勾股定理之归纳1最短路径问题与勾股定理
勾股定理知识点归纳和题型归类
勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;c b a H G F E D C B A b a c b a c c a b c a b abc c b a E D C B A②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数)毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数)柏拉图发现的:1,1,222+-n n n (1>n 的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长 21E DCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 。
用勾股定理求几何体中的最短路线长课件
问题描述
问题定义
给定一个几何体,如长方体、球体等,求从一个顶点到另一个顶点的最短路线长 度。
问题分析
最短路线问题可以通过几何学中的勾股定理进行求解。勾股定理是直角三角形中 ,直角边的平方和等于斜边的平方。在三维空间中,可以利用勾股定理找到最短 路径。
02
勾股定理简介
勾股定理的定义
勾股定理:在直角三角形中,直角边 的平方和等于斜边的平方。即,如果 直角三角形的两条直角边长度分别为 a和b,斜边长度为c,则有a^2 + b^2 = c^2。
用勾股定理求几何体中的 最短路线长ppt课件
• 引言 • 勾股定理简介 • 几何体的最短路线问题 • 用勾股定理求解最短路线长 • 结论
01
引言
目的和背景
目的
介绍如何使用勾股定理在几何体中寻找最短路线长度。
背景
几何体中的最短路线问题在实际生活中有着广泛的应用,如建筑、工程、机器 人等领域。通过解决这类问题,可以优化设计、提高效率、降低成本等。
THANKS
感谢观看
勾股定理的证明方法
勾股定理的证明方法有多种,其中比较常见的是欧几里得证 明法。该证明方法利用了相似三角形的性质和边长之间的关 系,通过一系列的推导和证明,最终证明了勾股定理。
除了欧几里得证明法外,还有其他的证明方法,如利用代数 方法和微积分方法等。这些证明方法虽然不同,但都能够证 明勾股定理的正确性。
的性质和勾股定理得出的结论。
空间几何体中的最短路线问题
1 2 3
球面几何中的大圆弧最短
在球面几何中,两点之间的大圆弧是最短的路径 。大圆弧是指经过球心并与球面相切的圆弧。
圆柱体或圆锥体中的母线最短
在圆柱体或圆锥体中,从顶点到底面的母线是最 短的路径。母线是与底面平行的线段,也是旋转 轴。
《勾股定理的应用-最短路径问题》课件
解:经分析,有三种路径均最短。如图所示在Rt△AOB中,AB²=2²+1²=5答:最短路程为cm.
1、若蚂蚁是沿一个长、宽、高分别为5、3、4的长方体的顶点A外表面爬到顶点B呢?爬行路径唯一吗?最短路径是多长?
拓展思考
拓展思考
2、若已知无盖圆柱体高为12 cm,底面半径为3cm,π取3,圆柱下底面点A一只蚂蚁绕圆柱侧面2圈爬到点B处,问蚂蚁爬行的最短路程是多少?
2、已知无盖圆柱体高为12cm,底面周长为12cm,圆柱下底面点A有一只蚂蚁,它想吃点A对面圆柱外侧点B处的食物,蚂蚁爬行的最短路程是多少?
6
A
A`
B
小试牛刀
解:如图,在圆柱的侧面展开图中AA`=6,A`B=12-4=8∴在RT△AA`B中AB²=6²+8²∴AB=10答:最短路程为10cm.
3、若已知无盖圆柱体高为12cm,底面周长为20cm,圆柱下底面的点A有一只蚂蚁,它想吃到与点A相对的圆柱内壁点B处的食物,蚂蚁爬行的最短路程是多少?
第一章 勾股定理
3. 勾股定理的应用
--最短路径问题
两点之间,线段最短.
1、在一个平面内,如果一只蚂蚁要从A点爬到B点,怎么爬路径最短?
情境引入
A
B
2、在一个无盖圆柱下底面的点A有一只蚂蚁,它想吃到与点A相对的点B处的食物,蚂蚁怎么爬路程最短?
情境引入
合作探究
1、小组讨论
小组为单位讨论蚂蚁爬行最短路线。并在本组的圆柱上用不同颜色的彩色笔画出蚂蚁爬行的路径。时间:两分钟
∴AB²=___________
πr
合作探究
1、已知无盖圆柱体高为12cm,底面半径为3cm,π取3,圆柱下底面的点A有一只蚂蚁,它想吃到与点A相对的点B处的食物,蚂蚁爬行的最短路程是多少?
