博弈论作业及答案 浙江财经大学 张老师作业答案
博弈论作业及答案浙江财经大学张老师作业答案.doc
第1次作业1、考虑一个工作申请的博弈。
两个学牛同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
现在假定每家企业的工资满足:W1/2<W2<2W1,则问:a.写出以上博弈的战略式描述b.求岀以上博弈的所有纳什均衡(包括混合策略均衡)2、设古诺模型中有“家厂商。
⑺•沏•商Z•的产量,Q = q{ +L +q n为市场总产量。
P为市场出清价格,且己知= Q (当时, 否则p = 0)o假设厂商i生产产量G 的总成本为G = G(gJ = cq・,也就是说没有固定成本且各厂的边际成本都相同,为常数c(c < a)。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?3、两个厂商生产一种完全同质的商品,该商品的市场需求函数为2= IOO-P,设厂商1和厂商2都没有固定成本。
若他们在相互知道对方边际成木的情况下,同时作出产量决策是分别生产20单位和30单位。
问这两个厂商的边际成木各是多少?各自的利润是多少?4、五户居民都可以在一个公共的池塘里放养鸭子。
每只鸭子的收益卩是鸭子总数N的函数,并取决于N是否超些某个临界值如果N<N,收益v = v(N) = 50 —N;如果N>N时,u(N)三0。
再假设每只鸭子的成本为c = 2元。
若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么?5、三对夫妻的感情状态可以分别用下面三个得益矩阵对应的静态博弈来表示。
问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何? 矩阵矩阵2:矩阵3:6、两个个体一起参加某项工程,每个人的努力程度e[0,1](/= 1,2),成本为C (弓)(i = l,2),该项目的产出为/(弓疋2)。
个体的努力程度不影响到项目的分配方法,项目的产出在2个体之间均分。
微观经济学原理(博弈论)习题与答案
一、单选题1、现代博弈论的提出人是()A.冯·诺依曼和摩根斯坦B.李嘉图C.萨谬尔森D.亚当·斯密正确答案:A2、在博弈论中()A. 合作博弈就是串谋。
B.占优策略总是存在的。
C.以上都正确。
D.纳什均衡是博弈的一种结果。
正确答案:D3、博弈论中的占优策略是()A.A和C都正确B.为两家博弈参与方带来最佳可能结果的策略。
C.肯定不会成为最佳选择的策略。
D.不管博弈对方如何选择,对己方都是最佳选择的策略正确答案:D4、囚犯困境出现合作的情形最有可能出现()A. 寡头垄断行业面临重复博弈情形时B.垄断竞争行业由占主导地位公司主导的情形下C.垄断企业被迫与寡头垄断行业的企业重复竞争情况下D. 寡头垄断行业一次性博弈情形下正确答案:D5、囚徒困境博弈的标准结果是()A.只有一方承认B.结果不明确C.双方都承认D.双方都不承认正确答案:C6、在一个序贯博弈中,()A.跟随者比先行者有优势B.先行者比跟随者有优势。
C.果存在纳什均衡,先行者有优势D.根据情形不同,先行者和跟随者都有各自的优势正确答案:D7、在博弈论中,()A.合作战略在一次性博弈中比重复博弈更有可能B.合作策略在一次性博弈和重博弈中都有同样可能C.合作策略在重复博弈中比单次博弈更有可能D.我们并不知道合作策略在一次性博弈中是否比重复博弈中更有可能。
正确答案:C8、根据博弈论,在寡头垄断市场博弈中,合作可在()情况下实现。
A.市场中至少有一家公司决定不欺骗。
B. 市场中的部分公司决定不欺骗。
C.市场上的所有公司决定不欺骗。
D.市场中的大多数公司决定不欺骗。
正确答案:C9、A公司与B公司是生产相同产品的两家企业,每家企业要决定产量水平。
矩阵表1给出了两家公司选择高产量与低产量博弈后的利润情形,单位为千万元。
A公司是否有占优策略?如果有,是什么?表1 A、B公司的博弈矩阵A.没有, A公司没有占优策略。
B.有, A公司占优策略应该是低产量C.有, A公司占优策略是与B公司串谋D. 有, A公司占优策略应该是高产量正确答案:B10、A公司与B公司是生产相同产品的两家企业,每家企业要决定产量水平。
博弈论 课后习题答案
博弈论课后习题答案第四部分课后习题答案1. 参考答案:括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。
在第三阶段,如果,则乙会选择不打官司。
这时逆推回第二阶段,甲会选择a,0不分,因为分的得益2小于不分的得益4。
再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。
在第三阶段,如果,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。
a,0逆推回第二阶段,如果,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。
