浙江大学半导体测试技术第一章
电子电路实验(浙江大学)智慧树知到课后章节答案2023年下浙江大学
电子电路实验(浙江大学)智慧树知到课后章节答案2023年下浙江大学浙江大学第一章测试1.可以用万用表交流档测量音频信号的大小。
()A:对 B:错答案:错2.用万用表测量电流时需要把万用表串接入被测电路中。
()A:对 B:错答案:对3.为了得到正负12V电压给运算放大器供电,需要把电源设置于串联工作方式。
()A:对 B:错答案:对4.为了得到正负12V电压给运算放大器供电,需要把电源设置于并联工作方式。
()A:对 B:错答案:错5.用示波器观测交流信号,被测信号接入通道1(CH1),为使信号能稳定地显示在屏幕上,触发信源应选择()。
A:CH2 B:LINE C:CH1 D:EXT答案:CH16.用示波器测量一含有较大直流成分的交流小信号时,为使交流信号在屏幕上尽量占据大的幅面以便精确测量,输入信号的耦合方式应选择()A:DC耦合 B:接地 C:其余选项都可以 D:AC耦合答案:AC耦合7.用示波器测量信号的直流成分时,输入信号的耦合方式应选择()A:接地 B:AC耦合 C:DC耦合 D:其余选项都可以答案:DC耦合8.在用示波器观测含有噪声干扰的信号时,为使信号波形能稳定地显示在示波器上,观测含有高频干扰的低频信号时触发信号的耦合方式选用HFR(高频抑制) 耦合方式,观测含有低频干扰的高频信号时触发信号的耦合方式选用LFR(低频抑制) 耦合方式。
观测普通无噪声的信号时选用AC耦合。
()A:对 B:错答案:对第二章测试1.如果设定不同的电压与电流参考方向,基尔霍夫定律仍然成立。
()A:对 B:错答案:对2.如果电路中含有非线性器件,基尔霍夫定律仍然成立。
()A:对 B:错答案:对3.在叠加定律验证实验中,将不起作用的电压源直接短接。
()A:对 B:错答案:错4.在叠加定律验证实验中,将不起作用的电压源直接关闭。
()A:对 B:错答案:错5.电阻消耗的功率也具有叠加性。
()A:错 B:对答案:错第三章测试1.OrCAD套件不能绘制PCB版图。
半导体材料与器件测试技术实验指导书
《半导体材料与器件测试技术》课程实验指导书光电工程学院2012年8月实验一 半导体电阻率和方阻测量的研究一 、实验意义电阻率是半导体材料的重要电学参数之一, 可以反映出半导体内浅能级替位杂质浓度,薄层电阻是表征半导体掺杂浓度的一个重要工艺参数。
测量电阻率与薄层电阻的方法很多,如二探针法、扩展电阻法等。
而四探针法是目前广泛采用的标准方法,它具有操作方便,精度较高,对样品的几何形状无严格要求等特点。
二、实验目的1、了解四探针电阻率测试仪的基本原理;2、了解的四探针电阻率测试仪组成、原理和使用方法;3、能对给定的物质进行实验,并对实验结果进行分析、处理。
三、实验原理测 量 原理:将四根排成一条直线的探针以一定的压力垂直地压在被测样品表面上,在 1、4 探针间通以电流 I(mA),2、3 探针间就产生一定的电压 V(mV)(如图1)。
测量此电压并根据测量方式和样品的尺寸不同,可分别按以下公式计算样品的电阻率、方块电阻、电阻: `①. 薄圆片(厚度≤4mm)电阻率:⨯=IVρ F (D/S )╳ F (W/S )╳ W ╳ Fsp Ω·cm …(1) 图1.直线四探针法测试原理图↓4↑其中:D —样品直径,单位:cm 或mm ,注意与探针间距S 单位一致;S —平均探针间距,单位:cm 或mm ,注意与样品直径D 单位一致(四探针头合格证上的S 值); W —样品厚度,单位:cm ,在F(W/S)中注意与S 单位一致; Fsp —探针间距修正系数(四探针头合格证上的F 值);F(D/S)—样品直径修正因子。
当D →∞时,F(D/S)=4.532,有限直径下的F(D/S)由附表B 查出: F(W/S)—样品厚度修正因子。
W/S<0.4时,F(W/S)=1;W/S>0.4时,F(W/S)值由附表C 查出; I —1、4探针流过的电流值,选值可参考表5.2(第6页表5.2); V —2、3探针间取出的电压值,单位mV ;②. 薄层方块电阻R□:R□=⨯IVF (D/S )╳F (W/S )╳ Fsp Ω/□ …(2) 其中:D —样品直径,单位:cm 或mm ,注意与探针间距S 单位一致;S —平均探针间距,单位:cm 或mm ,注意与样品直径D 单位一致(四探针头合格证上的S 值); W —样品厚度,单位:cm ,在F(W/S)中注意与S 单位一致; Fsp —探针间距修正系数(四探针头合格证上的F 值);F(D/S)—样品直径修正因子。
(完整版)半导体器件基础测试题
第一章半导体器件基础测试题(高三)姓名班次分数一、选择题1、N型半导体是在本征半导体中加入下列物质而形成的。
A、电子;B、空穴;C、三价元素;D、五价元素。
2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。
A、掺杂的工艺;B、杂质的浓度:C、温度;D、晶体的缺陷。
3、晶体三极管用于放大的条件,下列说法正确的是。
A、发射结正偏、集电结反偏;B、发射结正偏、集电结正偏;C、发射结反偏、集电结正偏;D、发射结反偏、集电结反偏;4、晶体三极管的截止条件,下列说法正确的是。
A、发射结正偏、集电结反偏;B、发射结正偏、集电结正偏;C、发射结反偏、集电结正偏;D、发射结反偏、集电结反偏;5、晶体三极管的饱和条件,下列说法正确的是。
A、发射结正偏、集电结反偏;B、发射结正偏、集电结正偏;C、发射结反偏、集电结正偏;D、发射结反偏、集电结反偏;6、理想二极管组成的电路如下图所示,其AB两端的电压是。
A、—12V;B、—6V;C、+6V;D、+12V。
7、要使普通二极管导通,下列说法正确的是。
A、运用它的反向特性;B、锗管使用在反向击穿区;C、硅管使用反向区域,而锗管使用正向区域;D、都使用正向区域。
8、对于用万用表测量二极管时,下列做法正确的是。
A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转;B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转;C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转;D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转;9、电路如下图所示,则A、B两点的电压正确的是。
A、U A=3.5V,U B=3.5V,D截止;B、U A=3.5V,U B=1.0V,D截止;C、U A=1.0V,U B=3.5V,D导通;D、U A=1.0V,U B=1.0V,D截止。
浙江大学-半导体物理基础Chapter1
Direct Bandgap GaAs
Band Structure: Si & Ge
Electrons and Holes
J cb = ∑ − evi
i∈cb
Chapter 1. Fundamentals
1.1 Bonds and bands 1.2 Impurities and defects 1.3 Statistical distribution of charge carriers 1.4 Charge transport
Total 12 hours.
ψ nk (k ) = ei( k + nG ) x
Comments
• The wave vector k is not momentum p/η, since Hamiltonian does not have complete translational invariance. Rather, ηk is known as crystal momentum (quantum number characteristic of the translational symmetry of a periodic potential). • The wave vector k can be confined to the first Brillouin zone.
V(r): by first principle (ab initio), or by semi-empirical approach
Can we calculate everything?
• Yes.
