高中数学人教版必修四常见公式及知识点系统总结(全)

合集下载

高中数学必修四公式 (3)

高中数学必修四公式 (3)

高中数学必修四公式在高中数学中,必修四是非常重要的一门课程。

在学习必修四的过程中,理解和掌握各种数学公式是十分关键的。

本文将介绍高中数学必修四中常用的一些公式,帮助读者更好地理解和应用这些公式。

一、平面坐标系中的直线方程1.1 点斜式方程点斜式方程是平面坐标系中表示一条直线的常用方程形式。

对于已知一点P(x₁,y₁)和直线的斜率k,点斜式方程可以写成以下形式:y - y₁ = k(x - x₁)1.2 一般式方程一般式方程是平面坐标系中表示一条直线的另一种方程形式。

对于一条直线的一般式方程形式为:Ax + By + C = 0其中A、B和C为常数,且A和B不能同时为0。

1.3 斜截式方程斜截式方程是平面坐标系中表示一条直线的常用方程形式。

对于已知直线的斜率k和截距b,斜截式方程可以写成以下形式:y = kx + b二、二次函数及其图像2.1 一般式方程二次函数的一般式方程形式为:y = ax² + bx + c其中a、b和c为常数,而且a不等于0。

2.2 顶点坐标和轴对称线对于二次函数的一般式方程y = ax² + bx + c,它的顶点坐标可以通过以下公式得到:x = -b / (2a)代入x的值,可以求得对应的y值,从而得到顶点坐标。

二次函数的轴对称线可以通过顶点坐标的x值所对应的直线得出。

2.3 判别式对于二次函数的一般式方程y = ax² + bx + c,它的判别式可以通过以下公式得到:Δ = b² - 4ac判别式Δ的值可以判断二次函数的图像与x轴的交点情况。

•当Δ > 0时,二次函数与x轴有两个交点,图像开口朝上或朝下。

•当Δ = 0时,二次函数与x轴有一个交点,图像开口朝上或朝下。

•当Δ < 0时,二次函数与x轴没有交点,图像开口朝上或朝下。

2.4 对称轴对于二次函数,其对称轴可以通过顶点坐标的x值所对应的直线得出。

三、三角函数3.1 正弦函数正弦函数可以表示为以下形式:y = A sin(Bx + C) + D其中A、B、C和D为常数,A表示正弦曲线的振幅,B表示正弦函数的周期,C表示正弦函数的位移,D表示正弦函数的纵向平移。