b,2在这种情况下再逆推回第一阶段,那么当时乙会选择不借,双方得益(1,0),当a,1时乙肯定会选择借,最后双方得益为(a,b)。
在第二阶段如果,则甲会选择a,1b,2分,此时双方得益为(2,2)。
再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:(1),此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方a,0得益(1,0),不管这时候b的值是多少;(2),此时博弈的结果仍然012,,,ab且是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3),此时博ab,,12且弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);(4),此时乙在第一阶段会选择借,甲在第二阶段会选择分,ab,,02且双方得益(2,2)。
要本博弈的“威胁”,即“打”是可信的,条件是。
要本博弈的“承诺”,即a,0“分”是可信的,条件是且。
a,0b,2注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。
不过最终的结果并不会超出上面给出的范围。
2. 参考答案:静态贝叶斯博弈中博弈方的一个策略是他们针对自己各种可能的类型如何作相应的完整计划。
博弈论作业及答案浙江财经大学张老师作业答案.docx
第 1 次作业1、考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下: 每个学生只能向其中一家企业申请工 作;如果一家企业只有一个学生申请, 该学生获得工作; 如果一家企业有两个学 生申请,则每个学生获得工作的概率为 1/2 。
现在假定每家企业的工资满足:W1/2<W2<2W1 ,则问:a .写出以上博弈的战略式描述b .求出以上博弈的所有纳什均衡(包括混合策略均衡 )2、设古诺模型中有 n 家厂商。
q i 为厂商 i 的产量, Qq 1 q 2 L q n 为市场总产量。
P 为市场出清价格,且已知 PP(Q)aQ (当 Qa时,否则 P0 )。
假设厂商 i 生产产量 q i 的总成本为 C iC i(q i ) cq i,也就是说没有固定成本且各厂的边际成本都相同,为常数 c(ca) 。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?3、两 个 厂商 生产 一种 完 全同质的 商品 ,该 商品 的市 场需 求函数为Q 100 P ,设厂商 1 和厂商 2 都没有固定成本。
若他们在相互知道对方边际成本的情况下, 同时作出产量决策是分别生产 20 单位和 30 单位。
问这两个厂商的边际成本各是多少?各自的利润是多少?4、五户居民都可以在一个公共的池塘里放养鸭子。
每只鸭子的收益v 是鸭子总数N的函数,并取决于N是否超过某个临界值N;如果NN,收益v v( N )50N;如果NN时,v(N)0 。
再假设每只鸭子的成本为 c 2元。
若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么?5、三对夫妻的感情状态可以分别用下面三个得益矩阵对应的静态博弈来表示。
问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何?矩阵 1:妻子丈夫活着死了活着1, 1-1, 0死了0, -10,0矩阵 2:妻子活着死了丈夫活着0, 01,0死了0, 10,0矩阵 3:妻子活着死了丈夫活着-1,-11,0死了0, 10,06、两个个体一起参加某项工程,每个人的努力程度e i [0,1] (i1,2) ,成本为c(e i ) (i1,2) ,该项目的产出为f (e1,e2)。
博弈论课后复习及标准答案浙江财经大学张老师课后复习标准答案
第1次作业1、考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
现在假定每家企业的工资满足:W1/2<W2<2W1,则问:a .写出以上博弈的战略式描述b .求出以上博弈的所有纳什均衡(包括混合策略均衡) 2、设古诺模型中有n 家厂商。
i q 为厂商i 的产量,12n Q q q q =+++L 为市场总产量。
P 为市场出清价格,且已知Q a Q P P-==)((当a Q <时,否则0=P )。
假设厂商i 生产产量i q 的总成本为i i i i cq q C C ==)(,也就是说没有固定成本且各厂的边际成本都相同,为常数)(a c c <。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?3、两个厂商生产一种完全同质的商品,该商品的市场需求函数为P Q -=100,设厂商1和厂商2都没有固定成本。
若他们在相互知道对方边际成本的情况下,同时作出产量决策是分别生产20单位和30单位。
