桁架杆件内力图解法
桁架图解法
③ 定义内力图的比例尺(即单元 力的长度),按外力的方向依 次序画出桁架的外力矢量图, 如图2。图中力的大小按比例尺 画出,力的方向由力矢量的起 点编号和终点编号定义。例如 ,桁架左端外力为0.5的向下的 集中力,那么在图中表示为0.5 个单元力的长度,而且力的方 向为a->b(向下)。
土木工程本科专业课程
建筑钢结构设计
第2章
重型厂房结构设计
补充:图解法
图解法的核心原理
静定结构的力平衡原则:外力是一个平衡力系; 节点受到平衡力系的作用(包括外力和内力)。
P P R1 R2
P
N3
R1
R2
N1 N2
土木工程专业课程——建筑钢结构设计
N3 N2
N1 汇交平衡力系
N2
N3 N1
矢量闭合
例 : 24 米 屋 架 杆 件 内 力 系 数
土木工程专业课程——建筑钢结构设计
土木工程专业课程——建筑钢结构设计
④ 以节点为基准,画出该节点上的杆件的内力矢量。对于节点I, 按顺时针,节点上的作用力为a->b的外力,b->1的上弦杆内力 ,1->a的端竖杆内力。按桁架的上弦杆的方向,b->1的上弦杆 内力如图3黑线所示,即b->1的上弦杆内力的力矢量在黑直线 上;1->a的端竖杆内力的力矢量在竖直红线上,因此黑线和红 线的交点即为两个力矢量的共同端点1。从图3可以看出,b->1 的上弦杆内力为零,即该段弦杆为零杆;1->a的端竖杆内力的 大小为线段ab的长度,即为0.5,而且按顺时针,1->a的端竖 杆内力的方向为向上,即对着节点I,因此该内力为压力;上述 结论和节点法求解的结论是一致的。
第6次 简单平面桁架的内力计算
a
a
a
a
B
C
D
FC
1.取整体为研究对象, 受力分析如图。
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
§2.9简单平面桁架的内力计算 例题 3-10
2.列平衡方程。
Fx 0, Fy 0, M AF 0,
FAx FE 0 FB FAy FC 0 FC a FE a FB 3a 0
§2.9简单平面桁架的内力计算
几个概念
平面桁架—— 所有杆件都在同一平面内的桁架。 节 点—— 桁架中杆件的铰链接头。 杆件内力—— 各杆件所承受的力。
§2.9简单平面桁架的内力计算
几个概念
无余杆桁架—— 如果从桁架中任意抽去一根杆件,则桁架 就会活动变形,即失去形状的固定性。
§2.9简单平面桁架的内力计算
FCA FCD FCE cos 45 0
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
Fy 0,
FC FCF FCE cos 45 0 解得
FCE 2 2 kN , FCD 2 kN
§2.9简单平面桁架的内力计算 例题 3-10
FDE
8.取节点D,受力分析如图。
A
FAx
Fx 0,
B
FBD FBE cos 45 0
Fy 0,
F
E FE
FB
a
a
a
a
C
理论力学4.4第4-4章平面简单桁架的内力计算
x y
0, F2 20 0 0, F1 0
解得: F1 0 F2 20kN
20kN
C
FAx F3 F4 FAy
10kN 10kN 10kN 10kN
F1
A
FBy
F2
FAx
解:(1) 取整体为研究对象
FAy
F1
(3) 取节点A为研究对象
F 0 , F F F cos 45 0 x Ax 4 3 F 0 , F F F sin 45 0 y Ay 1 3
F 0, F F 0, F M 0,
再以截面m-n左面部分为研究对象 MC 0
F3 A C FA F2 F4 F1