高一必修四数学公式总结

高一必修四数学公式总结

高一必修四数学公式总结高一必修四数学公式总结数学公式是数学中的重要工具和方法,它们能够帮助我们分析和解决各种数学问题。

高一阶段,学生们学习了必修四的数学课程,包括函数、三角函数、平面向量等内容。

下面是高一必修四数学公式的总结。

一、函数1. 一次函数的解析式:y = kx + b2. 二次函数的标准式:y = ax² + bx + c二次函数的顶点坐标:( -b/2a , -∆/4a )二次函数的对称轴方程: x = -b/2a3. 幂函数的定义:y = x^a (a ≠ 0, x > 0)4. 指数函数的定义:y = a^x (a > 0, a ≠ 1)5. 对数函数的定义:y = loga(x) (a > 0, a ≠ 1)6. 余弦函数的定义:y = cosx7. 正弦函数的定义:y = sinx8. 余割函数的定义:y = cosecx9. 正切函数的定义:y = tanx10. 周期性函数的表示:f(x + T) = f(x) (T > 0)11. 函数的奇偶性:奇函数:f(-x) = -f(x)偶函数:f(-x) = f(x)二、三角函数1. 基本三角函数关系:正弦和余弦函数的平方和为1:sin²x + cos²x = 12. 三角函数的定义:sinx = 直角三角形的对边 / 直角三角形的斜边 cosx = 直角三角形的邻边 / 直角三角形的斜边 tanx = sinx / cosx3. 三角函数的周期性:sin(x + 2π) = sinxcos(x + 2π) = cosxtan(x + π/2) = tanx4. 三角函数的诱导公式:sin(-x) = -sinxcos(-x) = cosxtan(-x) = -tanx5. 三角函数的和差化积公式:sin(x ± y) = sinx*cosy ± cosx*sinycos(x ± y) = cosx*cosy ∓ sinx*sinytan(x ± y) = (tanx ± tany) / (1 ∓ tanx*tany)三、平面向量1. 向量的定义:向量A = (x, y) 表示平面上的一个有向线段2. 向量的模长公式:|A| = √(x² + y²)3. 等距向量的性质:向量AB = 向量CD 当且仅当 ABCD是平行四边形4. 向量的夹角公式:向量A·向量B = |A||B|cosθ5. 向量的共线与垂直判断:向量共线:向量A = k*向量B (k为常数)向量垂直:向量A·向量B = 06. 向量的加法和减法:向量A + 向量B = (x1 + x2, y1 + y2)向量A - 向量B = (x1 - x2, y1 - y2)7. 向量的数量积(内积):向量A·向量B = x1x2 + y1y28. 向量的叉积(外积):向量A x 向量B = (0, 0, x1y2 - x2y1)9. 向量的投影:向量A在向量B上的投影:P = (|A|cosθ) * 单位向量B (单位向量B = 向量B / |B|)以上是高一必修四数学公式的总结,掌握这些公式可以帮助我们更好地理解和应用数学知识,解决各种数学问题。

(完整word版)高中数学人教版必修四常见公式及知识点系统总结(全)

(完整word版)高中数学人教版必修四常见公式及知识点系统总结(全)

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法: 第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z }3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(||r OP ==;化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx +φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

人教版-高一数学必修4知识点

人教版-高一数学必修4知识点

P vx y A O M T高中数学必修4知识点2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则sin y r α=,cos x r α=,()tan 0y x xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系: 13、()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;14、()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限.14、函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T =-<. 15、正弦函数、余弦函数和正切函数的图象与性质:图象定义域值域最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-.既无最大值也无最小值 周期性奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数. 在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性 对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+.⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫ ⎪++⎝⎭. 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+.若(),a x y =,则222a x y =+,或22a x y =+.设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121222221122cos x x y y a ba b x y x y θ+⋅==++.24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-). 25、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-. 26、()22sin cos sin αααϕA +B =A +B +,其中tan ϕB =A .。

人教版高中数学必修4全册

人教版高中数学必修4全册

(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
(1) 2
(2)
3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
2
2
则α角属于(C ) A.第-象限; B.第二象限;
2
C.第三象限; D.第四象限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 1 20 360 480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)

