2018年湖北省中考数学试卷
2018年湖北省黄冈市中考数学试卷(答案+解析)
2018年湖北省黄冈市中考数学试卷一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣23的相反数是( ) A .﹣32B .﹣23C .23D .322.(3分)下列运算结果正确的是( ) A .3a 3•2a 2=6a 6 B .(﹣2a )2=﹣4a 2 C .tan 45°=22 D .cos 30°= 323.(3分)函数y =x +1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <14.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°5.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .2 36.(3分)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1 B .2 C .0或2 D .﹣1或2二、填空题(本题共8小题,每题小3分,共24分 7.(3分)实数16800000用科学记数法表示为 . 8.(3分)因式分解:x 3﹣9x = .9.(3分)化简( 2﹣1)0+(12)﹣2﹣ 9+ −273= .10.(3分)若a ﹣1a= 6,则a 2+1a2值为 .11.(3分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = .12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 .13.(3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计).14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y =ax 2+bx +1中a ,b 的值,则该二次函数图象恰好经过第一、二、四象限的概率为 .三、解答题(本题共10题,满分78分(x -2)≤815.(5分)求满足不等式组 x −3(x −2)≤812x −1<3−32x 的所有整数解.16.(6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子,A 型粽子28元/千克,B 型粽子24元/千克,若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”、C 表示“一般”,D 表示“不喜欢”.(1)被调查的总人数是 人,扇形统计图中C 部分所对应的扇形圆心角的度数为 ; (2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有 人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.18.(7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C . (1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.19.(6分)如图,反比例函数y =kx(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.20.(8分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(8分)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.23.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=x+4(1≤x≤8,x为整数),每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.2018年湖北省黄冈市中考数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分.每小题给出的4个选项中,有且只有一个案是正确的) 1.(3分)﹣23的相反数是( ) A .﹣32B .﹣23C .23D .32【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:﹣23的相反数是23. 故选:C .2.(3分)下列运算结果正确的是( ) A .3a 3•2a 2=6a 6 B .(﹣2a )2=﹣4a 2C .tan 45°=22 D .cos 30°= 32【分析】根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算. 【解答】解:A 、原式=6a 5,故本选项错误; B 、原式=4a 2,故本选项错误; C 、原式=1,故本选项错误; D 、原式=32,故本选项正确. 故选:D .3.(3分)函数y =x +1x−1中自变量x 的取值范围是( ) A .x ≥﹣1且x ≠1 B .x ≥﹣1 C .x ≠1 D .﹣1≤x <1【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到: x +1≥0x −1≠0,解得x ≥﹣1且x ≠1,故选:A .4.(3分)如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°【分析】根据线段垂直平分线的性质得到DA =DC ,根据等腰三角形的性质得到∠DAC =∠C ,根据三角形内角和定理求出∠BAC ,计算即可.【解答】解:∵DE 是AC 的垂直平分线, ∴DA =DC ,∴∠DAC =∠C =25°, ∵∠B =60°,∠C =25°, ∴∠BAC =95°,∴∠BAD =∠BAC ﹣∠DAC =70°,故选:B .5.(3分)如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .2 3【分析】根据直角三角形的性质得出AE =CE =5,进而得出DE =3,利用勾股定理解答即可. 【解答】解:∵在Rt △ABC 中,∠ACB =90°,CE 为AB 边上的中线,CE =5, ∴AE =CE =5, ∵AD =2, ∴DE =3,∵CD 为AB 边上的高,∴在Rt △CDE 中,CD = CE 2−DE 2= 52−32=4,故选:C .6.(3分)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为( ) A .﹣1B .2C .0或2D .﹣1或2【分析】利用二次函数图象上点的坐标特征找出当y =1时x 的值,结合当a ≤x ≤a +1时函数有最小值1,即可得出关于a 的一元一次方程,解之即可得出结论. 【解答】解:当y =1时,有x 2﹣2x +1=1, 解得:x 1=0,x 2=2.∵当a ≤x ≤a +1时,函数有最小值1, ∴a =2或a +1=0, ∴a =2或a =﹣1,故选:D .二、填空题(本题共8小题,每题小3分,共24分7.(3分)实数16800000用科学记数法表示为 1.68×107 .【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【解答】解:16800000=1.68×107.故答案为:1.68×107.8.(3分)因式分解:x 3﹣9x = x (x +3)(x ﹣3) .【分析】先提取公因式x ,再利用平方差公式进行分解. 【解答】解:x 3﹣9x , =x (x 2﹣9), =x (x +3)(x ﹣3).9.(3分)化简( 2﹣1)0+(12)﹣2﹣ 9+ −273= ﹣1 .【分析】直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案. 【解答】解:原式=1+4﹣3﹣3 =﹣1.故答案为:﹣1.10.(3分)若a ﹣1a= 6,则a 2+1a值为 8 .【分析】根据分式的运算法则即可求出答案.【解答】解:∵a ﹣1a= 6 ∴(a ﹣1a )2=6∴a 2﹣2+1a=6∴a 2+1a2=8故答案为:811.(3分)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = 2 3 .【分析】连接BD .在Rt △ADB 中,求出AB ,再在Rt △ACB 中求出AC 即可解决问题; 【解答】解:连接BD .∵AB 是直径, ∴∠C =∠D =90°,∵∠CAB =60°,AD 平分∠CAB , ∴∠DAB =30°,∴AB =AD ÷cos 30°=4 3, ∴AC =AB •cos 60°=2 3,故答案为2 3.12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x 2﹣10x +21=0的根,则三角形的周长为 16 . 【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长. 【解答】解:解方程x 2﹣10x +21=0得x 1=3、x 2=7, ∵3<第三边的边长<9, ∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.13.(3分)如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 20 cm (杯壁厚度不计).【分析】将杯子侧面展开,建立A 关于EF 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=A′D2+BD2=162+122=20(cm).故答案为20.14.(3分)在﹣4、﹣2,1、2四个数中、随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图象恰好经过第一、二、四象限的概率为16.【分析】画树状图展示所有12种等可能的结果数,根据二次函数的性质,找出满足a>0,b<0的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,满足a>0,b<0的结果数为4,但a=1,b=﹣2和a=2,b=﹣2时,抛物线不过第四象限,所以满足该二次函数图象恰好经过第一、二、四象限的结果数为2,所以该二次函数图象恰好经过第一、二、四象限的概率=212=16.故答案为16.三、解答题(本题共10题,满分78分(x-2)≤815.(5分)求满足不等式组x−3(x−2)≤812x−1<3−32x的所有整数解.【分析】先求出不等式组的解集,然后在解集中找出所有的整数即可.【解答】解:解不等式x﹣3(x﹣2)≤8,得:x≥﹣1,解不等式12x﹣1<3﹣32x,得:x<2,则不等式组的解集为﹣1≤x<2,所以不等式组的整数解为﹣1、0、1.16.(6分)在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得y=2x−2028x+24y=2560,解得x=40y=60.答:订购了A型粽子40千克,B型粽子60千克.17.(8分)央视“经典咏流传”开播以来受到社会广泛关注我市某校就“中华文化我传承﹣﹣地方戏曲进校园”的喜爱情况进行了随机调查.对收集的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A表示“很喜欢”,B表示“喜欢”、C表示“一般”,D表示“不喜欢”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有180人;(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.【分析】(1)由A类别人数及其所占百分比可得总人数,用360°乘以C部分人数所占比例可得;(2)总人数减去其他类别人数求得B的人数,据此即可补全条形图;(3)用总人数乘以样本中A类别人数所占百分比可得;(4)用树状图或列表法即可求出抽到性别相同的两个学生的概率.【解答】解:(1)被调查的总人数为5÷10%=50人,扇形统计图中C部分所对应的扇形圆心角的度数为360°×30=216°,50故答案为:50、216°;(2)B类别人数为50﹣(5+30+5)=10人,补全图形如下:(3)估计该校学生中A类有1800×10%=180人,故答案为:180;所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8,∴被抽到的两个学生性别相同的概率为820=25.18.(7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C . (1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.【分析】(1)连接OB ,如图,根据圆周角定理得到∠ABD =90°,再根据切线的性质得到∠OBC =90°,然后利用等量代换进行证明;(2)证明△AOP ∽△ABD ,然后利用相似比求BP 的长. 【解答】(1)证明:连接OB ,如图, ∵AD 是⊙O 的直径, ∴∠ABD =90°, ∴∠A +∠ADB =90°, ∵BC 为切线, ∴OB ⊥BC , ∴∠OBC =90°,∴∠OBA +∠CBP =90°, 而OA =OB , ∴∠A =∠OBA , ∴∠CBP =∠ADB ; (2)解:∵OP ⊥AD , ∴∠POA =90°, ∴∠P +∠A =90°, ∴∠P =∠D , ∴△AOP ∽△ABD , ∴AP AD =AO AB,即1+BP 4=21,∴BP =7.19.(6分)如图,反比例函数y =k x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k 的值与B 点的坐标;(2)在平面内有点D ,使得以A ,B ,C ,D 四点为顶点的四边形为平行四边形,试写出符合条件的所有D 点的坐标.【分析】(1)将A 点的坐标代入反比例函数y =kx求得k 的值,然后将x =6代入反比例函数解析式求得相应的y 的值,即得点B的坐标;(2)使得以A 、B 、C 、D 为顶点的四边形为平行四边形,如图所示,找出满足题意D 的坐标即可. 【解答】解:(1)把点A (3,4)代入y =kx (x >0),得k =xy =3×4=12,故该反比例函数解析式为:y =12x .∵点C (6,0),BC ⊥x 轴,∴把x =6代入反比例函数y =12x ,得 y =122=6.则B (6,2).综上所述,k 的值是12,B 点的坐标是(6,2).(2)①如图,当四边形ABCD 为平行四边形时,AD ∥BC 且AD =BC . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y A ﹣y D =y B ﹣y C 即4﹣y D =2﹣0,故y D =2. 所以D (3,2).②如图,当四边形ACBD ′为平行四边形时,AD ′∥CB 且AD ′=CB . ∵A (3,4)、B (6,2)、C (6,0),∴点D 的横坐标为3,y D ′﹣y A =y B ﹣y C 即y D ﹣4=2﹣0,故y D ′=6. 所以D ′(3,6).③如图,当四边形ACD ″B 为平行四边形时,AC =BD ″且AC ∥BD ″. ∵A (3,4)、B (6,2)、C (6,0),∴x D ″﹣x B =x C ﹣x A 即x D ″﹣6=6﹣3,故x D ″=9. y D ″﹣y B =y C ﹣y A 即y D ″﹣2=0﹣4,故y D ″=﹣2. 所以D ″(9,﹣2).综上所述,符合条件的点D 的坐标是:(3,2)或(3,6)或(9,﹣2).20.(8分)如图,在▱ABCD 中,分别以边BC ,CD 作等腰△BCF ,△CDE ,使BC =BF ,CD =DE ,∠CBF =∠CDE ,连接AF ,AE .(1)求证△ABF ≌△EDA ;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【分析】(1)想办法证明:AB=DE,FB=AD,∠ABF=∠ADE即可解决问题;(2)只要证明FB⊥AD即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠ABC=∠ADC,∵BC=BF,CD=DE,∴BF=AD,AB=DE,∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,∴∠ADE=∠ABF,∴△ABF≌△EDA.(2)证明:延长FB交AD于H.∵AE⊥AF,∴∠EAF=90°,∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠F AH=90°,∴∠F AH+∠AFB=90°,∴∠AHF=90°,即FB⊥AD,∵AD∥BC,∴FB⊥BC.21.(7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.【分析】(1)在直角三角形ABC 中,利用锐角三角函数定义求出AC 的长即可; (2)设CD =2x ,则DE =x ,CE = 3x ,构建方程即可解决问题;【解答】解:(1)在直角△ABC 中,∠BAC =90°,∠BCA =60°,AB =60米,则AC =AB tan 60°=3=20 3(米)答:坡底C 点到大楼距离AC 的值是20 3米.(2)设CD =2x ,则DE =x ,CE = 3x , 在Rt △BDF 中,∵∠BDF =45°, ∴BF =DF ,∴60﹣x =20 3+ 3x , ∴x =40 3﹣60, ∴CD =2x =80 3﹣120, ∴CD 的长为(80 3﹣120)米.22.(8分)已知直线l :y =kx +1与抛物线y =x 2﹣4x . (1)求证:直线l 与该抛物线总有两个交点;(2)设直线l 与该抛物线两交点为A ,B ,O 为原点,当k =﹣2时,求△OAB 的面积. 【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A 、B 的坐标,再求出直线y =﹣2x +1与x 轴的交点C ,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立 y =kx +1y =x 2−4x化简可得:x 2﹣(4+k )x ﹣1=0, ∴△=(4+k )2+4>0,故直线l 与该抛物线总有两个交点; (2)当k =﹣2时, ∴y =﹣2x +1过点A 作AF ⊥x 轴于F ,过点B 作BE ⊥x 轴于E ,∴联立 y =x 2−4x y =−2x +1解得: x =1+ 2y =−1−2 2或x =1− 2y =2 2−1∴A (1﹣ 2,2 2﹣1),B (1+ 2,﹣1﹣2 2) ∴AF =2 2﹣1,BE =1+2 2易求得:直线y =﹣2x +1与x 轴的交点C 为(12,0)∴OC =12∴S △AOB =S △AOC +S △BOC =12OC •AF +12OC •BE =12OC (AF +BE )=12×12×(2 2﹣1+1+2 2)= 223.(9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y (万件)与月份x (月)的关系为:y =x +4(1≤x ≤8,x 为整数),每件产品的利润z (元)与月份x (月)的关系如下表:(1)请你根据表格求出每件产品利润z (元)与月份x (月)的关系式;(2)若月利润w (万元)=当月销售量y (万件)×当月每件产品的利润z (元),求月利润w (万元)与月份x (月)的关系式; (3)当x 为何值时,月利润w 有最大值,最大值为多少?【分析】(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决; (2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.【解答】解;(1)当1≤x ≤9时,设每件产品利润z (元)与月份x (月)的关系式为z =kx +b ,k +b =192k +b =18,得 k =−1b =20,即当1≤x ≤9时,每件产品利润z (元)与月份x (月)的关系式为z =﹣x +20, 当10≤x ≤12时,z =10, 由上可得,z ={−x +20(1≤x ≤9,x 取整数)10(10≤x ≤12,x 取整数);(2)当1≤x ≤8时,w =(x +4)(﹣x +20)=﹣x 2+16x +80, 当x =9时,w =(﹣9+20)×(﹣9+20)=121, 当10≤x ≤12时,w =(﹣x +20)×10=﹣10x +200, 由上可得,w ={−x 2+16x +80(1≤x ≤8,x 取整数)121(x =9)−10x +200(10≤x ≤12,x 取整数); (3)当1≤x ≤8时,w =﹣x 2+16x +80=﹣(x ﹣8)2+144, ∴当x =8时,w 取得最大值,此时w =144;当x =9时,w =121,当10≤x ≤12时,w =﹣10x +200,则当x =10时,w 取得最大值,此时w =100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元. 24.(14分)如图,在直角坐标系xOy 中,菱形OABC 的边OA 在x 轴正半轴上,点B ,C 在第一象限,∠C =120°,边长OA =8.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A 出发沿边AB ﹣BC ﹣CO 以每秒2个单位长的速度作匀速运动,过点M 作直线MP 垂直于x 轴并交折线OCB 于P ,交对角线OB 于Q ,点M 和点N 同时出发,分别沿各自路线运动,点N 运动到原点O 时,M 和N 两点同时停止运动. (1)当t =2时,求线段PQ 的长; (2)求t 为何值时,点P 与N 重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.【分析】(1)解直角三角形求出PM ,QM 即可解决问题; (2)根据点P 、N 的路程之和=24,构建方程即可解决问题,; (3)分四种情形考虑问题即可解决问题; 【解答】解:(1)当t =2时,OM =2, 在Rt △OPM 中,∠POM =60°, ∴PM =OM •tan 60°=2 3, 在Rt △OMQ 中,∠QOM =30°, ∴QM =OM •tan 30°=2 33,∴PQ =CN ﹣QM =2 3﹣2 33=4 33.(2)由题意:8+(t ﹣4)+2t =24, 解得t =203.(3)①当0<t <4时,S =12•2t •4 3=4 3t .②当4≤t <203时,S =12×[8﹣(t ﹣4)﹣(2t ﹣8)]×4 3=40 3﹣6 3t . ③当203<t <8时.S =12×[(t ﹣4)+(2t ﹣8)﹣8]×4 3=6 3t ﹣40 3.④当8≤t ≤12时,S =S菱形ABCO ﹣S △AON ﹣S △ABP ﹣S △PNC =32 3﹣12•(24﹣2t )•4 3﹣12•[8﹣(t ﹣4)]•4 3﹣12•(t ﹣4)•32•(2t ﹣16)=﹣ 32t 2+12 3t ﹣56 3.。