问这两个厂商的边际成本各是多少?各自的利润是多少?4、五户居民都可以在一个公共的池塘里放养鸭子。
每只鸭子的收益v 是鸭子总数N 的函数,并取决于N 是否超过某个临界值N ;如果N N<,收益N N v v -==50)(;如果N N ≥时,0)(≡N v 。
再假设每只鸭子的成本为2=c 元。
若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么?5、三对夫妻的感情状态可以分别用下面三个得益矩阵对应的静态博弈来表示。
问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何?6、两个个体一起参加某项工程,每个人的努力程度[0,1](1,2)i e i ∈=,成本为()(1,2)i c e i =,该项目的产出为12(,)f e e 。
博弈论 课后习题答案
博弈论课后习题答案第四部分课后习题答案1. 参考答案:括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。
在第三阶段,如果,则乙会选择不打官司。
这时逆推回第二阶段,甲会选择a,0不分,因为分的得益2小于不分的得益4。
再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。
在第三阶段,如果,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。
a,0逆推回第二阶段,如果,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。
b,2在这种情况下再逆推回第一阶段,那么当时乙会选择不借,双方得益(1,0),当a,1时乙肯定会选择借,最后双方得益为(a,b)。
在第二阶段如果,则甲会选择a,1b,2分,此时双方得益为(2,2)。
再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:(1),此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方a,0得益(1,0),不管这时候b的值是多少;(2),此时博弈的结果仍然012,,,ab且是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3),此时博ab,,12且弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);(4),此时乙在第一阶段会选择借,甲在第二阶段会选择分,ab,,02且双方得益(2,2)。
要本博弈的“威胁”,即“打”是可信的,条件是。
要本博弈的“承诺”,即a,0“分”是可信的,条件是且。
a,0b,2注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。
不过最终的结果并不会超出上面给出的范围。
2. 参考答案:静态贝叶斯博弈中博弈方的一个策略是他们针对自己各种可能的类型如何作相应的完整计划。
“博弈论”习题及参考答案
“博弈论”习题及参考答案《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。
A. 效用B. 支付C. 决策D. 利润 2.博弈中通常包括下面的内容,除了()。
A.局中人B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中()。
A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了 4.在多次重复的双头博弈中,每一个博弈者努力()。
A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大 5.一个博弈中,直接决定局中人支付的因素是()。
A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。
A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。
A.一报还一报的策略 B.激发策略 C.双头策略 D.主导企业策略 8.在囚徒困境的博弈中,合作策略会导致()。
A.博弈双方都获胜B.博弈双方都失败1C.使得先采取行动者获胜D.使得后采取行动者获胜 9.在什么时候,囚徒困境式博弈均衡最可能实现()。
A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D. 当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种()。
A.主导策略 B.激发策略 C.一报还一报策略D.主导策略 11.关于策略式博弈,正确的说法是()。
