电源供电以及电机驱动原理与电路分析
驱动电源 工作原理
![驱动电源 工作原理](https://img.taocdn.com/s3/m/0874064a03020740be1e650e52ea551810a6c9f0.png)
驱动电源工作原理
驱动电源是一种电子设备,其工作原理是将输入的电源电压进行变换和稳定,输出电压供应给需要驱动的设备。
以下是驱动电源的工作原理。
1. 输入电压稳定:驱动电源会接收来自电源线的输入电压。
首先,输入电压会经过整流电路,将交流电转换为直流电。
然后,通过滤波电路滤除电源中的噪音和波动,以保证电源的稳定。
2. 变换电压:驱动电源需要根据被驱动设备的需求,将输入电压进行变换。
这通常通过变压器或变换器实现。
变换器利用电感和电容等元件,通过变换电磁场,将输入电压转换为所需的输出电压。
3. 输出电压稳定:经过变换的电压会经过稳压电路,以保持在设定的输出电压范围内。
稳压电路通常由稳压二极管或稳压集成电路构成,能够对电压进行调整和稳定。
这样就可以确保所驱动的设备获得稳定的电压供应。
4. 保护功能:驱动电源通常还具有多种保护功能,以应对电源异常情况。
例如过载保护、过热保护、短路保护等。
这些保护机制可以提高电源的可靠性和安全性,同时保护被驱动设备免受电压波动或过载等情况的影响。
总的来说,驱动电源的工作原理是将输入电压进行变换和稳定,并确保输出电压供应到所驱动设备,同时具备保护功能,以满足被驱动设备的电源要求。
电路中的电压电源和电动势
![电路中的电压电源和电动势](https://img.taocdn.com/s3/m/e71c548c185f312b3169a45177232f60ddcce70a.png)
电路中的电压电源和电动势在我们日常生活和现代科技的各个领域,电路都扮演着至关重要的角色。
从为我们的手机充电,到驱动大型工业设备的运转,电路的作用无处不在。
而在电路中,电压、电源和电动势这三个概念是理解电路工作原理的基础。
接下来,让我们一起深入探讨一下它们。
首先,我们来聊聊电压。
电压,简单来说,就是推动电荷在电路中流动的“压力”。
就好比水在水管中流动需要水压一样,电荷在电路中移动也需要电压的驱动。
如果把电路中的导线想象成一条河流,那么电压就像是河流的落差,落差越大,水流的动力就越强。
在电路中,电压的单位是伏特(V)。
例如,我们常见的干电池,通常标注的 15V 就是它所能提供的电压。
电压的存在使得电流能够在电路中流动。
电流,就是电荷的定向移动,它的单位是安培(A)。
想象一下,电压就像是一个无形的“推手”,给电荷施加力量,让它们沿着电路中的导线有规律地移动,从而形成了电流。
那么,是什么提供了电路中的电压呢?这就引出了我们要讲的电源。
电源是电路中提供电压的装置。
常见的电源有电池、发电机等。
电池是我们日常生活中最常见的电源之一。
它通过内部的化学反应将化学能转化为电能,从而提供稳定的电压。
不同类型的电池,其提供的电压和持续供电的能力也有所不同。
比如,一次性的干电池在电量耗尽后就无法再使用,而可充电电池则可以通过充电重复使用。
发电机则是在更大规模的电力供应中发挥着关键作用。
无论是火力发电、水力发电还是风力发电,其原理都是通过某种方式将其他形式的能量转化为电能,并以稳定的电压输出。
接下来,我们要说的是电动势。
电动势这个概念可能相对较难理解一些,但它却是电源的一个重要属性。
电动势指的是电源将其他形式的能量转化为电能的能力。
它反映了电源内部非静电力做功的本领。
简单来说,电动势就是电源把其他能量转化为电能的“本事”。
以电池为例,电池内部的化学物质发生反应,使得正电荷从电池的负极移动到正极,这个过程中化学能转化为电能,而推动这种转化的力量就是电动势。
IR20驱动MOSIGBT组成H桥原理与驱动电路分析
![IR20驱动MOSIGBT组成H桥原理与驱动电路分析](https://img.taocdn.com/s3/m/37cf885e640e52ea551810a6f524ccbff121ca9e.png)
IR20驱动MOSIGBT组成H桥原理与驱动电路分析1.H桥原理:H桥电路是由四个开关管组成的电路,可以实现正反转、制动及调速功能。
在正极电池端接入两个开关管,负极电池端接入另外两个开关管。
通过控制不同开关管的电导情况,可以控制电机正反转和制动。
当Q1和Q4导通时,电机正转;当Q2和Q3导通时,电机反转;当Q1和Q2导通时,电机制动。
H桥电路示意图如下:```+Vcc+--,Q1,--+Motor(Load) -----,Q2,----------+--,Q3,--++GND```2.IR2110简介:IR2110是一种高低侧驱动器,它具有独立的高压和低压输入端,可以直接驱动高侧和低侧开关管。
IR2110集成了驱动电路和PWM调制电路,能够实现电源零电压开关(ZVS)和电流过零检测功能,提高开关效率和减少电磁噪音。
3.IR2110的工作原理:-IR2110的高侧驱动电路包括一个高侧引脚(HIN)、一个半桥驱动电路和一个逆变器。
-IR2110的低侧驱动电路包括一个低侧引脚(LIN)、一个半桥驱动电路和一个逆变器。
-当HIN输入信号为低电平时,高侧逆变器输出为高电平,高侧MOS 管截止,同时低侧逆变器输出为低电平,低侧MOS管导通,电机正转。
-当HIN输入信号为高电平时,高侧逆变器输出为低电平,高侧MOS 管导通,同时低侧逆变器输出为高电平,低侧MOS管截止,电机反转。
-通过HIN和LIN输入信号的控制,可以控制H桥电路的工作方式。
4.IR2110驱动电路示意图:```+Vcc+--,Q1,---------------+Motor ,(Load) ----,Q2,----------------, IR2110+--,Q3,---------------++GND```5.IR2110驱动电路的工作过程:-通过输入信号控制IR2110的HIN和LIN引脚的电平。
-IR2110内部逆变器产生高侧和低侧驱动电平,控制相应的MOSFET 或IGBT的导通和截止。
交流力矩电机控制器的电路原理与检修
![交流力矩电机控制器的电路原理与检修](https://img.taocdn.com/s3/m/20e8b2ce6429647d27284b73f242336c1fb93076.png)
交流力矩电机控制器的电路原理与检修一、电路原理1.电源电路:电源电路主要是为控制器提供电源。
一般情况下,电源电路包括变压器、整流器和滤波器。
变压器将输入电压调整到合适的工作范围内,整流器将交流电转换为直流电,滤波器则用于过滤电源中的杂散信号,保证控制器正常工作。
2.传感器电路:传感器电路用于检测电动机的运行状态,将信号传递给控制电路。
常见的传感器包括电压传感器、电流传感器和速度传感器。
电压传感器用于检测电机的电压,电流传感器用于检测电机的电流,速度传感器用于检测电机的转速。
传感器将检测到的信号转换为电压信号,并传递给控制电路进行处理。
3.控制电路:控制电路主要是接收传感器电路传递过来的信号,并根据信号调节电机的电压、频率和相位。
