代数式知识点、经典例题、习题及答案

合集下载

代数式知识点总复习附解析

代数式知识点总复习附解析

代数式知识点总复习附解析一、选择题1.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.2.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C、和不是同类二次根式,因而不能合并;D、符合二次根式的除法法则,正确.故选D.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.7.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯==325a a a +=()3263a b a b = 故选B .11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190【答案】D【解析】试题解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.考点:完全平方公式.12.将(mx+3)(2﹣3x)展开后,结果不含x的一次项,则m的值为()A.0 B.92C.﹣92D.32【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m的值.【详解】解:(mx+3)(2-3x)=2mx-3mx2+6-9x=-3mx2+(2m-9)x+6由题意可知:2m-9=0,∴m=9 2故选:B.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.14.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g=221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.15.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.16.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.17.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.18.若x+y=2,x﹣y=3﹣222-的值为()x yA.2B.1 C.6 D.3﹣2【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=2,x﹣y=3﹣2,22()()(322)(322)-=+-=+-1.x y x y x y故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.若(x+1)(x+n)=x2+mx﹣2,则m的值为()A.﹣1 B.1 C.﹣2 D.2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.【详解】解:∵(x+1)(x+n)=x2+(1+n)x+n,∴x2+(1+n)x+n=x2+mx-2,∴12n m n+=⎧⎨=-⎩,∴m=-1,n=-2.故选A.【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.。

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

代数式求值经典题型1-(含详细答案)

代数式求值经典题型1-(含详细答案)

.

已知 x-y=2
10

求代数式 x3-6xy-y3
.
. .
.

x3-6xy-y3
=2(x-y)² . 把 x-y=2 代入上式 .
=( x3 - y3)-6xy
=2(2)²

=(x-y)(x2+xy+y2)-6xy
=2×4
10

. 把 x-y=2 代入上式 .
=8
=2(x2+xy+y2)-6xy
第 6
1
4
=10×(x² + x²)------(1)

【第 2 步】
已知 x² -2x -2=0,两边同时除以 x,得
2 x -2 - x =0 把-2 移到等号右边,得
.
2 x - x =2,两边同时平方,得
4 x² - 4 + x² =4,把-4 移到等号右边,
4 x² + x² = 8--------(2)
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.

11
已知 3x²-x-1 =0,

求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
7y² x=2x+5y 两边同时乘以 2x+5

13
2x²+5xy=7y²,把 7y²移到等号左边,

专题二 代数式和整数-知识点与题型全解析(解析版)

专题二 代数式和整数-知识点与题型全解析(解析版)

02 代数式与整式【思维导图】【知识要点】知识点一代数式概念:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.【注意】1.代数式中除了含有字母、数字、运算符号外还可以有括号。

2.代数式中不含有=、<、>、≠等3.对于用字母表示的数,如果没有特别说明,就应理解为它可以表示任何一个数。

代数式的分类:列代数式方法列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了. 列代数式时应该注意的问题(1)数与字母、字母与字母相乘时常省略“×”号或用“·”. (2)数字通常写在字母前面.(3)带分数与字母相乘时要化成假分数. (4)除法常写成分数的形式. 代数式的值一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值. 1.今年苹果的价格比去年便宜了20%,己知去年苹果的价格是每千克a 元,则今年苹果每千克的价格是( ) A .20%aB .120%a-C .20%aD .()120%a -【解析】由题意可得,今年每千克的价格是(1-20%)a 元, 故选D .2.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )A .2a ﹣3bB .4a ﹣8bC .2a ﹣4bD .4a ﹣10b【解析】根据题意得:2(a ﹣b+a ﹣3b )=2(2a ﹣4b )=4a ﹣8b , 故选B3.两位数,十位数字是x,个位数字比十位数字的2倍少3,这个两位数是()A.x(2x﹣3)B.x(2x+3)C.12x﹣3D.12x+3【解析】∵十位数字是x,个位数字比十位数字的2倍少3,∴个位数字为2x−3,∴这个2位数为10x+2x−3=12x−3.故选C4.小华有x元,小林的钱数是小华的一半还多2元,小林的钱数是()A.122x+B.1(2)2x+C.122x-D.1(2)2x-【解析】小华存款的一半为12x元,则小林的存款数为(12x+2)元,故选A.5.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【解析】A. 若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,故正确;B. 若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,故正确;C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,故正确;D. 若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,故不正确;故选D.6.某商店举办促销活动,促销的方法是将原价x元的衣服以4105x⎛⎫-⎪⎝⎭元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【解析】将原价x元的衣服以(4105x-)元出售,是把原价打8折后再减去10元.故选B.7.用代数式表示“m 的3 倍与n 的差的平方”,正确的是( )A.3m﹣n2B.(m﹣3n)2C.(3m﹣n)2D.3(m﹣n)2【解析】m的3倍与n的差的平方表示为:(3m﹣n)2.故选C.8.在下列各式中,不是代数式的是()A.7B.3>2C.2xD.23x2+y2【解析】根据代数式的定义分析可知,A、C、D中的式子都是代数式,B中的式子是不等式,不是代数式.故选B.考查题型一求代数式的值的方法例1已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a﹣b的值为()A.1或7B.1或﹣7C.﹣1或﹣7D.±1或±7【解析】解:∵|a|=3,b2=16,∴a=±3,b=±4,又∵|a+b|≠a+b,∴a+b的结果不可以是正数,即34ab=-⎧⎨=-⎩或34ab=⎧⎨=-⎩∴a﹣b=1或7 故选A.跟踪训练一1.若x=﹣13,y=4,则代数式3x+y﹣3的值为()A.﹣6B.0C.2D.6试题解析:∵x=﹣13,y=4,∴代数式3x+y﹣3=3×(﹣13)+4﹣3=0.故选B.2.若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2 B.﹣2 C.12 D.﹣12【解析】∵点A(m,n)和点B(5,-7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.3.若m=-2,则代数式m2-2m-1的值是()A.9 B.7 C.-1 D.-9【解析】将m=-2代入代数式可得:原式=-2×(-2)-1=4+4-1=7.考查题型二列代数式在探索规律问题中的应用方法例2.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40【解析】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个. 故选B . 跟踪训练二1. 一组按规律排列的多项式:a+b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( ) A .1019a b + B .1019a b - C .1017a b - D .1021a b -【解析】解:多项式的第一项依次是a ,a 2,a 3,a 4,…,a n , 第二项依次是b ,﹣b 3,b 5,﹣b 7,…,(﹣1)n+1b 2n ﹣1,所以第10个式子即当n=10时, 代入到得到a n +(﹣1)n+1b 2n ﹣1=a 10﹣b 19. 故选B .2.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n -B .2(21)n +C .2(2)n +D .2n【解析】图(1):1+8=9=(2×1+1)2; 图(2):1+8+16=25=(2×2+1)2; 图(3):1+8+16+24=49=(3×2+1)2; …;那么图(n ):1+8+16+24+…+8n=(2n+1)2. 故选B .3.如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )A .8B .9C .16D .17【解析】由图可知:第一个图案有三角形1个; 第二图案有三角形4个; 第三个图案有三角形4+4=8个; 第四个图案有三角形4+4+4=12个; 第五个图案有三角形4+4+4+4=16个。

代数式典型例题专项练习30题(有答案)

代数式典型例题专项练习30题(有答案)

代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,2(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。

人教版初中数学代数式知识点训练附答案

人教版初中数学代数式知识点训练附答案

人教版初中数学代数式知识点训练附答案一、选择题1.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅== ()22224a a a ⨯== 325a a a += ()3263a b a b = 故选B .2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列运算正确的是()A.3a3+a3=4a6B.(a+b)2=a2+b2C.5a﹣3a=2a D.(﹣a)2•a3=﹣a6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A.3a3+a3=4a3,故A错误;B.(a+b)2=a2+b2+2ab,故B错误;C.5a﹣3a=2a,故C正确;D.(﹣a)2•a3=a5,故D错误;故选C.【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199=22 119919922++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-,23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.计算的值等于()A.1 B.C.D.【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.11.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n ,解得:n =3.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确. D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.13.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2222+=D .()235a a =【答案】A【解析】 分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、2+2,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.14.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.15.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.16.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.17.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .18.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2 =(1.25×45)2012×(45)2 =1625. 故选B .【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.19.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.20.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.。