A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵 12.下列关于策略的叙述哪个是错误的():A. 策略是局中人选择的一套行动计划;B. 参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。
博弈论习题参考答案(2)
《博弈论》习题参考答案(第2次作业)一、选择题1.B2.C3.A4.A5.B6.ABCD7.C 8.B 9.C二、判断正误并说明理由1.F 上策均衡是比纳什均衡更严格的均衡概论2.T 上策均衡是比纳什均衡更严格的均衡概论3.T 博弈类型按局中人数多少分为单人博弈、双人博弈和多人博弈4.F 博弈双方偏好存在差异的条件下,一个博弈模型中可能存在2个纳什均衡,如性别战5.T 零和博弈指参与博弈各方在严格竞争下,一方收益等于另一方损失,博弈各方收益与损失之和恒为零,所以双方不存在合作可能性6.T 上策均衡是通过严格下策消去法(重复剔除下策)所得到的占优策略,只能有一个纳什均衡7.F 纳什均衡是上策的集合,指在给定的别人策略情况下,博弈方总是选择利益相对较大的策略,并不保证结果是最好的。
8.F 局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标9.T 纳什均衡是上策的集合,指在给定的别人策略情况下,没有人会改变自己的策略而减低自己的收益10.F 局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标11.F 局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标12.T 虽然斯塔格伯格模型各方利润总和小于古诺模型,但是领导者的利润比古诺模型时高三、计算与分析题1、 (1)画出A 、B 两企业的损益矩阵。
(2)求纯策略纳什均衡。
(做广告,做广告)2、画出两企业的损益矩阵求纳什均衡。
(1)画出A 、B 两企业的损益矩阵(2)求纳什均衡。
两个:(原价,原价),(涨价,涨价) 3、假定某博弈的报酬矩阵如下:甲乙 左 右 上 下(1)如果(上,左)是上策均衡,那么,a>?, b>?, g<?, f>? 答:a>e, b>d, f>h, g<c(2)如果(上,左)是纳什均衡,上述哪几个不等式必须满足? 答:a>e, b>d 4、答:(1)将这一市场用囚徒困境的博弈加以表示。
“博弈论”习题及参考答案
《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为( )。
A.效用B.支付C.决策 D.利润2.博弈中通常包括下面的内容,除了( )。
A.局中人 B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中( )。
A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力( )。
A.使行业的总利润达到最大 B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是( )。
A. 策略组合 B. 策略C. 信息 D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。
A.囚徒困境式的均衡 B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。
A.一报还一报的策略 B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致( )。
A.博弈双方都获胜 B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。
A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D.当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种( )。
A.主导策略 B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是( )。
A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的( ):A. 策略是局中人选择的一套行动计划;B.参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1次作业1、考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
现在假定每家企业的工资满足:W1/2<W2<2W1,则问: a .写出以上博弈的战略式描述b .求出以上博弈的所有纳什均衡(包括混合策略均衡)2、设古诺模型中有n 家厂商。
i q 为厂商i 的产量,12n Q q q q =+++L 为市场总产量。
P 为市场出清价格,且已知Q a Q P P -==)((当a Q <时,否则0=P )。
假设厂商i 生产产量i q 的总成本为i i i i cq q C C ==)(,也就是说没有固定成本且各厂的边际成本都相同,为常数)(a c c <。