控制电路包括比较器、计数器和逻辑控制器等。
比较器用于比较传感器信号和预设值,计数器用于计算电机的转速,逻辑控制器用于根据计数器的数值决定调节电压、频率和相位的方式。
4.驱动电路:驱动电路用于控制电机的转速和转矩。
驱动电路一般包括功率放大器和电机接口电路。
功率放大器将控制信号放大到合适的电平,电机接口电路将放大器的输出信号传递给电机,从而实现对电机的控制。
二、检修方法1.检查电源电路:检查电源电路的连接是否正常,变压器是否工作正常,整流器和滤波器是否损坏。
如果发现问题,应及时更换故障部件。
2.检查传感器电路:检查传感器电路的连接是否正常,传感器是否工作正常。
可以使用万用表或示波器对传感器输出的信号进行测量,并与预设值进行对比,判断传感器是否工作正常。
3.检查控制电路:检查控制电路的电路连接是否正常,比较器和计数器是否工作正常。
可以使用示波器对控制电路的输出信号进行测量,并与预设值进行对比,判断控制电路是否工作正常。
4.检查驱动电路:检查驱动电路的连接是否正常,功率放大器和电机接口电路是否工作正常。
可以使用示波器对驱动电路的输出信号进行测量,并与预设值进行对比,判断驱动电路是否工作正常。
伺服驱动器电路原理
![伺服驱动器电路原理](https://img.taocdn.com/s3/m/3903d78d64ce0508763231126edb6f1aff0071e4.png)
伺服驱动器电路原理伺服驱动器电路原理一、概述伺服驱动器是现代控制系统中广泛应用的一种电气设备。
它通过控制电机转速和位置,从而实现精确运动控制和位置定位。
伺服驱动器电路原理主要包括电源电路、控制电路和保护电路。
本文将分别介绍这三个方面的原理。
二、电源电路原理伺服驱动器的电源电路主要负责为控制电路提供所需的电能。
伺服驱动器通常采用直流电源供电,以确保稳定的电压和电流输出。
在电源电路中,通常包括整流电路、滤波电路和稳压电路。
整流电路负责将交流电源输出的交流电转换为直流电。
常见的整流电路有单相整流电路和三相整流电路。
单相整流电路适用于单相交流电源,通过使用二极管桥等元件将交流电转换为直流电。
而三相整流电路适用于三相交流电源,通过使用三相桥等元件将交流电转换为直流电。
滤波电路主要用于平滑输出的直流电,以减小电压波动和纹波。
滤波电路通常由电容器组成,通过将电容器与整流电路连接,过滤掉高频成分,实现直流电的平滑输出。
稳压电路负责维持输出直流电的稳定性。
在伺服驱动器中,通常采用电压稳压芯片或电流稳压芯片进行稳压。
这些芯片能够通过对输出电压或电流的监测和调节,确保其稳定在设定的数值范围内。
三、控制电路原理控制电路是伺服驱动器中最关键的部分,它负责接收控制信号,以实现精确的运动控制。
控制电路的原理主要涉及控制信号的接收、信号处理和电机驱动。
控制信号的接收通常通过编码器或位置传感器实现。
编码器能够将电机转动的机械位移转换为电信号,供控制电路进行处理。
位置传感器则用于检测电机所处的位置,通过输出信号告知控制电路。
信号处理部分主要负责对控制信号进行处理和解析。
这一部分通常包括滤波、放大、运算和比较等功能。
滤波能够去除噪声信号,提高信号的质量;放大能够增强信号的幅度,以提高信号的灵敏度;运算能够将信号转换为控制电流或电压;比较能够将输出信号与设定值进行比较,然后输出控制信号。
电机驱动部分负责控制电机的转速和位置。
它通常由功率放大器、反向电路和电机连接组成。
供电电路 原理
![供电电路 原理](https://img.taocdn.com/s3/m/90e8b5eff424ccbff121dd36a32d7375a517c66b.png)
供电电路原理
供电电路是一种用于提供电能给其他设备的电路。
它由电源、导线和负载组成。
在供电电路中,电源是提供电能的源头。
常见的电源有电池、电压稳定器和电网等。
电源通常会产生一定的电压,以驱动电流在电路中流动。
导线是电能的传输通道。
它通常由金属制成,具有良好的导电性能。
导线将电源与负载连接起来,使得电能可以顺畅地传输。
负载是电路的终端设备,它消耗电能并将其转化为其他形式的能量。
常见的负载有电灯、电机、电脑等。
不同的负载对电能的需求可能有所不同,因此供电电路需要根据负载的特性来设计。
在供电电路中,电流会从电源流动到负载上,形成一个闭合回路。
电流的大小取决于电源的电压和负载的电阻。
根据欧姆定律,电流与电压成正比,与电阻成反比。
为了保护供电电路的安全和稳定性,通常会添加一些保护元件,如熔丝、保险丝和过载保护开关。
这些保护元件可以在电路出现故障时切断电流,防止电路和设备受损。
总之,供电电路通过电源、导线和负载构成一个闭合回路,使得电能可以从电源传输到负载上。
在设计和使用供电电路时,
需要考虑电源的电压、负载的特性以及安全保护等因素,以确保电路的正常运行。
直流电机抱闸驱动电路原理_概述说明以及解释
![直流电机抱闸驱动电路原理_概述说明以及解释](https://img.taocdn.com/s3/m/832ab94ab42acfc789eb172ded630b1c58ee9b66.png)
直流电机抱闸驱动电路原理概述说明以及解释1. 引言1.1 概述直流电机抱闸驱动电路是一种常见的电路,用于控制直流电机的启动、停止和转向。
抱闸驱动电路通过控制信号输入和逻辑解析,实现对电机的控制。
本文将对直流电机抱闸驱动电路的原理进行详细说明和解释。
1.2 文章结构本文分为五个部分,分别是引言、直流电机的工作原理、抱闸驱动电路的概述、直流电机抱闸驱动电路的工作原理解释以及结论及展望。
1.3 目的本文旨在介绍直流电机抱闸驱动电路的原理,并详细解释其工作过程。
通过阐述其概述、分类特点以及优缺点,读者可以全面了解这种驱动方式在不同应用领域中的使用情况。
此外,该篇文章还将对信号输入与控制逻辑解析、信号转换与功率放大解析以及马达启动与停止过程进行深入讲解,帮助读者更好地理解和应用直流电机抱闸驱动电路。
以上为文章“1. 引言”部分内容。
2. 直流电机的工作原理2.1 电机基本原理直流电机通过直接提供或变换直流电源来产生转动力,是一种将电能转化为机械能的设备。
其基本构成包括定子(静子)和转子(动子)。
定子通常由绕组、铁芯和端盖组成,而转子则由磁极、绕组和轴心组成。
直流电机的工作原理可简单地描述为:当通过定子绕组施加一个与磁场正交的直流电流时,会在磁场中产生一个力矩,使得转子开始旋转。
这是由于磁场与传导系数所产生的洛伦兹力相互作用引起的。
2.2 直流电机结构直流电机有不同类型的结构,常见的有分解架式和整体架式两种。
其中,分解架式包含了割平开槽型、差弱法等结构形式;整体架式则包括了齐纳励磁法、复合励磁法等结构形式。
无论是哪种结构形式,直流电机都包含了固定在外壳内部并连接到功率源上的定子线圈以及安装在轴上并能自由旋转的转子。
2.3 直流电机的应用领域直流电机在各个行业中都有广泛的应用。
例如,在工业领域,直流电机主要用于驱动各类设备和机械,如风机、泵机、输送带和升降装置等。
此外,在汽车和交通运输领域,直流电机被应用于汽车座椅调节器、风挡刷动力系统和车辆动力传动系统等。