初中数学代数式知识点总复习有答案解析

初中数学代数式知识点总复习有答案解析

初中数学代数式知识点总复习有答案解析一、选择题1.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.2.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n=2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2-a.故选:C.【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1-2.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.如果多项式4x4+ 4x2+A是一个完全平方式,那么A不可能是().A.1 B.4 C.x6D.8x3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x4+ 4x2+1=(2x+1)2,∴A=1,不符合题意,∵4x4+ 4x2+ 4不是完全平方式,∴A=4,符合题意,∵4x4+ 4x2+x6=(2x+x3)2,∴A= x6,不符合题意,∵4x4+ 4x2+8x3=(2x2+2x)2,∴A=8x3,不符合题意.故选B.【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.5.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.8.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.13.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为( )A .42B .43C .56D .57【答案】B【解析】【分析】 根据题意得出得出第n 个图形中菱形的个数为n 2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n 个图形中菱形的个数为:n 2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B .【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.14.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.15.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.16.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.17.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.18.若(x+4)(x﹣1)=x2+px+q,则()A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.19.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.20.观察下列图形:( )它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为( ) A .20 B .21 C .22 D .23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.。

最新代数式的概念知识点总结及习题

最新代数式的概念知识点总结及习题

第12讲 代数式【知识要点】 1、 代数式代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。

如:3,),(2,,),1(),1(34a ts n m ab b a x x x x +++++-+等等。

代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号; (4)带分数化成假分数。

2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。

【典型例题】【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么?【例2】(用字母表示图形面积)如下图,求阴影部分面积。

【例3】下列各式中哪些是代数式?哪些不是代数式?(1)123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)27;(6)5332>。

【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 2438-中,符合代数式书写要求的有 。

【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱?【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。

【课堂练习】 一、填空三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃; 五、某长方形的长是宽的23倍,且长是a cm ,则该长方形的周长是 cm ; 六、棱长是a cm 的正方体的体积是 cm 3 ; 七、产量由m kg 增长10%,就达到 kg ;八、学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,注意:单独一个数或一个字母也是代数式。

在捐给社区的图书为 册;九、拿100元钱去买钢笔,买了单价为3元的钢笔n 支,则剩下的钱为 元,最多可以买这种钢笔 支。

代数式知识归纳与题型训练(6类题型清单)(解析版)—2024-2025学年七年级数学上册(浙教版)

代数式知识归纳与题型训练(6类题型清单)(解析版)—2024-2025学年七年级数学上册(浙教版)

《代数式》知识归纳与题型训练(6类题型)一、代数式与代数式的值代数式:由数、表示数的字母和运算符号组成的数学表示称为代数式.代数式值:一般地,用数值代替代数式例的字母,计算后所得的结果叫作代数式的值.要点诠释:(1)代数式中的运算包括:加、减、乘、除、乘方和开方(2)单独的一个数或者一个字母也称代数式(3)代数式求值常需要用到整体思想二、整式单项式:由数与字母或字母与字母相乘组成的代数式叫作单项式;单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数叫作这个单项式的系数;单项式的次数:单项式中所有字母的指数的和叫作这个单项式的次数;多项式:由几个单项式相加组成的代数式叫作多项式;在多项式中,每个单项式叫作多项式的项,不含字母的项叫作常数项,次数最高的项的次数就是这个多项式的次数,多项式根据其次数和项数,可以称为“几次几项式”;整式:单项式和多项式统称为整式;要点诠释:(1)单项式中只含有乘法运算;分数是一个完整的数,不拆开来算;单独的一个数或字母也叫单项式(2)单项式的系数包含前面的符号,去掉字母部分,剩余的即为单项式的系数(3)单独的数字的系数是其本身,次数为0;单独的字母的系数是1,次数为1(4)多项式中含有“乘法——加法——减法”运算;三、合并同类项同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫作同类项;合并同类项:把多项式中的同类项合并成一项,叫作合并同类项;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