– First principle band calculations – Slater, …
半导体测试与表征技术基础[详细讲解]
半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。
第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。
第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。
第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。
以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。
第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。
第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。
半导体材料测试技术
目 录
X射线双晶衍射技术 光致发光分析方法 霍尔效应测量原理 电化学C-V分布测量技术 扫描电子显微镜的原理及应用
第一章 X射线双晶衍射技术
X射线是1895年11月8日由德国物理学家 伦琴(W.C.Rontgen)在研究真空管高压放电 现象时偶然发现的。由于当时对这种射线的 本质和特性尚无了解,故取名为X射线,后人 也叫伦琴射线。从1895到1897年间,他搞清 楚了X射线的产生、传播、穿透力等大部分特 性。伦琴的这一伟大发现使得他于1901年成 为世界上第一位诺贝尔奖获得者。X射线发现 近半年就被医务界用来进行骨折诊断和定位 了,随后又用于检查铸件中的缺陷等。
A
400
300
Intensity(a.U.)
200
100
0
32.9
33.0
33.1
33.2
33.3
?
A
3500 3000 2500
intensity(a.u.)
2000 1500 1000 500 0 34.90 34.95 35.00 35.05 35.10 35.15 35.20
?
XRD results
优点
对于研究材料的结晶完整性、均匀性、 层厚、组分、应变、缺陷和界面等重要信息, X射线双晶衍射方法具有独特的优势。首先它 是非破坏性的 ,其次是精度高,方法简便。 它不仅为材料生长工艺提供准确的参数,用 来指导生长工艺,同时也为器件研究和物理 研究提供了可靠的基础。这里主要介绍X射线 双晶衍射方法在光电子材料中的应用,其中 包括异质外延晶格失配、单量子阱和超晶格 结构参数的确定和测量等。
1、阴极,阴极系灯丝,阴极的功能是发射电 子。 2 、阳极,阳极又称之为靶( target )。是使 电子突然减速并发射X射线的地方。当高速运 动的电子与阳极相碰时,便骤然停止运动。 此时电子的能量大部分变为热能,一部分变 成X射线光能,由靶面射出。 3、窗口,窗口是 X射线射出的通道。窗口材 料要求既要有足够的强度以维持馆内的高真 空,又要对X射线的吸收较小,较好的材料是 金属铍。
半导体测试基础
第1章半导体测试基础第1节基础术语描述半导体测试得专业术语很多,这里只例举部分基础得:1.DUT需要被实施测试得半导体器件通常叫做DUT (De viceUnderTest,我们常简称“被测器件”),或者叫u UT(Unit Unde r Test) <>首先我们来瞧瞧关于器件引脚得常识,数字电路期间得引脚分为“信号”、“电源”与“地”三部分。
信号脚,包括输入、输出、三态与双向四类,输入:在外部信号与器件内部逻辑之间起缓冲作用得信号输入通道;输入管脚感应其上得电压并将它转化为内部逻辑识别得“0"与电平.输出:在芯片内部逻辑与外部环境之间起缓冲作用得信号输岀通道;输出管脚提供正确得逻辑“ o ”或“r得电压,并提供合适得驱动能力(电流)。
三态:输岀得一类,它有关闭得能力(达到高电阻值得状态).双向:拥有输入、输出功能并能达到高阻态得管脚。
电源脚,“电源”与“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同得电路结构。
VCC: TTL器件得供电输入引脚.VDD:CMOS器件得供电输入引脚。
VSS:为VCC或V D D提供电流回路得引脚。
GND:地,连接到测试系统得参考电位节点或VSS,为信号引脚或其她电路节点提供参考0电位;对于单一供电得器件,我们称VSS为GND・2.测试程序半导体测试程序得口得就是控制测试系统硬件以一定得方式保证被测器件达到或超越它得那些被具体定义在器件规格书里得设计指标。
测试程序通常分为儿个部分,如DC测试、功能测试、AC测试等。
DC测试验证电圧及电流参数;功能测试验证芯片内部一系列逻辑功能操作得正确性;AC 测试用以保证芯片能在特定得时间约束内完成逻辑操作。
程序控制测试系统得硬件进行测试,对每个测试项给出pa s s或fail得结果。
Pass指器件达到或者超越了其设计规格;F a il则相反,器件没有达到设计要求,不能用于最终应用。
测试程序还会将器件按照它们在测试中表现出得性能进行相应得分类,这个过程叫做“B i nning",也称为“分Biif\ 举个例子,一个微处理器,如果可以在15 0 MHz下正确执行指令,会被归为最好得一类,称之为“Bin 1〃;而它得某个兄弟,只能在100MHz下做同样得事悄,性能比不上它,但就是也不就是一无就是处应该扔掉,还有可以应用得领域,则也许会被归为“B i n 2 卖给只要求100MHz 得客户。
2-1、浙江大学半导体物理讲义
半导体物理季振国2006年11月教材、参考书教材:上课讲义主要参考书:1、韩汝琪、黄昆,“固体物理学”2、基特尔,“固体物理导论”3、刘恩科“半导体物理”4、蔡建华、周世勋“量子力学”1. 引言半导体物理是研究半导体材料的一门科学,半导体材料是物质世界的重要组成部分。
使用的材料决定了生产力发展水平。
•石器时代•青铜器时代•铁器时代•硅(电子材料)时代•光子材料时代半导体科学的重要性新技术的三大支柱新材料、新能源、信息技术•半导体科学是信息技术的基础•半导体的品种、质量、数量及加工处理水平是衡量一个国家科技水平的一个重要指标。
•应用范围航空航天、国防、信息、工业、农业、医学及其它许多领域。
太阳能发电站-半导体材料核电站-能源材料航天飞机-所有固体材料磁悬浮列车-磁性材料固体物理学研究的内容固体材料的晶体结构固体材料中原子的结合方式固体材料的性能或功能固体材料性能与结构与成分的关系固体材料性能的计算与模拟固体材料的应用时代对固体材料的要求•结构与功能相结合•智能化•环境友好•可再生•节约能源•长寿命•强适应性智能材料(S行为材料)•Selectivity•Self-tuning,•Shapebility,•Self-recovery•Simplicity•Self-repair•Stability•Stand-by phenomena•Survivability•Switchability材料研究发展的重要方向•纳米材料•复合材料•高温超导材料•生物医学材料•光电功能材料•智能材料•计算机技术在材料研究中的应用2. 量子力学初步•黑体辐射•光电效应•波粒二像性•波尔原子论•薛定格方程•势垒及势垒穿透•泡里定则•测不准原理量子力学的重要性光电器件的尺寸不短缩小:特征线宽~0.1μm-0.01μm。
绝缘层厚度~1-10nm。
量子电子学。
各种低维结构的出现:纳米粒子;纳米线;纳米管;原子簇、富勒烯。
λm黑体:黑体是能吸收射到其上的全部辐射的物体,或称为绝对黑体。
固体物理与半导体物理智慧树知到课后章节答案2023年下浙江大学