电机驱动器工作原理
![电机驱动器工作原理](https://img.taocdn.com/s3/m/da3df5b20342a8956bec0975f46527d3240ca60d.png)
电机驱动器工作原理电机驱动器是一种用于控制电动机运行的装置,它能够提供所需的电能和控制信号,以使电机按照特定的要求进行运转。
在工业生产中,电机驱动器被广泛应用于各种设备和机械中,如风机、泵、输送带、机床等。
本文将介绍电机驱动器的工作原理,帮助读者更好地理解其运行机制。
电机驱动器主要由电源模块、控制模块和功率输出模块组成。
电源模块用于将交流电源转换为直流电源,以为后续的功率输出提供能量支持。
控制模块则负责接收外部控制信号,通过内部逻辑运算和信号处理,控制功率输出模块的工作状态,从而实现对电机的精准控制。
功率输出模块是电机驱动器的核心部件,它通过控制功率器件(如晶闸管、场效应管等)的导通和截止,实现对电机的调速和转向。
在电机驱动器的工作过程中,首先是电源模块将交流电源转换为直流电源,这一过程包括整流、滤波和稳压等步骤,以确保输出的直流电压稳定。
然后,控制模块接收外部的控制信号,根据设定的运行要求,对功率输出模块进行控制。
功率输出模块根据控制信号,控制功率器件的导通和截止,调节输出电压和电流,从而实现对电机的精准控制。
在整个过程中,控制模块起着决定性的作用,它通过对各种传感器信号的采集和处理,实现对电机运行状态的监测和调节,确保电机的安全稳定运行。
电机驱动器的工作原理可以简单概括为,接收控制信号→控制功率输出→驱动电机运行。
在实际应用中,电机驱动器可以根据不同的控制要求,采用不同的控制方式,如开环控制、闭环控制、矢量控制等。
这些控制方式在实现对电机的精准控制和调节方面各具特点,可以根据具体的应用场景选择合适的控制方式。
总的来说,电机驱动器是现代工业生产中不可或缺的设备,它通过对电机的精准控制,实现对生产设备和机械的精准控制,提高生产效率,降低能耗,改善生产环境。
掌握电机驱动器的工作原理,对于工程技术人员来说至关重要,只有深入理解其工作原理,才能更好地应用和维护电机驱动器,确保生产设备的正常运行。
综上所述,电机驱动器作为一种重要的控制装置,其工作原理涉及到电源模块、控制模块和功率输出模块三个方面,通过这些模块的协同工作,实现对电机的精准控制。
电机控制电路的工作原理(一)
![电机控制电路的工作原理(一)](https://img.taocdn.com/s3/m/ec1ac2d2e109581b6bd97f19227916888486b9c7.png)
电机控制电路的工作原理(一)电机控制电路的工作原理1. 概述•电机控制电路是一种用于控制电机运行的电路,是电机驱动的重要组成部分。
•通过控制电路,可以实现电机的启动、停止、速度调节和方向控制等功能。
2. 电机基本原理•电机是利用电磁感应原理将电能转化为机械能的设备。
•基本原理包括电磁感应、磁场和电流之间的相互作用等。
•不同类型的电机,如直流电机、交流电机和步进电机,其工作原理略有不同。
直流电机工作原理•直流电机是利用电磁感应原理产生转矩,实现旋转运动的电机。
•通过直流电源和电刷子将电能传递给电枢产生磁场,与永磁体产生相互作用,从而使电机旋转。
交流电机工作原理•交流电机是利用交流电源供电,通过磁场和电流交互作用产生旋转运动的电机。
•交流电机包括感应电机和同步电机,其工作原理基于电磁感应和磁场转动的原理。
步进电机工作原理•步进电机是将电脉冲信号转换为角位移的电机。
•通过不同的脉冲信号,可实现电机按固定角度旋转,用于定位和控制精度要求较高的应用。
3. 电机控制电路组成电机控制电路由多个组件组成,包括电源、开关、驱动器和反馈系统等。
电源•电源为电机提供工作所需的电能。
•一般使用直流电源或交流电源,根据电机类型和工作需求选择合适的电源。
开关•开关用于控制电机的启动、停止和方向控制。
•常见的开关包括手动开关、按钮开关和继电器等。
驱动器•驱动器是控制电机速度和转向的关键组件。
•根据电机类型的不同,驱动器可以是电调或控制器。
•通过调节驱动器的输出信号,可以实现对电机速度和方向的控制。
反馈系统•反馈系统用于监测电机运行状态,并将信息反馈给控制器。
•常见的反馈系统包括编码器、传感器和霍尔效应元件等。
4. 电机控制电路工作过程电机控制电路的工作过程可分为电源供电、开关控制、驱动器调节和反馈系统返回等环节。
电源供电•首先,电源为电机提供工作所需的电能。
•根据电机的额定电压和电流,选择合适的电源进行供电。
开关控制•开关用于控制电机的启动、停止和方向控制。
电机驱动电路原理
![电机驱动电路原理](https://img.taocdn.com/s3/m/14233330cd1755270722192e453610661fd95a40.png)
电机驱动电路原理一、引言电机驱动电路是将电能转化为机械能的重要部分,其作用是提供适当的电源给电机,以使其正常运转。
本文将详细介绍电机驱动电路的原理。
二、电机驱动电路的分类根据控制方式不同,电机驱动电路可分为直流马达驱动和交流异步马达驱动两种。
1. 直流马达驱动直流马达的转矩与其励磁磁通量成正比,因此控制直流马达转速的关键在于控制励磁磁通量。
常见的直流马达控制方式有:(1)恒压调速法:通过改变励磁线圈中的电阻来改变励磁电流,从而改变励磁磁通量大小。
(2)串联调速法:将外加阻抗串联到直流马达中,通过改变串联阻抗大小来改变总回路阻抗大小,从而改变总回路电流大小和励磁磁通量大小。
(3)分级调速法:将外加阻抗分级加入到直流马达中,在不同级别处通过切换不同的外加阻抗来改变电路总回路阻抗大小和励磁磁通量大小。
2. 交流异步马达驱动交流异步马达的转速与供电频率成正比,因此控制交流异步马达转速的关键在于控制供电频率。
常见的交流异步马达控制方式有:(1)恒频调速法:通过改变电源电压来改变供电频率,从而改变异步马达转速。
(2)变频调速法:通过将交流电源转换为直流电源,再将直流电源通过逆变器转换为可调的交流电源,从而实现对供电频率的精确控制。
三、直流马达驱动原理1. 直流马达基本结构直流马达由定子和转子两部分组成。
定子包括永磁体和励磁线圈,励磁线圈中通有直流电源。
转子由铁芯和绕组组成,绕组中通有直流或脉冲直流信号。
2. 直流马达基本原理当励磁线圈通有一定大小的直流电信号时,会在永磁体中产生一个稳定的磁场。
当绕组通有一定大小和方向的脉冲直流信号时,会在转子中产生一个旋转磁场。
由于旋转磁场与永磁体中的磁场不同步,因此会产生一个转矩,使得转子开始旋转。
3. 直流马达调速原理直流马达调速的关键在于控制励磁线圈中的电流大小和方向。
当励磁线圈中的电流大小和方向改变时,励磁线圈中的磁通量大小和方向也会随之改变。
由于直流马达的转矩与励磁线圈中的磁通量成正比,因此改变励磁电流大小和方向可以改变直流马达的转速。
驱动电源工作原理
![驱动电源工作原理](https://img.taocdn.com/s3/m/4448969fb8f3f90f76c66137ee06eff9aef849c3.png)