勾股定理(求立体图形中的最短路径问题1)
勾股定理(求立体图形中的最短距离 1)
学习探究一 圆柱体表面的最短路径
为筹备2019 年国庆晚会,同学们设计了一个圆筒 形灯罩,底色漆成白色,然后缠绕红色油线,如图 所示1,已知圆筒高 30cm ,其横截面周长为 40cm , 如果在圆筒表面恰好能缠绕油线 1圈,应至少裁剪 ____2____cm 的油线.
3
我可以这样想……
ቤተ መጻሕፍቲ ባይዱ
把圆柱形直筒沿 AD 所在直线展开,先求出第一圈 油线的最短长度。
E
在Rt△ABD 中,由勾
股定理得
D
D
D
AD 2=BD 2+AB 2
30c
A
A
A
mB
40cm
AD? 302 ? 402 ? 502 ? 50
50 ×2=100
如果油线缠绕四圈呢?缠绕 n圈呢?
我可以这样想……
通过平移把第一圈油线和第二圈油纸首尾衔接,构建 直角三角形,求最短距离。
E
E
E
D60c m
D 40c
m
D
60c m
A 40c
A 40c
A
80c
O
m
m
m
在Rt△AEO 中,由勾股定理得
AE 2=EO 2+AO 2
AE ? 602 ? 802 ? 1002 ? 100
学习探究二 长(正)方体表面的最短路径
? 如图,边长为2的正方体中,一只蚂蚁 从顶点A 出发沿着正方体的外表面爬到 顶点F的最短距离是 ________ .
3
A
①展开
D
②定点
③连线
④计算
AD ? 30 2 ? 40 2 ? 50 2 ? 50
勾股定理最短路径问题做题技巧
勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。
其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。
下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。
1. 确定直角三角形在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。
通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。
一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。
2. 确认最短路径在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。
这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。
在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。
3. 应用勾股定理一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。
勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。
我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。
4. 注意特殊情况在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。
当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。
另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。
5. 结合实际问题当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。
我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。
在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。
希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。
勾股定理-讲义
勾股定理一、知识梳理1.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.2. 直角三角形的性质(1)有一个角为90°的三角形,叫做直角三角形.(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理).性质2:在直角三角形中,两个锐角互余.性质3:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.3.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.4.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.二、经典例题+基础练习1. 勾股定理.【例1】已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对.练1.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()A.84 B.24 C.24或84 D.42或84练2.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1 B. C. D.2 2. 等腰直角三角形.【例2】已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()A.2n﹣2 B.2n﹣1 C.2n D.2n+1练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()A. B. C. D.3.等边三角形的性质;勾股定理.【例3】以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()10厘米 B.2×()9厘米C.2×()10厘米 D.2×()9厘米练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为.4.勾股定理的应用.【例4】工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm 练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米B.米C.米或米 D.米5.平面展开-最短路径问题.【例5】如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D 出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm练6.