四、整式的加减整式的加减:若干个整式相加减时,可以归结为去括号与合并同类项去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.要点诠释:(1)去括号法则的字母表达式——:+(a+b-c)=a+b-c;-(a+b-c)=-a-b+c去括号法则主要是去括号时的变号问题,当括号外是“—”时,去掉括号后的各项均要改变符号(2)整式的化简求值问题:先去括号、再合并同类项,最后再将字母的值代入化简后的结果计算出答案(3)化简求值问题中,如果说结果与一个字母无关,则最后化简的结果中含该字母的项的系数整体=0题型一 代数式例题:1.(2023秋•西湖区校级期中)下面式子中符合代数式书写要求的是( )A.ab3B.2C.D.x+3克【分析】根据代数式的书写要求即可作出判断.【解答】解:A:ab3应写成3ab,故A错误;B:应写成,故B错误;C:书写正确,故C正确;D:x+3克应写成(x+3)克,故D错误.故选:C.2.(2023秋•义乌市期中)代数式3(y﹣3)的正确含义是( )A.3乘y减3B.y的3倍减去3C.y与3的差的3倍D.3与y的积减去3【分析】按照代数式的意义和运算顺序:先运算括号内的,再运算括号外的计算即可判断各项.【解答】解:代数式3(y﹣3)的正确含义应是y与3的差的3倍.故选:C.3.(2023秋•江北区期末)某人骑自行车t(小时)走了s(km),若步行s(km),则比骑自行车多用3(小时),那么骑自行车每小时比步行多走( )(km).A.B.C.s(t+s)D.5(t﹣3)【分析】根据速度=路程÷时间,结合题中的条件即可求解.【解答】解:由题意得:,故选:B.4.(2023秋•温州期中)现计划采购一批文具用品,若笔记本单价为a元,钢笔单价为b元,则购买35本笔记本和20支钢笔共需付 (35a+20b) 元.【分析】分别表示出购买笔记本和钢笔的费用再相加即可.【解答】解:由题意得:共需付:(35a+20b)元,故答案为:(35a+20b).巩固训练5.(2023秋•龙湾区校级期中)下列代数式中,书写规范的是( )A.B.a÷b C.D.﹣1ab【分析】根据代数式的书写要求判断即可【解答】解:A.应该写为,故A错误,不符合题意;B.a÷b应该写为,故B错误,不符合题意误;C.书写正确,故C正确,符合题意;D.﹣1ab应该写为﹣ab,故D错误,不符合题意.故选:C.6.(2023秋•仙居县校级期中)用代数式表示“a的2倍与3的和”,下列表示正确的是( )A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2024•杭州一模)一个直径为6cm的圆中阴影部分面积为S,现在这个圆与正方形在同一平面内,沿同一条直线同时相向而行,圆每秒滚动3cm,正方形每秒滑动2cm,第 4或6 秒时,圆与正方形重叠部分面积是S.【分析】先求出圆阴影部分的垂直长度1cm,再分圆与正方形刚接触后,相交1厘米;圆与正方形将要分开时,相交1厘米,两种情况运动的距离.最后用相遇距离除以速度和,就是所求的相遇时间.【解答】解:①=4(秒);②=6(秒)答:第4秒或6秒时,圆与正方形重叠部分面积是S.题型二 代数式的求值例题:1.(2023秋•西湖区期中)已知2m﹣3n=﹣2,则代数式4m﹣6n+1的值为( )A.﹣1B.3C.﹣3D.2【分析】将代数式适当变形后,利用整体代入的方法解答即可.【解答】解:∵2m﹣3n=﹣2,∴原式=2(2m﹣3n)+1=2×(﹣2)+1=﹣4+1=﹣3.故选:C.2.(2023秋•海曙区校级期中)如果代数式4y2﹣2y+5的值是7,那么代数式2y2﹣y+1的值等于( )A.2B.3C.﹣2D.4【分析】根据4y2﹣2y+5的值是7得到2y2﹣y=1,然后利用整体代入思想计算即可.【解答】解:∵4y2﹣2y+5=7,∴2y2﹣y=1,∴2y2﹣y+1=1+1=2.故选:A.3.(2022秋•萧山区月考)如图是某一长方形闲置空地,宽为3a米,长为b米.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径a米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b米,宽a米的小路,剩余部分种草.(1)小路的面积为 ab 平方米;种花的面积为 πa2 平方米;(结果保留π)(2)请计算该长方形场地上种草的面积;(结果保留π)(3)当a=2,b=10时,请计算该长方形场地上种草的面积.(π取3.14,结果精确到1)【分析】(1)利用长方形和扇形面积公式求解;(2)根据种草的面积是整个长方形的面积减去小路面积和扇形花圃面积即可;(3)由此利用已知数据求出种草的面积即可.【解答】解:(1)依题意得小路的面积为ab平方米,种花的面积为平方米,故答案为:ab,πa2;(2)该长方形场地上种草的面积为:3a⋅b﹣ab﹣πa2=(2ab﹣πa2)平方米,故长方形场地上种草的面积为(2ab﹣πa2)平方米;(3)当a=2,b=10时,2ab﹣πa2≈2×2×10﹣3.14×2×2=27.44≈27平方米.答:该长方形场地上种草的面积为27平方米.巩固训练4.(2023秋•桐乡市期末)若a+3b﹣2=0,则代数式1+2a+6b的值是( )A.5B.4C.3D.2【分析】由已知条件可得a+3b=2,将原式变形后代入数值计算即可.【解答】解:∵a+3b﹣2=0,∴a+3b=2,∴1+2a+6b=1+2(a+3b)=1+2×2=5,故选:A.5.(2023秋•鄞州区校级月考)已知3x2﹣4x+6=9,则= 5 .【分析】利用代入法,代入所求的式子即可.【解答】解:∵3x2﹣4x+6=9,∴3x2﹣4x=3,∴当3x2﹣4x=3时,原式=﹣+6=﹣+6=5.故答案为:5.6.(2023秋•海曙区校级期中)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.【分析】根据图形可知:阴影部分的面积可用长方形的面积减去两个直角三角形的面积.【解答】解:(1)由图形可知:S=4×8﹣×4×8﹣×4(4﹣x)=16﹣8+2x=(8+2x)cm2.另解:大三角形面积为:×4×8=16cm2,小直角三角形的面积为:×(8﹣4)×(4﹣x)=(8﹣2x)cm2,∴S=8×4﹣16﹣(8﹣2x)=(8+2x)cm2.(2)将x=3代入上式,S=8+2×3=14cm2.7.(2023秋•拱墅区校级期中)某校决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价140元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球60个,跳绳x条(x>60).(1)若在A (6600+30x) 元(用含x的代数式表示);若在B网店购买,需付款 (7560+27x) 元(用含x的代数式表示);(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【分析】(1)由题意在A店购买可列式:60×140+(x﹣60)×30=(6600+30x)元;在网店B购买可列式:(60×140+30x)×0.9=(7560+27x)元;(2)将x=100分别代入A网店,B网店的代数式计算,再比较即可求解;(3)由于A店是买一个足球送跳绳,B店是足球和跳绳都按定价的90%付款,所以可以在A店买60个足球,剩下的40条跳绳在B店购买即可.【解答】解:(1)A店购买可列式:60×140+(x﹣60)×30=(6600+30x)元;在网店B购买可列式:(60×140+30x)×0.9=(7560+27x)元;故答案为:(6600+30x),(7560+27x).(2)当x=100时,在A网店购买需付款:6600+30×100=9600(元),在B网店购买需付款:7560+27×100=10260(元),∵9600<10260,∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款9600元,在B网店付款10260元,在A网店购买60个足球配送60个跳绳,再在B网店购买40个跳绳合计需付款:140×60+30×40×0.9=9480,∵9480<9600<10260,∴省钱的购买方案是:在A网店购买60个足球配送,60个跳绳,再在B网店购买40个跳绳,付款9480元.题型三 单项式与多项式例题:1.(2023秋•北仑区期末)单项式﹣的系数和次数分别是( )A.B.C.D.﹣2,2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣的系数和次数分别是,3.故选:B.2.(2023秋•婺城区校级月考)整式0.34x2y,0,,x2﹣y,abc,中单项式有( )A.2个B.3个C.4个D.5个【分析】根据单项式的定义对各式进行判断即可.【解答】解:整式0,0.34x2y,abc,,x2﹣y,中,单项式有0,0.34x2y,abc,故选:B.3.(2022秋•鄞州区校级期中)若多项式4x2y|m|﹣(m﹣1)y2+1是关于x,y的三次三项式,则常数m= ﹣1 .【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解答】解:∵多项式4x2y|m|﹣(m﹣1)y2+1是关于x,y的三次三项式,∴2+|m|=3,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.4.(2022秋•鄞州区校级期中)对多项式按如下的规则确定它们的先后次序:先看次数,次数高的多项式排在次数低的多项式前面;再看项数,项数多的多项式排在项数少的多项式前面;最后看字母的个数,字母个数多的多项式排在字母个数少的多项式前面.现有以下多项式:①a2b2+ab+2;②a4+a3b+a2b2+ab3+b4;③a4+b4+a4b;④a2+2ab+b2;⑤a2+2a+1.(1)按如上规则排列以上5个多项式是 ③②①④⑤ (写序号);(2)请你写出一个排列后在以上5个多项式最后面的多项式.【分析】(1)通过确定各多项式的次数、项数及字母个数进行排序;(2)根据规定写一个含一个字母,次数为一次或次数是2的二项式即可.【解答】解:(1)∵多项式a2b2+ab+2的次数是4,项数是3,且含有2个字母;a4+a3b+a2b2+ab3+b4的次数是4,项数是5,且含有2个字母;a4+b4+a4b的次数是5,项数是3,且含有2个字母;a2+2ab+b2的次数是2,项数是3,且含有2个字母;a2+2a+1的次数是2,项数是3,且含有1个字母,∴按题目规则排列以上5个多项式是:③②①④⑤.故答案为:③②①④⑤;(2)a﹣1就是符合题意的多项式之一.巩固训练5.(2023秋•金东区期末)下列说法中正确的是( )A.单项式的系数是,次数是1B.单项式a3b没有系数,次数是4C.单项式的系数是,次数是4D.单项式﹣5y的系数是﹣5,次数是1【分析】根据单项式的系数:单项式中的数字因式,次数:所有字母的指数和,进行判断即可.【解答】解:A、单项式的系数是,次数是2.故原选项错误;B、单项式a3b的系数是1,次数是4.故原选项错误;C、单项式的系数是,次数是3.故原选项错误;D、单项式﹣5y的系数是﹣5,次数是1.故原选项正确;故选:D.6.(2023秋•玉环市校级期中)在下列代数式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有( )A.2个B.3个C.4个D.5个【分析】直接利用多项式的定义分析得出答案.【解答】解:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有:,ab2+b+1,x3+x2﹣3共3个.故选:B.7.(2023秋•鄞州区校级期中)请写出一个只含有字母x的三次三项式 x3+x2+x(答案不唯一) .【分析】根据多项式的定义进行作答即可.【解答】x的三次三项式为:x3+x2+x,故答案为:x3+x2+x.8.(2023秋•东阳市月考)xy﹣x+y是 二 次 三 项式.【分析】一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.【解答】解:﹣x的次数为1,y的次数为1,xy的次数为2,故多项式的次数为2,该多项式共含有3个单项式,故多项式的项数为3,故答案为:二;三.题型四 同类项与合并同类项例题:1.(2023秋•沭阳县校级期中)在下列各组单项式中,不是同类项的是( )A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【分析】根据同类项的定义判断即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,几个常数项也是同类项.【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.2.(2023秋•宿豫区期末)请你写出一个2a2b的同类项 a2b或3a2b等(答案不唯一) .【分析】根据同类项的定义可知,写出的同类项只要符合只含有a,b两个未知数,并且a的指数是2,b的指数是1即可.【解答】解:a2b或3a2b等(答案不唯一).故答案为:a2b或3a2b等(答案不唯一).3.(2023秋•西湖区校级月考)下列计算中正确的是( )A.2x+3y=5xy B.6x2﹣(﹣x2)=5x2C.4mn﹣3mn=1D.