驱动电源工作原理
驱动电源是一种用于给电动设备提供稳定电流的电源装置。
它通常由直流电源和电源控制器两部分组成。
直流电源模块是驱动电源的核心部分,它负责将输入的交流电转换成稳定的直流电。
常见的直流电源模块包括整流器、滤波器、稳压器等。
整流器将输入的交流电转换成脉冲波形的直流电,滤波器则平滑这个脉冲波形,以去除掉其中的杂散波。
稳压器根据需要稳定输出的电压值,确保驱动电源输出的直流电的稳定性。
电源控制器是指控制电源模块工作的部分,它通常由微处理器、功率开关管、驱动电路等组成。
微处理器负责对电源模块进行监控和控制,根据输出负载的变化来调整直流电的输出电压。
功率开关管则根据微处理器的指令来实现对输入电压的开关控制,从而实现对输出电压的调整。
驱动电路负责控制功率开关管的开关频率和占空比,以实现对输出电压的精确调节。
驱动电源的工作原理是通过不同的组件相互配合,实现对输出直流电的稳定调节。
整流器将交流电转化为脉冲波形的直流电,滤波器去除其中的杂散波,稳压器控制输出的电压值。
电源控制器监控输出负载的变化,通过微处理器的指令来控制功率开关管的开关状态和频率,从而实现对输出电压的调节。
通过这种方式,驱动电源可以保证输出的直流电稳定并且符合设备的工作要求。
Z3050摇臂钻床电路原理与维修
![Z3050摇臂钻床电路原理与维修](https://img.taocdn.com/s3/m/78d9aaad4bfe04a1b0717fd5360cba1aa8118c86.png)
Z3050摇臂钻床电路原理与维修摇臂钻床是一种常用的机械加工设备,它主要由电路系统和机械部分组成。
在使用和维修过程中,电路原理的掌握是非常重要的。
本文将就Z3050摇臂钻床的电路原理与维修进行详细介绍。
一、电路原理1.电源电路:摇臂钻床的电源电路主要包括电源开关、电源线、熔断器等组成。
电源开关用于控制电源的开启和关闭,熔断器则起到过载保护的作用。
2.控制电路:摇臂钻床的控制电路主要由控制按钮、继电器、接触器、限位开关等组成。
工作时,通过控制按钮的操作来控制马达的启动和停止;继电器用于放大电流信号,控制电路的开关动作;接触器用于控制电机的正反转;限位开关用于控制机械部分的运动范围,保证安全和精度。
3.电机驱动电路:摇臂钻床的电机驱动电路主要由电机、电容器、电阻等组成。
电机是摇臂钻床的核心部件,通过电流来驱动电机转动。
电容器用于调整电机的功率因数,提高电机的效率;电阻用于限制电流大小,保护电机。
4.电磁阀控制电路:摇臂钻床的电磁阀控制电路主要由电磁阀、电源线、开关、电阻等组成。
电磁阀是用来控制液压系统的开关元件,通过控制电磁阀的开闭来控制液压缸的运动。
二、维修方法1.检查电源电路:如摇臂钻床无电,可能是电源线接触不良或电源开关故障造成的。
首先检查电源线是否插牢固,然后检查熔断器是否正常。
如果以上都正常,可以打开电源箱检查电源开关是否损坏,如有需要则更换。
2.检查控制电路:如摇臂钻床无法启动或停止,可能是控制按钮、继电器或接触器故障造成的。
首先检查控制按钮是否损坏,然后检查继电器是否工作正常,最后检查接触器是否正常接触。
如有需要,可以更换相应的组件。
3.检查电机驱动电路:如摇臂钻床电机无法转动,可能是电机、电容器或电阻故障造成的。
首先检查电机是否有断路或短路现象,然后检查电容器是否漏电或损坏,最后检查电阻是否过大或过小。
如有需要,可以更换相应的组件。
4.检查电磁阀控制电路:如摇臂钻床液压系统无法工作,可能是电磁阀、电源线或开关故障造成的。
电机驱动电路(详细)
![电机驱动电路(详细)](https://img.taocdn.com/s3/m/890e4d2b647d27284b735183.png)
电机驱动电路一、直流电机驱动电路的设计目标在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4个功率元件组成的H桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。
2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
二、三极管-电阻作栅极驱动1.输入与电平转换部分:输入信号线由DATA引入,1脚是地线,其余是信号线。
注意1脚对地连接了一个2K 欧的电阻。
当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。
当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。
或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。
高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。
KF347的输入电压范围不能接近负电源电压,否则会出错。
电机驱动电路原理
![电机驱动电路原理](https://img.taocdn.com/s3/m/fa2f213f30b765ce0508763231126edb6f1a76d4.png)
电机驱动电路原理
电机驱动电路原理是一种用于控制电机运转的电路设计。
这种电路通常由一个电机驱动器和一个控制器组成。
电机驱动器是用来提供电力和控制信号的设备。
它接收来自控制器的信号,并将电流传送给电机,以控制电机的运转。
电机驱动器通常包括一个功率开关,用来控制电机的通断,并根据控制器的指令进行调节。
控制器是用来指挥电机驱动器的设备。
它接收来自用户或其他信号源的输入,然后根据输入生成控制信号,再将控制信号传送给电机驱动器。
控制器可以是一个简单的电路,也可以是一个复杂的微处理器系统,取决于具体的应用场景和要求。
在电机驱动电路中,通常会使用一些电子元件来实现各种功能。
例如,电机驱动器中会使用功率开关来控制电流的通断。
常见的功率开关包括晶体管、场效应管和继电器等。
另外,还会使用传感器来感知电机的状态,例如速度传感器和位置传感器等。
电机驱动电路采用的控制方式多种多样,根据不同的需求和应用场景选择合适的控制算法。
常见的控制算法包括开环控制和闭环控制。
开环控制是一种简单的控制方式,通常只需根据预定的输入信号来控制电机的运转。
闭环控制则需要反馈电机的实际状态,并根据反馈信息来调整控制信号,使电机达到预定的运转状态。
总之,电机驱动电路是一种用于控制电机运转的关键电路。
它
通过控制器生成控制信号,并通过电机驱动器将信号传送给电机,以实现电机的运转。
不同的应用场景和需求会有不同的电机驱动电路设计,但基本原理和组成部件大致相同。
物理电机驱动实验报告
![物理电机驱动实验报告](https://img.taocdn.com/s3/m/d488c7b4988fcc22bcd126fff705cc1754275f59.png)
一、实验目的1. 了解电机驱动的基本原理和电路结构。
2. 掌握电机驱动电路的设计与调试方法。
3. 熟悉电机驱动在工程中的应用。