固体物理与半导体物理智慧树知到课后章节答案2023年下浙江大学浙江大学第一章测试1.半导体电阻率的范围通常为()Ω·cmA:B:>10C:D:>>10答案:2.半导体的特性包括()A:导通特性B:温度敏感性C:光敏感性D:杂质敏感性答案:温度敏感性;光敏感性;杂质敏感性3.随着温度升高,半导体的电阻率一定升高()答案:错4.半导体材料的电阻率,跨越了非常大的范围,使得我们能够通过各种效应来对它们进行调制,比如,我们可以通过掺杂改变半导体的电阻率()A:对 B:错答案:对5.摩尔定律,是指单位面积的集成电路上晶体管数目,或者说集成电路的集成度,每18个月要增加一倍。
()A:错 B:对答案:对第二章测试1.半导体材料最常见的晶体结构不包括()A:纤锌矿型结构B:闪锌矿型结构C:金刚石型结构D:密堆积结构答案:密堆积结构2.描述晶体结构的最小体积重复单元的是()A:原胞B:晶胞D:基矢答案:原胞3.正四面体的对称操作有()个A:24B:32C:16D:8答案:244.晶体结构的基本特点不包括()A:周期性B:重复性C:各向异性D:单一性答案:各向异性;单一性5.各向异性不是晶体的基本特性之一。
()A:对 B:错答案:错第三章测试1.每个布里渊区的体积均相等,都等于倒格子()的体积。
A:单胞B:原胞C:晶胞D:晶体答案:原胞2.周期性边界条件决定了电子的波矢K在第()布里渊区内可取值数量与晶体的初基元胞数N相等。
A:三B:二C:四D:一答案:一3.布里渊区的特点不包括 ( )A:各个布里渊区的形状都不相同B:各布里渊区经过适当的平移,都可移到第一布里渊区且与之重合C:每个布里渊区的体积都不相等D:晶体结构的布喇菲格子虽然相同,但其布里渊区形状却不会相同答案:每个布里渊区的体积都不相等;晶体结构的布喇菲格子虽然相同,但其布里渊区形状却不会相同4.对于一定的布喇菲晶格,基矢的选择是不唯一的,但是对应的倒格子空间是唯一的。
半导体测试技术第一章 第2节 电阻率测量(to student)
(3)评估外延层质量
测量外延片纵向电阻率的变化,并可以测量外延层厚度(外延层的 电阻率与衬底不同,在某一深度电阻率会发生突变)、过渡区及夹层宽, 由此判断外延片的质量,评估外延工艺。
(4)其他
例如根据样品在热处理前后电阻率的变化情况,分析样品中氧含量 的微区分布。
扩展电阻剖面分布
利用扩展电阻剖面分布(Spreading resistance profile,简称SRP,可广泛地应用在外延片和IC 图形片测 试中,特别是对于制作集成度高的超大规模电路。因为宏 观上电阻率(用直流四探针法测量)均匀的材料,其微观 电阻率由于掺杂浓度分布不均往往存在很大的不均匀性。
式,并查表给出修正因子。
4、上述样品如果采用范德堡法测量,请画出测量示意图,并写出需应该如何取点? 6、什么是扩展电阻?它与半导体材料的电阻率有什么关系?
7、怎样利用扩展电阻法检测硅外延层的掺杂浓度分布?画出测量示意图,并简述测量
第二节 电阻率的测量
一、电阻率测量的意义
电阻率是半导体材料的重要电学参数之一,它 反映了补偿后的杂质浓度。
对于n型材料,室温下电阻率可表示为
1 ( N D N A )n q
式中,N D为施主杂质浓度;N A为受主杂质浓度; n为电子迁移率;q是电子电荷量。
电阻率与半导体器件有密切关系。很多半导体 器件的电学特性直接与半导体的电阻率有关。
扩展电阻剖面分布法示意图
过渡区
外延层
外延层厚度
衬底
图6.4 两种外延片电阻率分布 图6.5 基区和发射区的扩散分布
本节知识要点
1、电阻率的探针测试
2、体电阻
3、半无穷大样品 4、单晶材料 5、厚度修正 6、小信号测量
半导体材料的测试技术
Diffraction) XRD (X-ray Diffraction)
X射线本质 电磁波
X射线波长很短(其波长范围为10nm-0.001nm)、能量极高、 具有很强的穿透能力。X射线从发现至今已经有100多年的历 史,现已广泛用于工业生产、医学影像、地质勘探和材料科 学研究中,发挥着巨大的作用
X射线的产生
3、组分分析 、
1)掺杂浓度分析 )
霍尔测量 C-V测量 测量 二次离子质谱仪
(Secondary Ion Mass Spectrometry) )
2)氧碳含量 )
红外吸收光谱技术
3)重金属等痕量杂质分析 重金属等痕量杂质分析
俄歇电子能谱技术(AES) 俄歇电子能谱技术( ) X光发射谱(XES) 光发射谱( 光发射谱 ) X光电子发射谱(XPS) 光电子发射谱( 光电子发射谱 ) 中子活化分析( 中子活化分析(NAA) ) 质谱分析 原子吸收光谱技术
非接触法
给两个间隔几毫米的传感器(铁芯线圈)加上几MHz的高频 电流, 当晶片插入传感器的中间,通过高频电感的耦合,在 晶片内产生涡流。 线圈产生的磁场就会被导体电涡流产生的磁场部分抵消,使 线圈的电感量、阻抗和品质因数发生变化。这种变化与导体 的几何尺寸、导电率、导磁率有关,也与线圈的几何参量、 电流的频率和线圈到被测导体间的距离有关。如果使上述参 量中的某一个变动,其余皆不变,则可进行多种物理量的非接 触测量。
6000
35.75
3C-SiC(111)
5000
Intensity/(00
3C-SiC(220)
60.05
1000
3C-SiC(311)
71.8
0 25 30 35 40 45 50 55
浙大电力电子技术第一章功率半导体器件讲课教案
对触发电路要求,随温度变化。
晶闸管
4、晶闸管的型号
P—普通, K—快速型,S—双向型,N—逆导 型,G—可关断,LTT —光控 KP[电流]─[电压/100][ 通态压降组别 ] 如KP500-12G,表示该晶闸管通态平均电流 IT(AV)=500A(通态压降0.9V<=UT(AV)<=1.0V ), (断态)正反向重复峰值电压UR=1200V。
1.1 概述 1.2 大功率二极管 1.3 晶闸管 1.4 大功率晶体管 1.5 功率场效应晶体管 1.6 绝缘栅双极性晶体管 1.7 其他新型功率开关器件
概述
理想功率半导体器件:动、静态特性好
✓通态电流大且管压降极低 ✓断态漏电流极小且能承受高电压 ✓极短的开关转换时间 ✓极小的开关损耗(包括通、断态损耗) ✓承受du/dt与di/dt能力强等
(1)漏极电压UDS (2)电流定额ID (3)栅源电压UGS
3.2 安全工作区
Ⅰ: 漏源电阻限制线 Ⅱ:最大漏极电流限制线 Ⅲ:最大功率限制线 Ⅳ:最大漏源电压限制线
绝缘栅双极型晶体管(IGBT)
双极导电性:电子与空穴均参与导电 电压全控型:通过调节门极电压控制极、射极(C、E)间通
断 一、结构与工作原理
80年代出现了第三代场控功率半导体器件,如IGBT、IGCT等; 80年代末90年代初开始出现第四代电力电子器件:集成功率半导体器件,如 IPM等。
功率半导体器件的分类
1)按可控性分类: 不可控型、半控型、全控型 2)按驱动信号分类: 电流驱动型、电压驱动型、光驱动型
大功率二极管
为不可控型功率半导体器件,主要用于不可控整流、 电感性负载回路的续流等。
半导体测试技术课件
对于薄样品
,
,式1.13可写为:
对于非常薄样品,修正因子F2,F3均为1,结合上面电阻率表达式可写为:
薄膜经常采用方块电阻(sheet resistance, Rsh)表征它的电阻率 单位: ohms per square 均匀样品的方块电阻可写为:
方块电阻常用来表征薄的半导体层,如外延膜,多晶硅薄膜,离子注入 膜,金属膜。。。 对于均匀样品,方块电阻与方块电导互为倒数,对于非均匀样品:
四探针法对半导体的测试
电场强度可表示为:
P点电压:距离探针r
对于b图, P点电压相当于两者叠加
对于c图, 探针2电压相当于
探针3电压相当于
探针2,3之间电压相当于
因此可得电阻率:
常用单位 ρ:ohm·cm 常用电压:10mV
V: volts I:amperes
s: cm
通常应用的4探针法探针距离相等。s= s1=s2=s3, 上式可简化为:
测向尺寸
探针距离样品边沿位置
F1:样品厚度因子
大部分的半导体wafer测试都必须进行厚度修正。 厚度修正因子的推导可参考下面文献 样品厚度小于探针间距的条件下可给出F1表达式:
For non-conducting bottom wafer:
t:厚度 For conducting bottom wafer:
。。。
各种Mapping 测量技术比较
§4.1 Differential Hall Effect (DHE)
测量非半导体薄膜的离子注入 透明衬底(如玻璃)覆盖高分子膜并掺有染料 离子注入时,染料分子分解,导致颜色变黯, Optical Densitometry 利用敏感的显微光密度计测试注入前后光透过率 对照校准表绘制等高图MAPPING 无需退火,测试在注入后几分钟内可完成
半导体测试基础-(1)
第1章半导体测试基础第1节基础术语描述半导体测试的专业术语很多,这里只例举部分基础的:1.DUT需要被实施测试的半导体器件通常叫做DUT〔Device Under Test,我们常简称"被测器件"〕,或者叫UUT〔Unit Under Test〕.首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为"信号"、"电源"和"地"三部分.信号脚,包括输入、输出、三态和双向四类,输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的"0"和"1"电平.输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑"0"或"1"的电压,并提供合适的驱动能力〔电流〕.三态:输出的一类,它有关闭的能力〔达到高电阻值的状态〕.双向:拥有输入、输出功能并能达到高阻态的管脚.电源脚,"电源"和"地"统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构.VCC:TTL器件的供电输入引脚.VDD:CMOS器件的供电输入引脚.VSS:为VCC或VDD提供电流回路的引脚.GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器件,我们称VSS为GND.2.测试程序半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标.测试程序通常分为几个部分,如DC测试、功能测试、AC测试等.DC测试验证电压与电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC 测试用以保证芯片能在特定的时间约束内完成逻辑操作.程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果.Pass指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用.测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做"Binning",也称为"分Bin". 举个例子,一个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为"Bin 1";而它的某个兄弟,只能在100MHz下做同样的事情,性能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为"Bin 2",卖给只要求100MHz 的客户.程序还要有控制外围测试设备比如Handler 和Probe 的能力;还要搜集和提供摘要性质〔或格式〕的测试结果或数据,这些结果或数据提供有价值的信息给测试或生产工程师,用于良率<Yield>分析和控制.第2节正确的测试方法经常有人问道:"怎样正确地创建测试程序?"这个问题不好回答,因为对于什么是正确的或者说最好的测试方式,一直没有一个单一明了的界定,某种情形下正确的方式对另一种情况来说不见得最好.很多因素都在影响着测试行为的构建方式,下面我们就来看一些影响力大的因素.➢测试程序的用途.下面的清单例举了测试程序的常用之处,每一项都有其特殊要求也就需要相应的测试程序:●Wafer Test——测试晶圆〔wafer〕每一个独立的电路单元〔Die〕,这是半导体后段区分良品与不良品的第一道工序,也被称为"Wafer Sort"、CP测试等.●Package Test——晶圆被切割成独立的电路单元,且每个单元都被封装出来后,需要经历此测试以验证封装过程的正确性并保证器件仍然能达到它的设计指标,也称为"Final Test"、FT测试、成品测试等.●Quality Assurance Test——质量保证测试,以抽样检测方式确保Package Test执行的正确性,即确保pass的产品中没有不合格品.●Device Characterization——器件特性描述,决定器件工作参数范围的极限值.●Pre/Post Burn-In ——在器件"Burn-in"之前和之后进行的测试,用于验证老化过程有没有引起一些参数的漂移.这一过程有助于清除含有潜在失效〔会在使用一段时间后暴露出来〕的芯片.●Miliary Test——军品测试,执行更为严格的老化测试标准,如扩大温度范围,并对测试结果进行归档.●Ining Inspection ——收货检验,终端客户为保证购买的芯片质量在应用之前进行的检查或测试.●Assembly Verification ——封装验证,用于检验芯片经过了封装过程是否仍然完好并验证封装过程本身的正确性.这一过程通常在FT测试时一并实施.●Failure Analysis ——失效分析,分析失效芯片的故障以确定失效原因,找到影响良率的关键因素,并提高芯片的可靠性.➢测试系统的性能.测试程序要充分利用测试系统的性能以获得良好的测试覆盖率,一些测试方法会受到测试系统硬件或软件性能的限制.高端测试机:●高度精确的时序——精确的高速测试●大的向量存储器——不需要去重新加载测试向量●复合PMU〔Parametric Measurement Unit〕——可进行并行测试,以减少测试时间●可编程的电流加载——简化硬件电路,增加灵活性●PerPin的时序和电平——简化测试开发,减少测试时间低端测试机:●低速、低精度——也许不能充分满足测试需求●小的向量存储器——也许需要重新加载向量,增加测试时间●单个PMU ——只能串行地进行DC测试,增加测试时间●均分资源〔时序/电平〕——增加测试程序复杂度和测试时间➢测试环节的成本.这也许是决定什么需要被测试以与以何种方式满足这些测试的唯一的最重要的因素,测试成本在器件总的制造成本中占了很大的比重,因此许多与测试有关的决定也许仅仅取决于器件的售价与测试成本.例如,某个器件可应用于游戏机,它卖15元;而同样的器件用于人造卫星,则会卖3500元.每种应用有其独特的技术规范,要求两种不同标准的测试程序.3500元的器件能支持昂贵的测试费用,而15元的器件只能支付最低的测试成本.➢测试开发的理念.测试理念只一个公司内部测试人员之间关于什么是最优的测试方法的共同的观念,这却决于他们特殊的要求、芯片产品的售价,并受他们以往经验的影响.在测试程序开发项目启动之前,测试工程师必须全面地上面提到的每一个环节以决定最佳的解决方案.开发测试程序不是一件简单的正确或者错误的事情,它是一个在给定的状况下寻找最佳解决方案的过程.第3节测试系统测试系统称为ATE,由电子电路和机械硬件组成,是由同一个主控制器指挥下的电源、计量仪器、信号发生器、模式〔pattern〕生成器和其他硬件项目的集合体,用于模仿被测器件将会在应用中体验到的操作条件,以发现不合格的产品. 