Fa F1b FA 2a 0 F1 4a F b
F
F
b
FB
例 题 4
C
求:桁架1、2杆的力。 解:(1) 取整体为研究对象
D a
M
解得:
a
B
0, P.2a FAy 3a 0
FAy 2P 3
α A E F FAC α α C α α
O α B C F G D FBC FGy FGx M
2M CG 2l cos 30 FBC 3l 参考受力图(b), 选x轴与FOB垂直。 ' O O F 0 , F . COS 30 F . COS 60 0 x BC AB
Fi Fix i Fiy j FR
i 1 i 1 i 1
n
n
n
截面法求桁架杆件内力
截面法1截面法可以快速求出某一内力,通常取结构 的一部分为隔离体,其上力系为平面一般力系。
每个隔离体上有3个独立平衡方程。
一般表示 为: ∑ FX = 0 投影法 ∑ FY = 0 力矩法 ∑M = 0 计算要点: 尽量使一个方程解一个未知数,避免求解 联立方程。
一. 力矩法例:求图示桁架1、2、3杆的轴力。
2VAVB解:由整体平衡条件求得支座反力 VA=VB HA=0作Ⅰ--Ⅰ截面,截开1、2、3杆的轴力 取截面以左为隔离体。
Ⅰ3Ⅰ(1)求1杆轴力N1K14选取未知力N2和N3 延长线的交点K1作 为取矩点。
N1 对K1点取矩,由 ∑MK1 = 0 从而求出所求未知 力N1。
VA(2)求2杆轴力N2N2 K2 VAY252X2由∑MK2 = 0 ,比例关系从而求出所求未知力Y2。
2杆轴力N2(3)求3杆轴力N3Y3 N3 X3K3 VA6由 ∑MK3 = 0比例关系从而求出所求未知力X3。
3杆轴力N3力矩法要点:7欲求某指定杆内力,则作一截面,截开待求 杆; 隔离体上除所求未知力外,其余未知力的延 长线均交于某一点K。
对K点取矩,从而求出所求未知力 。
(1)选择其余未知力延长线的交点K作为取矩 点,从而用∑MK=0,求出指定杆内力。
(2)将斜杆的内力放在某一个合适的点上分 解,使其一个分力通过取矩点K。
例1. 求图示桁架杆件a、b、c的轴力890kN30kN作Ⅰ—Ⅰ截面Ⅰ9Ⅰ求NaNa 求Na时,对另 外两个未知力的 交点C取矩,10C由 ΣMc=0,得 Na×4+30×8=030kN解得: Na =- 60kN求NbD Xb E Yb Nb30kN11求Nb时,对点D取矩。
将Nb 其在E点处分解 为水平和竖向分量。
由ΣMD=0,得 Yb×12+40×4 - 30×12=0 解得 Yb=16.67 kN由比例关系得到:N b = 2Yb = 2 × 16.67 = 23.57kN求NcYc XcD Nc12求Nc时,对点E取矩。
杆件的内力与内力图轴向拉压杆的内力轴力图轴向拉压杆的内力轴
Fθθ34轴向拉压杆的内力轴向拉压杆的内力为轴力,用F N 表示轴力的大小:由平衡方程求解PN ,0F F F x ==∑轴力的正负:拉力为正;压力为负轴力的单位:N ;kN6轴向拉压杆的内力轴力图解:应用截面法,在F N1,由∑F x =0kN5.21P 1N ==F F kN5.13P 2P 1P 2N -=-=-=F F F F 在2-2截面截开,画出正向的F N2,由∑F x =089= 6 kN = -4 kN轴力图画在受力图正下方;10轴向拉压杆的内力轴力图例2 图示一砖柱,柱高3.5m ,截面尺寸370×370mm 2,柱顶承受轴向力F P =60 kN ,砖砌体容重ρ.g =18 kN/m 3。
试绘柱的轴力图。
11轴力图应用截面法,由平衡方程求得:kN46.260P y y A g F --=⋅⋅⋅-ρ,kN 6.68)5.3(,kN 60)0N -=-=F ㈠F N /kNy68.66012轴向拉压杆的内力轴力图等截面直杆在上端A 处固定,其受力如图试绘制杆件的轴力图。