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.三、课堂练习1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c=()A.1::2 B.:1:2 C.1:1:2 D.1:2:33.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)四、能力提升1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm3.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c2等于()A.161 B.289 C.225 D.161或2894.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.185.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是cm.8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.勾股定理的逆定理一、知识点梳理1.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.2.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.3.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.4.方向角(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.5.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.6.作图—复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.二、经典例题+基础练习1.勾股定理的逆定理.【例1】下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5练1.下列各组线段能构成直角三角形的一组是()A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,6练2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,42. 勾股定理的应用.【例2】如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米练3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m 3.平面展开-最短路径问题.【例3】如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm练4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.4.勾股定理的应用:方向角.【例4】已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是km;若A地在C地的正东方向,则B地在C地的方向.练5.如图,小明从A地沿北偏东60°方向走2千米到B地,再从B地正南方向走3千米到C地,此时小明距离A地千米(结果可保留根号).5.坐标与图形性质;勾股定理的逆定理.【例5】在平面直角坐标系中有两点A(﹣2,2),B(3,2),C是坐标轴上的一点,若△ABC是直角三角形,则满足条件的点共有()A.1个 B.2个 C.4个 D.6个练6.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.三、课堂练习1.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.2.如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.3.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).4.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)5.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.四、能力提升1.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,3 2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=503.以下各组数为边长的三角形中,能组成直角三角形的是()A.3、4、6 B.9、12、15 C.5、12、14 D.10、16、25 4.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或 D.60cm5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为()A.30厘米 B.40厘米 C.50厘米 D.以上都不对7.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm8.如图所示,是一个圆柱体,ABCD是它的一个横截面,AB=,BC=3,一只蚂蚁,要从A 点爬行到C点,那么,最近的路程长为()A.7 B. C. D.59.有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm10.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.11.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形.12.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.13.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.14.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:≈1.41,≈1.73)15.校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B 到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:=1.41,=1.73)16.如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.勾股定理中的折叠问题一、经典例题例1.如图,在矩形ABCD中,AB=6,BC=8。