﹣7ab2+4ab2=﹣3ab2【分析】运用合并同类项的方法对各选项进行逐一计算、辨别.【解答】解:∵2x与3y不是同类项不能合并,∴选项A不符合题意;∵6x2﹣(﹣x2)=7x2,∴选项B不符合题意;∵4mn﹣3mn=mn,∴选项C不符合题意;∵﹣7ab2+4ab2=﹣3ab2,∴选项D符合题意;故选:D.4.(2023秋•庆元县校级月考)若多项式8x2+(m+1)xy﹣5y+xy﹣8(m是常数)中不含xy项,则m的值为 ﹣2 .【分析】根据合并同类项法则把原式合并同类项,根据题意列出方程,解方程得到答案.【解答】解:8x2+(m+1)xy﹣5y+xy﹣8=8x2+(m+2)xy﹣5y﹣8由题意得,m+2=0,解得,m=﹣2故答案为:﹣2.5.(2022秋•西湖区校级期中)合并同类项:(1)5m+3m﹣10m;(2)2ab2﹣3ab2﹣6ab2;(3)5x+2y﹣3x﹣7y;(4)11xy﹣3x2﹣7xy+x2.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此解答即可.【解答】解:(1)5m+3m﹣10m=(5+3﹣10)m=﹣2m;(2)2ab2﹣3ab2﹣6ab2;=(2﹣3﹣6)ab2=﹣7ab2;(3)5x+2y﹣3x﹣7y=(5x﹣3x)+(2y﹣7y)=2x﹣5y;(4)11xy﹣3x2﹣7xy+x2=(11﹣7)xy+(1﹣3)x2=4xy﹣2x2.6.(2023秋•江干区校级期中)(1)已知2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,求a和b的值.(2)已知关于x的四次三项式ax4﹣(a﹣12)x3﹣(b+3)x2﹣bx+11中不含x3及x2项,试写出这个多项式,并求当x=﹣1时,这个多项式的值.【分析】(1)先合并同类项,再根据值与x的取值无关,即含x项的系数都为0,据此求解即可;(2)根据不含x3及x2项,则﹣(a﹣12)=0,﹣(b+3)=0,求出a、b的值,进而得到原多项式,再代值计算即可.【解答】解:(1)2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1=(2﹣2b)x2+(a+3)x﹣6y+5,∵2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1;(2)∵关于x的四次三项式ax4﹣(a﹣12)x3﹣(b+3)x2﹣bx+11中不含x3及x2项,∴﹣(a﹣12)=0,﹣(b+3)=0,∴a=12,b=﹣3,∴原多项式为12x4+3x+11,当x=﹣1时,原式=12×(﹣1)4+3×(﹣1)+11=12×1﹣3+11=20.巩固训练7.(2023秋•舟山期末)下列计算正确的是( )A.5m﹣2m=3B.6x3+4x7=10x10C.3a+2a=5a2D.8a2b﹣8ba2=0【分析】依据同类项的定义与合并同类项法则求解即可.【解答】解:A、5m﹣2m=3m,故A错误;B、6x3与4x7不是同类项,不能合并,故B错误;C、3a+2a=5a,故C错误;D、8a2b﹣8ba2=0,故D正确.故选:D.8.(2023秋•南浔区期中)如果2x n+2y3与﹣3x3y2m﹣1是同类项,那么m,n的值是( )A.m=2,n=1B.m=0,n=1C.m=2,n=2D.m=1,n=2【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,得出关于m,n的方程,求得m,n的值.【解答】解:∵2x n+2y3与﹣3x3y2m﹣1是同类项,∴n+2=3,2m﹣1=3,∴m=2,n=1,故选:A.9.(2023秋•苍南县期末)已知单项式5x m y3和是同类项,则m+n= 5 .【分析】根据同类项的概念求解.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式5x m y3和是同类项,∴m=2,n=3,∴m+n=2+3=5,故答案为:5.10.(2023秋•义乌市月考)若﹣6x2y n与2x m+4y3的和是单项式,则mn的值是 ﹣6 .【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.据此可得m、n的值,再代入计算即可.【解答】解:∵﹣6x2y n与2x m+4y3的和是单项式,即﹣6x2y n与2x m+4y3是同类项,∴m+4=2,n=3,解得:m=﹣2,n=3,∴mn=(﹣2)×3=﹣6.故答案为:﹣611.(2023秋•瑞安市月考)计算:= ﹣ab2 .【分析】根据合并同类项的法则进行即可.【解答】解:﹣ab2﹣3ab2=(﹣﹣3)ab2=﹣ab2.故答案为:﹣.12.(2023秋•西湖区校级期中)请回答下列问题:(1)若多项式mx2+4xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值;(2)若关于x、y的多项式3mx2+2nxy+32x+2xy﹣x2+y+4不含二次项,求m﹣n的值;(3)若2x|k|+2y+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(4+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,4+n=0,∴m=1,n=﹣4,∴(m+n)3=(1﹣4)3=﹣27,(2)原式=(3m﹣1)x2+(2n+2)xy+9x+y+4,∵多项式不含二次项,∴3m﹣1=0,2n+2=0.∴m=,n=﹣1∴m﹣n=+1=.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.题型五 去括号与添括号例题:1.(2023秋•瑞安市月考)下列各式去括号正确的是( )A.﹣(a﹣3b)=﹣a﹣3bB.a+(5a﹣3b)=a+5a﹣3bC.﹣2(x﹣y)=﹣2x﹣2yD.﹣y+3(y﹣2x)=﹣y+3y﹣2x【分析】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,由此即可判断.【解答】解:A、﹣(a﹣3b)=﹣a+3b,故A不符合题意;B、a+(5a﹣3b)=a+5a﹣3b,故B符合题意;C、﹣2(x﹣y)=﹣2x+2y,故C不符合题意;D、﹣y+3(y﹣2x)=﹣y+3y﹣6x,故D不符合题意.故选:B.2.(2022秋•新昌县期末)代数式,添上一个括号后,正确的是( )A.B.C.D.【分析】根据添括号方法解答.【解答】解:=.故选:B.3.(2024•东阳市二模)多项式a﹣(﹣b+c)去括号的结果是 a+b﹣c .【分析】根据去括号的方法进行解题即可.【解答】解:a﹣(﹣b+c)=a+b﹣c.故答案为:a+b﹣c.巩固训练4.(2023秋•娄星区校级期中)下列去括号或添括号的变形中,正确的是( )A.2a﹣(3b﹣c)=2a﹣3b﹣c B.3a+2(2b﹣1)=3a+4b﹣1C.a+2b﹣3c=a+(2b﹣3c)D.m﹣n+a﹣b=m﹣(n+a﹣b)【分析】根据去括号法则和添括号法则进行分析即可.【解答】解:A、2a﹣(3b﹣c)=2a﹣3b+c,错误;B、3a+2(2b﹣1)=3a+4b﹣2,错误;C、a+2b﹣3c=a+(2b﹣3c),正确;D、m﹣n+a﹣b=m﹣(n﹣a+b),错误;故选:C.5.(2023秋•吴兴区期中)下列各式可以写成a﹣b+c的是( )A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)【分析】根据有理数的加减混合运算的符号省略法则化简,即可求得结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,A的结果为a﹣b﹣c,B的结果为a﹣b+c,C的结果为a﹣b﹣c,D的结果为a﹣b﹣c,故选:B.6.(2023春•衢江区期中)添括号:﹣x2﹣1=﹣( x2+1 ).【分析】根据添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号,是解题的关键,即可.【解答】解:﹣x2﹣1=﹣(x2+1).故答案为:x2+1.题型六 整式的加减与化简求值例题:1.(2022秋•拱墅区期末)化简(2a+b)﹣(2a﹣b)的结果是( )A.4a B.2b C.0D.4a+2b【分析】去括号后再合并即可得到答案.【解答】解:(2a+b)﹣(2a﹣b)=2a+b﹣2a+b=2b,故选:B.2.(2023秋•椒江区校级期末)已知关于x,y的多项式2x+my﹣12与多项式nx﹣3y+6的差中不含有关于x,y的一次项,则m+n+mn= ﹣7 .【分析】先将多项式直减并合并同类项;再根据差中不含有关于x,y的一次项,求出m和n的值;最后代入式子中,即可求出结果.【解答】解:2x+my﹣12﹣(nx﹣3y+6)=2x+my﹣12﹣nx+3y﹣6=(2﹣n)x+(m+3)y﹣18,∵差中不含有关于x,y的一次项,∴2﹣n=0;m+3=0,解得n=2;m=﹣3.将n=2;m=﹣3代入,则m+n+mn=﹣3+2+(﹣3)×2=﹣7,故答案为:﹣7.3.(2023秋•仙居县期末)若A=x2y+2x+3,B=﹣2x2y+4x,则2A﹣B=( )A.3B.6C.4x2y+6D.4x2y+3【分析】先去括号,再合并同类项即可得到答案【解答】解:∵A=x2y+2x+3,B=﹣2x2y+4x,∴2A﹣B=2(x2y+2x+3)﹣(﹣2x2y+4x)=2x2y+4x+6+2x2y﹣4x=(2x2y+2x2y)+(4x﹣4x)+6=4x2y+6,故选:C.4.(2023秋•仙居县校级期中)计算:(1)3m2﹣2n2+2(m2﹣n2);(2)2x﹣y﹣(x+5y).【分析】(1)根据整式的加减法,去括号,合并同类项即可解决问题;(2)根据整式的加减法,去括号,合并同类项即可解决问题.【解答】解:(1)3m2﹣2n2+2(m2﹣n2)=3m2﹣2n2+2m2﹣2n2=5m2﹣4n2;(2)2x﹣y﹣(x+5y)=2x﹣y﹣x﹣5y=x﹣6y.5.(2023秋•宜城市期末)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.6.(2023秋•临海市期中)先化简,再求值:5x2﹣2(3y2+6xy)+(2y2﹣5x2),其中x=,y=.【分析】先去括号,再合并同类项,最后代入计算即可得.【解答】解:原式=5x2﹣6y2﹣12xy+2y2﹣5x2=﹣4y2﹣12xy,当x=,y=时,原式=﹣4×(﹣)2﹣12××(﹣)=﹣4×+2=﹣1+2=1.7.(2022秋•兰溪市期中)已知A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,求A﹣(B﹣C)的值,其中x=﹣.【分析】把A、B、C的式子代入A﹣(B﹣C)后,先去括号,合并同类项,把多项式化为最简形式后,把x=﹣代入计算即可.【解答】解:∵A=2x2﹣x﹣1,B=3x2﹣2x﹣1,C=x2﹣2x,∴A﹣(B﹣C)=2x2﹣x﹣1﹣[3x2﹣2x﹣1﹣(x2﹣2x)]=2x2﹣x﹣1﹣(3x2﹣2x﹣1﹣x2+2x)=2x2﹣x﹣1﹣3x2+2x+1+x2﹣2x=﹣x,当x=﹣时,原式=﹣(﹣)=.巩固训练8.(2023秋•嵊州市期末)如图,某长方形花园的长为(x+y)米,宽为(x﹣y)米.现根据实际需要对该花园进行整改,长方形花园的长增加(x﹣y)米,宽增加(x﹣2y)米,则整改后该花园的周长为( )A.(4x﹣3y)米B.(4x﹣6y)米C.(8x﹣3y)米D.(8x﹣6y)米【分析】根据整改的方案,表示出整改后的长与宽,再结合长方形的周长公式进行求解即可.【解答】解:整改后的花园周长为:2[(x+y+x﹣y)+(x﹣y+x﹣2y)]=2(2x+2x﹣3y)=2(4x﹣3y)=(8x﹣6y)米,故选:D.9.(2023秋•玉环市期末)长方形的长为2a+b,宽为3a﹣2b,则它的周长可表示为 10a﹣2b .【分析】根据长方形的周长公式计算即可.【解答】解:由题意得:长方形的周长为:(2a+b+3a﹣2b)×2=10a﹣2b故答案为:10a﹣2b.10.(2023秋•越城区校级期末)已知A+2B=3a2﹣4ab,B=﹣5a2+6ab﹣7.(1)用含有a,b的代数式表示A.(2)当a=﹣1,b=﹣2时,求A的值.【分析】(1)将B代入,移项,去括号,合并同类项,即可求解;(2)将a、b的值,代入计算即可求解;【解答】解:(1)∵A+2B=3a2﹣4ab,∴A=3a2﹣4ab﹣2B=3a2﹣4ab﹣2(﹣5a2+6ab﹣7)=3a2﹣4ab+10a2﹣12ab+14=13a2﹣16ab+14;(2)解:当a=﹣1,b=﹣2时,A=13×(﹣1)2﹣16×(﹣1)×(﹣2)+14=13﹣32+14=﹣5.11.(2023秋•襄城区期末)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××﹣6××=1﹣=.12.(2023秋•温岭市校级期中)先化简再求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【分析】先去括号,然后合并同类项得到原式=﹣5x2y+5xy,然后把x、y的值代入计算即可.【解答】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=0.。