测试系统硬件由运行一组指令〔测试程序〕的计算机控制,在测试时提供合适的电压、电流、时序和功能状态给DUT并监测DUT的响应,对比每次测试的结果和预先设定的界限,做出pass或fail的判断.●测试系统的内脏图2-1显示所有数字测试系统都含有的基本模块,虽然很多新的测试系统包含了更多的硬件,但这作为起点,我们还是拿它来介绍."CPU"是系统的控制中心,这里的CPU不同于电脑中的中央处理器,它由控制测试系统的计算机与数据输入输出通道组成.许多新的测试系统提供一个网络接口用以传输测试数据;计算机硬盘和Memory用来存储本地数据;显示器与键盘提供了测试操作员和系统的接口.图2-1.通用测试系统内部结构DC子系统包含有DPS〔Device Power Supplies,器件供电单元〕、RVS 〔Reference Voltage Supplies,参考电压源〕、PMU〔Precision Measurement Unit,精密测量单元〕.DPS为被测器件的电源管脚提供电压和电流;RVS为系统内部管脚测试单元的驱动和比较电路提供逻辑0和逻辑1电平提供参考电压,这些电压设置包括:VIL、VIH、VOL和VOH.性能稍逊的或者老一点的测试系统只有有限的RVS,因而同一时间测试程序只能提供少量的输入和输出电平.这里先提与一个概念,"tester pin",也叫做"tester channel",它是一种探针,和Loadboard背面的Pad接触为被测器件的管脚提供信号.当测试机的pins共享某一资源,比如RVS,则此资源称为"Shared Resource".一些测试系统称拥有"per pin"的结构,就是说它们可以为每一个pin独立地设置输入与输出信号的电平和时序.DC子系统还包含PMU〔精密测量单元,Precision Measurement Unit〕电路以进行精确的DC参数测试,一些系统的PMU也是per pin结构,安装在测试头〔Test Head〕中.〔PMU我们将在后面进行单独的讲解〕每个测试系统都有高速的存储器——称为"pattern memory"或"vector memory"——去存储测试向量〔vector或pattern〕.Test pattern〔注:本人驽钝,一直不知道这个pattern的准确翻译,很多译者将其直译为"模式",我认为有点欠妥,实际上它就是一个二维的真值表;将"test pattern"翻译成"测试向量"吧,那"vector"又如何区别?呵呵,还想听听大家意见〕描绘了器件设计所期望的一系列逻辑功能的输入输出的状态,测试系统从pattern memory中读取输入信号或者叫驱动信号〔Drive〕的pattern状态,通过tester pin输送给待测器件的相应管脚;再从器件输出管脚读取相应信号的状态,与pattern中相应的输出信号或者叫期望〔Expect〕信号进行比较.进行功能测试时,pattern 为待测器件提供激励并监测器件的输出,如果器件输入与期望不相符,则一个功能失效产生了.有两种类型的测试向量——并行向量和扫描向量,大多数测试系统都支持以上两种向量.Timing分区存储有功能测试需要用到的格式、掩盖〔mask〕和时序设置等数据和信息,信号格式〔波形〕和时间沿标识定义了输入信号的格式和对输出信号进行采样的时间点.Timing分区从pattern memory那里接收激励状态〔"0”或者"1”〕,结合时序与信号格式等信息,生成格式化的数据送给电路的驱动部分,进而输送给待测器件.Special Tester Options部分包含一些可配置的特殊功能,如向量生成器、存储器测试,或者模拟电路测试所需要的特殊的硬件结构.The Systen Clocks为测试系统提供同步的时钟信号,这些信号通常运行在比功能测试要高得多的频率范围;这部分还包括许多测试系统都包含的时钟校验电路.第4节PMUPMU〔Precision Measurement Unit,精密测量单元〕用于精确的DC参数测量,它能驱动电流进入器件而去量测电压或者为器件加上电压而去量测产生的电流.PMU的数量跟测试机的等级有关,低端的测试机往往只有一个PMU,同过共享的方式被测试通道〔test channel〕逐次使用;中端的则有一组PMU,通常为8个或16个,而一组通道往往也是8个或16个,这样可以整组逐次使用;而高端的测试机则会采用per pin的结构,每个channel配置一个PMU.图2-2. PMU状态模拟图驱动模式和测量模式〔Force and Measurement Modes〕在ATE中,术语"驱动〔Force〕"描述了测试机应用于被测器件的一定数值的电流或电压,它的替代词是Apply,在半导体测试专业术语中,Apply和Force都表述同样的意思.在对PMU进行编程时,驱动功能可选择为电压或电流:如果选择了电流,则测量模式自动被设置成电压;反之,如果选择了电压,则测量模式自动被设置成电流.一旦选择了驱动功能,则相应的数值必须同时被设置.●驱动线路和感知线路〔Force and Sense Lines〕为了提升PMU驱动电压的精确度,常使用4条线路的结构:两条驱动线路传输电流,另两条感知线路监测我们感兴趣的点〔通常是DUT〕的电压.这缘于欧姆定律,大家知道,任何线路都有电阻,当电流流经线路会在其两端产生压降,这样我们给到DUT端的电压往往小于我们在程序中设置的参数.设置两根独立的〔不输送电流〕感知线路去检测DUT端的电压,反馈给电压源,电压源再将其与理想值进行比较,并作相应的补偿和修正,以消除电流流经线路产生的偏差.驱动线路和感知线路的连接点被称作"开尔文连接点".●量程设置〔Range Settings〕PMU的驱动和测量范围在编程时必须被选定,合适的量程设定将保证测试结果的准确性.需要提醒的是,PMU的驱动和测量本身就有就有范围的限制,驱动的范围取决于PMU的最大驱动能力,如果程序中设定PMU输出5V的电压而PMU本身设定为输出4V电压的话,最终只能输出4V的电压.同理,如果电流测量的量程被设定为1mA,则无论实际电路中电流多大,能测到的读数不会超过1mA.值得注意的是,PMU上无论是驱动的范围还是测量的量程,在连接到DUT的时候都不应该再发生变化.这种范围或量程的变化会引起噪声脉冲〔浪涌〕,是一种信号电压值短时间内的急剧变化产生的瞬间高压,类似于ESD的放电,会对DUT造成损害.●边界设置〔Limit Settings〕PMU有上限和下限这两个可编程的测量边界,它们可以单独使用〔如某个参数只需要小于或大于某个值〕或者一起使用.实际测量值大于上限或小于下限的器件,均会被系统判为不良品.●钳制设置〔Clamp Settings〕大多数PMU会被测试程序设置钳制电压和电流,钳制装置是在测试期间控制PMU输出电压与电流的上限以保护测试操作人员、测试硬件与被测器件的电路.图2-2.电流钳制电路模拟图当PMU用于输出电压时,测试期间必须设定最大输出电流钳制.驱动电压时,PMU会给予足够的必须的电流用以支持相应的电压,对DUT的某个管脚,测试机的驱动单元会不断增加电流以驱动它达到程序中设定的电压值.如果此管脚对地短路〔或者对其他源短路〕,而我们没有设定电流钳制,则通过它的电流会一直加大,直到相关的电路如探针、ProbeCard、相邻DUT甚至测试仪的通道全部烧毁.图2-3显示PMU驱动5.0V电压施加到250ohm负载的情况,在实际的测试中,DUT是阻抗性负载,从欧姆定律I=U/R我们知道,其上将会通过20mA的电流.器件的规格书可能定义可接受的最大电流为25mA,这就意味着我们程序中此电流上限边界将会被设置为25mA,而钳制电流可以设置为30mA.如果某一有缺陷的器件的阻抗性负载只有10ohm的话,在没有设定电流钳制的情况下,通过的电流将达到500mA,这么大的电流已经足以对测试系统、硬件接口与器件本身造成损害;而如果电流钳制设定在30mA,则电流会被钳制电路限定在安全的范围内,不会超过30mA.