勾股定理求最短路径方法技巧
勾股定理求最短路径方法技巧摘要:1.引言2.勾股定理简介3.求最短路径方法技巧4.应用实例与分析5.结论正文:【引言】在数学领域中,勾股定理及其求最短路径方法一直是备受关注的热点。
本文将详细介绍勾股定理求最短路径的方法和技巧,帮助读者更好地理解和应用这一理论。
【勾股定理简介】勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边平方和等于斜边的平方。
其数学表达式为:a + b = c。
其中a、b为直角边,c为斜边。
【求最短路径方法技巧】利用勾股定理求最短路径,关键在于找到起点和终点之间的直角三角形,然后运用勾股定理计算出路径长度。
这里有两种求最短路径的方法:1.直接法:在平面上给定两个点A和B,找出一条直线路径,使得这条路径上的所有点与A、B两点的距离之和最小。
可以通过构建直角三角形,利用勾股定理求解路径长度。
2.间接法:先找到起点和终点之间的中间点C,然后分别计算从起点到C 点和从C点到终点的路径长度。
最后在所有路径中选择长度最短的一条。
同样可以利用勾股定理计算路径长度。
【应用实例与分析】以一个简单的平面直角坐标系为例,设有两点A(0, 0)和B(3, 4)。
现在需要求从A点到B点的最短路径。
首先,求出AB的中点C:(1.5, 2)。
然后,分别计算从A到C和从C到B 的路径长度。
AC的长度:√((1.5-0) + (2-0)) = √(2.25 + 4) = √6.25BC的长度:√((3-1.5) + (4-2)) = √(1.25 + 4) = √5.25现在可以计算出从A点到B点的最短路径长度:√6.25 + √5.25 ≈ 7.27【结论】通过以上分析,我们可以看出,利用勾股定理求最短路径方法是简单且实用的。
只需找到起点和终点之间的直角三角形,然后运用勾股定理计算路径长度,最后在所有路径中选择长度最短的一条。
勾股定理最短路径问题
勾股定理最短路径问题
勾股定理最短路径问题是一种在数学和计算机科学领域中常见的问题。
该问题
的目标是找到两个给定点之间的最短路径,并且路径中的每个线段都恰好满足勾股定理。
勾股定理是一个基本的几何定理,它表明在一个直角三角形中,斜边的平方等
于两个直角边的平方和。
勾股定理最短路径问题则是将这个定理应用到路径规划中。
为了解决这个问题,我们可以使用图论中的最短路径算法,如Dijkstra算法或
A*算法。
首先,我们将给定的起点和终点转化为图中的节点,节点之间的连接表
示可以直接连接的路径。
在每个节点中,我们需要计算到达该节点的路径长度。
以起点为起始节点,我
们开始遍历每个相邻节点,并通过计算其与起点的距离来更新节点的路径长度。
这个过程会持续进行,直到所有节点的路径长度都被计算出来。
接下来,我们需要根据勾股定理来评估路径的长度。
对于连接起点和终点的路
径上的每一段线段,我们可以根据勾股定理计算其长度。
通过将每一段线段的长度累加,我们可以得到整条路径的长度。
最后,我们可以使用最短路径算法来确定具有最短长度的路径。
这将帮助我们
找到勾股定理最短路径问题的解决方案。
总结而言,勾股定理最短路径问题是一个涉及路径规划和数学定理应用的问题。
通过使用最短路径算法,我们可以找到满足勾股定理的最短路径,从而有效地解决这个问题。
勾股定理的应用最短路径问题
勾股定理的应用最短路径问题1. 引言大家好,今天咱们聊聊一个古老又有趣的数学概念——勾股定理。
可能有人会问:“这跟我有什么关系呢?”嘿,等着听,勾股定理可不是干巴巴的公式,它其实在我们日常生活中随处可见,特别是在寻找最短路径的时候!想想吧,咱们出门去超市、上班、约会,总是希望能走条最短的路,不是吗?1.1 勾股定理是什么?首先,让我给你简单科普一下,勾股定理就是“直角三角形的两条直角边的平方和等于斜边的平方”。
哎哟,这听起来可能有点抽象,但是举个例子就明白了。
想象一下,你在一个小区里,想从家里去朋友家,结果发现可以选择两条路:一条是笔直的,另一条是绕来绕去的。
咱们用勾股定理算一下,直走那条路肯定最省劲,走得快,又不费力,简直是“稳得一批”!1.2 最短路径的日常应用所以说,勾股定理就像是我们日常生活中的导航仪。
无论是行走还是开车,只要涉及到找路,勾股定理就在那里默默支撑着我们。
有时候你可能会觉得“哎,我怎么就走错了路呢?”其实啊,咱们常常是没有用到这个小聪明,走了冤屈的弯路。
所以,学会利用勾股定理,让我们在出门时不再“走火入魔”,多出点时间来享受生活,简直是“赚到了”!2. 勾股定理在生活中的真实案例接下来,我来给大家分享几个勾股定理在生活中实际应用的例子。
想象一下,你家后院有个长方形的游泳池,你想在旁边建个阳光棚。
你需要测量一下,从池边到棚子的某个点的距离。
这里用上勾股定理就能轻松搞定!假如你从池子的一个角落走到对面的边,再直线走到阳光棚的底部,咱们就能通过计算,得到最短的距离,省得你东跑西颠了。
2.1 工作中的应用再说说工作吧,假设你是一名送货员,天天跑腿送快递。
为了提高效率,你需要计算每次送货的最短路径。
只要把送货点的坐标设定好,运用勾股定理,你就能算出最近的送货路线。
这样一来,工作起来简直是“如虎添翼”,还能多挣点外快,何乐而不为呢?2.2 健身房里的运动还有一种情况,比如你在健身房里锻炼,跑步机上那条直线可不是随便走走的!你想把心率调到最佳状态,搞个“HIIT”训练,结果一不小心跑偏了。
勾股定理应用之最短路径问题
沿着台阶面爬到B点去吃可口的食物,最短线路是多少?
A
20
CHale Waihona Puke 解:如图,将台阶3
展开, BC=(3+2) ×3=15AC=2
2
0
∵△ABC为直角
3
三角形 2
答:最短路线
3
是25cm。
2
B
利用勾股定理解决实际问题的一般思路:
1.在解决实际问题时,首先要画出适当的示意图, 将实际问题抽象为数学问题,并构建直角三角形模 型,再运用勾股定理解决实际问题。
如图所示,圆柱体的底面周长为18cm ,高AC为12cm ,
一只蚂蚁从A点出发,沿着圆柱的侧面爬行到点B,试求出爬
行的最短路程。
解:如图,将圆柱体 展开, BC=18÷2=9 AC=1
2 ∵△ABC为直角 三角形
C
B
答:蚂蚁爬行的最短路线
是15cm。
A
最短路径问题
几何体的表面路径的最短的问题,一般将 立体图形展开为平面图形来计算。
勾股定理 --最短路线问
1
1.两点之间,线段最短!
2.一个圆柱体的侧面展开图是长方形,它的一边长是圆 柱的高,它的另一边长是底面圆的周长。
圆柱侧面两点最短路径问题
如图所示,圆柱体的底面周长为18cm ,高AC为12cm ,
一只蚂蚁从A点出发,沿着圆柱的侧面爬行到点B,试求为出什爬么
行的最短路程。
1
1B
B
1
1 1
1
A
1
1
长方体中的最值问题
如图,长方体的长、宽、高分别为4、2、8。现有一蚂
蚁从顶点A出发,沿长方体表面到达顶点B,蚂蚁走的路程
最短为多少厘米?