【数学】2018年湖北省黄石市中考真题(解析版)
2018年湖北省黄石市中考数学真题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π2.(3分)太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×108C.0.696×107D.6.96×1053.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列计算中,结果是a7的是()A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a45.(3分)如图,该几何体的俯视图是()A.B.C.D.6.(3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)7.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.(3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.9.(3分)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B 两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<410.(3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD 沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.二、填空题(本大题给共6小题,每小题3分,共18分)11.(3分)分解因式:x3y﹣xy3=.12.(3分)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为13.(3分)分式方程=1的解为14.(3分)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是米.(结果保留根号)15.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为16.(3分)小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|18.(7分)先化简,再求值:.其中x=sin60°.19.(7分)解不等式组,并求出不等式组的整数解之和.20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240D x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.【参考答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.D【解析】A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.2.B【解析】696000千米=696000000米=6.96×108米,故选:B.3.C【解析】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.B【解析】A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=;故选:B.5.A【解析】从几何体的上面看可得,故选:A.6.C【解析】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.7.A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.D【解析】连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.9.B【解析】解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.10.A【解析】∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x ﹣18,故选项A正确;故选:A.二、填空题(本大题给共6小题,每小题3分,共18分)11.xy(x+y)(x﹣y)【解析】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).12.4π【解析】∵∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的内切圆的半径==2,∴△ABC内切圆的周长=π•22=4π.故答案为4π.13.x=0.5【解析】方程两边都乘以2(x2﹣1)得,8x+2﹣5x﹣5=2x2﹣2,解得x1=1,x2=0.5,检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,当x=1时,x﹣1=0,所以x=0.5是方程的解,故原分式方程的解是x=0.5.故答案为:x=0.514.100(1+)【解析】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tan A=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).15.【解析】根据题意列表得:23452﹣﹣﹣(3,2)(4,2)(5,2)3(2,3)﹣﹣﹣(4,3)(5,3)4(2,4)(3,4)﹣﹣﹣(5,4)5(2,5)(3,5)(4,5)﹣﹣﹣由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为=,故答案为:.16.90【解析】由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3﹣1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据题意得:19+3x﹣y=﹣6,∴y=3x+25.∵x、y、(25﹣x﹣y)均非负,∴x=0,y=25,∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).故答案为:90.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.解:原式=+1++2﹣=+1++2﹣=4﹣.18.解:原式=•=,当x=sin60°=时,原式==.19.解:解不等式(x+1)≤2,得:x≤3,解不等式≥,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.20.解:(1)由题意得:△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1,即实数m的取值范围是m<1;(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.21.(1)解:连接DB,如图,∵∠BCD+∠DEB=90°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.22.解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×=120°,故答案为:120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.23.解:(1)∵D市运往B市x吨,∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,故答案为:x﹣60、300﹣x、260﹣x;(2)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(3)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤,∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.24.(1)证明:∵EF∥BC,∴△AEF∽△ABC,∴=,∴=()2=•=;(2)解:若EF不与BC平行,(1)中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴=,∴==;(3)解:连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,则MN分别是BC、AC的中点,∴MN∥AB,且MN=AB,∴==,且S△ABM=S△ACM,∴=,设=a,由(2)知:==×=,==a,则==+=+a,而==a,∴+a=a,解得:a=,∴=×=.25.解:(1)将点(3,1)代入解析式,得:4a=1,解得:a=,所以抛物线解析式为y=(x﹣1)2;(2)由(1)知点D坐标为(1,0),设点C的坐标为(x0,y0),(x0>1、y0>0),则y0=(x0﹣1)2,如图1,过点C作CF⊥x轴,∴∠BOD=∠DFC=90°、∠DCF+∠CDF=90°,∵∠BDC=90°,∴∠BDO+∠CDF=90°,∴∠BDO=∠DCF,∴△BDO∽△DCF,∴=,∴==,解得:x0=17,此时y0=64,∴点C的坐标为(17,64).(3)①证明:设点P的坐标为(x1,y1),点Q为(x2,y2),(其中x1<1<x2,y1>0,y2>0),由,得:x2﹣(4k+2)x+4k﹣15=0,∴,∴(x1﹣1)(x2﹣1)=﹣16,如图2,分别过点P、Q作x轴的垂线,垂足分别为M、N,则PM=y1=(x1﹣1)2,QN=y2=(x2﹣1)2,DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1,∴PM•QN=DM•DN=16,∴=,又∠PMD=∠DNQ=90°,∴△PMD∽△DNQ,∴∠MPD=∠NDQ,而∠MPD+∠MDP=90°,∴∠MDP+∠NDQ=90°,即∠PDQ=90°;②过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,4),所以DG=4,∴S△PDQ=DG•MN=×4×|x1﹣x2|=2=8,∴当k=0时,S△PDQ取得最小值16.。
2018年湖北省十堰市中考数学试卷(附答案解析版)
2018年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
1.(3.00分)(2018•十堰)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)22.(3.00分)(2018•十堰)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62° B.108°C.118°D.152°3.(3.00分)(2018•十堰)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C. D.4.(3.00分)(2018•十堰)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2 D.6y2÷2y=3y5.(3.00分)(2018•十堰)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,246.(3.00分)(2018•十堰)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.(3.00分)(2018•十堰)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,物品的价格为y 元,可列方程(组)为()A.8 B.8C.8D.8=8.(3.00分)(2018•十堰)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.210B. 1C.52D.519.(3.00分)(2018•十堰)如图,扇形OAB中,∠AOB=100°,OA=12,C 是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.618D.6 610.(3.00分)(2018•十堰)如图,直线y=﹣x与反比例函数y=的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y=的图象于另一点C,则的值为()A.1:3 B.1:22 C.2:7 D.3:10二、填空题(本题共6小题,每小题3分,共18分)11.(3.00分)(2018•十堰)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为.12.(3.00分)(2018•十堰)函数的自变量x的取值范围是.13.(3.00分)(2018•十堰)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为.14.(3.00分)(2018•十堰)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※ =52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为.15.(3.00分)(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.16.(3.00分)(2018•十堰)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=62,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.三、解答题(本题有9个小题,共72分)17.(5.00分)(2018•十堰)计算:|﹣|﹣2﹣1+1218.(6.00分)(2018•十堰)化简:11﹣12÷212 2 119.(7.00分)(2018•十堰)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东 0°方向上的B处,求此时船距灯塔的距离(参考数据:2≈1.414,≈1.732,结果取整数).20.(9.00分)(2018•十堰)今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:根据以上信息,解答以下问题:(1)表中的x= ;(2)扇形统计图中m= ,n= ,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1,a2表示)和两名女生(用b1,b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.21.(7.00分)(2018•十堰)已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.22.(8.00分)(2018•十堰)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?23.(8.00分)(2018•十堰)如图,△ABC中,AB=AC,以AB为直径的⊙O 交BC于点D,交AC于点E,过点D作FG⊥AC于点F,交AB的延长线于点G.(1)求证:FG 是⊙O 的切线;(2)若tanC=2,求的值.24.(10.00分)(2018•十堰)已知正方形ABCD 与正方形CEFG ,M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG 绕点C 旋转,使D ,E ,F 三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF 的长.25.(12.00分)(2018•十堰)已知抛物线y=12x 2+bx+c 经过点A (﹣2,0),B (0、﹣4)与x 轴交于另一点C ,连接BC .(1)求抛物线的解析式;(2)如图,P 是第一象限内抛物线上一点,且S △PBO =S △PBC ,求证:AP ∥BC ;(3)在抛物线上是否存在点D ,直线BD 交x 轴于点E ,使△ABE 与以A ,B ,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.2018年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
2018年湖北省鄂州市中考数学试卷(解析版)
2018年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.﹣0.2的倒数是()A.﹣2B.﹣5C.5D.0.22.下列运算正确的是()A.5x+4x=9x2 B.(2x+1)(1﹣2x)=4 x2﹣1C.(﹣3x3)2=6x6D.a8÷a2=a63.由四个相同的小正方体组成的立体图形,它的三视图如下图所示,则这个立体图形可能是()A.B.C.D.4.截止2018年5月底,我国的外汇储备约为31100亿元,将31100亿用科学记数法表示为()A.0.311×1012 B.3.11×1012C.3.11×1013D.3.11×10115.一副学生用的三角板如图放置,则∠AOD的度数为()A.75°B.100°C.105°D.120°6.一袋中装有形状、大小都相同的五个小球,每个小球上各标有一个数字,分别是2、3、4、5、6.现从袋中任意摸出一个小球,则摸出的小球上的数恰好是方程x2﹣5x﹣6=0的解的概率是()A.B.C.D.7.如图,已知矩形ABCD中,AB=4cm,BC=8cm.动点P在边BC上从点B向C运动,速度为1cm/s;同时动点Q从点C出发,沿折线C→D→A运动,速度为2cm/s.当一个点到达终点时,另一个点随之停止运动.设点P运动的时间为t(s),△BPQ的面积为S(cm2),则描述S(cm2)与时间t(s)的函数关系的图象大致是()A .B .C .D .8.如图,PA 、PB 是⊙O 的切线,切点为A 、B .AC 是⊙O 的直径,OP 与AB 交于点D ,连接BC .下列结论:①∠APB =2∠BAC ②OP ∥BC ③若tan C =3,则OP =5BC ④AC 2=4OD •OP ,其中正确结论的个数为( )A .4 个B .3个C .2个D .1个9.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0)和B ,与y 轴的正半轴交于点C .下列结论:①abc >0②4a ﹣2b +c >0 ③2a ﹣b >0 ④3a +c >0,其中正确结论的个数为( )A .1 个B .2个C .3个D .4个10.如图,在平面直角坐标系xOy 中,直线y =﹣x +分别与x 轴、y 轴交于点P 、Q ,在Rt △OPQ 中从左向右依次作正方形A 1B 1C 1C 2、A 2B 2C 2C 3、A 3B 3C 3C 4…A n B n ∁n C n +1,点A 1、A 2、A 3…A n 在x 轴上,点B 1在y 轴上,点C 1、C 2、C 3…C n +1在直线PQ 上;再将每个正方形分割成四个全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形(阴影部分)的面积分别记为S 1、S 2、S 3…S n ,则S n 可表示为( )A ..B ..C ..D ..二.填空题(每小题3分,共18分)11.因式分解:3a 2﹣12a +12= .12.关于x 的不等式组的所有整数解之和为 .13.一圆锥的侧面展开图是一个圆心角为120°的扇形,若该圆锥的底面圆的半径为4cm ,则圆锥的母线长为 .14.已知一次函数y =kx +b 与反比例函数y =的图象相交于A (2,n )和B (﹣1,﹣6),如图所示.则不等式kx +b >的解集为 .15.在半径为2的⊙O 中,弦AB =2,弦AC =2,则由弦AB ,AC 和∠BAC 所对的圆弧围成的封闭图形的面积为16.如图,正方形ABCD的边长为2,E为射线CD上一动点,以CE为边在正方形ABCD外作正方形CEFG,连接BE,DG,两直线BE,DG相交于点P,连接AP,当线段AP的长为整数时,AP 的长为.三.解答题(17~21题每题8分,22、23题每题10分,24题12分共72分)17.(8分)先化简,再从﹣3、﹣2、0、2中选一个合适的数作为x的值代入求值.18.(8分)如图,在四边形ABCD中,∠DAB=90°,DB=DC,点E、F分别为DB、BC的中点,连接AE、EF、AF.(1)求证:AE=EF;(2)当AF=AE时,设∠ADB=α,∠CDB=β,求α,β之间的数量关系式.19.(8分)在大课间活动中,体育老师随机抽取了八年级甲、乙两个班部分女同学进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校八年级共有女生180人,估计仰卧起坐一分钟完成30或30次以上的女学生有多少人;(3)已知第一组中只有一个甲班同学,第四组中只有一个乙班同学,老师随机从这两个组中各选一名学生谈心得体会,用树状图或列表求所选两人正好都是甲班学生的概率.20.(8分)已知关于x的方程x2﹣(3k+3)x+2k2+4k+2=0(1)求证:无论k为何值,原方程都有实数根;(2)若该方程的两实数根x1、x2为一菱形的两条对角线之长,且x1x2+2x1+2x2=36,求k值及该菱形的面积.21.(8分)如图,我国一艘海监执法船在南海海域进行常态化巡航,在A处测得北偏东30°方向距离为40海里的B处有一艘可疑船只正在向正东方向航行,我海监执法船便迅速沿北偏东75°方向前往监视巡查,经过一段时间在C处成功拦截可疑船只.(1)求∠ABC的度数;(2)求我海监执法船前往监视巡查的过程中行驶的路程(即AC长)?(结果精确到0.1海里,≈1.732,≈1.414,≈2.449)22.(10分)如图,四边形ABCD内接于⊙O,BC为⊙O的直径,AC与BD交于点E,P为CB延长线上一点,连接PA,且∠PAB=∠ADB.(1)求证:PA为⊙O的切线;(2)若AB=6,tan∠ADB=,求PB长;(3)在(2)的条件下,若AD=CD,求△CDE的面积.23.