相反数到原点的距离相等,因此一对相反数的和是0,而一对相反数的商是-1,此问题便迎刃而解.因为O 为P Q 的中点,则p +q =0,p =-q ,所以p +q =0,pq=1,由数轴可知p <-1,则p +1=-p -1,所以原式=0+1-p -1=-p .ʌ说明ɔ 本题所体现的是数形结合的思想.数轴是数形结合的重要工具.本章中,我们一直用数轴来定义或描述有理数的概念㊁运算等,数轴成为理解有理数及其运算的重要工具.在解决没有给出具体数值的有理数问题时,常常把 数 的问题通过数轴转化为 形 来表示,从而直观简捷地解决问题.练习13 如果a ,b ,c ,d 为互不相等的有理数,且|a -c |=|b -c |=|d -b |=1,则|a -d |=.例2 为了增加陌生人之间的友爱和关怀,社会上很多年轻人成立了 抱抱团 .如果 抱抱团 的一名成员分别去热情拥抱两名陌生人,而每名被拥抱的人再去拥抱另外两名陌生人,照这样依次拥抱下去,那么,当拥抱完2013次之后,这条线上所有参加过拥抱的一共有多少人?ʌ解析ɔ 发起人1名,一次拥抱结束后增加2人,两次拥抱结束后增加22人,以此类推,2013次拥抱结束后增加22013人.所以总人数为1+2+22+23+ +22011+22012+22013(人).此题运算的数多,且幂指数大,无法直接计算,必须先将其变形,应用错位相减法,消掉一些项再进行计算.设S =1+2+22+23+ +22011+22012+22013,故 2S =2ˑ(1+2+22+23+ +22011+22012+22013)=2+22+23+ +22011+22012+22013+22014.所以S =2S -S=(2+22+23+ +22011+22012+22013+22014)-(1+2+22+23+ +22011+22012+22013)=22014-1.㊃9 ㊃即当拥抱完2013次之后,这条线上所有参加过拥抱的一共有22014-1人.ʌ说明ɔ 本题体现的是化归思想方法,就是将所要解决的复杂问题转化为简单问题来解决.具体地说,就是把 旧知识 转化为 新知识 ,把 未知 转化为 已知 ,把 复杂 问题转化为 简单 问题.对于算式规律性问题,我们要注意观察各部分算式的变化规律以及各算式之间的关系.根据其规律将算式变形,转化为简单的关系来解决.练习14 已知a b -2+a -2=0,求1a b +1(a +1)(b +1)+1(a +2)(b +2)+ +1(a +2012)(b +2012)的值.例3 比较|p |+|q |与|p +q|的大小.ʌ解析ɔ 我们根据绝对值的法则,要化简绝对值符号,必须先判断绝对值符号里面的式子的正负性.即根据 先定正负后去号 的原则.式子中字母的取值,要分三种情况讨论.①当p ,q 符号相同时,无论同正还是同负,都有|p |+|q |=|p +q |;②当p ,q 符号相反时,无论p ,q 哪一个为负,都有|p |+|q |>|p +q |;③当p ,q 至少一个为0时,则有|p |+|q |=|p +q |.ʌ说明ɔ 本题所用的是分类讨论思想.当研究的问题包含多种可能时,不能一概而论,必须按可能出现的所有情况来分别讨论,得出相应的结论.本章在研究相反数㊁绝对值㊁有理数乘方运算的符号法则时,都是把有理数分为正数㊁负数㊁零三类分别进行研究的.例如绝对值化简的0段分类法㊁倒数中的分段讨论大小都是分类讨论思想.分类讨论必须遵循两条原则:①每一次分类的标准相同;②不重复,不遗漏.练习15 设y =|k -1|+|k +1|则下面四个结论中正确的是( ).A .y 没有最小值B .只有一个k 使y 取最小值C .有限个k (不止一个)使y 取最小值D .有无穷多个k 使y取最小值一㊁填空题(每小题2分,共28分)1.在-1.5,197,0,π3,0.131313 ,-25中,有理数的个数是.2.王老师家的冰箱冷冻室的温度是-4ħ,调高2ħ后的温度是ħ.3.多多同学写错了一个算式-5+12=17,请你在不改变数字的情况下,直接在算式中添加 括号 绝对值符号 或 负号 (不限定个数)使等式成立:.4.实验表明,一个成年人血液的质量占人体质量的6%~7.5%,某人体重65千克,那么他的血液质量范围在千克.(结果保留两个有效数字)㊃10 ㊃5.若|a |=2,则a +3=;若a 的相反数是最小的质数,b 是最大的负整数,则a +|-b |=.6.有理数a 等于它的倒数,有理数b 等于它的相反数,则a 2013+b 2013=.7.一个数与-3的乘积是-156的倒数,则这个数是.8.已知x ㊁y ㊁z 是不为0的有理数,化简x x +y y+zz 的值可能是.9.2008年北京奥运会火炬传递路线全长约为13700公里,用科学计数法表示为;精确到千位是.10.已知|a |=5,|b |=3,且ab<0,则a +b =,a b =.11.某种活性细胞在培养过程中,每半小时就分裂一次,由一个分裂成两个,经过3小时,这种细胞可由一个分裂成个.12.下列有四个结论①若a =b ,则a 2=b 2,②如果a >b ,那么a 2>b 2,③若a 2=b 2,则a =b ,④如果a 2>b 2,那么a >b .