七年级上代数式知识点梳理+例题讲解+测试题

七年级上代数式知识点梳理+例题讲解+测试题

知识梳理用字母表示数:示出来。

代数式:1.用基本运算符号(+.-为代数式。

注:单独一个数或一个字母也是代数式。

Π是数字不是字母。

2.或省略不写,单项式:1.2.3.注:单独一个数或一个字母也是单项式。

多项式:1.几个单项式的和叫做多项式。

计算所得的结果叫0,5ba3+,a2+2ab+b2,aa5+,-k.一个字母也是单项式,-k;多项式:5ba3+,a2-k;【练1a2x+ax,x2-3x+4,-Πx,0单项式集合:{多项式集合:{整式集合:{一次整式集合:{二次整式集合:{【例2(1)单项式4yx -3Π(2)多项式ab-2a-100常数项是. (3)多项式2xy-xy2-13是,它是次【分析】.是.m│+2=5,可k的值.【重难点四】代数式求值【例4】当x=3,y=2,求22x 【分析】本题中,具体数值为x=3字母所对应数值带入求解可得。

解答:22x -4xy+3y原式=2×23-4×3×2+3×2=18-24+6 =0【练4】若2)2(+a +丨b-1丨=0【重难点五】整体代入思想求值【例5】若2=-b a ,求代数式5分析:本题中没有给出a 、b 间的关系,b a 22-是b a -的2解答:原式=)(25b a -+=5+2×2 =9的值。

【例6】【分析】根据程序框图的算法,输入一个数x 第一步先算x-1,第二步再算一、选择题1、代数式-23xy 3A .-2,4B .-6,2、若220x x +-=,则322x x +- A .2017 B .3、代数式 , ,, , A. 个B. 个4、某商店在甲批发市场以每包m场以每包n 元(m>n)A .盈利了 B .亏损了 5、图1中3,6,9,··称为正方形数.下列数既是三角形数又是正方形数的是 ( )A .2010B .2012C .2014D .2016,单项式-23πa 2b 的系数是x 的值为81,则第2016次输出的结果为3、已知A 是关于a 的三次多项式,B 是关于a 的二次多项式,则A +B 的的值是×4=43+4,…,若a b ×10=a b.220b -=;②212a b c x y -++是一a 2c -3a 2b)-4a 2c]-abc 的值.2、当x=-2时,代数式633-++cx bx ax 值为8,求当x=2时,代数式633-++cx bx ax 的值。