kN,10kN,5P2=F l(a)Cl(b)机械传动轴杆件各相邻横截面产生绕杆轴的相对转动ϕ1720扭矩沿轴线的变化规律e21221. 外力偶矩的计算m N ⋅=1146AmN ⋅=3509549n PB m N ⋅=446n D23扭矩的计算m N 350e ⋅-=-=B M m N 700e e ⋅-=--B C M M mN 446e ⋅=D M 扭矩图问题:如将轮A 与轮C 互换,扭矩图如何?哪种布置受力更合理?mN 700max ⋅=轴力图剪力图和弯矩图组合变形杆件的内力与内力图25梁的外力和内力均可仅由静力平衡方程求解27纵向对称面内时,梁的轴线由位于纵向对称面内的直28单跨静定梁的三种基本形式由静力平衡方程无法全部确定梁所有外力和内力29平面弯曲梁的内力剪力图和弯矩图:剪力F S 和弯矩M 求内力的方法:截面法A F R =M MaF A R =30平面弯曲梁的内力剪力图和弯矩图单位;kNN ·m ;kN ·m31截面,并取右段研究221qa -33平面弯曲梁的内力剪力图和弯矩图剪力方程剪力沿梁轴线的变化规律,即F S =F S (x )弯矩方程弯矩沿梁轴线的变化规律,即M=M (x )按比例绘出F S (x )的图线按比例绘出M (x )的图线剪力图和弯矩图受力分析,画受力图,由平衡方程求支座约束力分段列出剪力方程和弯矩方程,标出变量x 的取值根据剪力方程,求各控制面的剪力值,按比例绘剪力图。
桁架的内力计算
2.3.5.1双角钢截面杆件的节点
➢ 1.节点设计的一般原则 ⑴双角钢截面杆件在节点处以节点板相连,各杆 轴线(型钢形心轴线)汇交于节点中心。 ⑵角钢的切断面应与其轴线垂直,需要斜切以便 使节点紧凑时只能切肢尖。
26
2.3.4.2 桁架杆件截面选择
拉杆:强度,刚度 max max x y
压杆:强度,稳定,刚度。 压弯构件:强度,稳定,刚度。 双角钢压杆和轴对称放置的单角钢压杆绕对称轴失稳时 的换算长细比可以用简化公式(2-6a~2-9b)计算。
27
28
2.3.5 桁架节点设计
➢任务:确定节点的构造,连接焊缝及节点承载力的计 算。节点的构造应传力路线明确、简捷、制作安装方便。 ➢注意:节点板只在弦杆与腹杆之间传力,不直接参与 传递弦杆内力,弦杆若在节点板处断开,应设置拼接角 钢在两弦杆间直接传力。
杆件截面选取的原则:
承载能力高,抗弯强度大, 便于连接,用料经济通常
截面伸展 壁厚较薄
选用角钢和T型钢
外表平整
等强设计:
压杆对截面主轴具有相等或接近的稳定性。
x y (yz )
单轴对称截面绕对称轴屈曲时考 yz 虑扭转效应的换算长细比。
19
角钢杆件截面形式 20
受压弦杆:
l0 y 2l0x
( 0.5 L ) 2
(c)
P 2EI cr3 ( L)2
杆端约束越强,杆件计算长度越短,临界荷
载越高 。
7
2.3.2.1受压弦杆和单系腹杆的计算长度
➢ 1. 影响钢屋架杆端约束大小的因素:
1)杆件轴力性质 拉力使杆拉直,约束作用大,压力使杆 件弯曲,约束作用微不足道。
2)杆件线刚度大小 线刚度越大,约束作用越大,反之,约 束作用越小。
桁架杆件内力图解法的基本过程
桁架杆件内力图解法的基本过程桁架杆件内力图解法的基本原理是利用结构体系受到的杆件轴力和外力形成一个平衡力系,而且平衡力系的力矢量是一个闭合的图形。
根据力矢量的特定(力矢量包括力的方向和力的大小),根据力矢量平衡关系进行求解。
下面以一个桁架结构为例:图1桁架受到半跨单位力的作用,采用图解法求解桁架的内力系数。