二、实验原理电机驱动是将电能转换为机械能的过程,主要包括直流电机、交流电机和步进电机等类型。
本实验以直流电机为例,介绍电机驱动的基本原理和电路结构。
直流电机驱动电路主要由以下几部分组成:1. 电源:提供稳定的直流电压,作为电机驱动电路的能量来源。
2. 电机:将电能转换为机械能,实现电机转动。
3. 驱动电路:控制电机转速和转向,包括启动、停止、正转、反转等功能。
4. 保护电路:防止电机过载、短路等故障。
三、实验设备1. 直流电机:额定电压、电流和功率符合实验要求。
2. 电源:提供稳定的直流电压,输出电压范围与电机额定电压相匹配。
3. 电机驱动模块:具有启动、停止、正转、反转等功能。
4. 电流表、电压表:测量电机驱动电路的电流和电压。
5. 万用表:测量电路中各元件的电压、电流和电阻。
四、实验步骤1. 搭建实验电路:根据实验原理,将电源、电机、驱动模块和保护电路连接成完整的电机驱动电路。
2. 测量电路参数:使用万用表测量电路中各元件的电压、电流和电阻,确保电路参数符合设计要求。
3. 启动电机:使用驱动模块控制电机启动,观察电机转速和转向是否正常。
4. 调速实验:调整驱动模块的PWM波占空比,观察电机转速变化,验证调速功能。
5. 转向实验:改变驱动模块的PWM波极性,观察电机转向变化,验证转向功能。
6. 保护实验:模拟电机过载、短路等故障,观察保护电路是否正常工作。
五、实验结果与分析1. 电机启动成功,转速和转向正常。
2. 调速功能正常,通过调整PWM波占空比实现电机转速调节。
3. 转向功能正常,通过改变PWM波极性实现电机转向控制。
4. 保护电路正常工作,在模拟故障情况下,电路能够及时断开,保护电机不受损坏。
六、实验总结1. 通过本次实验,掌握了电机驱动的基本原理和电路结构。
2. 学会了电机驱动电路的设计与调试方法。
电路原理基础知识
![电路原理基础知识](https://img.taocdn.com/s3/m/f2861513f6ec4afe04a1b0717fd5360cba1a8df3.png)
电路原理基础知识目录一、电路的基本概念 (2)1.1 电路的定义 (3)1.2 电路模型 (4)1.3 电路的基本物理量 (5)二、直流电路分析 (6)2.1 电阻、电容、电感元件 (7)2.2 KVL和KCL法则 (9)2.3 电压源和电流源 (9)2.4 直流电路的等效变换 (10)三、交流电路分析 (12)3.1 正弦交流电的基本概念 (13)3.2 RLC交流电路的分析 (14)3.3 交流电路的功率因数 (15)3.4 三相交流电路 (17)四、电路的频率特性与滤波器 (18)4.1 信号的频谱分析 (19)4.2 无源滤波器与有源滤波器 (20)4.3 常用滤波器元件 (22)五、电路中的过渡过程 (23)5.1 过渡过程的概述 (24)5.2 换路定律与初始条件 (25)5.3 一阶电路的过渡过程分析 (26)5.4 二阶电路的过渡过程分析 (27)六、集成电路与电子元件 (28)6.1 集成电路的分类与特点 (30)6.2 常用半导体器件 (31)6.3 集成电路的应用 (33)七、电路设计与仿真 (34)7.1 电路设计的基本原则与方法 (36)7.2 电路仿真工具与软件介绍 (37)7.3 电路设计实例解析 (38)一、电路的基本概念电源:电源是电路中的能量来源,用于提供电能。
电源可以是一个电池、一个发电机或一个供电网络等。
电源的正负极或正负极性是电路中的关键信息,它们决定了电流的流向。
负载:负载是电路中使用电能的设备或元件,如灯泡、电动机、电阻器等。
负载会消耗电能并将其转换为其他形式的能量,如光能、机械能或热能等。
导线:导线是电路中用来传输电流的媒介,它负责将电源和负载连接起来。
导线通常由导电材料制成,如铜或铝等。
导线的电阻越小,电流的传输效率越高。
开关:开关是控制电路通断的元件,它可以控制电流的流向和电路的开关状态。
开关可以手动操作,也可以由电子信号自动控制。
电流:电流是电荷在电路中的流动,它是由电源提供的驱动力和负载的阻力共同决定的。
电源电路工作原理
![电源电路工作原理](https://img.taocdn.com/s3/m/0e054388d4bbfd0a79563c1ec5da50e2534dd15e.png)
电源电路工作原理
电源电路是指将电能转换为特定形式的电能输出的电路,它是电子设备中的重要组成部分,其工作原理直接影响着电子设备的性能和稳定性。
在本文中,我们将详细介绍电源电路的工作原理,以便更好地理解其在电子设备中的作用。
首先,电源电路的基本组成包括变压器、整流电路、滤波电路和稳压电路。
变压器主要用于变换交流电压,将输入的交流电压转换为所需的输出电压;整流电路则用于将交流电压转换为直流电压;滤波电路则用于去除直流电压中的纹波成分,使输出电压更加稳定;稳压电路则用于保持输出电压的稳定性。
这些组成部分共同作用,构成了完整的电源电路。
其次,电源电路的工作原理可以用以下几个步骤来概括,首先,交流电压经过变压器变换成所需的电压,然后经过整流电路将交流电压转换为直流电压;接着,经过滤波电路去除直流电压中的纹波成分,使输出电压更加稳定;最后,经过稳压电路保持输出电压的稳定性。
整个过程中,各个组成部分协同工作,确保输出电压的稳定和可靠性。
此外,电源电路还涉及到一些重要参数,如输出电压、输出电流、效率等。
输出电压是电源电路输出的电压大小,直接影响着电子设备的工作性能;输出电流则是电源电路输出的电流大小,也是衡量电源电路性能的重要指标;而效率则是衡量电源电路能量转换效率的指标,影响着电源电路的能耗和发热情况。
总的来说,电源电路的工作原理是将输入的电能转换为特定形式的电能输出,其基本组成包括变压器、整流电路、滤波电路和稳压电路,其工作过程包括变压、整流、滤波和稳压几个步骤,其重要参数包括输出电压、输出电流、效率等。
通过本文的介绍,相信读者对电源电路的工作原理有了更深入的了解,这对于理解电子设备的工作原理和选购电源电路具有一定的指导意义。
电风扇原理分析
![电风扇原理分析](https://img.taocdn.com/s3/m/f8c8f69129ea81c758f5f61fb7360b4c2e3f2ac1.png)
电风扇原理分析电风扇是一种常见的家用电器,广泛应用于办公室、家庭和商业场所等环境。
本文将对电风扇的原理进行分析,以便更好地理解其工作原理及性能特点。
一、电风扇的组成部分电风扇通常由以下几个主要部分组成:电机、叶片、电源控制板和外壳等。
1. 电机:电风扇的核心部件是电机,其作用是将电能转化为机械能,驱动叶片旋转。
常见的电机类型包括直流电机和交流电机。
2. 叶片:叶片是电风扇的“翅膀”,它们通过电机的旋转产生气流,并将空气推向目标方向。
叶片的数量、大小和形状都会影响电风扇的风力和噪音水平。
3. 电源控制板:电源控制板是电风扇的控制中心,负责接收用户的指令并将其转化为电机的驱动信号。
它还可以具备调速、定时和遥控等功能。
4. 外壳:外壳是对电风扇内部构件进行包装和保护的部分,同时也影响着电风扇的外观和安全性能。