电流钳制边界〔Clamp〕必须大于测试边界〔Limit〕上限,这样当遇到缺陷器件才能出现fail;否则程序中会提示"边界电流过大",测试中也不会出现fail了.图2-4.电压钳制电路模拟图当PMU用于输出电流时,测试期间则相应地需要进行电压钳制.电压钳制和电流钳制在原理上大同小异,这里就不再赘述了.第5节管脚电路管脚电路〔The Pin Electronics,也叫PinCard、PE、PEC或I/O Card〕是测试系统资源部和待测期间之间的接口,它给待测器件提供输入信号并接收待测器件的输出信号.每个测试系统都有自己独特的设计但是通常其PE电路都会包括:●提供输入信号的驱动电路●驱动转换与电流负载的输入输出切换开关电路●检验输出电平的电压比较电路●与PMU的连接电路〔点〕●可编程的电流负载还可能包括:●用于高速电流测试的附加电路●Per pin 的PMU结构尽管有着不同的变种,但PE的基本架构还是一脉相承的,图2-5显示了数字测试系统的数字测试通道的典型PE卡的电路结构.图2-5.典型的Pin Electronics1.驱动单元〔The Driver〕驱动电路从测试系统的其他相应环节获取格式化的信号,称为FDATA,当FDATA通过驱动电路,从参考电压源〔RVS〕获取的VIL/VIH参考电平被施加到格式化的数据上.如果FDATA命令驱动单元去驱动逻辑0,则驱动单元会驱动VIL参考电压;VIL〔Voltage In Low〕指施加到DUT的input管脚仍能被DUT 内部电路识别为逻辑0的最高保证电压.如果FDATA命令驱动单元去驱动逻辑1,则驱动单元会驱动VIH参考电压;VIH 〔Voltage In High〕指施加到DUT的input管脚仍能被DUT内部电路识别为逻辑1的最低保证电压.F1场效应管用于隔离驱动电路和待测器件,在进行输入-输出切换时充当快速开关角色.当测试通道被程序定义为输入〔Input〕,场效应管F1导通,开关〔通常是继电器〕K1闭合,使信号由驱动单元〔Driver〕输送至DUT;当测试通道被程序定义为输出〔Output〕或不关心状态〔don’t care〕,F1截止,K1断开,则驱动单元上的信号无法传送到DUT上.F1只可能处于其中的一种状态,这样就保证了驱动单元和待测器件同时向同一个测试通道送出电压信号的I/O冲突状态不会出现.2.电流负载单元〔Current Load〕电流负载〔也叫动态负载〕在功能测试时连接到待测器件的输出端充当负载的角色,由程序控制,提供从测试系统到待测器件的正向电流或从待测器件到测试系统的负向电流.电流负载提供IOH〔Current Output High〕和IOL〔Current Output Low〕.IOH 指当待测器件输出逻辑1时其输出管脚必须提供的电流总和;IOL则相反,指当待测器件输出逻辑0时其输出管脚必须接纳的电流总和.当测试程序设定了IOH和IOL,VREF电压就设置了它们的转换点.转换点决定了IOH起作用还是IOL起作用:当待测器件的输出电压高于转换点时,IOH提供电流;当待测器件的输出电压低于转换点时,IOL提供电流.F2和F1一样,也是一个场效应管,在输入-输出切换时充当高速开关,并隔离电流负载电路和待测器件.当程序定义测试通道为输出,则F2导通,允许输出正向电流或抽取反向电流;当定义测试通道为输入,则F2截止,将负载电路和待测器件隔离.电流负载在三态测试和开短路测试中也会用到.3.电压比较单元〔Voltage Receiver〕电压比较器用于功能测试时比较待测器件的输出电压和RVS提供的参考电压.RVS为有效的逻辑1〔VOH〕和逻辑0〔VOL〕提供了参考:当器件的输出电压等于或小于VOL,则认为它是逻辑0;当器件的输出电压等于或大于VOH,则认为它是逻辑1;当它大于VOL而小于VOH,则认为它是三态电平或无效输出.4.PMU连接点〔PMU Connection〕当PMU连接到器件管脚,K1先断开,然后K2闭合,用于将PMU和Pin Electrics 卡的I/O电路隔离开来.5.高速电流比较单元〔High Speed Current parators〕相对于为每个测试通道配置PMU,部分测试系统提供了快速测量小电流的另一种方法,这就是可进行快速漏电流〔Leakage〕测试的电流比较器,开关K3控制它与待测器件的连接与否.如果测试系统本身就是Per Pin PMU结构的,那么这部分就不需要了.6.PPPMU〔Per Pin PMU〕一些系统提供Per Pin PMU的电路结构,以支持对DUT每个管脚同步地进行电压或电流测试.与PMU一样,PPPMU可以驱动电流测量电压或者驱动电压测量电流,但是标准测试系统的PMU的其它功能PPPMU则可能不具备.第6节测试开发基本规则任何工作都有其规则和流程,IC测试也不例外.我们在实际工作中看到,一些简单的错误和低级的问题经常在一个又一个的程序中再现,如果有一定的标准,相信情况会好很多.这里我们就来总结一些基本的规则,它们将普遍适用于多数的实例;也许其中的一些在我们看来是显而易见的,但是在测试硬件无误的情况下,很多人还是在不经意间违反.可能大家会说了,谁这么傻呀?呵呵,相信大家都不会主动这么做,但是粗心呢?如果你决定刻意违反其中的某一条或几条的话,请确定你完全知道后果.^_^永远不要将DUT的输入管脚当作输出管脚进行功能测试.最常见的是在pattern中,如果一个输入管脚在此测试项不需要去管〔既给0或给1不影响此测试结果〕,我们有人就给它"X",而"X"是输出测试的mask态,这样测试机就会将此管脚当作输出去处理,连接到比较电路,只是对结果不做比较.记住,在功能测试中,输入管脚不能直接测试以期得到pass/fail的结果;信号施加到输入管脚,我们需要测试的是输出管脚.●永远不要将测试机的驱动单元连接到DUT的输出管脚.此举会造成测试机和器件本身会在同一时间驱动电压和电流到该管脚,当它们在某一点相遇时,那就是狭路相逢勇者胜了,输的一方会受伤哦!●永远不要悬空〔float〕某个输入管脚,一个有效的逻辑必须施加到输入管脚,0或者1.对于CMOS工艺的器件,悬空输入管脚会造成闩锁〔latch-up〕现象,导致大电流对器件造成破坏.●永远不要施加大于VDD或小于GND的电压到输入或输出管脚.否则同样会引起浪涌现象损害器件.●驱动电压信号到DUT时,记得设置电流钳制,限制测试机的最大输出电流.●驱动电流信号到DUT时,记得设置电压钳制,限制测试机的最大输出电压.●永远不要在驱动单元与器件引脚连接时改变驱动信号〔电压或电流〕的范围,也不要在这个时候改变PMU驱动的信号类型〔如将电压驱动改为电流驱动〕.。
半导体测试技术课件第一章 第1节 导电类型测量(to student)
二、导电型号测量的意义
不同类型的半导体是形成半导体器件的基础。如 二极管(p-n)、三极管(n-p-n或p-n-p)等等。因此,测 量半导体材料的导电类型是制作半导体器件的依据。
三、常用测量方法
冷热探针法 单探针点接触整流法
三探针法
1、冷热探针法
测量方法及原理
冷热探针法是利用温差电效应来测量半导 体的导电类型。通过判断温差电流的方向或温 差电势的极性来区分半导体的型号。
(2) 欧姆接触:在这种接触中,金属-半导体两端施加正
负两个方向的电压均可导电,是一种接触电阻很小的双向 导电。这种接触可以等效为一个阻值较低的电阻。
M S 欧姆接触 Rc<0.02欧姆
与Si材料形成欧姆接触的金属材料:
• • •
铅、镍; n型Si与五价元素合金(Au-As)构成欧姆接触; p型Si与三价元素合金(Au-Ga)构成欧姆接触。
与Si形成整流接触的金属材料:钨、金
(1)当钨与n型半导体接触时,是正向导电(金属加正电压, 半导体加负电压时产生电流,反之不产生)
(2)当钨与p型半导体接触时,是反向导电(当金属加负电压, 半导体加正电压时产生电流 ,反之不产生)