勾股定理--与最短路径问题
17.1(11)勾股定理--与最短路径问题一.【知识要点】1.两点之间线段最短:⑴将军饮马型;⑵几何体上两点最短型2.垂线段最短型3.造桥选址型二.【经典例题】1.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .2.如图一个圆柱,底圆周长10cm ,高4cm ,点B 距离上边缘1cm,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .3.如图,圆柱形容器中,高为0.4m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,与蚊子相对..的点A 处,求壁虎捕捉蚊子的最短距离(容器厚度忽略不计).4.编制一个底面半径为6cm 、高为16cm 的圆柱形花柱架,需用沿圆柱表面绕织一周的竹条若干根,如图中的111AC B ,222,A CB ,则每一根这样的竹条的长度最少是__________.5.如图,圆柱底面半径为cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B在同一高上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为______.6.一只蚂蚁从长为4cm,宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。
7.已知 A (1,1)、B (4,2).P 为 x 轴上一动点,求 PA+PB 的最小值.8.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是__________dm.2A B三.【题库】【A 】1.如图,一个长方体盒子,一只蚂蚁由A 出发,在盒子的表面上爬到点C 1,已知AB=7cm ,BC=CC 1=5 cm ,则这只蚂蚁爬行的最短路程是________.2.如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁沿着台阶面爬行的最短路程是________.3.如图,∠ABC =30°,点D 、E 分别在射线BC 、BA 上,且BD =2,BE =4,点M 、N 分别是射线BA 、BC 上的动点,当DM +MN +NE 最小时,(DM +MN +NE )2的值为( )A 、20B 、26C 、32D 、36【B 】1.如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为( ) A.23 B. 26 C.3 D.6A 1B 1C 1D 1 A B C D2.如图,一个无盖的长方体长、宽、高分别为8cm 、8cm 、12cm ,一只蚂蚁从A 爬到C 1,怎样爬路线最短,最短路径是多少?3.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22-B .2C .21+D .14.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .4dmB .2dmC .2dmD .4dm8cm 8cm12cm【C 】 1.(8分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A. 李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(2)如果铺设水管的工程费用为每千米1500元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?2.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=DC=5,点P 在BC 上移动,则当PA+PD 取最小值时,PA+PD 长为( )A .8 B.4+15 C .152 D .1723.如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD 交于点 E 、F ,则△CEF 的周长的最小值为( )A.2B.23C.2+3D. 44.如图,在矩形ABCD 中,AB =5,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,则△AEF 的周长最小时值为( )A .17B .21C .13+41 D. 13+345.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
勾股定理最短路径
勾股定理最短路径引言勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。
而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。
本文将探讨如何利用勾股定理来解决最短路径问题。
最短路径问题最短路径问题是在一个图中寻找两个顶点之间的最短路径。