首先用力的平衡方程求解桁架的支座反力;第二步:以固定的方向确定外力(包括支座反力)之间区域的编号,例子中采用顺时针方向,用英文字母定义外力区域(a,b,c,d,……);然后用数字定义桁架杆件之间区域(1,2,3,4,5,……)。
因此,不管外力还是杆件轴力,都可以用区域编号命名,如左端支座反力可以命名为m->a(顺时针),支座处斜腹杆可以命名为1->2或2->1(根据选择节点不同,按顺时针命名)。
接着,定义内力图的比例尺(即单元力的长度),按外力的方向依次序画出桁架的外力矢量图,如图2。
图中力的大小按比例尺画出,力的方向由力矢量的起点编号和终点编号定义。
例如,桁架左端外力为0.5的向下的集中力,那么在图中表示为0.5个单元力的长度,而且力的方向为a->b(向下)。
图2第三步:以节点为基准,画出该节点上的杆件的内力矢量。
对于节点I,按顺时针,节点上的作用力为a->b的外力,b->1的上弦杆内力,1->a的端竖杆内力。
按桁架的上弦杆的方向,b->1的上弦杆内力如图3黑线所示,即b->1的上弦杆内力的力矢量在黑直线上;1->a的端竖杆内力的力矢量在竖直红线上,因此黑线和红线的交点即为两个力矢量的共同端点1。
从图3可以看出,b->1的上弦杆内力为零,即该段弦杆为零杆;1->a的端竖杆内力的大小为线段ab的长度,即为0.5,而且按顺时针,1->a的端竖杆内力的方向为向上,即对着节点I,因此该内力为压力;上述结论和节点法求解的结论是一致的。
桁架的内力计算
�
平面内 计算长度: 桁架 桁架平面内 平面内计算长度:
l0 x = 0.5l
�
无论另一杆为拉杆或压杆,两杆互为支承点。 平面外 计算长度: 桁架 桁架平面外 平面外计算长度: 拉杆可作为压杆的平面外支承点, 压杆除非受力较小且不断开,否则不起侧向支点 的作用。 GB50017 规范中交叉腹杆中压杆的平面外 GB50017规范中交叉腹杆中压杆的平面外 计算长度计算公式:
4)相交另一杆受拉,此拉杆在交叉点中断但以 节点板搭接。 3N 0 loy = l 1 − ≥ 0.5l 4N
当此拉杆连续而压杆在交叉点中断但以节点板搭接。 若
N0 ≥ N
或拉杆在桁架平面外的抗弯刚度
3 N 0l 2 N EI y ≥ ( − 1) 2 4π N0
时,
l0 y = 0.5l
式中, l 为节点之间的距离, N 为所计算杆内力,N0 为相交另一杆内力,取绝对值。
2.3.2 桁架杆件的计算长度 2.3.2桁架杆件的计算长度 2.3.2 桁架杆件的计算长度 2.3.2桁架杆件的计算长度
计算长度概念:将端部有约束的压杆化作等 效的两端铰接的理想轴心压杆。 (a) (b)
Pcr1 =
Pcr 2 = Pcr 3 =
π 2 EI L2 π 2 EI
( 0.5 L ) 2
l0 y = l1 (0.75 + 0.25 N 2 N1
)
l1 = 2 d
考虑受力较小的杆件对受力大的杆件的 “援助”作用。
交叉腹杆中压杆的计算长度 2.3.2.3 2.3.2.3交叉腹杆中压杆的计算长度 2.3.2.3 交叉腹杆中压杆的计算长度 2.3.2.3交叉腹杆中压杆的计算长度
�
交叉腹杆中交叉点处构造: 1)两杆不断开。 2)一杆不断开,另一杆断开 用节点板拼接。
桁架的内力计算
图1 屋架节点荷载的计算桁架的内力计算当桁架只受节点荷载时,其杆件内力一般按节点荷载作用下的铰接桁架计算。
这样,所有杆件都是轴心受压或轴心受拉杆件,不承受弯矩。
具体计算可用数解法(节点法或截面法)、图解法(主要是节点法)、图解法(主要是节点法)、计算机法(常用有限元位移法)等。