Va p + Va +
I
I
因此,利用p型和n型半导体在点接触整流特性的差异, 可以来判断半导体的导电类型。
2、单探针点接触整流法
测量方法及原理
将金属探针与半导体进行点接触,利用金属探 针与半导体接触时的整流特性进行半导体型号的判 断。
金属与半导体的接触
(1) 整流接触:在这种接触中,只有当金属-半导体两端 施加一定方向的电压时,金属-半导体才能导电;是一种单 向导电。也叫肖特基接触。这种接触可以等效为一个具有 整流特性的肖特基二极管。
浙江大学半导体测试技术PPT学习教案
第18页/共21页
(3) 检偏 机构: 主要由 步进电 机、偏 振片等 组成, 如图所 示,其 结构形 式与起 偏机构 相似, 通过检 偏机构 可测出 检偏角 。 (4) 接收 机构: 主要由 光电倍 增管、 支架、 底板及 检偏度 盘副尺 等组成 ,如图 所示。
第19页/共21页
5)主体 机构: 主要由 大刻度 盘、上 回转托 盘、下 回转托 盘及箱 体等组 成,如 图 所示。下 回转托 盘上固 定有光 源机构 和起偏 机构, 可绕大 刻度盘 上的下 悬立轴 回转。上 回转托 盘上固 定有检 偏机构 和接收 机构, 可绕大 刻度盘 上的下 悬立轴 回转。大 刻度盘 通过三 个大刻 度盘支 柱固定 在箱体 上,其 上固定 装卡机 构以装 卡被测样 品。箱 体由箱 体上面 板、底 板及底 脚等组 成。
浙江大学半导体测试技术
会计学
1
狭缝上,以最佳的立体角聚集散射光,并使之与 单色仪的立体角相匹配。试样室内的凹面镜M1 和M2是用以提高散射强度的,M1把透过试样的 激光束反射回来多次通过试样,以增强激光对试 样的激发效率。对于透明试样照射光的强度增大 五倍以上。M2则把反方向的散射光收集起来反 射回去。
第7页/共21页
激发波长
激光波长对杂散光及信噪比的影响十分显著,当 狭 缝 宽 度 不 变 时 , 用 氩 激 光 514.5nm 比 用 488.0nm波长激发样品,杂散光要小一到二个数 量级,并且分辨率有所提高。这一方面是由于长波 长激光对仪器内少量灰尘或试样中缺陷的散射弱; 另一方面由于狭缝宽度一样时,不同波长的光由出 射狭缝出射时所包含的谱带宽度不一样。所以一般 用长波长的激光谱线作为激发光,对获得高质量的 谱图有利。伴随喇曼光谱出现的光背
现代半导体器件及先进制造智慧树知到课后章节答案2023年下浙江大学
现代半导体器件及先进制造智慧树知到课后章节答案2023年下浙江大学第一章测试1.本征硅的费米能级位于:()A:略偏向 B:略偏向 C: D:答案:略偏向2.硼掺杂的硅中,下列说法正确的是:()A:电子浓度大于空穴浓度 B:与磷掺杂硅的导电类型一致 C:空穴浓度大于电子浓度 D:硅的晶体结构将发生改变答案:空穴浓度大于电子浓度3.抑制离子注入工艺中沟道效应的方法有()。
A:降低离子注入能量 B:衬底表面沉积非晶薄膜 C:倾斜衬底 D:升高衬底温度答案:衬底表面沉积非晶薄膜;倾斜衬底;升高衬底温度4.制造单晶硅衬底的方法包括()。
A:外延生长法 B:氧化还原法 C:直拉法 D:区域熔融法答案:直拉法;区域熔融法5.当硅中掺杂浓度越小时,费米能级越靠近Ei。
() A:错 B:对答案:对第二章测试1.对于长沟道MOSFET器件,发生夹断后,下面说法中正确的是()。
A:B:Vg≥Vd+Vth C:沟道中漏极一侧的电位为0 D:Vg继续增加,Id不会继续增大答案:Vg≥Vd+Vth;沟道中漏极一侧的电位为0;Vg继续增加,Id不会继续增大2.沟道长度缩短有可能对MOSFET器件产生哪些影响()。
A:器件的漏极电流增大 B:器件的集成度增加 C:阈值电压增大 D:器件的可靠性劣化答案:器件的漏极电流增大;器件的集成度增加;器件的可靠性劣化3.有关MOSFET器件亚阈值摆幅(S)的说法错误的是()A:B:亚阈值摆幅的单位是mV C:温度升高,亚阈值摆幅增大D:答案:亚阈值摆幅的单位是mV4.有关MOSFET器件特征长度的说法正确的是()A:栅氧化层介电常数越厚,特征长度越小 B:沟道长度相等的器件,特征长度越小,DIBL越小 C:与器件的沟道长度呈正比 D:仅与器件的结构参数有关答案:沟道长度相等的器件,特征长度越小,DIBL越小5.MOSFET器件的阈值电压实际上是栅极MOS电容强反型区的起点。
() A:对 B:错答案:对第三章测试1.下面有关浸没式光刻技术的说法,正确的是()A:在目镜和衬底间填充水 B:由台积电的工程师林本坚发明 C:能够增大物镜的数值孔径 D:能够减小光的波长答案:由台积电的工程师林本坚发明;能够增大物镜的数值孔径;能够减小光的波长2.相移光刻技术中,使光产生相位差的方法包括:()A:在掩膜板上的透光区域中添加移相器 B:利用整面透光的石英板,改变局部区域的厚度 C:改变石英掩膜板的倾斜角 D:减小未沉积铬区域的石英板厚度答案:在掩膜板上的透光区域中添加移相器;利用整面透光的石英板,改变局部区域的厚度;减小未沉积铬区域的石英板厚度3.根据瑞利判据得到的光刻分辨率极限,表达式为()A: B:C: D:答案:4.正光刻胶和负光刻胶中,光敏剂的作用分别是()A:交联催化剂,提供自由基B:交联催化剂,交联催化剂C:提供自由基,交联催化剂D:提供自由基,提供自由基答案:提供自由基,交联催化剂5.光刻是集成电路制造过程中总成本最高的工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Optical Densitometry 利用敏感的显微光密度计测试注入前后光透过率
对照校准表绘制等高图MAPPING 无需退火,测试在注入后几分钟内可完成
§4 RESISTIVITY PROFILING
四探针法测量的方块电阻无法表征掺杂浓度的厚度分布 测量RESISTIVITY PROFILING或者进一步dopant density profiles技术有:
温度梯度主要由于测量电流引起
测量环境的温度起伏
(1.29)
(6)表面处理
表面电荷层- 钝化处理 高电阻率样品利用四探针法测量较困难
例如:薄半导体层 四探针可测量高达1010–1011 ohms/square的方块电阻,采用测量电流 10-12安培 探针可能穿破薄注入层-利用汞电极替代金属探针
测向尺寸
探针距离样品边沿位置
F1:样品厚度因子
大部分的半导体wafer测试都必须进行厚度修正。 厚度修正因子的推导可参考下面文献 样品厚度小于探针间距的条件下可给出F1表达式:
For non-conducting bottom wafer:
t:厚度 For conducting bottom wafer:
类似于Modulated Photoreflectance,两束激光 1束聚焦激光(λ =830nm)注入额外载流子 另一束探测激光(λ=980nm)测量光学反射率-推导出载流子分布 可用于监控离子注入
§3.4 Optical Densitometry
测量非半导体薄膜的离子注入 透明衬底(如玻璃)覆盖高分子膜并掺有染料 离子注入时,染料分子分解,导致颜色变黯,
四探针法对半导体的测试
电场强度可表示为:
P点电压:距离探针r
对于b图, P点电压相当于两者叠加
对于c图, 探针2电压相当于
探针3电压相当于
探针2,3之间电压相当于
因此可得电阻率:
常用单位 ρ :ohm· cm 常用电压:10mV
V: volts I:amperes
s: cm
通常应用的4探针法探针距离相等。s= s1=s2=s3, 上式可简化为:
Differential Hall Effect (DHE)
Spreading Resistance Profiling (SRP) capacitance-voltage secondary ion mass spectrometry.