其中正确的有个.13.绝对值不大于10000的所有整数的和是,积是.14.计算(-1)4-16ˑ[2-(-3)2]=.二㊁选择题(每小题3分,共18分)15.下列说法中正确的是( ).A .同号两数相乘,符号不变B .两个数相加,和大于任何一个加数C .任何数与0相乘仍得这个数D .一个数与-1相乘,积为该数的相反数16.下面说法中错误的是( ).A .近似数2千万和2ˑ103万精确度相同B .近似数2千万和2ˑ103万的有效数字相同C .近似数2.013和2.010有效数字位数相同D .近似数2.013和2.010精确度不同17.下列说法中正确的是( ).A .若a =-b ,则|a |=-|b |B .若|a |=|b |,则a =bC .如果|a |>|b |,那么a 2>b 2D .如果a >b ,那么|a |>|b |18.小花猫捡到了一块蛋糕,被狐狸看到了,狡猾的狐狸就一口吃掉了蛋糕的一半,再一口吃掉了剩下的一半,就这样连续吃了五口,那么,小花猫还剩下蛋糕的( ).A .18B .116C .110D .13219.若a =-2ˑ32,b =(-2ˑ3)2,c =-(2ˑ3)2,则下列大小关系正确的是( ).A .a >b >cB .b >c >aC .b >a >cD .c >a >b20.已知A =-2011ˑ20122013ˑ2014,B =-2011ˑ20132012ˑ2014,C =-2011ˑ20142012ˑ2013,那么,A ,B ,C 的大小关系是( ).A .A >B >CB .A <B <CC .B >A >CD .B >C >A三㊁解答题(共54分)21.(6分)用简便方法计算下面各题㊂(1)-15+12-112æèçöø÷ˑ(-60); (2)(-4)ˑ25ˑ(-0.25)ˑ54.22.(6分)很久以前,有位英俊的王子中了老巫婆的魔咒,变成了一只青蛙,被扔到一口水井里.水面比井口低3米,青蛙从水面沿着井壁向上往井口爬,第一次往上爬了0.5米后,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却下滑了0.15米;第四次往上爬了0.75米,却下滑了0.1米;第五次往上爬了0.55米,没有下滑;第六次青蛙又往上爬了0.59米,问青蛙能够爬出井口吗?23.(6分)有下列三行数,第一行:1,-4,9,-16,25,-36 ;第二行:-1,2,-3,4,-5,6 ;第三行:0,3,8,15,24,35 .这三行数的规律各是什么?请取每行的第100个数,并计算它们的和.24.(6分)已知三个有理数a ,b ,c 的和是正数,它们的积是负数,当m =a a +b b +c c时,求代数式m 3+m 2+m +1的值.25.(6分)计算112-256+3112-41920+5130-64142+7156-87172+9190.26.(8分)若a,b,c为整数,且|a-b|100+|c-a|100=1,试求代数式|c-a|+|a-b|+|b-c|的值.27.(8分)小华有三个有理数1,a+b,a,小毛也有三个有理数0,b,b a,丽丽说: 你们俩的数是一样的,我有一个和你们不一样的数x,它的绝对值是2㊂请你计算(a+b)2013+(a b)2014+(a+b-a b)2015+x2.28.(8分)已知|a1-1|+|a2-2|+ +|a2013-2013|+|a2014-2014|=0,求2a1-2a2-2a3- -2a2013+2a2014的值.本章的主要知识点可以概括为列式表示数量关系㊁整式的有关概念及整式的加减运算.列式表示数量关系是建立在用字母表示数的基础之上的.整式的概念主要介绍单项式㊁多项式㊁整式及其相关概念.单项式概念是多项式概念的基础,而整式又是单项式和多项式的总称.整式的加减运算是在学习了合并同类项和去括号的基础上,研究整式加减的运算法则.本章进一步学习如何用字母表示数及数量关系,深刻体会用字母表示数㊁用含字母的式子表示数量关系的意义.合并同类项和去括号是进行整式加减的基础,是本章的重点.1.本章的重点是整式加减的运算,主要是利用合并同类项法则㊁去括号法则对整式进行化简.熟练地合并同类项首先必须掌握同类项概念,其次要会准确辨别同类项,即要掌握两条判断同类项的标准:字母和字母指数.中考命题中,本章主要考查用含字母的式子表示实际问题中的数量关系;同类项的概念等.多以填空题㊁选择题的形式出现,分值一般为3~6分.而合并同类项㊁去(添)括号也是考试重点,但考查时往往与其他知识相结合.另外,用式子表示规律题是近几年中考的热点.例1已知m=3,n=2,则下列式子是同类项的是().A.m x3y2与n a3b2B.3x m y3与n x2y3C.n x2m-1y4与m x5y n+2D.5a2m b5n与3b2m a5nʌ解析ɔ当m=3,n=2时,选项A中两项为3x3y2与2a3b2,字母不同,不是同类项.选项B 中两项为3x3y3与2x2y3,字母x的指数不同,不是同类项.选项C中两项为2x5y4与3x5y4,符合同类项定义,是同类项.选项D中两项为5a6b10与3b6a10,相同字母的指数不同,不是同类项,故选C.