实际桁架节点为焊缝、铆钉或螺栓连接,具有很大的刚性,接近于刚接。
按刚接节点分析桁架时,各杆件将既受力又受弯矩。
但是,通常钢桁架中各杆件截面的高度都较小,仅为其长度的1/15(腹杆)和1/10(弦杆)以下,抗弯刚度较小;因而按刚接桁架算得的杆件弯矩M 常较小,且杆件轴心力N 也与桁架计算结果相差很小。
故一般情况都按铰接桁架计算。
对少数荷载较大的重型桁架,例如铁路桥梁等,当杆件截面高度超过其长度的1/10时,次应力份额逐渐增大,可达10~30%或以上,必要时应作计算。
目前用计算机计算刚接桁架已无困难。
据上所述,檩条或大型屋面板等集中荷载只作用在屋架节点处时,可按铰接桁架承受节点荷载计算杆件内力,例如图1。
这时节点荷载值即为檩条或边肋处的集中荷载值,按式上一小节公式,即:100011122F qA qbd d F qA qb d d d F qA qb == ==++== 来计算。
该图中檐口檩条集中荷载F 0在桁架计算时可归并入F 1内(或端节间按伸臂梁而将F 0(1+d 1/ d )并入F 1,-F 0 d 1/d 并入第二节点F );另外在计算上弦杆的支座截面时,除考虑轴心压力外还考虑偏心弯矩M e =F 0 d 1。
当檩条或屋面板等布置未与屋架节点相配合,屋面板没有边肋而是全宽度支图2 承受节间荷载的屋架 承于屋架上弦(上弦均布荷载)、或其它特殊情况时,桁架将受节间荷载,例如图1。
这时桁架内力计算可按下列近似方法:(1)把所有节间内荷载按该段节间为简支的支座反力关系分配到相邻两个节点上作为节点荷载,据此按铰接桁架计算杆件的轴心力。
四、平面桁架的内力计算
三、平面简单桁架的内力计算
2.平面简单桁架
以一个铰链三角形框架为基础,每增一个节点需增 加二根杆件,如此构成的无多余杆的平面桁架。
总杆数 m
总节点数 n
m 3 2(n 3)
m 2n 3
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
m 2n 3 平面复杂(超静定)桁架:如果从桁架中抽去某几根杆 件,桁架不会活动变形。
a
C
D
F3
FC
Fx 0, F3 FAx F1 F2 cos 45 0 Fy 0, FAy FC F2 cos 45 0 M C F 0, F1 a FAy a 0
求解得 F1 2 kN F2 2 2 kN F3 2 kN
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
n
FR Fi i 1
—— 力系的主矢
第三章 平面任意力系和平面平行力系
n
M O
M O (Fi )
i 1
—— 力系对简化中心的主矩
本章小结 3、平面任意力系向一点简化的结果分析 (1)主矢不等于零,即 FR’ ≠ 0
主矩 合成结果
说明
MO = 0
合力 FR’
此力为原力系的合力,合力的 作用线通过简化中心。
这就是桁架结构广泛应用的主要原因 同时应注意:实际桁架和理想桁架是有差别 的,对重要的建筑物上采用的桁架结构,还需 考虑节点刚性、非节点荷载和节点偏心等造成 的影响。
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算 (三) 计算平面简单桁架杆件内力的方法
1、节点法—— 应用汇交力系平衡方程,逐一地选取平面简
结构力学 静定桁架的内力计算
F Ay= 2 F P
(b)
参照图(b)计算如下:
见图(b),未知杆力在隔离体上的一 般表示。
MD 0
F NG 1 h C(F P bF 2 P2 b2 F P2 b )
由几何关系得:h 2 b 代入上式,
5
FNGC 5FP
MG 0