代数式知识点、经典例题、习题及标准答案

代数式知识点、经典例题、习题及标准答案

1.2代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。

2、用代数式表示实际问题中的数量关系,求代数式的值。

【知识梳理】1、代数式:指含有字母的数学表达式。

2、一个代数式由数、表示数的字母、运算符号组成。

单个字母或数字也是代数式。

3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。

(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或 100•a,na或 n•a。

(3)、后面接单位的相加式子要用括号括起来。

如:(5s)时(4)、除法运算写成分数形式。

(5)、带分数与字母相乘时,带分数要写成假分数的形式。

5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。

“倍”“几分之几”等词语与代数式中的运算符号之间的关系。

(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。

(3)在同一问题中,不同的数量必须用不同的字母表示。

【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。

其中第①个图形一共有2 个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( )【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2, 4,6,…,6,4,2,故第⑥个图形中五角星的个数为 2+4+6+8+10+12+10+8+6+4+2=72。

答案:D【例 2】(2011 甘肃兰州,20,4 分)如图,依次连接第一个矩形各边的中点得到一个菱形, 再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积 为 1,则第 n 个矩形的面积为.1 【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的 ,故21后一个矩形的面积是前一个矩形的 ,所以第 n 个矩形的面积是第一个矩形面积的4 1 1 1 n 1 2 2 2n 2n ,已知第一个矩形面积为 1,则第 n 个矩形的面积为 。

代数式的练习题及答案

代数式的练习题及答案

代数式的练习题及答案代数式的练习题及答案一、选择题1、下列代数式x不能取2的是()A、B、C、D、2、如果甲数为x,甲数是乙数的2倍,则乙数是()A、B、2xC、x+2D、3、一批电脑按原价的85%出售,每台售价为y元,则这批电脑原价为()A、元B、元C、元D、元4、一个长方形的周长为30cm,若长方形的一边长用字母a(cm)表示,则长方形的面积是()A、a(15-a)cm2B、a(30-a)cm2C、a(30-2a)cm2D、a(15+a)cm25、甲种糖果每千克a元,乙种糖果每千克b元,若买甲种糖果m千克,乙种糖果n千克,混合后的糖果每千克()A、元B、元C、元D、元二、填空题1、一枚古币的正面是一个半经为r的圆形,中间有一边长为a 厘米的正方形孔,则这枚古币正面的面积为2、某校共有a名学生,其中男生人数占55%,则女生人数为3、当a=2,b=-3时,代数式的值为4、若则4a+b=5、如果不论x取什么数,代数式的值都是一个定值,那么,代数式的`值为三、做一做1、2只猴子发现山坡上有一堆熟透的红果子共有m个,第一只猴子吃掉了其中的,又扔掉了一个果子,第二只猴子吃掉了其中的,也扔掉了一个果子,最后还剩多个果子?2、一台电视机成本价为a元,销售价比成本价增长25%,因库存积压,所以就接销售价的70%出售,问每台电视机的实际售价是多少元?3、找规律(用n表示第n个数)(1)1,4,9,16,25,…,请写出第n个数,(2)2,5,10,17,26,…,请写出第n个数,(3)3,6,9,12,15,18,…,请写出第n个数,(4)2,4,8,16,32,64,…,请写出第n个数,4、(1)分别求出代数式和值其中(1)(2)a=5,b=3(2)观察(1)中的(1)(2)你发现了什幺?5、治理沙漠的植树活动中,某县今年派出的青年志愿者为100人,每人完成植树任务50棵,计划明年派出人数增加p%,每人植树任务增加q%(1)写出明年计划的总植树的代数式(2)并求出当p=10,q=20时的植树总数参考答案[一、1、D2、A3、B4、A5、C二、1、2、45%a3、-12三、1、2、70%(1+25%)a3、(1)(2)+1(3)3n(4)2n4、(1)(2)=5、(1)50(1+q%)100(1+p%)(2)6600[。

代数式知识点及专项训练(含答案解析)

代数式知识点及专项训练(含答案解析)

代数式知识点及分类训练(含答案解析)知识点一:代数式的定义1. 用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式。

如:16n ,2a+3b ,34 ,n,(a+b)2等式子;代数式不含有等号或不等号,单独的2一个数或一个字母也是代数式。

知识点二:代数式的规范书写1. 数字与数字相乘用“×”;数字与字母、字母与字母相乘乘号, 通常用“·”表示或省略不写;2. 字母与数字相乘,数字因式应放在字母因式之前(之前/之后),带分数与字母相乘,带分数要化为假分数3. 代数式中的除号一般用“分数线”表示;4. 几个字母相乘时,一般按字母顺序排列。

5. 如果字母前面的数字是1,通常省略不写.知识点三:列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.1.重点:用字母表示数与数之间的关系;2.比谁的几倍多(少)几的问题;3.比谁的几分之几多(少)几的问题;4.折扣问题:例:八折是乘0.8,八五折是乘0.855.提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)6.路程问题:掌握公式:s=vt7.出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)y={7 x≤3 1.6(x−3)+7 x>38.已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。

9.特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s:路程 t:时间 v:速度n:正整数知识点三:代数式的值1. 用数值代表代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。

2. 代数式的值的求解步骤:一是代入,二是计算。

在过程中一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.3. 求代数式的值的方法3.1 直接代入法:将字母的值直接代入代数式中求值3.2 转换代入法:按指定的程序代入计算3.3 整体代入法:即整体思想:把“整体”看作一个新字母代入计算【知识点1:代数式的概念】1. 下列式子中,符合代数式书写格式的是( )A .813a 2b 3B .−y xC .xy ·5D .−1c【答案】B【解析】选项A 正确的书写格式是253a 2b 3,选项B 的书写格式是正确的,选项C 正确的书写格式是5xy ,选项D 正确的书写格式是-c.故选:B .2. 下列式子中,不属于代数式的是( )A .a+3B .mn 2C .√6D .x >y 【答案】D .【解析】A 、是代数式,故本选项错误;B 、是代数式,故本选项错误;C 、是代数式,故本选项错误;D 、不是代数式,故本选项正确;故选D .3. 下列各式符合代数式书写规范的是( )A .a bB . a×3C . 2m ﹣1个D . 125m 【答案】A .【解析】A 、符合代数式的书写,故A 选项正确;B 、a×3中乘号应省略,数字放前面,故B 选项错误;C 、2m ﹣1个中后面有单位的应加括号,故C 选项错误;D 、125m 中的带分数应写成假分数,故D 选项错误.4. 判断下列各式中哪些是代数式,哪些不是代数式?0,10x−1,F =ma ,m+2>m ,2x 2﹣3x+11,112,13≠12,6x 2+y 23,﹣y ,6π. 【答案】代数式的有:0,10x−1,2x2﹣3x+11,112,6x 2+y 23,﹣y ,6π.不是代数式的有:F =ma ,m+2>m ,13≠12.【解析】根据代数式的概念选择5. 指出下列各式哪些是代数式,哪些不是代数式?①0;②a+b=3;③b;④x+2>4;⑤1x ;⑥2mn;⑦1+x;⑧x 3.【答案】①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式【解析】②a+b=3,④x+2>4中的“=”“>” 它们不是运算符号,因此②④都不是代数式;①0,③b,都是代数式,因为单个数字和字母是代数式;⑤1x ,⑦1+x,⑧x3,都是除、加、乘方等运算符号连接起来的,因此是代数式;综上,①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式.6. 下列哪些是代数式?哪些不是代数式?(1)3x+y ;(2)a ≠0;(3)s=πr 2;(4)ab a+b ;(5)-1>-2;(6)65;(7)m.【答案】代数式有(1),(4),(6),(7);不是代数式的有(2),(3),(5).【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.代数式有:3x+y ,ab a+b ,65,m.不是代数式的有:a ≠0,s=πr 2,-1>-2.7. 指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x-1;(2)a=1;(3)S=πR 2;(4)π;(5)72;(6)12>13.【答案】(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【知识点2:列代数式】1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【答案】D.【解析】求购买1个面包和2瓶饮料所用的钱数,我们需要用一个面包的价钱加上3瓶饮料的价钱即可,即(a+3b)元,故选D.2.x减去y的平方的差,用代数式表示正确的是().A.(x-y)2B.x2-y2C.x2-yD.x-y2【答案】D【解析】本题主要考查了列代数式,关键是正确理解文字语言中的关键词;y的平方为y2,所以x减去y的平方的差为x-y2,故选D.3.根据题意列式:(1)x的平方的3倍与5的差,用代数式表示为 .(2)操作电脑时,甲4小时打x个字,乙3小时打y个字,甲乙两人每小时共打个字.【答案】(1)3x2-5 (2)(x4+y3)【解析】(1)本题主要考查了列代数式,关键是正确理解文字语言中的关键词;x的平方为x2,它的3倍为3x2,所以再与5的差为3x2-5;(2)已知甲4小时打x个字,则甲每小时打x4个字;乙3小时打y个字,则乙每小时打y3个字,所以甲、乙两人每小时共同打(x4+y3)个字4.校园里刚栽下1.8m高的小树苗,以后每年长0.3m,则n年后是 m.【答案】(0.3n+1.8);【解析】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系。