(10分)新欣商场经营某种新型电子产品,购进时的价格为20元/件.根据市场预测,在一段时间内,销售价格为40元/件时,销售量为200件,销售单价每降低1元,就可多售出20件.(1)写出销售量y(件)与销售单价x(元)之间的函数关系式;(2)写出销售该产品所获利润W(元)与销售单价x(元)之间的函数关系式,并求出商场获得的最大利润;(3)若商场想获得不低于4000元的利润,同时要完成不少于320件的该产品销售任务,该商场应该如何确定销售价格.24.(12分)如图,已知直线y=x+与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式及点M的坐标;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求此时△PAB的面积及点P的坐标;(3)点Q为x轴上一动点,点N是抛物线上一点,当△QMN∽△MAD(点Q与点M对应),求Q点坐标.2018年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据倒数的定义即可解答.【解答】解:﹣0.2的倒数是﹣5,故选:B.【点评】本题主要考查了倒数,解题的关键是熟记倒数的定义.2.【分析】根据合并同类项法则,平方差公式,幂的乘方与积的乘方以及同底数幂的除法法则解答.【解答】解:A、原式=9x,故本选项错误.B、原式=1﹣4x2,故本选项错误.C、原式=9x6,故本选项错误.D、原式解答正确,故本选项正确.故选:D.【点评】考查了平方差公式,合并同类项,同底数幂的除法等,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.3.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,进而解答即可.【解答】解:由三视图可得:这个立体图形可能是,故选:A.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将31100亿用科学记数法表示为3.11×1012,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】依据三角形内角和定理,即可得到∠BOC=105°,再根据对顶角相等,即可得出∠AOD 的度数.【解答】解:由题可得,∠ACB=45°,∠DBC=30°,∴△BCO中,∠BOC=180°﹣45°﹣30°=105°,∴∠AOD=∠BOC=105°,故选:C.【点评】本题考查了三角形的内角和定理以及对顶角的性质,利用三角形内角和为180°是关键.6.【分析】首先求出方程x2﹣5x﹣6=0的解,再根据概率公式求出答案即可.【解答】解:方程x2﹣5x﹣6=0的解为x1=6,x2=﹣1,则数字2、3、4、5、6中只有6是该方程的解,故摸出的小球上的数恰好是方程x2﹣5x﹣6=0的解的概率是,故选:A.【点评】此题考查概率的求法以及因式分解法求出一元二次方程的解,解本题的关键要掌握:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.7.【分析】根据题意可以写出各段对应的函数图象,从而可以解答本题.【解答】解:当0≤t≤2时,S==t2,∴0≤t≤2时,S随着t的增大而增大,函数图象的开口向上,是抛物线的一部分,故选项C,D 错误,当2<t≤6时,S==2t,∴2<t≤6时,S随t的增大而增大,当t=6时取得最大值,此时S=12,函数图象是一条线段,故选项A正确,选项C错误,故选:A.【点评】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.【分析】根据切线长定理可知PA=PB,且∠APO=∠BPO,OP垂直平分AB,于是可得OP∥BC,△PAO∽△ABC,即可进一步推理出以上各选项.【解答】解:由切线长定理可知PA=PB,且∠APO=∠BPO,OP垂直平分AB而AC是⊙O的直径,∴∠ABC=90°∴OP∥BC即结论②正确;而∠OAD+∠PAD=∠APO+∠PAD=90°∴∠OAD=∠APO=∠BPO∴∠APB=2∠BAC即结论①正确;若tan C=3,设BC=x,则AB=3x,AC=x∴OA=x而OP∥BC∴∠AOP=∠C∴AP=x,OP=5x∴OP=5BC即结论③正确;又∵△OAD∽△OPA∴∴OA2=OD•OP而AC=2OA∴AC2=4OD•OP即结论④正确.故选:A.【点评】本题考查的是切线长定理及相似三角形的性质定理的应用,结合题意对定理及性质内容的延伸与挖掘是解题的关键.9.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=﹣1求出2a与b的关系.【解答】解:①∵由抛物线的开口向下知a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0.∴abc<0;故错误;②如图,当x=﹣2时,y>0,4a﹣2b+c>0,故正确;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故错误;④∵当x=1时,y=0,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0.故错误.综上所述,只有结论②正确.故选:A.【点评】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.10.【分析】利用每个小正方形的边都与坐标轴平行,tan∠OPQ=,可得到每组小正方形的边长都是该组小长方形边长的两直角边之差,利用C的坐标探索边长的规律,进而求面积;【解答】解:∵P(13,0),Q(0,),∴tan∠OPQ=,∵每个小正方形的边都与坐标轴平行,∴∠OA1B1=∠OA2B2=…=∠OA n B n,∴每组小正方形的边长都是该组小长方形边长的两直角边之差,正方形A1B1C1C2中,设点C1(a1,b1),∴b1=4a1,将点C1(a1,4a1)代入直线y=﹣x+,∴a1=1,b1=3,∴正方形A 1B 1C 1C 2中阴影正方形边长为2;∴阴影部分面积4;正方形A 2B 2C 2C 3中,设点C 2(a 2,b 2),∴a 2=4a 1,=4,b 2=b 1﹣a 1=3,∴正方形A 2B 2C 2C 3中阴影正方形边长为×2=;∴阴影部分面积,;正方形A 3B 3C 3C 3中,设点C 3(a 3,b 3),∴a 3=4a 1+3a 2=,b 2=b 1﹣a 1﹣a 2=,∴正方形A 3B 3C 3C 3中阴影正方形边长为××2=;∴阴影部分面积;以此推理,第n 个阴影正方形的边长为2×;∴阴影部分面积;故选:A . 【点评】本题考查一次函数点坐标的特点,直角三角形三角函数值,阴影部分面积;能够利用点的坐标探索边长的关系是解题的关键.二.填空题(每小题3分,共18分)11.【分析】直接提取公因式3,再利用完全平方公式分解因式即可.【解答】解:3a 2﹣12a +12=3(a 2﹣4a +4)=3(a ﹣2)2.故答案是:3(a ﹣2)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 12.【分析】分别解出两不等式的解集,再求其公共解,然后求得整数解即可.【解答】解:由①得x <3;由②得x≥1∴不等式组的解集为1≤x<3,所有整数解有:1,2,1+2=3,故答案为3.【点评】本题考查了解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【分析】求出圆锥的底面圆的周长,根据弧长公式计算即可.【解答】解:设圆锥的母线长为r,圆锥的底面圆的周长=2π×4=8π,则=8π,解得,r=12(cm),故答案为:12cm.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣1<x<0或x>2时,一次函数图象在反比例函数图象的上方,∴不等式kx+b>的解集是﹣1<x<0或x>2.故答案为﹣1<x<0或x>2.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.15.【分析】先根据垂径定理求出AF的长,然后利用等边三角形的判定和三角函数求出∠CAO和∠BAO的度数,再分点B、C在AO的两侧和同一侧两种情况讨论.【解答】解:如图1,连接OA,OB,OC,作OF⊥AC,垂足为F,由垂径定理知,点F是AC的中点,∴AF=AC=,由题意知,OA=OB=OC=2,∵AB=2,∴△ABO是等边三角形,∠BAO=60°,cos∠FAO=AF:AO=:2,∴∠CAO=30°,∴∠BAC=∠OAB+∠CAO=60°+30°=90°,∴由弦AB,AC和∠BAC所对的圆弧围成的封闭图形的面积=×2×2+×22π=2+2π;当点B是在如图2位置时,连接AO并延长交⊙O于E,连接OB,OC,CE,则∠E=60°,∴∠CAE=30°,∵OB=OA=AB=2,∴∠BAO=60°,∴∠BAC=∠OAB﹣∠CAO=60°﹣30°=30°.∴由弦AB,AC和∠BAC所对的圆弧围成的封闭图形的面积==,综上所述,由弦AB,AC和∠BAC所对的圆弧围成的封闭图形的面积为2+2π或.【点评】本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.16.【分析】利用正方形的性质得CB=CD=CE=CG,∠BCD=∠ECG=90°,再证△BCE≌△DCG 得到∠CBE=∠CDG,从而得到∠DPE=∠BCE=90°,连接BD,如图,根据圆周角定理可判断点P在以BD为直径的圆上,即点P在正方形ABCD的外接圆上,然后利用0<AP<2得到AP的整数的长度.【解答】解:∵四边形ABCD和四边形CEFG为正方形,∴CB=CD=CE=CG,∠BCD=∠ECG=90°,在△BCE和△DCG中,∴△BCE≌△DCG(SAS),∴∠CBE=∠CDG,而∠BEC=∠DEP,∴∠DPE=∠BCE=90°,连接BD,如图,点P在以BD为直径的圆上,即点P在正方形ABCD的外接圆上,∴AP为此外接圆的弦,∵BD=AB=2,∴0<AP<2,∴当线段AP的长为整数时,AP的长为1或2.故答案为1或2.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了全等三角形的判断与性质和圆周角定理.三.解答题(17~21题每题8分,22、23题每题10分,24题12分共72分)17.【分析】根据分式的乘法和减法可以化简题目中的式子,然后从﹣3、﹣2、0、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:====,当x=﹣2时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.【分析】(1)根据三角形的中位线的性质得到EF=CD,根据直角三角形的性质得到AE=BD,于是得到结论;(2)根据题意得到△AEF是等边三角形,求得∠AEF=60°,根据三角形中位线的性质和三角形外角的性质即可得到结论.【解答】(1)证明:点E、F分别为DB、BC的中点,∴EF=CD,∵∠DAB=90°,∴AE=BD,∵DB=DC,∴AE=EF;(2)解:∵AF=AE,AE=EF,∴△AEF是等边三角形,∴∠AEF=60°,∵∠DAB=90°,点E、F分别为DB、BC的中点,∴AE=DE,EF∥CD,∴∠ADE=∠DAE,∠BEF=∠BDC=β,∴∠AEB=2∠ADE=2α,∴∠AEF=∠AEB+∠FEB=2α+β=60°,∴α,β之间的数量关系式为2α+β=60°.【点评】本题考查了三角形中位线的性质,直角三角形的性质,平行线的性质,三角形外角的性质,正确的识别图形是解题的关键.19.【分析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【解答】解:(1)b=1﹣0.15﹣0.35﹣0.30=0.2;∵总人数为:3÷0.15=20(人),∴a=20×0.30=6(人);故答案为:0.2,6;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)根据根的判别式的意义得到当△=[﹣(3k+3)]2﹣4(4k+2)≥0时,方程有实数根;(2)根据根与系数的关系得到x1+x2=3k+3,x1x2=4k+2,则代入所求的代数式进行求值;然后根据菱形的面积公式进行计算即可.【解答】(1)证明:根据题意得:△=[﹣(3k+3)]2﹣4(2k2+4k+2)=(k+1)2.∵无论k为何值,总有(k+1)2≥0,∴无论k为何值,原方程都有实数根;(2)∵关于x的方程x2﹣(3k+3)x+2k2+4k+2=0的两实数根是x1、x2,∴x 1+x 2=3k +3,x 1x 2=2k 2+4k +2,∴由x 1x 2+2x 1+2x 2=36,得2k 2+4k +2+2(3k +3)=36,整理,得(k +7)(k ﹣2)=0.解得k 1=﹣7,k 2=2.∴x 1x 2=(k +1)2=×(﹣7+1)2=18或x 1x 2=(k +1)2=×(2+1)2=.即菱形的面积是18或.【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.也考查了一元二次方程的根的判别式和菱形的性质. 21.【分析】过B 作BD ⊥AC ,在直角三角形ABD 中,利用勾股定理求出BD 与AD 的长,在直角三角形BCD 中,求出CD 的长,由AD +DC 求出AC 的长即可.【解答】解:过B 作BD ⊥AC ,∵∠BAC =75°﹣30°=45°,∴在Rt △ABD 中,∠BAD =∠ABD =45°,∠ADB =90°,由勾股定理得:BD =AD =×40=20(海里),在Rt △BCD 中,∠C =15°,∠CBD =75°,∴tan ∠CBD =,即CD =20×3.732(海里),则AC =AD +DC =20+20×3.732≈133.8(海里),即我海监执法船在前往监视巡查的过程中行驶了约133.8海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的关键.22.【分析】(1)连接OA ,根据等腰三角形的性质得到∠OAB =∠OBA ,根据圆周角定理得到∠CAB =90°,根据切线的判定定理即可得到结论;(2)根据三角函数的定义得到AC =8,根据勾股定理得到BC ==10,求得OB =5,过B作BF⊥AP于F,设AF=4k,BF=3k,求得BF=,根据相似三角形的性质即可得到结论;(3)连接OD交AC于H,根据垂径定理得到AH=CH=4,得到OH==3,根据相似三角形的性质得到DE=,根据三角形的面积公式即可得到结论.【解答】(1)证明:连接OA,∵OA=OB,∴∠OAB=∠OBA,∵BC为⊙O的直径,∴∠CAB=90°,∴∠ACB+∠ABC=90°,∵∠ADB=∠ACB=∠PAB,∴∠PAB+∠OAB=90°,∴∠OAP=90°,∴PA为⊙O的切线;(2)解:∵∠ADB=∠ACB,∴tan∠ADB=tan∠ADB==,∵AB=6,∴AC=8,∴BC==10,∴OB=5,过B作BF⊥AP于F,∵∠ADB=∠BAF,∴tan∠ADB=tan∠BAF=,∴设AF=4k,BF=3k,∴AB=5k=6,∴k=,∴BF=,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴=,∴PB=;(3)解:连接OD交AC于H,∵AD=CD,∴=,∴OD⊥AC,∴AH=CH=4,∴OH==3,∴DH=2,∴CD==2,∴BD==4,∵∠ADE=∠BDA,∠DAE=∠ABD,∴△ADE∽△BDA,∴,∴=,∴DE=,∴△CDE的面积=CD•DE=2×=5.【点评】本题考查了切线的判定,解直角三角形,三角形的面积的计算,相似三角形的判定和性质,正确的作出辅助线是解题的关键.23.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出销售量y (件)与销售单价x (元)之间的函数关系式为y =200+(40﹣x )×20,然后根据销售利润=销售量×(售价﹣进价),列出销售该产品所获利润W (元)与销售单价x (元)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)依题意y =200+(40﹣x )×20=﹣20x +1000则销售量y (件)与销售单价x (元)之间的函数关系式为:y =﹣20x +1000(2)W =y •(x ﹣20)=(x ﹣20)(﹣20x +1000)整理得W =﹣20x 2+1400x ﹣2000=﹣20(x ﹣35)2+4500则当x =35时,商场获得最大利润:4500元(3)依题意:解①式得30≤x ≤40解②式得x ≤34故不等式组的解为:30≤x ≤34即商场的确定的售价在30至34之间即可【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内.24.【分析】(1)将点B 代入直线解析式求出m 的值,再代入点A 、B 、C 即可求出抛物线的解析式.(2)过点P 作y 轴的平行线交直线AB 与点H ,设点P 的坐标,表示线段PH 的长度,表示△PAB 的面积,利用二次函数求最值问题配方即可.(3)先证出△MAD 为等腰直角三角形,再构造″K ″字形求点Q 的坐标即可.【解答】解:(1)把点B (4,m )代入y =+中,得m =,∴B (4,),把点A (﹣1,0)、B (4,)、C (0,﹣)代入抛物线中,解得∴抛物线的解析式为y=﹣x﹣,∵y=﹣x﹣=(x﹣1)2﹣2,∴点M的坐标为(1,﹣2).(2)∵点P为直线AB下方抛物线上一动点,∴﹣1<x<4,如图1所示,过点P作y轴的平行线交AB于点H,设点P的坐标为(m,m2﹣m﹣),则点H(m,),S=HP•(x B﹣x A)=(﹣m2+m+2)=﹣(m﹣)2+,△PAB当m=时,S最大,最大为,此时点P(,﹣).(3)如图2所示,令y=0,解得x1=﹣1,x2=3,∴D(3,0),∵M(1,﹣2),A(﹣1,0),∴△AMD为等腰直角三角形,设点Q的坐标为(n,n2﹣n﹣),∵△QEM≌△NFQ(AAS),∴FN=EQ=n﹣1,∴n2﹣n﹣=n﹣1,解得n=2+或2﹣(舍),∴点Q的坐标为(2+,1+),根据对称性,可知另一个点Q的坐标为(﹣,1+).综上所示:点Q的坐标为(2+,1+)或(﹣,1+).【点评】此题考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与几何有关的问题,最后一问构造″K″字形为解题关键.。
2018年湖北省黄冈市中考数学试题(含答案解析)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省襄阳市中考数学试卷(含详细答案)
数学试题卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前2018年襄阳市初中毕业生学业水平考试数 学(本试题卷共6页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定位置。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。
3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米的黑色签字笔。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其标号在答题卡上涂黑作答. 1.2-的倒数是(▲) A .2B .12C .2-D .12-2.近几年,襄阳市经济呈现稳中有进,稳中向好的态势,2017年GDP 突破4000亿元大关,4000亿这个数用科学记数法表示为(▲) A .12410⨯B .11410⨯C .120.410⨯D .114010⨯3.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为(▲) A .55︒B .50︒C .45︒D .40︒4.下列运算正确的是(▲) A .224a +a =2a B .623a a a ÷= C .326a a -=() D .22ab ab =() 5.不等式组21,241x x x x -⎧⎨+-⎩><的解集为(▲)A .13x >B .1x >C .113x <<D .空集6.一个几何体的三视图如图所示,则这个几何体是(▲)ABCD7.如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E 。
2018年湖北省荆州市中考数学试卷(答案+解析)