FNE Db 2(2FPF 2P)b3FP
图(d):
在反对称荷载下,桁架应具有反对称 的内力分布,即在桁架的对称轴两侧 的对称位置上的杆件,应有大小相等、 性质相反的轴力。
考查结点E:见图(f) EJ为零杆,继而JA、 JB为零杆。
(f )
§6.3 桁架内力计算的截面法
➢截面法:用一个假想的截面,将桁架 截成两部分,取其任一部分为隔离体 ,建立该隔离体的平衡方程,求解杆 轴力的方法。
利用该结点的对称性,且由水平方 向的投影方程得:
FNa
2 2 FP
(a)
§6.4 组合结构的内力分析
❖既有梁式杆又有桁架杆的结构称作 组合结构。见图6-4-1所示。
图6-4-1
组合结构内力计算的一般途径是: 先计算桁架杆,再计算梁式杆。
例6-4-1
计算图(a)所示组合结构,求出二力 杆中的轴力,并作梁式杆的弯矩图。
D
F NDC
F NGE
G
A
K
F NKH
FP FP
(c)
由图(c)所示截面左侧隔离体求出截面
截断的三根杆的轴力后,即可依次按
结点法求出所有杆的轴力。
❖ 方法1:
见图(d) ,由结点H的结点单杆 EH上的轴力,再由结点E(当 杆EH轴力已知时,杆a既是结 点E上的结点单杆)可求出杆a 的轴力。
工程力学第5节 平面静定桁架的内力计算
F1 sin 30 G 0
n
Fiy 0
i1
F1 cos 30 F2 0
得 F1 40 kN(拉) F2 34.6 kN(压)
节点 B:
n
Fix 0
i1 n
Fiy 0
i1
F2 F6 0
得
F3 G 0
F6 34.6 kN(压) F3 20 kN(拉)
i1 n
Fiy 0
i1
FS1 sin 60 FS4 sin 60 0 FS1 cos 60 FS4 cos 60 FS3 0
解得
FS4 FS1 2F(压) 校核计算结果
将各杆内力计算结果列表如下
杆号
1
2
3
内 力 2F 1.73F 2F
半部分为研究对象进行受力分析,列平衡方程:
n
M E (Fi ) 0
FS1 1sin 60 FAy 1 0
i1
n
M D (Fi ) 0
i1 n
Fiy 0
i1
F1
1 2
FS3
1
sin
60
FAy
2 3
0
FAy FS2 sin 60 F1 0
• 因为只有三个独立平衡方程,因此作假想截面时, 一般每次最多只能截断三根杆件。
注意
• 由于平面汇交力系只能列出两个独立平衡方程,所 以应用节点法必须从只含两个未知力大小的节点开 始计算。
例2-15 平面桁架的受力及尺寸如图所示, 试求桁 架各杆的内力。
解 1)先求支座反力:以整体桁架为研究对象进行
第章内力和内力图(桁架内力计算)_图文
例题 6-7 右图所示为一受满布均布荷载的简
支梁,试作剪力图和弯矩图。 解:此梁的支座约束力根 据对称性可知:
FA=FB=ql/2 梁的剪力方程和弯矩 方程分别为
FS(x)=ql/2-qx (0<x<l)
M(x)=qlx/2-qx2/2 (0≤x ≤ l)
例题 6-8 图示为一受集中荷载
梁。试作其剪力图和弯矩图。 解:根据整体平衡,求 得支座约束力
注意: (1) 载荷改变后,“零杆”可以变为非零杆。因此,为
了保证结构的几何形状在任何载荷作用下都不会 改变,零杆不能从桁架中除去。 (2) 实际上,零杆的内力也不是零,只是较小而已。 在桁架计算中先已作了若干假设,在此情况下, 零杆的内力才是零。 (3) 首先判断出零杆,对简化桁架计算是有益的。
杆件所受外力经简化后,主要是作用在垂直 于杆轴线平面内的力偶,其作用使杆发生扭转。
如上图所示,杆件在横向平面内的外力偶作 用下发生扭转变形。其侧面上原有的直线 ab 变为 螺旋线 ab′, 诸横截面绕杆的轴线相对转动,例如 B截面相对于A截面转过一角度∠bO'b′。