在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。
最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。
勾股定理勾股定理是由古希腊数学家毕达哥拉斯提出的。
它表述为:直角三角形的斜边的平方等于两个直角边的平方和。
即a2+b2=c2,其中c为斜边的长度,a和b为两个直角边的长度。
最短路径算法解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。
该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。
具体步骤如下:1.创建一个集合S,用于存放已经找到最短路径的顶点。
2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。
3.选择一个距离最小的顶点v,将其加入集合S。
4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新距离。
5.重复步骤3和4,直到集合S包含了所有顶点。
6.最终得到起始点到其他所有点的最短路径。
勾股定理最短路径算法在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。
假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。
如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。
具体步骤如下:1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上的坐标。
2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。
3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路径。
4.选择最短路径最小的顶点作为下一个移动的目标点。
勾股定理最短路径问题长方体
勾股定理最短路径问题长方体
勾股定理最短路径问题涉及到在长方体中寻找两点之间的最短
路径,其中路径是沿着长方体的棱或者对角线移动。
这个问题在实
际生活中有着广泛的应用,比如在物流领域中优化货物的运输路径、在建筑设计中优化管道的布置等等。
首先,我们来看长方体的情况。
长方体有12条棱,8个顶点和
6个面。
如果我们要在长方体内部寻找两点之间的最短路径,我们
可以利用勾股定理来解决这个问题。
勾股定理表明,在直角三角形中,斜边的平方等于两直角边的平方和。
因此,我们可以利用这个
定理来计算两点之间的最短路径。
其次,我们可以考虑在长方体内部沿对角线移动的情况。
长方
体的对角线是连接长方体两个对立顶点的线段,而沿着对角线移动
是一种更加直接的路径。
因此,如果两点之间的最短路径可以沿着
长方体的对角线移动,那么我们可以通过计算两点之间的距离来找
到最短路径。
另外,我们还可以考虑在长方体内部沿棱移动的情况。
沿着棱
移动也是一种可能的路径,尤其是当两点不在同一条对角线上时。
在这种情况下,我们可以通过计算沿着棱移动的距离来找到最短路径。
综上所述,勾股定理最短路径问题涉及到在长方体内部寻找两点之间的最短路径,可以通过勾股定理、沿对角线移动和沿棱移动等多种方法来解决。
在实际问题中,我们可以根据具体情况选择合适的方法来求解最短路径问题,从而优化路径规划和设计布局。
小专题(一):利用勾股定理解决最短路线问题
小专题(一):利用勾股定理解决最短路线问题本文将介绍如何利用勾股定理来解决最短路线问题。
在许多实际应用中,我们需要找到两点之间的最短路径。
这个问题在物流、传输网络以及旅行规划等领域都是非常重要的。
勾股定理简介勾股定理是数学中的一个基本定理,用于解决直角三角形中的关系。
根据勾股定理,直角三角形的两个直角边长度分别为a和b,斜边长度为c,则有以下关系式成立:$c^2 = a^2 + b^2$问题描述假设我们要从A点到B点,但是我们希望走的路径尽可能短。
我们可以将这个问题转化为一个几何问题,即找到直角三角形的斜边长度最小的情况。
解决方法我们可以利用勾股定理来解决这个问题。
假设A点的坐标为(x1, y1),B点的坐标为(x2, y2)。
则A点到B点的直线距离为:$d = \sqrt{(x2 - x1)^2 + (y2 - y1)^2}$我们可以将坐标系中的点表示为直角三角形的两个直角边,直线距离表示为斜边长度。
根据勾股定理,我们可以通过计算斜边长度来找到两点之间的最短路径。
应用举例假设我们需要规划一条从家到公司的最短路径。
我们可以利用勾股定理来计算不同路径的距离,并选择最短的路径进行出行。
假设家的坐标为(1, 1),公司的坐标为(5, 5)。
根据勾股定理的计算公式,我们可以得到:$d = \sqrt{(5 - 1)^2 + (5 - 1)^2} = \sqrt{16 + 16} = \sqrt{32}$所以最短路径的长度为$\sqrt{32}$。
在实际应用中,我们可以通过比较不同路径的长度来选择最优的路径。