2018年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列代数式中,整式为()A.x+1 B.C.D.2.(3分)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上3.(3分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6C.a10÷a5=a2D.(a2)3=a64.(3分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°5.(3分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=46.(3分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.7.(3分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是() A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小8.(3分)如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A.B.C.D.9.(3分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人10.(3分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:|﹣2|﹣+()﹣1+tan45°=.12.(3分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.13.(3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.14.(3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).15.(3分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1.(填“>”或“<”或“=”)16.(3分)关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是.17.(3分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).18.(3分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是.三、解答题(本大题共7小题,共66分)的整数解;19.(10分)(1)求不等式组>(2)先化简,后求值(1﹣)÷,其中a=+1.20.(8分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.21.(8分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.22.(8分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.23.(10分)问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.24.(10分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种25.(12分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.2018年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列代数式中,整式为()A.x+1 B.C.D.【分析】直接利用整式、分式、二次根式的定义分析得出答案.【解答】解:A、x+1是整式,故此选项正确;B、,是分式,故此选项错误;C、是二次根式,故此选项错误;D、,是分式,故此选项错误;故选:A.2.(3分)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.3.(3分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6C.a10÷a5=a2D.(a2)3=a6【分析】根据合并同类项法则,单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解.【解答】解:A、3a2﹣4a2=﹣a2,错误;B、a2•a3=a5,错误;C、a10÷a5=a5,错误;D、(a2)3=a6,正确;故选:D.4.(3分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和等腰直角三角形的性质解答即可.【解答】解:∵l∥l2,1∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.5.(3分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4【分析】分式方程去分母转化为整式方程,即可作出判断.【解答】解:去分母得:1﹣3(x﹣2)=﹣4,故选:B.6.(3分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.7.(3分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是() A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.8.(3分)如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A.B.C.D.【分析】根据题意可以分别求得矩形的面积和菱形的面积,从而可以解答本题.【解答】解:设CD=5a,∵四边形ABCD是菱形,AE⊥BC于E,CF⊥AD于F,sinD=,∴CF=4a,DF=3a,∴AF=2a,∴命中矩形区域的概率是:=,故选:B.9.(3分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.10.(3分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.5【分析】直接连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)计算:|﹣2|﹣+()﹣1+tan45°=3.【分析】直接利用特殊角的三角函数值以及负指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:|﹣2|﹣+()﹣1+tan45°=2﹣2+2+1=3.故答案为:3.12.(3分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是SSS.【分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.【解答】解:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),故答案为:SSS.13.(3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是5.【分析】根据运算程序可找出前几次输出的结果,根据输出结果的变化找出变化规律“第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数)”,依此规律即可得出结论.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.14.(3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为24.1米(≈1.73,结果精确到0.1).【分析】设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,进而得出BE=CE=33,AE=a+33,在Rt△ACE中,依据tanA=,即可得到a的值.【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.15.(3分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1>.(填“>”或“<”或“=”)【分析】依据勾股定理即可得到AD==,AB==,BD+AD=+1,再根据△ABD中,AD+BD>AB,即可得到+1>.【解答】解:∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>,故答案为:>.16.(3分)关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是4.【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【解答】解:∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=4,∴=4,(2k)2﹣2(k2﹣k)=4,2k2+2k﹣4=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣4×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=4﹣0=4.故答案为:4.17.(3分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为5 cm(圆锥的壁厚忽略不计).【分析】由勾股定理求得AE,再根据相似三角形的性质求出钢球的半径.【解答】解:AB=12+14=26(cm),由勾股定理得AE==24(cm),由△ADO~△AEB得=,∴=,∴OD=5.答:钢球的半径为5cm.故答案为:5.18.(3分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是6或2或10.【分析】根据乘方,可得a的值,根据正方形的对称中心在坐标原点,可得B点的横坐标等于纵坐标,根据平行四边形的面积公式,可得答案.【解答】解:由a3﹣a=1得a=1,或a=﹣1,a=3.①当a=1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=6②当a=﹣1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=1,四边形DEBF的面积是2x•y=2×1×1=2;③当a=3时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=10,故答案为:6或2或10.三、解答题(本大题共7小题,共66分)的整数解;19.(10分)(1)求不等式组>(2)先化简,后求值(1﹣)÷,其中a=+1.【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0;(2)原式=(﹣)÷=•=,当a=+1时,原式==.20.(8分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.【分析】(1)根据平均数、中位数、众数的概念解答即可;(2)根据它们的方差,从而可以解答本题.【解答】解:(1)a=,b=85,c=85,(2)∵86>85,∴八(2)班前5名同学的成绩较好,21.(8分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.【分析】(1)由折叠的性质得到M、N分别为AD、BC的中点,利用平行线分线段成比例得到F为PG的中点,再由折叠的性质得到AF垂直于PG,利用SAS即可得证;(2)由(1)的全等三角形,得到对应边相等,利用三线合一得到∠2=∠3,由折叠的性质及等量代换得到∠P AG为60°,根据AP=AG 且有一个角为60°即可得证.【解答】证明:(1)由折叠可得:M、N分别为AD、BC的中点,∵DC∥MN∥AB,∴F为PG的中点,即PF=GF,由折叠可得:∠PF A=∠D=90°,∠1=∠2,在△AFP和△AFG中,,∴△AFP≌△AFG(SAS);(2)∵△AFP≌△AFG,∴AP=AG,∵AF⊥PG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=30°,∴∠2+∠3=60°,即∠P AG=60°,∴△APG为等边三角形.22.(8分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为2,它的(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为2.【分析】(1)根据函数图象可以得到函数y=x+(x>0)的最小值,然后根据函数图象,可以写出该函数的一条性质,注意函数的性质不唯一,写的只要符合函数即可;(2)根据配方法可以求得函数y=x+(x>0)的最小值;(3)根据配方法可以求得函数y=x+(x>0,a>0)的最小值.【解答】解:(1)由图象可得,函数y=x+(x>0)的最小值是2,它的另一条性质是:当x>1时,y随x的增大而增大,故答案为:2,当x>1时,y随x的增大而增大;(2)∵y=x+(x>0),∴y=,∴当时,y取得最小值,此时x=1,y=2,即函数y=x+(x>0)的最小值是2;(3)∵y=x+(x>0,a>0)∴y=,∴当时,y取得最小值,此时y=2,故答案为:2.23.(10分)问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.【分析】(1)连结AM、MH,则∠MHP=∠α,然后再证明△AMH为等腰直角三角形即可;(2)先求得MH的长,然后再求得弧MR所对圆心角的度数,最后,再依据弧长公式求解即可.【解答】解:(1)连结AM、MH,则∠MHP=∠α.∵AD=MC,∠D=∠C,MD=HC,∴△ADM≌△MCH.∴AM=MH,∠DAM=∠HMC.∵∠AMD+∠DAM=90°,∴∠AMD+∠HMC=90°,∴∠AMH=90°,∴∠MHA=45°,即α+β=45°.(2)由勾股定理可知MH==.∵∠MHR=45°,∴==.24.(10分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种【分析】(1)根据矩形的面积公式计算即可;(2)构建方程即可解决问题,注意检验是否符合题意;(3)利用二次函数的性质求出y的最大值,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,可得a+7b=1500,推出b的最大值为214,此时a=2,再求出实际植物面积即可判断;【解答】解:(1)y=x(36﹣2x)=﹣2x2+36x(9≤x<18)(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20<18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2<162,∴这批植物可以全部栽种到这块空地上.25.(12分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是以(0,)为圆心,1个单位长度为半径的圆;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.【分析】(1)利用两点间的距离公式即可得出结论;(2)利用两点间的距离公式即可得出结论;(3)①先确定出m+n=2k,mn=﹣1,再确定出M(m,﹣),N(n,﹣),进而判断出△AMN是直角三角形,再求出直线AQ的解析式为y=﹣x+,即可得出结论;②先确定出a=mk+,b=nk+,再求出AE=ME=a+=mk+1,AF=NF=b+=nk+1,即可得出结论.【解答】解:(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),∴AD2=x2+(y﹣)2,∵直线y=kx+交y轴于点A,∴A(0,),∵点A关于x轴的对称点为点B,∴B(0,﹣),∴AB=1,∵点D到点A的距离等于线段AB长度,∴x2+(y﹣)2=1,故答案为:以(0,)为圆心,1个单位长度为半径的圆;(2)∵过点B作直线l平行于x轴,∴直线l的解析式为y=﹣,∵C(x,y),A(0,),∴AC2=x2+(y﹣)2,点C到直线l的距离为:(y+),∵动点C(x,y)满足到直线l的距离等于线段CA的长度,∴x2+(y﹣)2=(y+)2,∴动点C轨迹的函数表达式y=x2,(3)①如图,设点E(m,a)点F(n,b),∵动点C的轨迹与直线y=kx+交于E、F两点,∴,∴x2﹣2kx﹣1=0,∴m+n=2k,mn=﹣1,∵过E、F作直线l的垂线,垂足分别是M、N,∴M(m,﹣),N(n,﹣),∵A(0,),∴AM2+AN2=m2+1+n2+1=m2+n2+2=(m+n)2﹣2mn+2=4k2+4,MN2=(m﹣n)2=(m+n)2﹣4mn=4k2+4,∴AM2+AN2=MN2,∴△AMN是直角三角形,MN为斜边,取MN的中点Q,∴点Q是△AMN的外接圆的圆心,∴Q(k,﹣),∵A(0,),∴直线AQ的解析式为y=﹣x+,∵直线EF的解析式为y=kx+,∴AQ⊥EF,∴EF是△AMN外接圆的切线;②证明:∵点E(m,a)点F(n,b)在直线y=kx+上,∴a=mk+,b=nk+,∵ME,NF,EF是△AMN的外接圆的切线,∴AE=ME=a+=mk+1,AF=NF=b+=nk+1,∴+=+====2,即:+为定值,定值为2.。
(完整版)2018年湖北省襄阳市中考数学试卷及答案解析
2018年湖北省襄阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣2的相反数为()A.2 B.C.﹣2 D.2.(3分)近几年,襄阳市经济呈现稳中有进,稳中向好的态势,2017年GDP 突破4000亿元大关,4000亿这个数用科学记数法表示为()A.4×1012B.4×1011C.0.4×1012D.40×10113.(3分)如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为()A.55°B.50°C.45°D.40°4.(3分)下列运算正确的是()A.a2+a2=2a4B.a6÷a2=a3C.(﹣a3)2=a6D.(ab)2=ab25.(3分)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集6.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.7.(3分)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm8.(3分)下列语句所描述的事件是随机事件的是()A.任意画一个四边形,其内角和为180°B.经过任意点画一条直线C.任意画一个菱形,是屮心对称图形D.过平面内任意三点画一个圆9.(3分)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>210.(3分)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2 C.D.2二、填空题(本题共6小题,每题3分,共18分)11.(3分)计算:|1﹣|=.12.(3分)计算﹣的结果是.13.(3分)我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.14.(3分)一组数据3,2,3,4,x的平均数是3,则它的方差是.15.(3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为.16.(3分)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.三、解答题(本题共9题,72分)17.(6分)先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.18.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).19.(6分)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表组别成绩x(分)人数百分比A60≤x<70820%B70≤x<8016m%C80≤x<90a30%D90≤<x≤100410%请观察图表,解答下列问题:(1)表中a=,m=;(2)补全频数分布直方图;(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为.20.(6分)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.21.(7分)如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B (m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.22.(8分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.23.(10分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=,n=;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当大利润不低于870元的共有多少天?24.(10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.25.(13分)直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.2018年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣2的相反数为()A.2 B.C.﹣2 D.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,﹣2的相反数为2.【解答】解:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)近几年,襄阳市经济呈现稳中有进,稳中向好的态势,2017年GDP 突破4000亿元大关,4000亿这个数用科学记数法表示为()A.4×1012B.4×1011C.0.4×1012D.40×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:4000亿=4×1011,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为()A.55°B.50°C.45°D.40°【分析】利用平行线的性质求出∠3即可解决问题;【解答】解:∵∠1=∠3=50°,∠2+∠3=90°,∴∠2=90°﹣∠3=40°,故选:D.【点评】本题考查平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.4.(3分)下列运算正确的是()A.a2+a2=2a4B.a6÷a2=a3C.(﹣a3)2=a6D.(ab)2=ab2【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相除,底数不变指数相减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解答】解:A、a2+a2=2a2,故A错误;B、a6÷a2=a4,故B错误;C、(﹣a3)2=a6,故C正确;D、(ab)2=a2b2,故D错误.故选:C.【点评】本题考查合并同类项、同底数幂的除法、积的乘方,熟练掌握运算性质和法则是解题的关键.5.(3分)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x,得:x>,解不等式x+2<4x﹣1,得:x>1,则不等式组的解集为x>1,故选:B.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:C.【点评】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.7.(3分)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【分析】利用线段的垂直平分线的性质即可解决问题.