为了分析横截面上的内力,取m -m截面。
解:取轴x 与梁的轴线重 合,坐标原点取在梁的左 端。以坐标 x 表示横截面 的位置。只要求得x 处横 截面上的剪力和弯矩,即 可画出其内力图。
例题 6-6
根据左段分离体的平衡 条件便可列出剪力方程和弯 矩方程。有
FS(x)= - qx (0≤x<l)
M (x)= - q x2/2 (0≤x<l)
例题 6-4
分别作截面1-1、 2-2、3-3,如右 图所示。 考虑1-1截面 1-1截面:
得 MA + T1 = 0 T1=MA= -2 kN·m
桁架的内力计算
好运动者健,好思考者智,好助人
11
者乐,好读书者博,好旅游者悦,
2.3.2.2 变内力压杆的计算长度
平面内计算长度:
l0x d
平面外计算长度:
l0y l1(0.75 0.25 N2 N1)
l1 2d
考虑受力较小的杆件对受力大的杆件的“援助”作用。
好运动者健,好思考者智,好助人
12
者乐,好读书者博,好旅游者悦,
简化计算:
M0为将上弦节间视为简支梁所得跨中弯矩。
好运动者健,好思考者智,好助人
6
者乐,好读书者博,好旅游者悦,
2.3.2桁架杆件的计算长度
计算长度概念:将端部有约束的压杆化作等 效的两端铰接的理想轴心压杆。
P 2EI cr1
(a)
L2
P 2EI
(b) cr2
( 0.5 L ) 2
(c)
P 2EI cr3 ( L ) 2
刚度要求:
[]
容许长细比,查规范(GB50017)。
好运动者健,好思考者智,好助人
18
者乐,好读书者博,好旅游者悦,
2.3.3杆件截面型式
杆件截面选取的原则:
承载能力高,抗弯强度大, 便于连接,用料经济通常 选用角钢和T型钢
截面伸展 壁厚较薄 外表平整
等强设计: 压杆对截面主轴具有相等或接近的稳定性。
3)与所分析杆直接刚性相连的杆件作用大, 较远的杆件作用小。
好运动者健,好思考者智,好助人
8
者乐,好读书者博,好旅游者悦,
➢ 2. 杆件计算长度:
桁架平面内计算长度 l0x
弦杆
支座斜杆 支座竖杆
l0x l (节件长度)
中间腹杆 l0x 0.8l
第6章内力和内力图(桁架内力计算)
工程力学教程电子教案
内力和内力图
13
例题 6-1
解:先取整体为研究对象,受力如图所示。由平衡方 先取整体为研究对象 受力如图所示。 受力如图所示 程 ∑Fx = 0,FAx + FE = 0
∑Fy = 0, FB + FAy − FC = 0 ∑MA(F) = 0,
联立求解得 FAx= -2 kN, FB = 2 kN
工程力学教程电子教案
内力和内力图
32
内力的大小及指向只有将物体假想地截开后才 能确定。 能确定。
拉压杆横截面上的内力,由任一横截面 拉压杆横截面上的内力,由任一横截面(m-m) 一边分离体的平衡条件可知, 一边分离体的平衡条件可知,是与横截面垂直的 分布力,此分布内力的合力称为轴力。 分布力,此分布内力的合力称为轴力。用符号 FN 表示。 表示。
工程力学教程电子教案
内力和内力图
20
例题 6-2
由平衡方程
先取整体为研究对象, 作受力图。 解:先取整体为研究对象 作受力图。
∑Fx = 0,FAx + FE = 0 ∑Fy = 0, FB + FAy − FC = 0 ∑MA(F) = 0,
− FC × a − FE × a + FB × 3a = 0
工程力学教程电子教案
内力和内力图
12
6.1.3 平面简单桁架的内力计算 1. 节点法 取节点为研究对象来求解桁架杆件的内力。 取节点为研究对象来求解桁架杆件的内力。
例题 6-1