总结利用勾股定理解决最短路线问题可以帮助我们在实际应用中找到两点之间最短的路径。
通过将问题转化为几何问题,并利用勾股定理的计算公式,我们可以简单而有效地解决这个问题。
在实际应用中,我们可以根据勾股定理的计算结果选择最优的路径进行出行或者路线规划。
勾股定理中的最短路径问题
勾股定理中的最短路径问题1. 勾股定理的基础1.1 勾股定理的来历哎,你知道吗?勾股定理这玩意儿可真是数学界的明星!想想看,两个直角边的平方和,等于斜边的平方,简直就像是数学的秘密武器。
古希腊的数学家毕达哥拉斯可是大名鼎鼎,他的这个定理为我们揭开了许多几何谜团。
不过,咱们可不能把它当成死板的公式,生活中处处都有它的影子。
1.2 勾股定理的应用想象一下,你和朋友在公园里散步,结果你们发现了一条小径。
这条小径绕来绕去,走得可费劲了,但其实你们只需要沿着一条直线走到目的地。
这个时候,勾股定理就像你的导航,告诉你怎么走最省事。
无论是爬山、越野,还是走街串巷,最短路径的问题无处不在,真是“走一步算一步”的好帮手。
2. 最短路径的趣味探讨2.1 最短路径的魅力说到最短路径,简直可以用“行走在正确的道路上”来形容。
想象一下,你在迷宫里游荡,四周都是墙壁,脑袋都要炸了。
这个时候,找到那条直达出口的路,那种心里一亮的感觉,真的是无与伦比!而勾股定理就像你的秘密武器,让你用最少的步数找到最佳出口,真是“智者千虑,必有一失”,谁都想少走弯路嘛!2.2 日常生活中的最短路径不过,最短路径可不仅限于数学题。
比如说,假设你要去隔壁的超市,走着走着,突然发现原来有一条小巷子可以穿过去,走起来省时又省力,心里那个爽啊,简直像捡到了一分钱。
生活中总是有这样的小发现,就像勾股定理教给我们的道理——有时候,直接一点,反而是最好的选择。
3. 总结与思考3.1 勾股定理的哲理勾股定理不仅是个数学公式,它其实还给我们带来了一些人生的哲理。
我们常常在生活中绕来绕去,寻找看似完美的路径,但实际上,简单的直线才是最有效的。
有时候,想太多反而让我们迷失方向,真的是“越想越糊涂”。
所以,咱们在面对选择时,别忘了用勾股定理的思维,寻找那条最短、最简单的路。
3.2 实际应用的启示最终,勾股定理和最短路径的问题不仅仅是数学的事,更是生活的智慧。
我们在每一次选择中,都可以尝试运用这种思维,尽量少走弯路,快速达到目标。
勾股定理在最短路径问题中的应用
勾股定理在最短路径问题中的应用标题:勾股定理的在最短路径问题中的应用导言:最短路径问题是一类在图论中广泛应用的数学问题,它关注着在给定的网络中寻找两个节点之间最短路径所需经过的边或弧的集合。
数学家们在求解最短路径问题的过程中,经过了数不清的探索和尝试。
本文将介绍勾股定理在最短路径问题中的应用,通过深入讨论和具体案例分析,旨在帮助读者更加深入、全面地理解这一主题。
一、勾股定理概述1.1 勾股定理定义勾股定理,也称毕达哥拉斯定理,是三角学中一个经典的定理。
它表明,在一个直角三角形中,设直角边的长度分别为a和b,斜边长度为c,则有a² + b² = c²。
二、最短路径问题介绍2.1 最短路径问题的定义最短路径问题是一个经典的图论问题,它要求在给定的加权有向图或无向图中,求解两个顶点之间的最短路径。
这种路径可能经过一些中间节点,但其总权值和需要最小。
三、勾股定理在最短路径问题中的应用3.1 最短路径问题的建模在最短路径问题中,我们需要将问题建模为一个加权有向图或无向图。
对于一个直角三角形,我们可以将直角边的长度作为边的权值,斜边的长度作为两个节点之间的距离。
3.2 以勾股定理为基础的最短路径算法基于勾股定理的最短路径算法利用了直角三角形的特性,将直角边长度作为边的权值,通过计算两个节点之间的距离来求解最短路径。
3.3 实例分析:勾股定理在最短路径问题中的具体应用通过一个具体的实例,我们可以更好地理解勾股定理在最短路径问题中的应用。
假设我们有一个城市地图,有一辆车位于城市的某个节点A上,我们需要找到车从节点A到达另一个节点B的最短路径。
4. 总结与回顾通过本文的讨论,我们了解了勾股定理在最短路径问题中的应用。
勾股定理提供了一种有效的方法来计算两个节点之间的距离,从而为最短路径问题的求解提供了便利。
通过建立一个适当的数学模型,我们可以利用勾股定理来解决各种实际应用中的最短路径问题。
勾股定理在最短路径问题中的应用
『勾股定理在最短路径问题中的应用』一、引言在数学和实际生活中,勾股定理是一个被广泛应用的基本定理,它不仅仅是一个几何定理,还在诸多领域中有着重要的应用,其中就包括最短路径问题。
本文将探讨勾股定理在最短路径问题中的应用,从而帮助我们更深入地理解这一数学原理在实际生活中的作用。
二、最短路径问题概述最短路径问题是指在图中找到两个顶点之间的最短路径,通常以距离或权重来衡量路径的长度。
这个问题在现实生活中有着广泛的应用,比如在网络传输中寻找最短路径可以提高传输效率,在交通规划中寻找最短路径可以节省时间和成本等等。
寻找最短路径是一个被广泛关注的问题。
三、勾股定理在最短路径问题中的应用1. 从原理上来看,勾股定理可以帮助我们计算两点之间的直线距离,这在寻找最短路径时是至关重要的。