高中数学人教版必修4知识点汇总

高中数学人教版必修4知识点汇总

1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2

2
sin
2
1 cos

cos
sin 等。

高中数学必修四公式大全

高中数学必修四公式大全

必修四—第一章 三角函数1. ❖终边落在x 轴上的角的集合: .❖ 终边落在y 轴上的角的集合: .❖ 终边落在坐标轴上的角的集合: .2弧长公式: =l,=S .3.同角三角函数的基本关系:①平方关系: ②乘积关系:◆ 诱导公式(一)()()=+=+=+)2tan(2cos 2sin παπαπαk k k◆ 诱导公式(二) ()()()=+=+=+απαπαπtan cos sin◆ 诱导公式(三) ()()()=-=-=-αααtan cos sin◆ 诱导公式(四) ()()()=-=-=-απαπαπtan cos sin◆ 诱导公式(五)=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-απαπ2cos 2sin◆ 诱导公式(六)=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+απαπ2cos 2sin4.三角函数(x x x tan ,cos ,sin )的性质5.函数)sin(ϕ+=wx A y 的图像振幅变化:x y sin = x A y sin = 左右伸缩变化 x A y ωsin =左右平移变化)sin(ϕω+=x A y 上下平移变化 k x A y ++=)sin(ϕω第二章:平面向量1.平面向量共线定理: 一般地,对于两个向量 ()如果有,,0,b a a ≠()是共线向量与是共线向量;反之如果与则使得一个实数a b a b a a b ,0,,≠=λλ .,a b λλ=使得那么又且只有一个实数2.向量的一个定理的类似推广①向量共线定理: )0(≠=a a b λ②平面向量基本定理: 2211e e a λλ+=(其中21,e e 为平面内不共线的两向量)3.线段的定比分点点P 分有向线段21P P 所成的比的定义式21PP P P λ=,这时=x ,=y . 4.一般地,设向量()(),0,,,2211≠==a y x b y x a 且 ①那么如果b a // . ②如果b a ⊥,那么 .5.一般地,对于两个非零向量b a , 有 θb a =⋅,其中θ为两向量的夹角。

人教高一必修四数学知识点

人教高一必修四数学知识点

人教高一必修四数学知识点在高中数学必修四课程中,学生将接触到许多重要的数学知识点。

这些知识点包括代数、函数、几何和概率等方面。

下面将对其中一些关键的知识点进行简要介绍。

一、代数1. 等式与方程:学生需要掌握等式的性质和解一元一次方程的方法。

这包括使用加减消元法、乘除消元法和配方法等来解方程。

2. 二次函数与一元二次方程:学生将学习二次函数的图像、顶点、轴对称以及一元二次方程的解法和判别式。

3. 不等式与不等式组:学生需要理解和应用不等式的性质,掌握不等式组的解法和图像表示。

二、函数1. 函数概念与性质:学生需要了解函数的定义、自变量、因变量以及函数图像的性质。

同时还需要学会根据已知条件来确定函数的值域、定义域和解函数方程。

2. 一次函数与一次函数方程:学生将学习掌握一次函数的图像、截距、斜率和一次函数方程的解法。

3. 幂函数、指数函数和对数函数:学生需要了解这些函数的定义、性质和图像特点,并学会求解相关的方程和不等式。

4. 复合函数与反函数:学生将学习复合函数和反函数的概念,以及如何求解复合函数和反函数的问题。

三、几何1. 向量与平面向量:学生将学习向量的概念、运算和向量的线性运算法则。

此外,还需要了解平面向量的共线、共面和向量的数量积。

2. 三角函数与三角方程:学生需要了解正弦、余弦和正切函数的定义、性质和图像特点。

同时,还需要学会求解三角方程。

3. 三角恒等式与三角变换:学生将学习三角恒等式的证明和应用,以及三角函数的和差化积、倍角公式和半角公式等。

四、概率1. 随机事件与概率:学生将学习随机事件的概念和性质,掌握概率的计算方法,并运用概率解决实际问题。

2. 排列与组合:学生需要了解排列和组合的概念、计算方法和应用。

以上仅仅是高中数学必修四课程中部分重要的数学知识点。

通过对这些知识点的学习和掌握,学生将能够在应用数学的各个领域中灵活运用数学方法和工具,提高解决问题的能力和思维能力。

因此,对于每一个高中生来说,深入理解和掌握这些数学知识点是非常重要的。

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

高中数学必修四重要公式归纳

高中数学必修四重要公式归纳

高中数学必修四重要公式归纳学习数学重再学习数学思想方法,它是数学知识在更高层次上的抽象和概括,它蕴含于数学知识发生、发展和应用的过程中,也是历年来高考数学命题的特点之一。

下面是小编为大家整理的关于高中数学必修四重要公式,希望对您有所帮助!高中数学必修四诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαco t(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)高中数学必修四向量公式1、向量的加法向量的加法满足平行四边形法则和三角形法则。

高中数学必修4知识点(完美版)