ʌ说明ɔ判断两个单项式是否为同类项,要抓住三个方面:①同类项与项中所含字母及其指数有关,与系数无关;②同类项与项中字母排列的先后顺序无关;③所有常数项都是同类项.另外,同类项中的相同字母可以是一个多项式的整体,例如,2(x+y)3与3(x+y)3也是同类项.练习1下列各组中的两项是同类项的有()个.①3x y与3x y z; ②62与a2; ③2x与3x; ④13与3; ⑤2πa与-3a;⑥3(x-y)2与2(x-y)2.A.1B.2C.3D.4例2一个多项式减去-8x y2-2x2y-2y4得5x2y+11x y2+3y4,求这个多项式.ʌ解析ɔ设这个多项式为A,首先是利用 被减式=差+减式 正确列出计算式,即A=(5x2y+11x y2+3y4)+(-8x y2-2x2y-2y4)=5x2y+11x y2+3y4-8x y2-2x2y-2y4=(5x2y-2x2y)+(11x y2-8x y2)+(3y4-2y4)=3x2y+3x y2+y4.ʌ说明ɔ此题先要把每一个多项式看作一个整体,计算前把每个多项式用括号括起来,再按照去括号法则去掉括号,寻找同类项进行合并.合并同类项时,首先,可在同类项下用 等符号标记不同种类的项,注意要包括该项的符号;其次,只将同类项的系数相加,字母以及字母的指数不变.练习2若两个单项式的和是2x2+x y+3y2,一个加式是x2-x y,求另一个加式.例3已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0.求:(1)多项式C;(2)若a=1,b=-1,c=3,求A+B的值.ʌ解析ɔ(1)因为A+B+C=0,所以C=0-A-B=0-(a2+b2-c2)-(-4a2+2b2+3c2)=0-a2-b2+c2+4a2-2b2-3c2=(-a2+4a2)+(-b2-2b2)+(c2-3c2)=3a2-3b2-2c2;(2)A+B=(a2+b2-c2)+(-4a2+2b2+3c2)=a2+b2-c2-4a2+2b2+3c2=-3a2+3b2+2c2.把a=1,b=-1,c=3代入上式得原式=-3ˑ1+3ˑ(-1)2+2ˑ32=18.ʌ说明ɔ去括号与合并同类项都是整式加减的基础,均为本章的重点,对后面的解方程㊁因式分解㊁分式运算等内容起着重要作用.去括号注意两种情况:①括号前是 + ,把括号和它前面的 + 去掉,括号里各项都不变号.②括号前是 - ,把括号和它前面的 - 去掉,括号里各项都变号.练习3先化简,再求值:3x2-[x2-2㊃(3x-x2)],其中x=-7.2.本章的难点有两方面,一是用字母表示数及数量关系;二是去括号时符号的处理.用字母简明地表示实际问题中的数量关系比用具体数字表示的算式更有一般性;整式中用字母表示数,会使得整式的运算与数的运算具有一致性;用字母表示规律性的式子更有难度,不仅要分析出规律,还要用字母准确表达.去括号最大的难点是符号的处理,确切地说就是 - 问题,牢记当把括号和它前面的 - 去掉后,括号里各项都要变号.例1 小美家的固定电话月租金为15元,每次市内通话费平均为0.3元,每次长途通话费平均为1.6元,若她家半年内打市内电话m 次,打长途电话n 次,则她家应付电话费( )元.A .0.3m +1.6n B .15m n C .15+0.3m +1.6n D .15ˑ6+0.3m +1.6n ʌ解析ɔ 因为半年内打市内电话m 次,每次平均为0.3元,所以半年的市内电话费为0.3m元.因为半年内打长途电话n 次,每次平均为1.6元,所以半年的长途电话费为1.6n 元.而固定电话月租金为15元,半年内的租金为15ˑ6(元),故选D .ʌ说明ɔ 字母可以表示任意的数㊁特定意义的公式㊁符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明地将数量关系表示出来.用字母表示数有助于揭示概念的本质特征,使数量之间的关系更加简明,更具有普遍意义.用字母表示数时,字母与字母相乘,乘号可以省略或用 ㊃ (点)表示;字母和数字相乘,省略乘号,并把数字放到字母前.例如,3ˑb =3㊃b =3b .练习4 上海市某文具厂今年9月产值为m 万元,10月比9月减少了110,11月比10月增加了15%,则11月产值是( ).A .m -110æèçöø÷(m +15%)万元B .1-110æèçöø÷㊃(1+15%)m 万元C .m -110+15%æèçöø÷万元D .1-110+15%æèçöø÷m 万元例2 如图21所示,①,②,③,④ ,是用围棋棋子按照某种规律摆成的一行 广 字,按照这种规律,第5个 广 字中的棋子枚数是,第n 个 广 字中的棋子枚数是.图21ʌ解析ɔ 通过分析图21的前4幅图发现:①的棋子有7枚,②的棋子有9枚,③的棋子有11枚,④的棋子有13枚,规律是依次增加2枚.那么第5个 广 字的棋子即为15枚.①的棋子枚数是在5枚的基础上增加2枚,②的棋子枚数是在5枚的基础上增加4枚,即在5枚的基础上增加2ˑ2(枚),③的棋子枚数是在5枚的基础上增加3ˑ2(枚),以此类推,那么第n 个 广 字中的。