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质,属于中考常考题型.8.(3分)下列语句所描述的事件是随机事件的是()A.任意画一个四边形,其内角和为180°B.经过任意点画一条直线C.任意画一个菱形,是屮心对称图形D.过平面内任意三点画一个圆【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、任意画一个四边形,其内角和为180°是不可能事件;B、经过任意点画一条直线是必然事件;C、任意画一个菱形,是屮心对称图形是必然事件;D、过平面内任意三点画一个圆是随机事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>2【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.【解答】解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(﹣1)2﹣4×1×(m﹣1)≥0,解得:m≤5,故选:A.【点评】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.10.(3分)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2 C.D.2【分析】根据垂径定理得到CH=BH,=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【解答】解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.【点评】本题考查的是垂径定理、圆周角定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.二、填空题(本题共6小题,每题3分,共18分)11.(3分)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.12.(3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.【点评】本题考查了分式的加减,归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.13.(3分)我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是53元.【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:.故答案为:53.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.(3分)一组数据3,2,3,4,x的平均数是3,则它的方差是0.4.【分析】由于数据2、3、3、4、x的平均数是3,由此利用平均数的计算公式可以求出x,然后利用方差的计算公式即可求解.【解答】解:∵数据2、3、3、4、x的平均数是3,∴2+3+3+4+x=3×5,∴x=3,∴S2=[(3﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(3﹣3)2]=0.4.故答案为:0.4.【点评】此题主要考查了平均数和方差的计算,解题的关键是熟练掌握平均数和方差的计算公式.15.(3分)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为2或2.【分析】分两种情况:①当△ABC是锐角三角形,如图1,②当△ABC是钝角三角形,如图2,分别根据勾股定理计算AC和BC即可.【解答】解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2;综上所述,BC的长为2或2.故答案为:2或2.【点评】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握.16.(3分)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为.【分析】设AB=a,AD=b,则ab=32,构建方程组求出a、b即可解决问题;【解答】解:设AB=a,AD=b,则ab=32,由△ABE∽△DAB可得:=,∴b=a2,∴a3=64,∴a=4,b=8,设PA交BD于O.在Rt△ABD中,BD==12,∴OP=OA==,∴AP=.故答案为.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本题共9题,72分)17.(6分)先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x、y的值代入化简后的式子即可解答本题.【解答】解:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.18.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).【分析】作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值求解.【解答】解:过P点作PC⊥AB于C,由题意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,,∴AC=PC,在Rt△PBC中,,∴BC=PC,∵AB=AC+BC=,∴PC=100,答:建筑物P到赛道AB的距离为100米.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.19.(6分)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.频数分布统计表组别成绩x(分)人数百分比A60≤x<70820%B70≤x<8016m%C80≤x<90a30%D90≤<x≤100410%请观察图表,解答下列问题:(1)表中a=12,m=40;(2)补全频数分布直方图;(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为.【分析】(1)先由A组人数及其百分比求得总人数,总人数乘以C的百分比可得a的值,用B组人数除以总人数可得m的值;(2)根据(1)中所求结果可补全图形;(3)列出所有等可能结果,再根据概率公式求解可得.【解答】解:(1)∵被调查的总人数为8÷20%=40人,∴a=40×30%=12,m%=×100%=40%,即m=40,故答案为:12、40;(2)补全图形如下:(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.∴抽取的2名学生恰好是一名男生和一名女生的概率为=,故答案为:.【点评】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.20.(6分)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.【解答】解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:﹣=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.21.(7分)如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B (m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.【分析】(1)先把A点坐标代入y1=中求出k得到反比例函数的解析式为y1=﹣,再把B(m,﹣4)代入y1=﹣中求出m得到B(1,﹣4),然后利用待定系数法求直线解析式;(2)利用两点间的距离公式计算AB的长;利用函数图象,写出反比例函数图象在直线上方所对应的自变量的范围得到y1>y2时x的取值范围.【解答】解:(1)把A(﹣4,1)代入y1=得k=﹣4×1=﹣4,∴反比例函数的解析式为y1=﹣,把B(m,﹣4)代入y1=﹣得﹣4m=﹣4,解得m=1,则B(1,﹣4),把A(﹣4,1),B(1,﹣4)代入y2=ax+b得,解得,∴直线解析式为y2=﹣x﹣3;(2)AB==5,当﹣4<x<0或x>1时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.【分析】(1)连接OE.推知CD为⊙O的切线,即可证明DA=DE;(2)利用分割法求得阴影部分的面积.【解答】解:(1)证明:连接OE、OC.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵BC==2,∴BC﹣AD=2,∴BC=3.在直角△OBC中,tan∠BOE==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°.∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.【点评】本题考查了切线的判定与性质:从圆外一点引圆的两条切线,它们的切线长相等,运用全等三角形的判定与性质进行计算.23.(10分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=﹣,n=25;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当大利润不低于870元的共有多少天?【分析】(1)根据题意将相关数值代入即可;(2)在(1)的基础上分段表示利润,讨论最值;(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.【解答】解:(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m解得m=﹣当第26天的售价为25元/千克时,代入y=n则n=25故答案为:m=﹣,n=25(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16当1≤x<20时W=(4x+16)(﹣x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968=968∴当x=18时,W最大当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112∵28>0∴W随x的增大而增大=952∴当x=30时,W最大∵968>952∴当x=18时,W=968最大(3)当1≤x<20时,令﹣2x2+72x+320=870解得x1=25,x2=11∵抛物线W=﹣2x2+72x+320的开口向下∴11≤x≤25时,W≥870∴11≤x<20∵x为正整数∴有9天利润不低于870元当20≤x≤30时,令28x+112≥870解得x≥27∴27≤x≤30∵x为正整数∴有3天利润不低于870元∴综上所述,当天利润不低于870元的天数共有12天.【点评】本题考查了一次函数和二次函数的实际应用,应用了分类讨论的数学思想.24.(10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=3.【分析】(1)①由GE⊥BC、GF⊥CD结合∠BCD=90°可得四边形CEGF是矩形,再由∠ECG=45°即可得证;②由正方形性质知∠CEG=∠B=90°、∠ECG=45°,据此可得=、GE∥AB,利用平行线分线段成比例定理可得;(2)连接CG,只需证△ACG∽△BCE即可得;(3)证△AHG∽△CHA得==,设BC=CD=AD=a,知AC=a,由=得AH=a、DH=a、CH=a,由=可得a的值.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.【点评】本题主要考查相似形的综合题,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质等知识点.25.(13分)直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.【分析】(1)先由直线解析式求得点A、B坐标,将点A坐标代入抛物线解析式求得m的值,从而得出答案;(2)①由(1)知BD=AC、BD∥OC,根据AB=AD=证四边形ABPQ是平行四边形得AQ=BP,即2t=4﹣3t,解之即可;②分点N在AB上和点N在AD上两种情况分别求解.【解答】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=2,∴点A(2,0)、点B(0,3),将点A(2,0)代入抛物线解析式,得:﹣×4+4m﹣3m=0,解得:m=3,所以抛物线解析式为y=﹣x2+6x﹣9,∵y=﹣x2+6x﹣9=﹣(x﹣4)2+3,∴点D(4,3),对称轴为x=4,∴点C坐标为(6,0);(2)如图1,由(1)知BD=AC=4,根据0≤3t≤4,得:0≤t≤,①∵B(0,3)、D(4,3),∴BD∥OC,∴∠CAD=∠ADB,∵∠DPE=∠CAD,∴∠DPE=∠ADB,∵AB==、AD==,∴AB=AD,∴∠ABD=∠ADB,∴∠DPE=∠ABD,∴PQ∥AB,∴四边形ABPQ是平行四边形,∴AQ=BP,即2t=4﹣3t,解得:t=,即当∠DPE=∠CAD时,t=秒;②(Ⅰ)当点N在AB上时,0≤2t≤2,即0≤t≤1,连接NE,延长PN交x轴于点F,延长ME交x轴于点H,∵PN⊥BD、EM⊥BD,BD∥OC,PN=EM,∴OF=BP=2t,PF=OB=3,NE=FH、NF=EH,NE∥FQ,∴FQ=OC﹣OF﹣QC=6﹣5t,∵点N在直线y=﹣x+3上,∴点N的坐标为(2t,﹣3t+3),∴PN=PF﹣NF=3﹣(﹣3t+3)=3t,∵NE∥FQ,∴△PNE∽△PFQ,∴=,∴FH=NE=•FQ=×(6﹣5t)=6t﹣5t2,∵A(2,0)、D(4,3),∴直线AD解析式为y=x﹣3,∵点E在直线y=x﹣3上,∴点E的坐标为(4﹣2t,﹣3t+3),∵OH=OF+FH,∴4﹣2t=2t+6t﹣5t2,解得:t=1+>1(舍)或t=1﹣;(Ⅱ)当点N在AD上时,2<2t≤4,即1<t≤,∵PN=EM,∴点E、N重合,此时PQ⊥BD,∴BP=OQ,∴2t=6﹣3t,解得:t=,综上所述,当PN=EM时,t=(1﹣)秒或t=秒.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数的解析式、平行四边形的判定与性质、相似三角形的判定与性质等知识点.。
2018年湖北省襄阳市中考数学试卷
2018年湖北省襄阳市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)(2018•襄阳)﹣2的相反数为()A.2B.C.﹣2D.2.(3分)(2018•襄阳)近几年,襄阳市经济呈现稳中有进,稳中向好的态势,4000亿这个数用科学记数法表示为()A.4×1012B.4×1011C.0.4×1012D.40×10113.(3分)(2018•襄阳)如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°()A.55°B.50°C.45°D.40°4.(3分)(2018•襄阳)下列运算正确的是()A.a2+a2=2a4B.a6÷a2=a3C.(﹣a3)2=a6D.(ab)2=ab25.(3分)(2018•襄阳)不等式组的解集为()A.x>B.x>1C.<x<1D.空集6.(3分)(2018•襄阳)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.7.(3分)(2018•襄阳)如图,在△ABC中,分别以点A和点C为圆心AC长为半径画弧,两弧相交于点M,N,AC于点D,E.若AE=3cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm8.(3分)(2018•襄阳)下列语句所描述的事件是随机事件的是()A.任意画一个四边形,其内角和为180°B.经过任意两点画一条直线C.任意画一个菱形,是中心对称图形D.过平面内任意三点画一个圆9.(3分)(2018•襄阳)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5B.m≥2C.m<5D.m>210.(3分)(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,∠CDA=30°,则弦BC的长为()A.4B.2C.D.2二、填空题(本题共6小题,每题3分,共18分)11.(3分)(2018•襄阳)计算:|1﹣|=.12.(3分)(2018•襄阳)计算﹣=.13.(3分)(2018•襄阳)我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.14.(3分)(2018•襄阳)一组数据3,2,3,4,x的平均数是3,则它的方差是.15.(3分)(2018•襄阳)已知CD是△ABC的边AB上的高,若CD=,AD=1,则BC的长为.16.(3分)(2018•襄阳)如图,将面积为32的矩形ABCD沿对角线BD折叠,连接AP交BC于点E.若BE=,则AP的长为.三、解答题(本题共9题,72分)17.(6分)(2018•襄阳)先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.18.(6分)(2018•襄阳)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,测得建筑物P在北偏西60°方向上,如图所示(结果保留根号).19.(6分)(2018•襄阳)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后频数分布统计表组别成绩x(分)人数百分比A60≤x<70820%B70≤x<8016m%C80≤x<90a30%D90≤x≤100410%请观察图表,解答下列问题:(1)表中a=,m=;(2)补全频数分布直方图;(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为.20.(6分)(2018•襄阳)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.21.(7分)(2018•襄阳)如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.22.(8分)(2018•襄阳)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,过点E作直线DC分别交AM,BN于点D,C(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.23.(10分)(2018•襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,为了扩大销量,采取了降价措施,y关于x 的函数解析式为y=,且第12天的售价为32元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=,n=;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?24.(10分)(2018•襄阳)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时(3)所示,延长CG交AD于点H.若AG=6,则BC=.25.(13分)(2018•襄阳)直线y=﹣x+3交x轴于点A,交y轴于点B x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,求t的值.。
2018年湖北省中考数学真题试卷6套(含答案及名师解析)