通过勾股定理,我们可以准确地计算出两点之间的距离,从而找到最短路径。
2. 勾股定理还可以帮助我们理解和推导其他寻找最短路径的算法,比如迪杰斯特拉算法和弗洛伊德算法。
这些算法都是建立在对距离的准确计算基础上的,而勾股定理为我们提供了这样的基础知识。
3. 在实际的地图导航中,勾股定理也被广泛应用。
通过勾股定理,地图导航可以准确计算出最短路径,并为我们提供最优的导航方案,从而节省时间和成本。
四、结论和回顾通过本文的探讨,我们更加深入地了解了勾股定理在最短路径问题中的重要应用。
勾股定理不仅仅是一个单纯的数学定理,它还在实际生活中发挥着重要作用,特别是在寻找最短路径这样的实际问题中。
我们应该重视和深入理解勾股定理这一基础数学原理,从而更好地应用它解决现实生活中的问题。
五、个人观点在我看来,数学定理和实际问题之间的联系总是让人感到惊讶和敬畏。
勾股定理作为一个古老的数学定理,竟然在现代的最短路径问题中发挥着如此重要的作用,这让我对数学的普适性有了更深刻的理解。
我相信,随着数学和现实生活的更加深入的结合,我们将能够更好地解决各种实际问题,提高生活质量和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归纳1:最短路径问题与勾股定理
原题1:如图,一条河同一侧的两村庄A、B,其中A、B 到河岸最短距离分别为AC=1km,BD=2km,CD=4km,现欲在河岸上建一个水泵站向A、B两村送水,当建在河岸上何处时,使到A、B两村铺设水管总长度最短,并求出最短距离。
原题2:如图所示,圆柱体的底面直径为6cm,高AC为12cm,一只蚂蚁从A点出发,沿着圆柱的侧面爬行到点B,试求出爬行的最短路程.(π取3)
原题3:如图,有一个长方体的长、宽、高分别是3、2、1,在底面A处有一只蚂蚁,它想吃正方体B处的食物,需要爬行的最短路程是多少?
变式1:正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为多少。
变2:如图(1),A、B两单位分别位于一条封闭街道的两旁(直线l1、l2是街道两边沿),现准备合作修建一座过街人行天桥.
(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).
(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)变3:有一圆形油罐底面圆的周长为24m,高为6m,一只老鼠从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?
变4:有一圆柱形油罐,要以A点环绕油罐建旋梯,正好到A点的正上方B点,问旋梯最短要多少米?(己知油罐周长是12米,高AB是5米)
变5:如图,圆柱底面半径为2cm,高为9π,A、B分别是圆柱底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短距离。
变6:如图, 透明的圆柱形容器( 容器厚度忽略不计) 的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点 B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点 A 处,则蚂蚁吃到饭粒需爬行的最短路径是多少?
变7:如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
变8:如图棱长为10cm的正方体盒子,蚂蚁沿着表面从A点爬行到B点需要的最短路程又是多少呢?
变9:如果盒子换成长为40cm,宽为30cm,高为
120cm的金鱼缸,如果鱼缸中的A点有一条金鱼,它想尽快吃到B点的食物,那么金鱼游的最短路程又是多少呢?
变10 :图是一个三级台阶,它的每一级的长、宽、高分别为20cm、3cm、2cm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为多少?
变11:如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_________cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要_________cm.变12:如图,长方体的长为15,宽为10,高为20,点B 离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
变13:如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,求这个最小值
变14:如图,在锐角△ABC中,AB=2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?
变15:如图,在等腰直角三角形ABC中,∠ABC=90°,E是AB上一点,BE=2,AE=3BE,P是AC上一动点.则PB+PE的最小值是多少?
变16:如图,等边△ABC中,AD是BC边上的高,AD=6,E是AB的中点,点P在AD上运动,则PB+PE的最小值是多少?。