如图平面简单桁架,已知铅垂力 如图平面简单桁架,已知铅垂力FC= 4 kN,水 , 平力F 平力 E =2 kN。求各杆内力。 。求各杆内力。
− FC × a − FE × a + FB × 3a = 0
第二章 杆件的内力与内力图
第二章 杆件的内力与内力图§2-1 杆件内力的概念与杆件变形的基本形式一、杆件的内力与内力分量内力是工程力学中一个非常重要的概念。
内力从广义上讲,是指杆件内部各粒子之间的相互作用力。
显然,无荷载作用时,这种相互作用力也是存在的。
在荷载作用下,杆件内部粒子的排列发生了改变,这时粒子间相互的作用力也发生了改变。
这种由于荷载作用而产生的粒子间相互作用力的改变量,称为附加内力,简称内力。
需要指出的是:受力杆件某横截面上的内力实际上是分布在截面上的各点的分布力系,而工程力学分析杆件某截面上的内力时,一般将分布内力先表示成分布内力向截面的形心简化所得的主矢分量和主矩分量进行求解,而内力的具体分布规律放在下一步(属于本书第二篇中的内容)考虑。
受力杆件横截面上可能存在的内力分量最多有四类六个:轴力N F 、剪力y Q F )(和z Q F )(、扭矩x M 、弯矩y M 和z M 。
轴力N F 是沿杆件轴线方向(与横截面垂直)的内力分量。
剪力y Q F )(和z Q F )(是垂直于杆件轴线方向(与横截面相切)的内力分量。
扭矩xM 是力矩矢量沿杆件轴线方向的内力矩分量。
弯矩y M 和z M 是力矩矢量与杆件轴线方向垂直的内力矩分量。
二、杆件变形的基本形式实际的构件受力后将发生形状、尺寸的改变,构件这种形状、尺寸的改变称为变形。
杆件受力变形的基本形式有四种:轴向拉伸和压缩、扭转、剪切、弯曲。
1、轴向拉伸和压缩变形轴向拉伸和压缩简称为轴向拉压。
其受力特点是:外力沿杆件的轴线方向。
其变形特点是:拉伸——沿轴线方向伸长而横向尺寸缩小,压缩——沿轴线方向缩短而横向尺寸增大,如图4-1所示。
轴向受拉的杆件称为拉杆,轴向受压的杆件压杆。
图2-1 图2-2 土木工程结构中的桁架,由大量的拉压杆组成,如图2-2所示。
内燃机中的连杆、压缩机中的活塞杆等均属此类。
它们都可以简化成图2-1所示的计算简图。
2、剪切变形工程中的拉压杆件有时是由几部分联接而成的。
桁架杆件轴力计算
斜腹杆3、4轴力
截面2-2处两斜杆所产生的力如图所示
斜杆所受轴力与倾斜方向有关:杆3受压,杆4受拉 斜杆以锐角逆时针旋转于竖杆重合,斜杆y方向分力与 剪力反号 , F3y=-剪力/2 F4y=剪力/2
半斜杆5轴力
半斜杆5应按节点法计算; Fy=0; N5=-F7y
杆7内力计算与杆3、4方法相同 F7y=3p/4
截取截面,如图)
ΣMc=0: Fn1*6+3p*8-p/2*8-p*4=0
Fn1=-8/3p
以此类推
Fn2=8/3p
斜腹杆3、4轴力
K型杆: 无荷载作用时,两斜杆轴力大小相等,方向相 反;对称结构对称荷载作用下,两斜杆为轴力 为零
斜腹杆3、4轴力
计算3、4杆时: 先把桁架以2-2截面截取,左截面处剪力与同样荷载作用
桁架三种杆件的轴力计算
弦杆、斜腹杆、横腹杆
A
B
一、计算支座反力
ΣA=0:
-(P*4+P*8+p*12+P*16+P*20+P/2*24)+Fb*24=0
Fb=3p
ΣFy=0:
Fa=3p
弦杆 1、2轴力
截取时,保证一个方程解一个未知量,多余杆件可汇集于一
个交点。
弦杆 1、2计算时的普遍技巧,即为图上所截截面。(以弯曲线
竖杆6轴力
8Leabharlann 杆6依然用节点法: Fy=0: N6=-(F4y+F8y)
对称结构在对称荷载作用下,4杆8杆轴力 相同 N6=-p/2