2018年湖北省中考数学真题试卷6套(含答案及名师解析)2018年湖北省武汉市中考数学真题一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃B.﹣3℃C.11℃D.﹣11℃2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.(3分)计算3x2﹣x2的结果是()A.2B.2x2C.2x D.4x24.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6B.a2+a﹣6C.a2+6D.a2﹣a+66.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3B.4C.5D.68.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.9.(3分)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.2019B.2018C.2016D.201310.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1)13.(3分)计算﹣的结果是.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.三、解答题(共8题,共72分)17.(8分)解方程组:18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.21.(8分)如图,P A是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC 交AB于点E,且P A=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM ∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠P AC=,求tan C的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m 的值及相应点P的坐标.【参考答案】一、选择题(共10小题,每小题3分,共30分)1.A【解析】温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.2.D【解析】∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.3.B【解析】3x2﹣x2=2x2,故选:B.4.B【解析】这组数据的众数和中位数分别42,38.故选:B.5.B【解析】(a﹣2)(a+3)=a2+a﹣6,故选:B.6.A【解析】点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.7.C【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.8.C【解析】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.9.D【解析】设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=2019、3x=2018、3x=2016、3x=2013,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴2019不合题意,舍去;∵672=84×8,∴2016不合题意,舍去;∵671=83×7+7,∴三个数之和为2013.故选:D.10.B【解析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解析】原式=+﹣=故答案为:12.0.9【解析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.13.【解析】原式=+=故答案为:14.30°或150°【解析】如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.15.216【解析】t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.16.【解析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.三、解答题(共8题,共72分)17.解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.18.证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.19.解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.20.解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.21.(1)证明:连接OP、OB.∵P A是⊙O的切线,∴P A⊥OA,∴∠P AO=90°,∵P A=PB,PO=PO,OA=OB,∴△P AO≌△PBO.∴∠P AO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵P A、PB都是切线,∴P A=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=P A=2a,∵△P AK∽△POA,∴P A2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.22.解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.23.解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠P AC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tan C==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.24.解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).2018年湖北省恩施州中考数学真题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣8的倒数是()A.﹣8B.8C.﹣D.2.(3分)下列计算正确的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1B.2C.3D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8B.﹣8C.4D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3B.a<3C.a≥3D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2B.3C.4D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.(3分)因式分解:8a3﹣2ab2=.14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l 无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.(结果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E 两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【参考答案】一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C【解析】根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.2.B【解析】A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.3.D【解析】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.B【解析】0.000000823=8.23×10﹣7.故选:B.5.B【解析】∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.6.A【解析】∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.7.C【解析】64的立方根是4.故选:C.8.D【解析】解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.9.A【解析】由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.10.C【解析】设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.11.D【解析】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.12.B【解析】∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程)13.2a(2a+b)(2a﹣b)【解析】8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).14.x≥﹣且x≠3【解析】根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.15.π【解析】∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.16.1946【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.三、解答题(本大题共有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:•(1+)÷=••=,把x=2﹣1代入得,原式===.18.证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.19.解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.20.解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.21.解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.22.解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.23.(1)证明:如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)解:设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)解:PF=FD,理由是:∵∠APD=∠ABE=90°,∠P AD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠P AD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.24.解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.2018年湖北省黄石市中考数学真题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列各数是无理数的是()A.1B.﹣0.6C.﹣6D.π2.(3分)太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×108C.0.696×107D.6.96×1053.(3分)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列计算中,结果是a7的是()A.a3﹣a4B.a3•a4C.a3+a4D.a3÷a45.(3分)如图,该几何体的俯视图是()A.B.C.D.6.(3分)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)7.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.(3分)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.9.(3分)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B 两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<410.(3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD 沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.二、填空题(本大题给共6小题,每小题3分,共18分)11.(3分)分解因式:x3y﹣xy3=.12.(3分)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为13.(3分)分式方程=1的解为14.(3分)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是米.(结果保留根号)15.(3分)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为16.(3分)小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指2石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或验算步骤)17.(7分)计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|18.(7分)先化简,再求值:.其中x=sin60°.19.(7分)解不等式组,并求出不等式组的整数解之和.20.(8分)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.21.(8分)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22.(8分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?23.(8分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C240D x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m >0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.24.(9分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.25.(10分)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.【参考答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.D【解析】A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.2.B【解析】696000千米=696000000米=6.96×108米,故选:B.3.C【解析】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.B【解析】A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=;故选:B.5.A【解析】从几何体的上面看可得,故选:A.6.C【解析】由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.7.A【解析】∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.D【解析】连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.9.B【解析】解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.10.A【解析】∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x ﹣18,故选项A正确;故选:A.二、填空题(本大题给共6小题,每小题3分,共18分)11.xy(x+y)(x﹣y)【解析】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).12.4π【解析】∵∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的内切圆的半径==2,∴△ABC内切圆的周长=π•22=4π.故答案为4π.13.x=0.5【解析】方程两边都乘以2(x2﹣1)得,8x+2﹣5x﹣5=2x2﹣2,解得x1=1,x2=0.5,检验:当x=0.5时,x﹣1=0.5﹣1=﹣0.5≠0,当x=1时,x﹣1=0,所以x=0.5是方程的解,故原分式方程的解是x=0.5.故答案为:x=0.514.100(1+)【解析】∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tan A=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B两点间的距离为100(1+)米.故答案为100(1+).15.【解析】根据题意列表得:2345。
湖北省荆门市2018年中考数学试卷(解析版)
2018年湖北省荆门市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.1. 8的相反数的立方根是()A. 2B.C. ﹣2D.【答案】C【解析】【分析】根据相反数的定义、立方根的概念计算即可.【详解】8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选C.2. 中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A. 9.97×105B. 99.7×105C. 9.97×106D. 0.997×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】9970000的小数点向左移动6位得到9.97,所以9970000用科学记数法可表示为:9.97×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 在函数y=中,自变量x的取值范围是()A. x≥1B. x>1C. x<1D. x≤1【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【详解】根据题意得x﹣1≥0,1﹣x≠0,解得x>1,故选B.【点睛】本题考查了函数自变量的取值范围的确定,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4. 下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形【答案】D【解析】【分析】A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.【详解】A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确,不符合题意;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确,不符合题意;C、对角线相等的菱形是正方形,故此选项正确,不符合题意;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误,符合题意,故选D.【点睛】本题考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,熟练掌握相关的定理和性质是解题的关键.5. 已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A. 80°B. 70°C. 85°D. 75°【答案】A【解析】【分析】如图,先根据三角形外角的性质求出∠4的度数,再根据平行线的性质求出∠5的度数,最后根据邻补角的定义进行求解即可得.【详解】如图,∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选A.【点睛】本题考查了平行线的性质,三角形内角和定理,三角形的外角的性质等知识,结合图形灵活运用相关的知识解决问题是关键.6. 如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE交于点G,则S△EFG:S△ABG=()A. 1:3B. 3:1C. 1:9D. 9:1【答案】C【解析】【分析】先证明△EFG∽△BAG,然后利用相似三角形的面积比等于相似比的平方即可解决问题.【详解】∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∵CD∥AB,∴△EFG∽△BAG,∴,故选C.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识,熟练掌握和灵活运用平行四边形的性质、相似三角形的判定与性质是解题的关键.7. 已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A. 4≤m<7B. 4<m<7C. 4≤m≤7D. 4<m≤7【答案】A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8. 甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表对他们的训练成绩作如下分析,其中说法正确的是()A. 他们训练成绩的平均数相同B. 他们训练成绩的中位数不同C. 他们训练成绩的众数不同D. 他们训练成绩的方差不同【答案】D【解析】【分析】利用方差的定义、以及众数和中位数的定义分别计算即可得出答案.【详解】∵甲6次射击的成绩从小到大排列为6、7、8、8、9、10,∴甲成绩的平均数为=8,中位数为=8、众数为8,方差为×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]=,∵乙6次射击的成绩从小到大排列为:7、7、8、8、8、9,∴乙成绩的平均数为=,中位数为=8、众数为8,方差为×[2×(7﹣)2+3×(8﹣)2+(9﹣)2]= ,则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同,故选D.【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方法是解题的关键.9. 如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A. (﹣2,3)B. (﹣3,2)C. (3,﹣2)D. (2,﹣3)【答案】A学。
2018年湖北省荆州市中考数学试卷含答案解析(Word版)