假设各厂同时选择产量,该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?3、两个厂商生产一种完全同质的商品,该商品的市场需求函数为P Q -=100,设厂商1和厂商2都没有固定成本。
若他们在相互知道对方边际成本的情况下,同时作出产量决策是分别生产20单位和30单位。
问这两个厂商的边际成本各是多少?各自的利润是多少?4、五户居民都可以在一个公共的池塘里放养鸭子。
每只鸭子的收益v 是鸭子总数N 的函数,并取决于N 是否超过某个临界值N ;如果N N <,收益N N v v -==50)(;如果N N ≥时,0)(≡N v 。
再假设每只鸭子的成本为2=c 元。
若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么?5、三对夫妻的感情状态可以分别用下面三个得益矩阵对应的静态博弈来表示。
问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何?矩阵1:妻子丈夫活着 死了 活着 1,1 -1,0 死了0,-10,0矩阵2:妻子丈夫活着 死了 活着 0,0 1,0 死了0,10,0矩阵3:妻子丈夫活着死了活着 -1,-1 1,0 死了 0,1 0,06、两个个体一起参加某项工程,每个人的努力程度[0,1](1,i e i ∈=,成本为()(1,2)i c e i =,该项目的产出为12(,)f e e 。
个体的努力程度不影响到项目的分配方法,项目的产出在2个体之间均分。
试回答以下问题: 1、如果1212(,)3f e e e e =,2()(1,2)i i c e e i ==,试求此博弈的的Nash 均衡(即两个个体选择的最优努力程度)。
2、如果1212(,)4f e e e e =,()(1,2)i i c e e i ==,试求此博弈的的Nash 均衡。
第2次作业1、企业甲和企业乙都是彩电制造商,都可以选择生产低档产品或高档产品,每个企业在四种不同的情况下的利润如以下得益矩阵所示。
如果企业甲先于企业乙进行产品选择并投入生产,即企业乙在决定产品时已经知道企业甲的选择,而且这一点双方都清楚。
(1)用扩展型表示这一博弈。
(2)这一博弈的子博弈完美纳什均衡是什么?企业乙企业甲高档 低档 高档 500,500 1000,700 低档700,1000600,6002、两个寡头企业进行价格竞争博弈,企业1的利润函数是q c aq p ++--=21)(π,企业2的利润函数是p b q +--=22)(π,其中p 是企业1的价格,q 是企业2的价格。
求:(1)两个企业同时决策的纯策略纳什均衡;(2)企业1先决策的子博弈完美纳什均衡; (3)企业2先决策的子博弈完美纳什均衡;(4)是否存在参数c b a ,,的特定值或范围,使两个企业都希望自己先决策? 3、考虑如下的双寡头市场战略投资模型:企业1和企业2目前情况下的生产成本都是2=c。
企业1可以引进一项新技术使单位成本降低到1=c ,该项技术需要投资f 。
在企业1作出是否投资的决策(企业2可以观察到)后,两个企业同时选择产量。
假设市场需求函数为q q p -=14)(,其中p 是市场价格,q 是两个企业的总产量。
问上述投资额f处于什么水平时,企业1会选择引进新技术?4、在市场进入模型中,市场逆需求函数为p =13-Q ,进入者和在位者生产的边际成本都为1,固定成本为0,潜在进入者的进入成本为4。
博弈时序为:在位者首先决定产量水平;潜在进入者在观察到在位者的产量水平之后决定是否进入;如果不进入,则博弈结束,如果进入,则进入者选择产量水平。
求解以上博弈精炼纳什均衡。
5、在三寡头的市场中,市场的逆需求函数为三家产量之和Q Q a p ,-=,每家企业的不变边际成本为c ,固定成本为0。
如果企业1首先选择产量,企业2和企业3观察到企业1的产量后同时选择产量,则均衡时的市场价格。
第3次作业1、两个人合作开发一项产品,能否成功与两个人的工作态度有关,设成功概率如下:BA努力 偷懒努力 9/16 3/8 偷懒 3/8 1/4再假设成功时每人有4单位的利益,失败则双方都没有利益,偷懒本身有1单位的利益。
问该博弈无限次重复博弈的均衡是什么?2、两寡头古诺产量竞争模型中厂商的利润函数为()ii i j i q t q q π=--,1,2i =。
若11t =是两个厂商的共同知识,而2t 则是厂商2的私人信息,厂商1只知道23/4t =或24/5t =,且2t 取这两个值的概率相等。
若两个厂商同时选择产量,请找出该博弈的纯策略贝叶斯均衡。
3、两个厂商生产相同产品在市场上进行竞争性销售。
第1个厂商的成本函数为11q c =,其中1q 为厂商1的产量。
第2个厂商的成本函数为22cq c =,其中2q 为厂商2的产量,c 为其常数边际成本。
两个厂商的固定成本都为零。
厂商2的边际成本c 是厂商2的“私人信息”,厂商1认为c 在⎥⎦⎤⎢⎣⎡23,21上呈均匀分布。