高中数学必修4知识点(完美版)

高中数学必修4知识点(完美版)高中数学必修4第一章三角函数角是指由两条射线(或直线)共同端点所组成的图形。

按照旋转方向,角可以分为正角、负角和零角。

其中,正角是按逆时针方向旋转形成的角,负角是按顺时针方向旋转形成的角,零角是不作任何旋转形成的角。

如果一个角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,就称这个角为第几象限角。

各象限角的集合可以表示为:第一象限角的集合为:α ∈ {α | k360° < α < k360° + 90°,k∈Z};第二象限角的集合为:α ∈ {α | αk360° + 90° < α < k360° + 180°,k∈Z};第三象限角的集合为:α ∈ {α | αk360° + 180° < α < αk360° + 270°,k∈Z};第四象限角的集合为:α ∈ {α | αk360° + 270° < α < αk360° + 360°,k∈Z};终边在x轴上的角的集合为:α ∈{α | α = k180°,k∈Z};终边在y轴上的角的集合为:α ∈ {α | α = k180° + 90°,k∈Z};终边在坐标轴上的角的集合为:α ∈ {α | α = k90°,k∈Z}。

根据终边所在的象限,可以将角分为四个象限。

第一象限角的终边落在第一象限,第二象限角的终边落在第二象限,以此类推。

在第一象限,角的值在0°到90°之间;在第二象限,角的值在90°到180°之间;在第三象限,角的值在180°到270°之间;在第四象限,角的值在270°到360°之间。

高中数学必修四公式大全

高中数学必修四公式大全

高中数学必修四公式大全1. 数列公式1.1 等差数列公式•通项公式:a n=a1+(n−1)d•前n项和公式:$S_n = \\frac{n(a_1 + a_n)}{2}$1.2 等比数列公式•通项公式:$a_n = a_1 \\cdot q^{(n-1)}$•前n项和公式(当q eq1):$S_n = \\frac{a_1(q^n - 1)}{q - 1}$ 2. 平面几何公式2.1 长方形公式•面积公式:$A = l \\cdot w$•周长公式:P=2(l+w)•对角线长度公式:$d = \\sqrt{l^2 + w^2}$2.2 正方形公式•面积公式:A=s2•周长公式:P=4s•对角线长度公式:$d = s\\sqrt{2}$2.3 圆公式•面积公式:$A = \\pi r^2$•周长公式:$C = 2\\pi r$•弧长公式:$L = 2\\pi r \\cdot \\frac{\\theta}{360^\\circ}$•扇形面积公式:$A = \\frac{1}{2}r^2\\theta$•弓形面积公式:$A = \\frac{1}{2}(R^2\\theta - r^2\\theta)$3. 三角函数公式3.1 基本公式•正弦函数公式:$\\sin\\theta = \\frac{\\text{对边}}{\\text{斜边}}$ •余弦函数公式:$\\cos\\theta = \\frac{\\text{邻边}}{\\text{斜边}}$ •正切函数公式:$\\tan\\theta = \\frac{\\text{对边}}{\\text{邻边}}$3.2 和差公式•正弦函数和差公式:$\\sin(A\\pm B) = \\sin A \\cos B \\pm \\cos A \\sin B$•余弦函数和差公式:$\\cos(A\\pm B) = \\cos A \\cos B \\mp \\sinA \\sin B$•正切函数和差公式:$\\tan(A\\pm B) = \\frac{\\tan A \\pm \\tan B}{1 \\mp \\tan A \\tan B}$3.3 二倍角公式•正弦函数二倍角公式:$\\sin(2\\theta) = 2\\sin\\theta \\cos\\theta$•余弦函数二倍角公式:$\\cos(2\\theta) = \\cos^2\\theta - \\sin^2\\theta$•正切函数二倍角公式:$\\tan(2\\theta) = \\frac{2\\tan\\theta}{1 - \\tan^2\\theta}$4. 指数与对数公式4.1 指数公式•指数乘法公式:$a^m \\cdot a^n = a^{m + n}$•指数除法公式:$\\frac{a^m}{a^n} = a^{m - n}$•指数幂公式:(a m)n=a mn•零指数公式:a0=1•负指数公式:$a^{-m} = \\frac{1}{a^m}$4.2 对数公式•对数乘法公式:$\\log_ab + \\log_ac = \\log_a(bc)$•对数除法公式:$\\log_ab - \\log_ac =\\log_a\\left(\\frac{b}{c}\\right)$•对数幂公式:$\\log_ab^m = m\\log_ab$•换底公式:$\\log_ab = \\frac{\\log_cb}{\\log_ca}$以上是高中数学必修四公式大全,掌握并熟练运用这些公式,能够更好地解决各种数学问题。