2018年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3.00分)下列代数式中,整式为()A.x+1 B. C.D.2.(3.00分)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上3.(3.00分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6 C.a10÷a5=a2D.(a2)3=a64.(3.00分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B 分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°5.(3.00分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=46.(3.00分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.7.(3.00分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小8.(3.00分)如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A.B.C.D.9.(3.00分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人10.(3.00分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD 的值是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)计算:|﹣2|﹣+()﹣1+tan45°=.12.(3.00分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是.13.(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.14.(3.00分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).15.(3.00分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1.(填“>”或“<”或“=”)16.(3.00分)关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是.17.(3.00分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).18.(3.00分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC 分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是.三、解答题(本大题共7小题,共66分)19.(10.00分)(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.20.(8.00分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.21.(8.00分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.22.(8.00分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为,它的另一条性质为;x…123…y…2…(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为.23.(10.00分)问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.24.(10.00分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(m2/棵)0.410.425.(12.00分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P (x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.2018年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3.00分)下列代数式中,整式为()A.x+1 B. C.D.【分析】直接利用整式、分式、二次根式的定义分析得出答案.【解答】解:A、x+1是整式,故此选项正确;B、,是分式,故此选项错误;C、是二次根式,故此选项错误;D、,是分式,故此选项错误;故选:A.【点评】此题主要考查了整式、分式、二次根式的定义,正确把握相关定义是解题关键.2.(3.00分)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据互为相反数的两个数,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.【点评】本题考查的是实数与数轴、相反数的概念,掌握互为相反数的两个数,它们分别在原点两旁且到原点距离相等是解题的关键.3.(3.00分)下列计算正确的是()A.3a2﹣4a2=a2B.a2•a3=a6 C.a10÷a5=a2D.(a2)3=a6【分析】根据合并同类项法则,单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解.【解答】解:A、3a2﹣4a2=﹣a2,错误;B、a2•a3=a5,错误;C、a10÷a5=a5,错误;D、(a2)3=a6,正确;故选:D.【点评】本题考查了整式的除法,单项式的乘法,合并同类项法则,是基础题,熟记运算法则是解题的关键.4.(3.00分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B 分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和等腰直角三角形的性质解答即可.【解答】解:∵l1∥l2,∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.【点评】本题考查的是等腰直角三角形,根据平行线的性质和等腰直角三角形的性质解答是解答此题的关键.5.(3.00分)解分式方程﹣3=时,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4 C.﹣1﹣3(2﹣x)=﹣4D.1﹣3(2﹣x)=4【分析】分式方程去分母转化为整式方程,即可作出判断.【解答】解:去分母得:1﹣3(x﹣2)=﹣4,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(3.00分)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.7.(3.00分)已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误;故选:C.【点评】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.8.(3.00分)如图,将一块菱形ABCD硬纸片固定后进行投针训练.已知纸片上AE⊥BC于E,CF⊥AD于F,sinD=.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是()A.B.C.D.【分析】根据题意可以分别求得矩形的面积和菱形的面积,从而可以解答本题.【解答】解:设CD=5a,∵四边形ABCD是菱形,AE⊥BC于E,CF⊥AD于F,sinD=,∴CF=4a,DF=3a,∴AF=2a,∴命中矩形区域的概率是:=,故选:B.【点评】本题考查几何概率、菱形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.(3.00分)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.【点评】本题考查了频数分布直方图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.10.(3.00分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD 的值是()A.2 B.3 C.4 D.5【分析】直接连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,求出⊙P的半径,进而结合勾股定理得出答案.【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D 到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3.故选:B.【点评】此题主要考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)计算:|﹣2|﹣+()﹣1+tan45°=3.【分析】直接利用特殊角的三角函数值以及负指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:|﹣2|﹣+()﹣1+tan45°=2﹣2+2+1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3.00分)已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是SSS.【分析】利用基本作图得到OM=ON,CM=CN,加上公共边OC,则可根据SSS证明三角形全等.【解答】解:由作法①知,OM=ON,由作法②知,CM=CN,∵OC=OC,∴△OCM≌△OCN(SSS),故答案为:SSS.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定.13.(3.00分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是5.【分析】根据运算程序可找出前几次输出的结果,根据输出结果的变化找出变化规律“第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数)”,依此规律即可得出结论.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.【点评】本题考查了代数式求值以及规律型中数字的变化类,根据输出结果的变化找出变化规律是解题的关键.14.(3.00分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为24.1米(≈1.73,结果精确到0.1).【分析】设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,进而得出BE=CE=33,AE=a+33,在Rt△ACE中,依据tanA=,即可得到a的值.【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.【点评】此题考查了解直角三角形的应用,关键是根据在直角三角形中三角函数的定义列出算式,得出关于a的方程.15.(3.00分)为了比较+1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得+1>.(填“>”或“<”或“=”)【分析】依据勾股定理即可得到AD==,AB==,BD+AD=+1,再根据△ABD中,AD+BD>AB,即可得到+1>.【解答】解:∵∠C=90°,BC=3,BD=AC=1,∴CD=2,AD==,AB==,∴BD+AD=+1,又∵△ABD中,AD+BD>AB,∴+1>,故答案为:>.【点评】本题主要考查了三角形三边关系以及勾股定理的运用,解题时注意:三角形两边之和大于第三边.16.(3.00分)关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是4.【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.【解答】解:∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,∴x1+x2=2k,x1•x2=k2﹣k,∵x12+x22=4,∴=4,(2k)2﹣2(k2﹣k)=4,2k2+2k﹣4=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣4×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1•x2=k2﹣k=0,∴x12﹣x1x2+x22=4﹣0=4.故答案为:4.【点评】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.17.(3.00分)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:cm),则钢球的半径为cm(圆锥的壁厚忽略不计).【分析】根据相似三角形的性质先求出钢球的直径,进一步得到钢球的半径.【解答】解:钢球的直径:×20=(cm),钢球的半径:÷2=(cm).答:钢球的半径为cm.故答案为:.【点评】考查了圆锥的计算,相似三角形的性质,关键是求出钢球的直径.18.(3.00分)如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC 分别与x轴交于E、F,连接BE、DF,若正方形ABCD有两个顶点在双曲线y=上,实数a满足a3﹣a=1,则四边形DEBF的面积是6或2或10.【分析】根据乘方,可得a的值,根据正方形的对称中心在坐标原点,可得B 点的横坐标等于纵坐标,根据平行四边形的面积公式,可得答案.【解答】解:由a3﹣a=1得a=1,或a=﹣1,a=3.①当a=1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=6②当a=﹣1时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=1,四边形DEBF的面积是2x•y=2×1×1=2;③当a=3时,函数解析式为y=,由正方形ABCD的对称中心在坐标原点,得B点的横坐标等于纵坐标,x=y=,四边形DEBF的面积是2x•y=2×=10,故答案为:6或2或10.【点评】本题考查了反比例函数的意义,利用乘方的意义得出a的值是解题关键,又利用了中心对称的正方形,平行四边形的面积.三、解答题(本大题共7小题,共66分)19.(10.00分)(1)求不等式组的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.【分析】(1)分别解每个不等式,再根据“大小小大中间找”确定不等式组的解集,从而得出答案;(2)先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:(1)解不等式①,得:x≥﹣1,解不等式②,得:x<1,则不等式组的解集为﹣1≤x<1,∴不等式组的整数解为﹣1、0;(2)原式=(﹣)÷=•=,当a=+1时,原式==.【点评】本题主要考查分式的化简求值与解一元一次不等式组,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解不等式的能力.20.(8.00分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.【分析】(1)根据平均数、中位数、众数的概念解答即可;(2)根据它们的方差,从而可以解答本题.【解答】解:(1)a=,b=85,c=85,(2)∵22.8>19.2,∴八(2)班前5名同学的成绩较好,【点评】本题考查平均数、众数、中位数、方差,解题的关键是明确题意,找出所求问题需要的条件.21.(8.00分)如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.【分析】(1)由折叠的性质得到M、N分别为AD、BC的中点,利用平行线分线段成比例得到F为PG的中点,再由折叠的性质得到AF垂直于PG,利用SAS即可得证;(2)由(1)的全等三角形,得到对应边相等,利用三线合一得到∠2=∠3,由折叠的性质及等量代换得到∠PAG为60°,根据AP=AG且有一个角为60°即可得证.【解答】证明:(1)由折叠可得:M、N分别为AD、BC的中点,∵DC∥MN∥AB,∴F为PG的中点,即PF=GF,由折叠可得:∠PFA=∠D=90°,∠1=∠2,在△AFP和△AFG中,,∴△AFP≌△AFG(SAS);(2)∵△AFP≌△AFG,∴AP=AG,∵AF⊥PG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=30°,∴∠2+∠3=60°,即∠PAG=60°,∴△APG为等边三角形.【点评】此题考查了翻折变换(折叠问题),全等三角形的判定与性质,等边三角形的判定,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.22.(8.00分)探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为2,它的另一条性质为当x>1时,y随x的增大而增大;x…123…y…2…(2)请用配方法求函数y=x+(x>0)的最小值;(3)猜想函数y=x+(x>0,a>0)的最小值为2.【分析】(1)根据函数图象可以得到函数y=x+(x>0)的最小值,然后根据函数图象,可以写出该函数的一条性质,注意函数的性质不唯一,写的只要复合函数即可;(2)根据配方法可以求得函数y=x+(x>0)的最小值;(3)根据配方法可以求得函数y=x+(x>0,a>0)的最小值.【解答】解:(1)由图象可得,函数y=x+(x>0)的最小值是2,它的另一条性质是:当x>1时,y随x的增大而增大,故答案为:2,当x>1时,y随x的增大而增大;(2)∵y=x+(x>0),∴y=,∴当时,y取得最小值,此时x=1,y=2,即函数y=x+(x>0)的最小值是2;(3)∵y=x+(x>0,a>0)∴y=,∴当时,y取得最小值,此时y=2,故答案为:2.【点评】本题考查正比例函数的图象和性质、反比例函数的图象和性质,解答本题的关键是明确题意,利用数形结合的思想解答.23.(10.00分)问题:已知α、β均为锐角,tanα=,tanβ=,求α+β的度数.探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出α+β的度数;延伸:(2)设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.【分析】(1)连结AM、MH,则∠MHP=∠α,然后再证明△AMH为等腰直角三角形即可;(2)先求得MH的长,然后再求得弧MR所对圆心角的度数,最后,再依据弧长公式求解即可.【解答】解:(1)连结AM、MH,则∠MHP=∠α.∵AD=MC,∠D=∠C,MD=HC,∴△ADM≌△MCH.∴AM=MH,∠DAM=∠HMC.∵∠AMD+∠DAM=90°,∴∠AMD+∠HMC=90°,∴∠AMH=90°,∴∠MHA=45°,即α+β=45°.(2)由勾股定理可知MH==.∵∠MHR=45°,∴==.【点评】本题主要考查的是弧长的计算、等腰直角三角形的判定,锐角三角函数的性质,掌握本题的辅助线的作法是解题的关键.24.(10.00分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(m2/棵)0.410.4【分析】(1)根据矩形的面积公式计算即可;(2)构建方程即可解决问题,注意检验是否符合题意;(3)利用二次函数的性质求出y的最大值,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,可得a+7b=1500,推出b的最大值为214,此时a=2,再求出实际植物面积即可判断;【解答】解:(1)y=x(36﹣2x)=﹣2x2+36x.(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20<18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,∴这批植物不可以全部栽种到这块空地上.【点评】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(12.00分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P (x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是x2+(y﹣)2=1;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.【分析】(1)利用两点间的距离公式即可得出结论;(2)利用两点间的距离公式即可得出结论;(3)①先确定出m+n=2k,mn=﹣1,再确定出M(m,﹣),N(n,﹣),进而判断出△AMN是直角三角形,再求出直线AQ的解析式为y=﹣x+,即可得出结论;②先确定出a=mk+,b=nk+,再求出AE=ME=a+=mk+1,AF=NF=b+=nk+1,即可得出结论.【解答】解:(1)设到点A的距离等于线段AB长度的点D坐标为(x,y),∴AD2=x2+(y﹣)2,∵直线y=kx+交y轴于点A,∴A(0,),∵点A关于x轴的对称点为点B,∴B(0,﹣),∴AB=1,∵点D到点A的距离等于线段AB长度,∴x2+(y﹣)2=1,故答案为:x2+(y﹣)2=1;(2)∵过点B作直线l平行于x轴,∴直线l的解析式为y=﹣,∵C(x,y),A(0,),∴AC2=x2+(y﹣)2,点C到直线l的距离为:(y+),∵动点C(x,y)满足到直线l的距离等于线段CA的长度,∴x2+(y﹣)2=(y+)2,∴动点C轨迹的函数表达式y=x2,(3)①如图,设点E(m,a)点F(n,b),∵动点C的轨迹与直线y=kx+交于E、F两点,∴,∴x2﹣2kx﹣1=0,∴m+n=2k,mn=﹣1,∵过E、F作直线l的垂线,垂足分别是M、N,∴M(m,﹣),N(n,﹣),∵A(0,),∴AM2+AN2=m2+1+n2+1=m2+n2+2=(m+n)2﹣2mn+2=4k2+4,MN2=(m﹣n)2=(m+n)2﹣4mn=4k2+4,∴AM2+AN2=MN2,∴△AMN是直角三角形,MN为斜边,取MN的中点Q,∴点Q是△AMN的外接圆的圆心,∴Q(k,﹣),∵A(0,),∴直线AQ的解析式为y=﹣x+,∵直线EF的解析式为y=kx+,∴AQ⊥EF,∴EF是△AMN外接圆的切线;②证明:∵点E(m,a)点F(n,b)在直线y=kx+上,∴a=mk+,b=nk+,∵ME,NF,EF是△AMN的外接圆的切线,∴AE=ME=a+=mk+1,AF=NF=b+=nk+1,∴+=+====2,即:+为定值,定值为2.【点评】此题是圆的综合题,主要考查了待定系数法,两点间的距离公式,直角三角形的判定和性质,根与系数的关系,圆的切线的判定和性质,利用根与系数的确定出m+n=2k,mn=﹣1是解本题是关键.。
2018年湖北省十堰市中考数学试卷(含答案解析版)
2018年湖北省十堰市中考数学试卷一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