设市场需求函数为214q q P --=,其中P 为价格,两个厂商都以其产量为纯战略,问纯战略贝叶斯均衡为何?。
4、两个企业同时决定是否进入一个市场,企业i 的进入成本),0[∞∈i θ是私人信息,i θ是服从分布函数)(i F θ的随机变量以及分布密度)(i f θ严格大于零,并且1θ和2θ两者独立。
如果只有一个企业进入,进入企业i 的利润函数为mi πθ-;如果两个企业都进入,则企业i 的利润函数为i d θπ-;如果没有企业进入,利润为零。
假定m π和d π是共同知识,且m π>dπ>0,试计算此博弈的贝叶斯均衡。
博弈论第1次作业答案1、a .写出以上博弈的战略式描述b .求出以上博弈的所有纳什均衡(包括混合策略均衡)存在两个纯战略纳什 ①均衡:分别为(企业1,企业为)2,1(W W 。
(企业2),收益2,企业1),收益为)1,2(W W 。
存在一个混合策略均 ②衡:令学生A 选择企业1的概学生B 企业1企业2学生A企业1 企业2率为p ,选择企业2的概率为p -1;学生B 选择企业1的概率为q ,选择企业2的概率为q -1。
当学生A 以)1,(p p -的概率选择时,学生B 选择企业1的期望收益应该与选择企业2的期望收益相等,即:解得:21212W W W W p +-=,211221W W W W p +-=-同理求出: 解得:21212W W W W q +-=,211221W W W W q +-=-所以,混合策略纳什均衡为:学生A 、B 均以)21122,21212(W W W W W W W W +-+-的概率选择企业1,企业2。
2、该模型的纳什均衡是什么?当趋向于无穷大时博弈分析是否仍然有效?各厂商的利润函数为: 求解:对其求导,令导数为0,解得反应函数为:纳什均衡),...,,(**2*1n q q q ,必是n 条反应函数的交点........... 得到:1...**2*1+-====n ca q q q n,且为唯一的纳什均衡。
当趋向于无穷大时博弈分析无效。
01lim lim *=+-=∞→∞→n ca q n in ,此时为完全竞争市场,此时博弈分析无效。
3、问这两个厂商的边际成本各是多少?各自的利润是多少? 设:边际成本不变,为1c ,2c 。
计算得市场出清价格为:两个厂商的利润函数为: 求解:对其求导,令导数为0,解得反应函数为: 纳什均衡),(*2*1q q ,即(20,30)为两条反应函数的交点 得到: 301=c ,202=c 。
此时: 4001=u ,9002=u 。
4、若所有居民同时决定养鸭的数量,问该博弈的纳什均衡是什么? 设居民i选择的养鸭数目为i n )5,4,3,2,1(=i ,则总数为∑==51i i n N 。
假设:居民的得益函数为: 计算:得到反应函数:5、反应函数的交点),,,,(*5*4*3*2*1n n n n n 是博弈的纳什均衡。
将),,,,(*5*4*3*2*1n n n n n 带入反应函数,得:8*5*4*3*2*1=====n n n n n 。
此时:64=i u 。
此时,40=N 然后讨论下N①若40>N ,则N N <,上述博弈成立。
②若40≤N ,则]5[N N = 5、问:这三个博弈的纳什均衡分别是什么?这三对夫妻的感情状态究竟如何? 矩阵1:妻子丈夫活着 死了 活着 1,1 -1,0 死了0,-10,0矩阵2:妻子丈夫活着 死了 活着 0,0 1,0 死了0,10,0矩阵3:妻子丈夫活着 死了 活着 -1,-1 1,0 死了0,10,0用划线法得出三个矩阵的纳什均衡分别为: 矩阵1:(活着,活着) (死了,死了)可以看出这对夫妻间感情十分深厚。
这对夫妻同生共死,一个死了,则另一个也选择死去。
如果一个死了,一个活着,那么活着的将生不如死。
矩阵2:(活着,活着) (活着,死了) (死了,活着)可以看出这对夫妻间感情一般。
这对夫妻共同活着没有收益,一个死了,对于另一个来说反而更好。
矩阵3:(活着,死了) (死了,活着)可以看出这对夫妻间感情很槽糕。
这对夫妻共同活着对双方来说是生不如死。
一个死了,对于另一个来说反而更好。
6、(1)如果1212(,)3f e e e e =,2()(1,2)i i c e e i ==,试求此博弈的Nash 均衡(即两个个体选择的最优努力程度)。
(2)如果1212(,)4f e e e e =,()(1,2)i i c e e i==,试求此博弈的Nash 均衡。
(1)收益为: 得出反应函数为:纳什均衡),(*2*1e e 为两条反应函数的交点,代入得出:两个人都不会努力的 (2)收益为: 分别求偏导:此时,两个人的努力程度都与对方的努力程度有关①)21,0[=ie 时,博弈一方越努力,另一方就选择努力程度为0, 此时纳什均衡为(0,0) ②21=i e 时,双方收益均达到最大值,此时纳什均衡为)21,21(③]1,21(=i e 时,博弈一方越努力,另一方选择努力程度为1,此时纳什均衡为(1,1)第2次作业答案1, (1)用扩展型表示这一博弈。