二、电风扇的工作原理电风扇的工作原理可以简单描述为:电能驱动电机旋转,电机通过叶片产生气流,从而形成风。
具体来说,电风扇的工作过程分为三个步骤:电源供电、电机驱动和风力输出。
1. 电源供电:将电风扇插入电源时,外部电源会提供电能给电风扇的控制电路和电机。
2. 电机驱动:控制电路接收用户指令后,会输出相应的信号给电机,并调节电流大小控制电机的转速。
电机受到信号驱动后开始旋转。
3. 风力输出:电机带动叶片旋转,通过离心力使空气流动,形成风。
风量的大小取决于电机的转速、叶片的设计和电机与叶片之间的匹配程度。
三、电风扇的性能特点电风扇作为常见的散热工具和空气循环设备,具有以下几个性能特点:1. 风力大小:电风扇的风力大小取决于电机的转速和叶片的设计,一般通过调节电源电压和电机驱动电流来实现不同档位的风力调节。
2. 转速调节:现代电风扇通常具备多档位转速调节功能,用户可以根据需要选择不同的速度和风量。
3. 低噪音:电风扇在工作时会产生一定的噪音,但现代电风扇通过优化叶片设计、降噪处理和电机控制等手段,以降低噪音水平,提升用户体验。
HXD3型电力机车电路分析
![HXD3型电力机车电路分析](https://img.taocdn.com/s3/m/0126862983c4bb4cf7ecd1a6.png)
HXD3型电力机车电路分析摘要随着交流技术,微机控制技术的发展,交流传动系统的研究和开发已引起世界各国的高度重视。
交流传动系统无论是在性能指标,装置体积,设备维护还是节能乃至环保等均体现出巨大优势。
HXD3型电力机车主传动系统和副主传动系统均采用了交流传动技术和微机网络控制技术,整个电气系统的设计起点高,技术领先的原则,并充分考虑大型货运电力机车的实际需要,采用先进,成熟,可靠的技术,按照标准化,系列化,模块化,信息化的总体要求,进行全方位设计的。
本文对HXD3型电力机车电气系统的组成做了简要的阐述,对机车整体的电路部分按照主电路,辅助电路,控制电路分类做了系统的分析,并对其中关键电气部件做了说明。
关键词:HXD3; 电路分析;电力机车;交流传动技术HXD3型电力机车电路图目录摘要 ....................................................................................................................................... - 0 -第一章绪论 ........................................................................................................................... - 3 -1.1电力机车的概念 ......................................................................................................... - 3 -1.2历史沿革..................................................................................................................... - 4 -1.3电力机车的类型 ......................................................................................................... - 4 -1.4选题意义..................................................................................................................... - 5 -第二章HXD3电力机车电气系统的组成 ............................................................................ - 6 -2.1电气系统的设计概念 ................................................................................................. - 6 -2.2电气系统的组成 ......................................................................................................... - 6 -2.3HXD3电力机车的电气线路 ........................................................................................ - 7 -2.3.1主电路及其部件 ...................................................................................................... - 8 -(1)网侧电路................................................................................................................... - 9 -(2)主变压器................................................................................................................. - 10 -(3)牵引变流器和牵引电动机电路............................................................................. - 10 -(4)保护电路................................................................................................................. - 11 -2.3.2辅助电路................................................................................................................ - 11 -(1)三相辅助电路......................................................................................................... - 11 -(2)辅助变流器............................................................................................................. - 12 -(3)辅助变流器供电电路............................................................................................. - 13 -(4)辅助电动机电路..................................................................................................... - 13 -(5)辅助电动机电路的保护系统................................................................................. - 13 -2.3.3控制电路................................................................................................................ - 15 -(1)控制电源电路(DC110V电源装置)................................................................... - 15 -(2)DC110V电源装置电气系统构成........................................................................... - 16 -(3)电源输入电路......................................................................................................... - 17 -(4)DC110V输出回路................................................................................................... - 18 -(5)控制电路................................................................................................................. - 19 -(6)DC110V电源装置控制系统................................................................................... - 20 -HXD3型电力机车电路图分析(7)司机指令与信息显示电路..................................................................................... - 22 -(8)机车逻辑控制和保护电路..................................................................................... - 23 -(9)辅助变流器控制电路............................................................................................. - 23 -(10)牵引变流器控制电路........................................................................................... - 24 -(11)机车照明电路和辅助设备控制........................................................................... - 24 -结论 ................................................................................................................................. - 25 -致谢 ................................................................................................................................. - 26 -参考文献 ......................................................................................................................... - 27 -HXD3型电力机车电路图第一章绪论1.1电力机车的概念英文名称:Electric locomotives电力机车是指从外界撷取电力作为能源驱动的铁路机车,电源包括架空电缆、第三轨、电池等。
电源的工作原理
![电源的工作原理](https://img.taocdn.com/s3/m/75244bace109581b6bd97f19227916888486b9fb.png)
电源的工作原理电源是电子设备不可或缺的组成部分,它提供电流和电压以供设备正常运行。
电源的工作原理涉及电压转换、电流调节和电能传输等方面。
本文将从这些方面阐述电源的工作原理,以帮助读者更好地理解并应用电源。
首先,电源的工作原理包括电压转换。
电源能够将来自电源输入端的交流电转换为设备所需的直流电。
这一过程主要依靠电源内部的变压器和整流电路来实现。
变压器负责将输入的交流电压转换为合适的电压水平,而整流电路则将交流电转换为直流电。
通过这样的转换过程,电源能够提供稳定的直流电源给设备使用。
其次,电源的工作原理还涉及电流调节。
电源能够根据设备的需要调节输出电流的大小。
这是通过电源内部的控制电路来实现的,控制电路可以根据设备的负载情况动态调整输出电流。
当设备需要更多的电流时,电源会提供更大的输出电流以满足需求;而当设备需要较少的电流时,电源则会相应地减少输出电流。
通过电流调节,电源能够确保设备能够正常运行,并且在负载变化时保持电流的稳定性。
最后,电源的工作原理还涉及电能传输。
电源通过电源线路将电能传输到设备中。
电源线路通常由导线和连接器组成,导线负责将电能从电源输出端传输到设备的输入端,而连接器则用于连接导线和设备的接口。
电源线路需要具备足够的导电能力和抗干扰能力,以确保电能传输的稳定性和可靠性。
在设计电源线路时,还需要考虑电源线的长度、截面积等因素,以减小电阻和电压降。