浙教版数学七年级上册各章节重难点

浙教版数学七年级上册各章节重难点

浙教版数学七年级上册各章节重难点浙教版七年级上册各章节重难点第一章有理数1.1从自然数到有理数正数:大于零的数负数:小于零的数零既不是正数也不是负数。

正整数、零和负整数统称为整数,负分数和正分数统称为分数,整数和分数统称为有理数。

正整数整数零自然数有理数负整数正分数分数负分数1.2数轴数轴:规定了原点、单位长度和正方向的直线叫做数轴。

任何一个有理数都可以用数轴上的点表示。

相反数:如果两个数符号不同,称其中一个数为另一个数的相反数。

也称这两个数互为相反数。

注意,零的相反数是零。

在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

1.3绝对值绝对值:一个数在数轴上对应的点到原点的间隔叫做这个数的绝对值。

一个正数的绝对值是它自己;一个负数的绝对值是它的相反数;零的绝对值是它自己。

互为相反数的两个绝对值相称。

注:任何数的绝对值大于或等于零。

(非负数)1.4有理数的大小比较一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于零,负数都小于零,正数大于负数。

总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

第二章有理数的运算2.1有理数的加法同号两数相加,取与加数不异的符号,并把绝对值相加。

异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加等于零;一个数与零相加,仍得这个数。

在有理数运算中,加法的交换律和结合律仍成立。

加法交流律:两个数相加,交流加数的位置,和不变a+b=b+a加法联合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变(a+b)+c=a+(b+c)2.2有理数的减法减去一个数,等于加上这个数的相反数。

有理数加减混合运算的一般步骤是先利用减法法则,将减法转换为加法,再利用加法的交换律和分配律,使计算简便。

2.3有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。

初中七年级上册数学重难点

初中七年级上册数学重难点

初中七年级上册数学重难点一、有理数。

1. 重点。

- 有理数的概念:整数和分数统称为有理数。

要能准确区分正有理数、负有理数和0。

例如, -3是负有理数,2是正有理数,0既不是正数也不是负数。

- 数轴:理解数轴的三要素(原点、正方向、单位长度),会用数轴上的点表示有理数,并且能根据数轴比较有理数的大小。

在数轴上,右边的数总比左边的数大。

- 相反数:互为相反数的两个数之和为0。

如3和 -3是相反数,它们满足3+( -3)=0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

例如,5 = 5, - 5=5。

会计算有理数的绝对值,并且能利用绝对值比较两个负数的大小,两个负数比较大小,绝对值大的反而小。

- 有理数的四则运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 减法法则:减去一个数,等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

2. 难点。

- 绝对值概念的理解:绝对值的几何意义(表示数在数轴上的点到原点的距离)和代数意义的结合运用。

例如,当a<0时,| a|=-a,这里的-a是正数,学生容易混淆。

- 有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。

在计算过程中,要注意符号的变化,很多学生在这方面容易出错。

例如,计算2 - 3×(-2)^2,要先算乘方(-2)^2 = 4,再算乘法3×4 = 12,最后算减法2-12=-10。

二、整式的加减。

1. 重点。

- 单项式、多项式的概念:由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式;几个单项式的和叫做多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档