1.(3.00分)(2018•十堰)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是( )A .0B .﹣1C .0.5D .(﹣1)22.(3.00分)(2018•十堰)如图,直线a ∥b ,将一直角三角形的直角顶点置于直线b 上,若∠1=28°,则∠2的度数是( )A .62°B .108°C .118°D .152°3.(3.00分)(2018•十堰)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是( )A .B .C .D .4.(3.00分)(2018•十堰)下列计算正确的是( )A .2x +3y=5xyB .(﹣2x 2)3=﹣6x 6C .3y 2•(﹣y )=﹣3y 2D .6y 2÷2y=3y5.(3.00分)(2018•十堰)某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm23 23.5 24 24.5 25销售量/双 1 3 3 6 2 则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,246.(3.00分)(2018•十堰)菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.(3.00分)(2018•十堰)我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱:如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,物品的价格为y 元,可列方程(组)为( )A .{8x −3=y 7x +4=yB .{8x +3=y 7x −4=yC .x+38=x−47D .y−38=y+478.(3.00分)(2018•十堰)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A .2√10B .√41C .5√2D .√519.(3.00分)(2018•十堰)如图,扇形OAB 中,∠AOB=100°,OA=12,C 是OB的中点,CD ⊥OB 交AB̂于点D ,以OC 为半径的CE ̂交OA 于点E ,则图中阴影部分的面积是( )A .12π+18√3B .12π+36√3C .6π+18√3D .6π+36√310.(3.00分)(2018•十堰)如图,直线y=﹣x 与反比例函数y=k x的图象交于A ,B 两点,过点B 作BD ∥x 轴,交y 轴于点D ,直线AD 交反比例函数y=k x的图象于另一点C ,则CB CA的值为( )A.1:3 B.1:2√2C.2:7 D.3:10二、填空题(本题共6小题,每小题3分,共18分)11.(3.00分)(2018•十堰)北京时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为.12.(3.00分)(2018•十堰)函数y=√x−3的自变量x的取值范围是.13.(3.00分)(2018•十堰)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为.14.(3.00分)(2018•十堰)对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为.15.(3.00分)(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x(kx+b)<0的解集为.16.(3.00分)(2018•十堰)如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6√2,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.三、解答题(本题有9个小题,共72分) 17.(5.00分)(2018•十堰)计算:|﹣√3|﹣2﹣1+√1218.(6.00分)(2018•十堰)化简:1a−1﹣1a2+a÷a2−1a2+2a+119.(7.00分)(2018•十堰)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:√2≈1.414,√3≈1.732,结果取整数).20.(9.00分)(2018•十堰)今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x=;(2)扇形统计图中m=,n=,C等级对应的扇形的圆心角为度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.21.(7.00分)(2018•十堰)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x +k 2+k ﹣1=0有实数根.(1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.22.(8.00分)(2018•十堰)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示:(1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?23.(8.00分)(2018•十堰)如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,过点D 作FG ⊥AC 于点F ,交AB 的延长线于点G .(1)求证:FG 是⊙O 的切线;(2)若tanC=2,求GB GA的值.24.(10.00分)(2018•十堰)已知正方形ABCD 与正方形CEFG ,M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,请判断DM ,EM 的数量关系与位置关系,并直接写出结论;(2)如图2,点E 在DC 的延长线上,点G 在BC 上,(1)中结论是否仍然成立?请证明你的结论;(3)将图1中的正方形CEFG 绕点C 旋转,使D ,E ,F 三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF 的长.25.(12.00分)(2018•十堰)已知抛物线y=12x 2+bx +c 经过点A (﹣2,0),B (0、﹣4)与x 轴交于另一点C ,连接BC .(1)求抛物线的解析式;(2)如图,P 是第一象限内抛物线上一点,且S △PBO =S △PBC ,求证:AP ∥BC ;(3)在抛物线上是否存在点D ,直线BD 交x 轴于点E ,使△ABE 与以A ,B ,C ,E 中的三点为顶点的三角形相似(不重合)?若存在,请求出点D 的坐标;若不存在,请说明理由.2018年湖北省十堰市中考数学试卷参考答案与试题解析一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内。
2018年湖北省荆州市中考数学试卷
2018年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分) 1.(3分)(2018•荆州)下列代数式中,整式为( ) A .1x +B .11x + C .21x +D .1x x+ 2.(3分)(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A 、点B ,则下列说法正确的是( )A .原点在点A 的左边B .原点在线段AB 的中点处C .原点在点B 的右边D .原点可以在点A 或点B 上3.(3分)(2018•荆州)下列计算正确的是( ) A .22234a a a -=B .236a a a =C .1052a a a ÷=D .236()a a =4.(3分)(2018•荆州)如图,两条直线12//l l ,Rt ACB ∆中,90C ∠=︒,AC BC =,顶点A 、B 分别在1l 和2l 上,120∠=︒,则2∠的度数是( )A .45︒B .55︒C .65︒D .75︒5.(3分)(2018•荆州)解分式方程14322x x-=--时,去分母可得( ) A .13(2)4x --=B .13(2)4x --=-C .13(2)4x ---=-D .13(2)4x --=6.(3分)(2018•荆州)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( ) A .5210258x y x y +=⎧⎨+=⎩B .5210258x y x y -=⎧⎨-=⎩C .5210258x y x y +=⎧⎨-=⎩D .5282510x y x y +=⎧⎨+=⎩7.(3分)(2018•荆州)已知:将直线1y x =-向上平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小8.(3分)(2018•荆州)如图,将一块菱形ABCD 硬纸片固定后进行投针训练.已知纸片上AE BC ⊥于E ,CF AD ⊥于F ,4sin 5D =.若随意投出一针命中了菱形纸片,则命中矩形区域的概率是( )A .15B .25 C .35D .459.(3分)(2018•荆州)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是( )A .本次抽样调查的样本容量是5000B .扇形图中的m 为10%C .样本中选择公共交通出行的有2500人D .若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人10.(3分)(2018•荆州)如图,平面直角坐标系中,P 经过三点(8,0)A ,(0,0)O ,(0,6)B ,点D 是P 上的一动点.当点D 到弦OB 的距离最大时,tan BOD ∠的值是( )A .2B .3C .4D .5二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2018•荆州)计算:11|2|4()tan 452---++︒= .12.(3分)(2018•荆州)已知:AOB ∠,求作:AOB ∠的平分线.作法:①以点O 为圆心,适当长为半径画弧,分别交OA ,OB 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠内部交于点C ;③画射线OC .射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .13.(3分)(2018•荆州)如图所示,是一个运算程序示意图.若第一次输入k 的值为125,则第2018次输出的结果是 .14.(3分)(2018•荆州)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A 处测得塔顶的仰角为30︒,再向古塔方向行进a 米后到达B 处,在B 处测得塔顶的仰角为45︒(如图所示),那么a 的值约为 米(3 1.73≈,结果精确到0.1).15.(3分)(2018•荆州)为了比较51+与10的大小,可以构造如图所示的图形进行推算,其中90C ∠=︒,3BC =,D 在BC 上且1BD AC ==.通过计算可得51+ 10.(填“>”或“<”或“=” )16.(3分)(2018•荆州)关于x 的一元二次方程2220x kx k k -+-=的两个实数根分别是1x 、2x ,且22124x x +=,则221122x x x x -+的值是 .17.(3分)(2018•荆州)如图,将钢球放置到一个倒立的空心透明圆锥中,测得相关数据如图所示(图中数据单位:)cm ,则钢球的半径为 cm (圆锥的壁厚忽略不计).18.(3分)(2018•荆州)如图,正方形ABCD 的对称中心在坐标原点,//AB x 轴,AD 、BC 分别与x 轴交于E 、F ,连接BE 、DF ,若正方形ABCD 有两个顶点在双曲线2a y x+=上,实数a 满足31a a -=,则四边形DEBF 的面积是 .三、解答题(本大题共7小题,共66分)19.(10分)(2018•荆州)(1)求不等式组21211224x x x x --⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩①②的整数解; (2)先化简,后求值221(1)121a a a a a --÷+++,其中21a =+. 20.(8分)(2018•荆州)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级 平均分 中位数 众数方差 八(1) 85bc22.8 八(2)a85 8519.2(1)直接写出表中a ,b ,c 的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.21.(8分)(2018•荆州)如图,对折矩形纸片ABCD ,使AB 与DC 重合,得到折痕MN ,将纸片展平;再一次折叠,使点D 落到MN 上的点F 处,折痕AP 交MN 于E ;延长PF 交AB 于G .求证: (1)AFG AFP ∆≅∆; (2)APG ∆为等边三角形.22.(8分)(2018•荆州)探究函数1(0)y x x x =+>与(0,0)a y x x a x=+>>的相关性质.(1)小聪同学对函数1(0)y x x x=+>进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;x⋯ 14 13 12 1 322 523 ⋯ y⋯174103522136522910103⋯(2)请用配方法求函数1(0)y x x x =+>的最小值;(3)猜想函数(0,0)ay x x a x=+>>的最小值为 .23.(10分)(2018•荆州)问题:已知α、β均为锐角,1tan 2α=,1tan 3β=,求αβ+的度数. 探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为1),请借助这个网格图求出αβ+的度数;延伸:(2)设经过图中M 、P 、H 三点的圆弧与AH 交于R ,求MR 的弧长.24.(10分)(2018•荆州)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m ,另外三边由36m 长的栅栏围成.设矩形ABCD 空地中,垂直于墙的边AB xm =,面积为2ym (如图).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)若矩形空地的面积为2160m ,求x 的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲 乙 丙 单价(元/棵) 14 16 28 合理用地2(/m 棵)0.410.425.(12分)(2018•荆州)阅读理解:在平面直角坐标系中,若两点P 、Q 的坐标分别是1(P x ,1)y 、2(Q x ,2)y ,则P 、Q 这两点间的距离为221212||()()PQ x x y y =-+-.如(1,2)P ,(3,4)Q ,则22||(13)(24)22PQ =-+-=.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线. 解决问题:如图,已知在平面直角坐标系xOy 中,直线12y kx =+交y 轴于点A ,点A 关于x 轴的对称点为点B ,过点B 作直线l 平行于x 轴.(1)到点A 的距离等于线段AB 长度的点的轨迹是 ;(2)若动点(,)C x y 满足到直线l 的距离等于线段CA 的长度,求动点C 轨迹的函数表达式; 问题拓展:(3)若(2)中的动点C 的轨迹与直线12y kx =+交于E 、F 两点,分别过E 、F 作直线l 的垂线,垂足分别是M 、N ,求证:①EF 是AMN ∆外接圆的切线;②11AE AF+为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学试卷一、选择题(每题只有一个正确选项,本题共15小题,每题3分,共45分)1.(3分)﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣2.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.(3分)工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×1054.(3分)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.245.(3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B. C.D.6.(3分)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.7.(3分)下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x28.(3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.c=20,b=15,c=69.(3分)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.10.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定11.(3分)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)12.(3分)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40° D.45°13.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.14.(3分)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米15.(3分)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1二、解答题(本题共9题,75分)16.(6分)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.17.(6分)解不等式组,并把它的解集在数轴上表示出来.18.(7分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.19.(7分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A.酵素制作社团B.回收材料小制作社团C.垃圾分类社团D.环保义工社团E.绿植养护社团人数10155105(1)填空:在统计表中,这5个数的中位数是;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.22.(10分)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.23.(11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC 折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.24.(12分)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=,k=,点E的坐标为;(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c 的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.2018年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共15小题,每题3分,共45分)1.【解答】解:﹣2018的绝对值是2018.故选:A.2.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.3.【解答】解:1.21万=1.21×104,故选:C.4.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.5.【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=.故选:B.6.【解答】解:该几何体的主视图为:;左视图为;俯视图为;故选:C.7.【解答】解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.8.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.9.【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.10.【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.11.【解答】解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选:A.12.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.13.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.14.【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.15.【解答】解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.二、解答题(本题共9题,75分)16.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.17.【解答】解:解不等式①,得:x≥1;解不等式②,得:x<2;∴原不等式组的解集是1≤x<2..18.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.19.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.20.【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.21.【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S=8.菱形ABFC22.【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:23.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.24.【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=。