总结起来,电源的工作原理涵盖了电压转换、电流调节和电能传输等方面。
通过电压转换和整流电路,电源能够将输入的交流电转换为设备所需的直流电;通过电流调节,电源能够根据设备的需要调整输出电流的大小;通过电源线路,电源能够将电能传输到设备中。
了解电源的工作原理有助于我们更好地理解电源的功能和使用方法,并且在实际应用中能够正确选择和使用电源。
综上所述,电源的工作原理是一个复杂的过程,包括电压转换、电流调节和电能传输等方面。
电源的正常工作对于电子设备的正常运行至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源供电以及电机驱动原理与电路分析
第一部分:供电电路原理
供电部分原理图如图1-1所示:
图1-1
从图1-1中可知道供电有+5V、+3.3V、+1.5V三种,其中每个电源均有0.1µF的旁路电容,将电源中的高频串扰旁路到地,防止高频信号通过电源串扰到其它模块中。
同时还能将电源本身的工频干扰滤除。
值得注意的是:在布线的时候,经退藕电容退藕后的电源输出点应该尽量紧靠芯片的电源引脚进行供电,过长的引线有可能重新变成干扰接收天线,导致退藕效果消失。
如果无法让每个退藕后的电源输出点均紧靠芯片的电源引脚,那么可以采用分别退藕的方法,即分别尽量紧靠每个芯片的电源引脚点接入退藕电容进行退藕,这也解释了为什么图1-1的3.3V电源有两个退藕输出点。
第二部分:电机驱动电路原理
电机驱动电路原理如图2-1所示:
图2-1
图2-1中Header 4X2为4排2列插针,FM0~3为FPGA 芯片I/O 输出口,加入的插针给予一个可动的机制,在需要使用时才用跳线帽进行相连,提高I/O 口的使用效率。
RES5是五端口排阻,内部集成了4个等阻值且一端公共连接的电阻,PIN 1是公共端,PIN2~5为排阻的输出端,排阻原理图如图2-2所示:
图2-2
该排阻公共端接电源,即上拉电阻形式,作用是增强FPGA 芯片I/O 口(以下简称I/O 口)的驱动能力,实际上就是增加I/O 输出高电平时输出电流的大小。
当I/O 输出高电平时,+5V 电源经排阻与IN1~4相连,相当于为I/O 提供一个额外的电流输出源,从而提高驱动能力。
当I/O 输出低电平时,可将I/O 近似看做接地,而IN1~4因与I/O 由导线直接相连,因此直接接受了I/O 的低电平输出信号。
此时,+5V 电源经排阻R 、I/O 内部电路(电阻近似为零)后接地,因此该路的电流不能大于I/O 的拉电流(i I )最大值,有公式2-1:
i I R
V ≤+5(公式2-1) 即 i
I V R 5+≥(公式2-2) 由公式2-2可以得出排阻的取值范围。
该上拉电阻除了提高驱动能力外,还有一个作用,就是进行电平转换。
经查,ULN2003的接口逻辑为:5V-TTL, 5V-CMOS 逻辑。
而在3.3V 供电的情况下,I/O 口可以提供3.3V-LVTTL ,
3.3V-LVCMOS ,3.3V-PCI 和SSTL-3接口逻辑电平。
因此,需要外接5V 的上拉电阻将I/O 电平规格变成5V 电平逻辑。
芯片ULN2003内部集成7组达林顿管,专门用于提高驱动电流,芯片引脚间逻辑如图2-3所示:
图2-3 图2-4
由于I/O电流远远不足以驱动电机,因此需要外接该芯片驱动电机,ULN2003内部集成的达林顿管电路如图2-4所示。
达林顿管的形式具有将弱点信号转化成强电信号的特点,I/O电平逻辑从PIN IN输入,通过达林顿管控制PIN 9(COMMON)端输入的强电信号按照I/O信号规律变化。
值得注意的是:ULN2003输出逻辑将与输入逻辑相反,编程时应该注意该特点。
RES6是六端口排阻,内部集成了5个等阻值且一端公共连接的电阻,PIN 1是公共端,PIN2~6为排阻的输出端,原理图与接法说明可参考上述图2-2,排阻取值范围计算参见公式2-2,此处不再赘述。
值得注意的是:RES6的PIN 1与PIN 2相连,是因为多出了一个不使用的电阻,为了避免PIN 2悬空,因此将PIN 2与PIN 1(公共端)相连,即PIN 2对应的电阻被短路,从而既避免的悬空的引脚,又能使该电阻失效。
电机指示灯电路如图3-1所示:
图3-1
电机部分指示灯用于指示各路信号的逻辑电平状态,其中R106~109为限流电阻,防止发光二极管因电流过大烧毁。
值得注意的是:该指示灯的发光二极管接成共阳极,由M0~3信号端口产生低电平点亮对应的二极管,而ULN2003的OUT与IN逻辑电平相反,因此对于I/O 口FM0~3来说,输出高电平就能点亮对应的发光二极管,例如:FM0输出高电平,则对应LD17点亮,编程时应注意此电路将I/O实际逻辑反相了两次,对应关系为I/O口输出哪路高电平则对应点亮哪路指示灯。
第四部分:时钟电路原理
时钟电路如图4-1所示:
图4-1
采用50Mhz有源晶振产生时钟信号,接法采用有源晶振的典型接法:PIN 1悬空,PIN 2接地,PIN 3输出时钟信号,PIN 4接电源。
由于FPGA的I/O供电为3.3V,而时钟电路产生的时钟信号要由I/O口接收,因此时钟信号最大值不能超过3.3V,故时钟电路电源采用3.3V 供电。
FPGA部分电路原理图如图5-1所示:
图5-1
Header 18X2为18排2列排阵,两组排阵分别与PIN口、3.3V电源、数字地相连,提供了可动的机制,使得PIN口可根据需要用排线与目标相连,打到信号传输的目的。
而3.3V电源以及数字地针口则可以根据需要,用排线为目标提供逻辑高电平或逻辑低电平。
U21D为FPGA芯片的时钟信号接收部分,通过网络标号“CLK0~3”与对应的时钟信号端口相连。
U21C为FPGA芯片的供电及接地部分,含有“GND”字样的是“地”端口,与数字地相连,VCCIO1~4为I/O口供电端口,采用3.3V电源供电,通过网络标号“+3.3V”与3.3V电源端口相连。
VCCA_PLL1、VCCA_PLL2、VCCINT为内部运算器和输入缓冲区的供电端口,采用1.5V 电源供电,通过网络标号“+1.5V”与1.5V电源端口相连。
U21B为JTAG与AS下载部分,TMS、TCK、TD1、TD0分别为JATAG下载方式的模式选择端、时钟信号端、数据输入端、数据输出端。
DATA0为AS下载的数据端口,MSEL0、MSEL1、nCE、nCEO、CONF_ DONE、nCONFIG、nSTATUS端口按照典型接法相连。
值得注意的是:无论AS还是JTAG 都是通过JTAG标准通讯,AS下载一般是下载POF到PROM(flash)里,重新上电仍然可以加载,JTAG下载是通过JTAG口将sof文件直接下载到FPGA内,一般是临时调试用的,掉电就丢失了
U22是电可擦除ROM,用于存放AS下载后的数据,使得FPGA的程序段掉电也能得以保存,DATA端是数据读取端,用于读取ROM内数据。
DCLK为时钟端口,用于接收时钟信号进行同步传输。
nCS是片选端口,用于接收片选信号表示对该芯片进行通讯。
ASDI为AS下载数据输入端,用于接收AS下载数据。
VCC与GND分别为电源端口与地端口,分别接3.3V与数字地。