高中数学必修四知识点总结

高中数学必修四知识点总结

高中数学必修四知识点总结1500字高中数学必修四知识点总结高中数学必修四是中学数学的基础,其中包含了数学的基本概念、常用方法和基础技巧。

下面是对高中数学必修四的知识点进行了总结:1. 数列与数列的运算:数列是按照一定规律排列的一系列数,常见的有等差数列和等比数列。

数列的求和公式和通项公式是数列相关题目的常用技巧。

2. 函数与函数的运算:函数是自变量与因变量之间的关系,常见的函数有一次函数、二次函数、指数函数和对数函数。

函数的平移、翻折和缩放是函数图象的常用变换方式。

函数的复合运算和反函数是函数运算的重要内容。

3. 三角比与三角函数的图象与性质:三角比是指三角函数中的正弦、余弦和正切,它们可以描述平面上的角度和直线之间的关系。

三角函数的图象、周期、奇偶性和单调性是理解三角函数性质的关键。

4. 平面向量:平面向量是由大小和方向确定的有向线段,可以表示平面上的位移、速度和力等物理量。

平面向量的加法、减法和数量积是平面向量运算的基本操作。

5. 空间几何与矩阵:空间几何是研究空间中的点、直线、平面和立体图形等几何概念的学科。

空间几何的坐标表示和向量表示是研究空间几何的基本手段。

矩阵是数学中一个重要的工具,用于表示线性方程组和线性变换等。

矩阵的运算和特征值特征向量是矩阵的常用操作和性质。

6. 概率与统计:概率是用来研究随机事件发生可能性的数学分支。

概率的计算和事件的独立性是概率理论的核心内容。

统计学是研究收集、整理和分析数据的学科。

统计数据的处理和统计图的绘制是统计学的基本方法。

以上是高中数学必修四的主要知识点总结。

通过学习这些知识点,可以帮助学生建立起扎实的数学基础,为学习更高级的数学提供了良好的基础。

数学是一门需要持续努力和实践的学科,希望学生能够通过不断的学习和练习,掌握好这些知识点,提高数学解题的能力和思维能力。

高中数学必修4知识点总结

高中数学必修4知识点总结

高中数学必修4知识点总结
三角函数:这是必修4的重要内容,包括正角、负角和零角的概念,以及角度的象限划分。

此外,还有任意角的三角函数、同角三角函数的基本关系、正余弦诱导公式、两角和与差、二倍角的正弦、余弦、正切等内容。

平面向量:平面向量的基本概念、向量的加法与减法、实数与向量的积、平面向量的坐标计算、线段的定比分点、平面向量的数量积与运算律等也是必修4的重要知识点。

复数:复数的表示、复数的代数形式、复数的实部和虚部、以及复数的周期性等也是必修4的一部分内容。

集合:集合的基本性质、子集、真子集、集合的相等、空集等概念也是必修4的重要知识点。

以上就是高中数学必修4的主要知识点,需要学生在理解的基础上熟练掌握,并能够应用到解题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y xα=(22||r OP x y ==+;化简为xyx y===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x << (2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥例:y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边在单位圆中分别画出满足sin α=12、cos α=12、tan α=-1的角α的终边,并求角α的取值集合sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路:函数性 质①φ求解思路:代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