2.1.1 代数式(一)(解析版)

2.1.1 代数式(一)(解析版)

2.1.1代数式(一)代数式的概念题型一:代数式的概念【例题1】(2020·全国八年级课时练习)在式子3,12a ,34x =,3ab -,()4x y +中,代数式的个数为()A .5B .4C .3D .2【答案】B【分析】根据代数式的定义:用运算符号连接而成的式子逐一判断即可.【详解】解:3,12a ,3ab -,()4x y +是代数式,34x =是方程,不是代数式,所以是代数式的式子共4个.故选B .【点睛】本题考查的是代数式的定义,属于基础概念题型,熟知定义是解题关键.变式训练【变式1-1】(2018·河北沧州市·七年级期末)下列说法正确的是( )A .2a 是代数式,1不是代数式B .代数式2a b -表示2﹣a 除bC .当x =4时,代数式413x -的值为0D .零是最小的整数【答案】C【分析】根据代数式的定义、代数式表示的意义、代数式求值等知识点判断各项【详解】2a 是代数式,单独的数字也是代数式,故A 不正确;代数式2a b -表示2-a 除以b ,故B 不正确;当x=4时,代数式413x -的值为0,故C 正确;零是绝对值最小的整数,故D 不正确.故选C .【点睛】此题主要考查代数式的定义、代数式表示的意义、代数式求值等知识点.用数值代替代数式里的字母解题的关键【变式1-2】(2019·上海市西延安中学七年级月考)下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x +;(5) s = πr 2;(6) -6k A .2B .3C .4D .5【答案】C【分析】根据代数式的定义即可求解.【详解】(1)a+b=b+a 为等式,故错误;(2)1为代数式,正确;(3)2x-1为代数式,正确;(4)23x x +为代数式,正确;(5) s = πr 2为等式,故错误;(6) -6k 为代数式,正确故选C.【点睛】此题主要考查代数式的识别,解题的关键是熟知代数式的定义.【变式1-3】(2020·正安县思源实验学校七年级期中)下列式子①23´②210x -=③y ④s vt =⑤ 3.14π>⑥1a ⑦()()x y x y +-⑧452x x +,其中代数式有( )A .3个B .4个C .5个D .6个【答案】C【分析】代数式是运算符号把数和表示数的字母连接而成的式子,据此确定解答即可.【详解】解:代数式是运算符号把数和表示数的字母连接而成的式子,所以以上八个式子中,是代数式的有①③⑥⑦⑧五个.故选:C【点睛】本题考查了代数式的定义,准确理解代数式的定义是解题关键.题型二:用字母表示数【例题2】三个连续整数中,中间一个是m ,则最大的一个是()A .m+1B .m+2C .m+3D .m+4【答案】A【分析】根据三个连续的自然数两两之间相差1,可知中间一个是m ,那么最大的一个数就是m+1.【详解】解:三个连续的自然数两两之间相差1,中间一个是m ,最大的一个数就是m+1.故选A .【点睛】明确相邻的两个自然数之间相差1是解决此题关键.变式训练【变式2-1】下列说法正确的是( )A .-a 一定是负数B .a 的倒数是1aC .2a 一定是分数D .a 2一定是非负数【答案】D【解析】【分析】本题考查的是负数、倒数、分数、非负数的定义,根据负数、倒数、分数、非负数的定义依次判断各项即可.A 、当a 是负数时,-a 是正数,故本选项错误;B 、当a 是0时,a 没有倒数,故本选项错误;C 、当a=4时,a 2=2,是整数,故本选项错误; D 、2a 一定是非负数,本选项正确,故选D.【点睛】本题考查了用字母表示数,解题的关键是掌握好负数、倒数、分数、非负数的定义.【变式2-2】a +1的相反数是()A .-a +1B .-(a +1)C .a -1D .11a +【答案】B【详解】1a +的相反数是:(1)a -+.点睛:表示一个式子的相反数只需把这个式子用括号括起来,再在括号前面添上一个“-”即可.【变式2-3】(2019·山东)甲数比乙数的3倍大2,若甲数为x ,则乙数为( )A .3x -2B .3x+2C .23x +D .23-x 【答案】D【分析】本题主要考查列代数式,根据甲数比乙数的3倍大2,可知甲数减去2是乙数的3倍,再除以3即可得到结果.【详解】根据题意,得乙数为23x -.选D.【点睛】本题考查了列代数式,解题的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.题型三:找规律型列代数式【例题3】(2020·江西省于都中学七年级期中)观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.变式训练【变式3-1】(2020·广州市育才中学七年级期中)用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n个“口”字需要用棋子( )A.(4n﹣4)枚B.4n枚C.(4n+4)枚D.n2枚【答案】B【分析】观察图形可知,构成每个“口”字的棋子数量,等于构成边长为(n+1)的正方形所需要的棋子数量减去构成边长为(n+1-2)的正方形所需要的棋子数量.【详解】解:由图可知第n个“口”字需要用棋子的数量为(n+1)2-(n+1-2)2=4n,故选择B.【点睛】本题考查了规律的探索.【变式3-2】(2020·广东七年级期末)下列图案由边长相等的黑、白两色正方形按一定的规律拼接而成,依此规律,第n个图形中白色正方形的个数为( )A .4n +1B .4n ﹣1C .3n ﹣2D .3n +2【答案】D 【分析】第一个图形中有5个白色正方形;第2个图形中有531+´个白色正方形;第3个图形中有532+´个白色正方形;…由此得出第n 个图形中有53(1)32nn +´+﹣=个白色正方形.【详解】解:第一个图形中有5个白色正方形;第2个图形中有531+´个白色正方形;第3个图形中有532+´个白色正方形;…第n 个图形中有53(1)32nn +´+﹣=个白色正方形.故选:D 。

最新初中数学代数式知识点总复习附答案

最新初中数学代数式知识点总复习附答案

最新初中数学代数式知识点总复习附答案一、选择题1.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .【点睛】本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.6.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.7.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.11.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.12.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C【答案】A【解析】分析:利用菱形的性质,电子甲虫从出发到第1次回到点A 共爬行了8cm (称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm ,所以它停的位置是F 点.详解:一只电子甲虫从点A 开始按ABCDAEFGAB …的顺序沿菱形的边循环爬行,从出发到第1次回到点A 共爬行了8cm ,而2014÷8=251……6,所以当电子甲虫爬行2014cm 时停下,它停的位置是F 点.故选A .点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.13.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.14.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.15.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.16.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.17.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A不是同类项,不能合并,B、D运用单项式之间的乘法和除法计算即可,C运用了完全平方公式.【详解】A、应为x2+x3=(1+x)x2;B、(-2x)2•x3=4x5,正确;C、应为(x+y)2= x2+2xy+y2;D、应为x3y2÷x2y3=xy-1.故选:B.【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.18.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.19.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.20.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A,2m2+m2=3m2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.。

初中数学代数式知识点总复习有答案(1)

初中数学代数式知识点总复习有答案(1)