图2:两探针法在半导体测试 上的应用示意。
1. F. Wenner, “A Method of Measuring Earth Resistivity,” Bulletin of the Bureau of Standards 12,469–478, 1915. 2. L.B. Valdes, “Resistivity Measurements on Germanium for Transistors,” Proc. IRE 42, 420–427,Feb. 1954. 3. H.H. Wieder, “Four Terminal Nondestructive Electrical and Galvanomagnetic Measurements,”in Nondestructive Evaluation of Semiconductor Materials and Devices (J.N. Zemel, ed.), Plenum Press, New York, 1979, 67–104.
三种不同掺杂形式的样品方块电阻有什么异同?
F2:样品尺寸因子
• 对于直径为D的样品
如果S=0.1588CM, D>=6.5CM
对于不同的探针摆放位置,方式,修正因子也不相同
精确四探针测量的一种方案:dual configration
• 第一次测量: 1进4出,2,3测V • 第二次测量: 1进3出,2,4测V • 方块电阻表示为:
§3.1 双注入方案(Double Implant)
(1)传统的一次离子低剂量注入测量-需要注意
探针与表面良好的电接触 低的载流子浓度和电导率 表面漏电流 测量工艺:氧化表面-注入-退火-去除氧化层-钝化表面
(2)改进的Double Implant
过程如下:
p-type (n-type) 杂质注入 n-type (p-type) 衬底,剂量:Ф 1,能量 E1 样品退火激活注入杂质的电活性 测量得到方块电阻Rsh1 低剂量杂质注入。剂量:Ф2,能量 E2,均小于第一次
测量表面的热传导均匀性-结晶和损伤
脉冲泵浦激光照射表面引起热波 热波传播速度与表面状况有关 表面温度差异引起热膨胀不一样 第二束探测激光探测表面反射率变化 激光束斑约1μm,可以做非均匀表面的MAPPING
用于测量离子注入剂量需要校准。
激光照射引起离子注入损伤驰豫
§3.3 Carrier Illumination (CI)
• 考虑接触带来的修正因子C,(1.27)可以写为:
(1.28)
d/l
§2.3 测量设置标准 • ASTM F8418 and F7631
• 现代测试仪器带有各种修正因子以适应不 同测试条件
§2.3 测量错误及防范
(1)样品形状
探针位置,样品厚度,样品尺寸 厚度是最主要的修正因素 如果样品厚度小于探针间距,电阻率随厚度变化 方块电阻测量不需要知道厚度
四探针测量半导体铸锭
§2.2 任意形状样品电阻率
• 不规则样品的测量方法由Van Der Pauw发展而来 • 不需要知道电流的分布,精确测量电阻率需要满足以下条件
1. 2. 3. 3.
测量接触在样品边沿 接触足够小 样品等厚 样品全连接的(无孔洞。。。)
如下图,定义:
其中F满足:
对于如右图的对称性样品:
注意: 上述推导均基于样品半无限大假设,对实际测试WAFER,需要考虑修正 对于任意形状的样品 ρ可以表示为:
ρ =2πsF· V/I
F称为修正因子( correction factors)
(1.11)
它修正探针离样品边沿距离,样品厚度,直径,探针位置,测试温 度。。。,可以表示为多个因素修正因子的乘积 但是,有时各修正因素之间会互相影响。
device under test (DUT).
电压测试单独利用另外两个接触探针。由于电压计 高电阻(around 1012 ohms or higher),分路电流极 小, RW和 RC 对电压测试的影响可忽略。
as Kelvin measurements, after Lord Kelvin.
第一章
电 阻 率 (RESISTIVITY)
§1. 简介
电阻率 ρ 对于从原材料到器件的每一步来说都非常重要 对于硅晶体生长: 硅晶体生长过程中(单晶、多晶),分凝,生长条件的变 化。。。 外延硅片的外延层电阻率非常均匀。 对于器件: The device series resistance, capacitance, threshold voltage, hot carrier degradation of MOS devices, and other parameters. Diffusion and ion implantation等工艺都将影响硅片的局部 电阻率。
(6)表面处理
表面电荷层- 钝化处理 高电阻率样品或低温样品利用四探针法测量较困难
§3. Wafer mapping • • • • 最初用于表征离子注入的均匀性 强大的过程监控手段 手工的wafer mapping 始于1970s 用于表征离子注入的一些参数(如方块电阻)在一个样品表 面多点测量,然后表现为等高线图。 • 可用来反应注入均匀性,外延层反应均匀性,扩散层图 像。。。 • 常用的方块电阻MAPPING 技术有: 四探针;调制光反射(modulated photoreflectance);光密 度仪(optical densitometry)
典型探针半径 30-500μm; 间距0.5-1.5mm; 随样品厚度和尺寸变化
If: s=0.1588cm, 2πs=1,
then ρ=V/I
A. 小的探针间距可容忍探针接近WAFERB边沿-WAFER mapping B. 不同的测试材料适用不同的探针 C. 微区四探针间距可小到1.5 μm,应用于高分子膜,半导体缺陷测试等。。。
• 电阻率依赖于自由电子浓度n和空穴浓度 p,电子和空穴的 迁移率(μn,μp)。如下式,
如何测量这些参数。。。???
不同的测试技术: Contactless- temporary contact - permanent contact techniques.
§2. 两探针和四探针法
• Two-point probe: (图1a) 易于实现和操作,结果准确性较差。 • four-point probe: (图1b) 绝对测量手段,精确,无需校准。可作为其他方法的测试标准。
(3)探针间距
探针位置的扰动引起测量误差
测量离子注入(sheet resistance uniformities better than 1%) 引入修正因子 FS ≈ 1 + 1.082(1 − s2/s电阻减小:少子/多子注入
推荐的测量电流
(5)温度 温度的一致性在测量过程中非常重要-温度差引入热电势
例如:样品厚度超过探针间距,由于厚度与边沿效应的相互作用,独立 的修正因子不再适用。但一般情况下样品厚度总是小于探针间距的。
§2.1 修正因子F
修正因子可以通过多种方法求得:格林函数,泊松方程,复变函数理论等等。。。
对于线性排列的探针,并且具有相等的探针距离,F可以写成三个独立因 子的乘积:
样品厚度
200 mm diameter Si wafers. Four-point probe contour maps; (a) boron, 1015 cm−2, 40 keV, Rsh(average) = 98.5 ohms/square; (b) arsenic, 1015 cm−2, 80 keV, Rsh(average) = 98.7 ohms/square; 1% intervals.