易错提醒:“左加右减、上加下减”中“左加右减”仅仅针对自变量x ,不可针对-x 或2x 等. 例: “两域”: (1) 定义域求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象或数轴法来求解. (2) 值域(最值): a.直接法(有界法):利用sinx ,cosx 的值域.b.化一法:化为y=Asin(ωx+φ)+k 的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域(最值).c.换元法:把sinx 或cosx 看作一个整体,化为求一元二次函数在给定区间上的值域(最值)问题. 例:1.y=asinx 2+bsinx+c2.y=asinx 2+bsinxcosx+ccosx 23.y=(asinx+c)/(bcosx+d)4.y=a(sinx ±cosx)+bsinxcosx+c “四性”: (1)单调性①函数y=Asin(ωx+φ)(A>0, ω>0)图象的单调递增区间由2kπ-π2<ωx+φ<2kπ+π2,k ∈Z 解得, 单调递减区间由2kπ+π2<ωx+φ<2 kπ+1.5π,k ∈Z 解得;②函数y=Acos(ωx+φ)(A>0, ω>0)图象的单调递增区间由2kπ+π<ωx+φ<2kπ+2π,k ∈Z 解得, 单调递减区间由2kπ<ωx+φ<2 kπ+π,k ∈Z 解得;③函数y=Atan(ωx+φ)(A>0, ω>0)图象的单调递增区间由kπ-π2<ωx+φ<kπ+π2,k ∈Z 解得,.规律总结:注意ω、A 为负数时的处理技巧.(2)对称性①函数y=Asin(ωx+φ)的图象的对称轴由ωx+φ= kπ+π2(k ∈Z)解得,对称中心的横坐标由ωx+φ= kπ(k∈Z)解得;②函数y=Acos(ωx+φ)的图象的对称轴由ωx+φ= kπ(k∈Z)解得,对称中心的横坐标由ωx+φ=kπ+π2(k ∈Z) 解得;③函数y=Atan(ωx+φ)的图象的对称中心由ωx+φ= kπ(k ∈Z)解得. 规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A 符号. (3)奇偶性①函数y =Asin(ωx+φ),x ∈R 是奇函数⇔φ=kπ(k∈Z),函数y =Asin(ωx+φ),x ∈R 是偶函数⇔φ=kπ+π2(k∈Z);②函数y =Acos(ωx+φ),x ∈R 是奇函数⇔φ=kπ+π2(k ∈Z);函数y =Acos(ωx+φ),x ∈R 是偶函数⇔φ=kπ(k ∈Z);③函数y =Atan(ωx+φ),x ∈R 是奇函数⇔φ=kπ2(k ∈Z).规律总结:φ可以是单个角或多个角的代数式.无需区分ω、A 符号. (4)周期性函数y =Asi n(ωx+φ)或y =Acos(ωx+φ))的最小正周期T =2π|ω|,y =Atan(ωx+φ) 的最小正周期T =π|ω|.考点六 常见公式常见公式要做到“三用”:正用、逆用、变形用 1.同角三角函数的基本关系22sin cos 1θθ+=;tan θ=θθcos sin 2.三角函数化简思路:“去负、脱周、化锐” (1)去负,即负角化正角:sin(-a)=-sina ; cos(-a)=cosa ;tan(-a)=-tana ;(2)脱周,即将不在(0,2π)的角化为(0,2π)的角:sin(2k π+a)=sina ; cos(2k π+a)=cosa ;tan(2k π+a)=-tana ; (3)化锐,即将在(0,2π)的角化为锐角: 6组诱导公式()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:奇变偶不变,符号看象限. 均化为“k π/2±a ”,做到“两观察、一变”。

相关文档
最新文档