初中数学代数式知识点总复习有答案(1)一、选择题1.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.2.计算3x 2﹣x 2的结果是( )A .2B .2x 2C .2xD .4x 2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x 2﹣x 2=(3-1)x 2=2x 2,故选B .【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.3.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500【答案】A【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235a a a -⋅=-,故本选项正确;D.:()339a a =,故选项D 错误. 故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.5.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.6.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C【解析】【分析】 根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a 2+b 2+c 2+2ab+2bc+2ac ,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B. 【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .11.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.14.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …, 依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.15.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.16.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.17.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.18.已知112x y+=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+=∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.19.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n ,∴55×5=52n ,则56=52n ,解得:n =3.故选D .【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.20.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 代数式【考纲说明】1、理解字母表示数的意义及用代数式表示规律。

2、用代数式表示实际问题中的数量关系,求代数式的值。

【知识梳理】1、代数式:指含有字母的数学表达式。

2、一个代数式由数、表示数的字母、运算符号组成。

单个字母或数字也是代数式。

3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

4、用字母表示数的规范格式:(1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。

(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。

如:100a或100•a,n a或n•a。

(3)、后面接单位的相加式子要用括号括起来。

如:( 5s )时(4)、除法运算写成分数形式。

(5)、带分数与字母相乘时,带分数要写成假分数的形式。

5、列代数式时要注意:(1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。

“倍”“几分之几”等词语与代数式中的运算符号之间的关系。

(2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。

(3)在同一问题中,不同的数量必须用不同的字母表示。

【经典例题】【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。

其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( )【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4,6,…,6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。

答案:D【例2】(2011甘肃兰州,20,4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 .【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的12,故后一个矩形的面积是前一个矩形的14,所以第n 个矩形的面积是第一个矩形面积的1221142n n --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,已知第一个矩形面积为1,则第n 个矩形的面积为2212n -⎛⎫⎪⎝⎭。

答案:2212n -⎛⎫ ⎪⎝⎭【例3】按一定规律排列的一列数依次为111111,,,,,,2310152635…,按此规律,第7个数是 。

【解析】先观察分子:都是1;再观察分母:2,3,10,15,26,…与一些平方数1,4,9,16,…都差1,2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,…,这样第7个数为2117150=+。

答案:150【例4】已知:114a b-=,则2227a ab ba b ab---+的值为( )A.6 B.--6C.215- D.27-【解析】由已知114a b-=,得4b aab-=,∴4,4,2()2426.2272()787b a ab a b aba ab b a b ab ab aba b ab a b ab ab ab∴-=-=-------∴===-+-+-+答案:A【课堂练习】1、(2012湖北武汉,9,3分)一列数a1,a2,a3,…,其中a1=111,21nnaa-=+(n为不小于2的整数),则4a=( )A.58B.85C.138D.8132、(2012四川宜宾,5,3分)将代数式2262)x x x p q++++化成(的形式为()3、(2012安徽5,4分)某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )4、(2012浙江丽水,10,3分)小明用棋子摆放图形来研究数的规律。

图1中棋子围成三角形,其颗数为3,6,9,12,…称为三角形数,类似的,图2中的4,8,12,16…称为正方形数。

下列数中既是三角形数也是正方形数的是( )A.2010 B. 2012C.2014D.20165、(2012四川成都,21,4分)已知当x=1时,22232ax bx x ax bx +=+的值为,则当时,的值为 。

6、(2012河北,17,3分)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报111⎛⎫+ ⎪⎝⎭,1212⎛⎫+ ⎪⎝⎭第位同学报,113⎛⎫+ ⎪⎝⎭第3位同学报…这样得到的20个数的积为 。

7、(2012辽宁沈阳,15,4分)有一组多项式:2243648,,,a b a b a b a b +-→+-,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为 。

8、(2012山西,16,3分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 (用含n 的代数式表示)。

9、(2012河北,18,3分)用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①,用n 个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n 的值为 。

10、(2012山东潍坊,17,3分)图中每一个小方格的面积为1,则可根据面积计算得到如下算式:1+3+5+7+…+(2n-1)= 。

(用n表示,n是正整数)11、(2012浙江宁波,20,6分)用同样大小的黑色棋子按如图所示的规律摆放:(1)、第5个图形有多少颗黑色棋子?(2)、第几个图形有2013颗黑色棋子?请说明理由。

12、(2012湖南益阳,19,10分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律求出图④中的数y 和图⑤中的数x 。

【课后作业】一、选择题1. (2007,白银)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ) A.222()a b a b -=- B .222()2a b a ab b +=++ C.222()2a b a ab b -=-+ D .22()()a b a b a b -=+-2. (2008,重庆)某商场2006年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是( )A. ()21a b +B. ()21%a b + C . ()2%a a b + D.2a ab +3. 如图,阴影部分的面积是( ) A.112xy ﻩB.132xy ﻩC .6xy ﻩD.3xy4.(2007,襄阳)某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( )ab甲乙3xyy 0.5xA.1.08a 元 B.0.88a 元 C .0.968a 元 D .a 元5.(2007,郴州)目前,财政部将证券交易印花税税率由原来的1‰(千分之一)提高到3‰.如果税率提高后的某一天的交易额为a 亿元,则该天的证券交易印花税(交易印花税=印花税率×交易额)比按原税率计算增加了( )亿元A.a ‰ B . 2a ‰ C . 3a ‰ D.4a ‰6. 为了吸收国民的银行存款,今年中国人民银行对一年期银行存款利率进行了两次调整,由原来的2.52%提高到3.06%.现李爷爷存入银行a 万元钱,一年后,将多得利息( )万元.A .0.44a % B.0.54a %ﻩC.0.54a ﻩ D .0.54%7.(2008,荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正确的是( ) A .x+y =12 B .x -y =2 C.xy =35 D.x 2+y 2=1448. 用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A.2(3)a b - B.23()a b -ﻩC .23a b - ﻩD.2(3)a b -9.(2009,乐门)在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( ) A .43倍 B.32倍 C .2倍 D .3倍10. (2009,太原)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x -- B.51x + C .131x -- D.131x + 11. 如果ab <0,那么下列判断正确的是( ).A .a <0,b <0 B. a >0,b >0 C. a ≥0,b ≤0 D . a <0,b>0或a>0,b <0二、填空题yx12. 一盒铅笔12支,n 盒铅笔共有 支.13.(2002,株洲)针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整.已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为_______________元.14. (2007,鄂尔多斯)在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的乘法公式是 (用字母表示).15.(2007,呼和浩特)一根钢筋长a 米,第一次用去了全长的13,第二次用去了余下的12,则剩余部分的长度为ﻩ米.(结果要化简)16.(2007,云南) 一台电视机的原价为a 元,降价4%后的价格为_________________元.17.(2007,湖州)利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:222()2a b a ab b +=++.你根据图乙能得到的数学公式是 .18.(2008,青海)对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元.请你对“5x ”再给出另一个实际生活方面的合理解释: .19.(2009,广安)为了增加游人观赏花园风景的路程, 将平行四边形 花园中形如图1的恒宽为a 米的直路改为形如图2恒宽为a 米的曲图(1)图(2)aba bbaa bba甲乙图1图2路, 道路改造前后各余下的面积(即图中阴影部分面积)分别记为S 1和S 2,则S1________S2(填“>”“=”或“<”). 20.(2009,海南)“a 的2倍与1的和”用代数式表示是 . 21.(2009,宁德)张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y = . 22.(2012湖南)用代数式表示“a 与b 的和”,式子为 .23.(2011,衡阳) 如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.24.(2009,上海)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).25.(2009,云南)一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重__________千克.26. (2010,长春)为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款 元(用含有a 的代数式表示).27. (2012,海南)某工厂计划a 天生产60件产品,则平均每天生产该产品__________件.28. (2010,嘉兴)用代数式表示“a 、b 两数的平方和”,结果为 . 29. (2010,湖南)如果用s 表示路程(单位:千米),t 表示时间(单位:小时),v 表示速度(单位:千米/时),那么t = 小时 (用s 和v表示).30. (2010,咸宁)惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:(1)(2)(3)……若第n 年小慧家仍需还款,则第n 年应还款 万元(n >1).【参考答案】【课堂练习】1、A 2、B 3、B 4、D 5、6 6、21 7、1020a b -8、4n-2或2+4(n-1) 9、6 10、n 211、(1)第5个图形有18颗黑色棋子。

相关文档
最新文档