北师大版初三数学 圆的总复习

合集下载

第3章圆 题型解读11 线段和差最值中的“胡不归”问题和“阿氏圆”-北师大版九年级数学下册

第3章圆 题型解读11 线段和差最值中的“胡不归”问题和“阿氏圆”-北师大版九年级数学下册

题型全解11 线段和差最值中的“胡不归”问题和“阿氏圆”【知识梳理】 1.“胡不归问题”(1)题型特点:出现“PA ±kPB ”形式的线段和差最值题型,且动点在直线上运动。

(2)解题思路:紧盯“k ”的数学特点,利用特殊角的边角关系、或构造“共角模型”的相似三角形,寻找到一条与“kPB ”相似的线段,把“PA ±kPB ”结构转化成“将军饮马问题”的“PA+CD ”结构,利用“将军饮马问题”的“化曲为直”的思路解题。

2.阿氏圆(1)题型特点:出现“PA ±kPB ”形式的线段和差最值题型,且动点运动轨迹为圆形(或圆弧形)。

阿氏圆,全称为阿波罗尼期圆,是古希腊名叫阿波罗尼斯的数学家发现的。

他发现:已知平面上两定点A 、B ,则所以满足“PA PB=k(k ≠1)”的点P 的轨迹是一个圆,取名为阿波罗尼期圆,简称为阿氏圆。

当k =1时,PA =PB ,则点P 到线段两端的距离相等,它的轨迹是线段AB 的垂直平分线。

当k ≠1时,点P 运动轨迹如图所求,易知图中隐藏着“共角型”相似三角形,若OA OP=OP OB=K ,△OPA ∽△OBP ,则有PA PB=OA OP=K ,即PA =k ∙PB 。

(2)解题思路:当遇到“PA +kPB ”型最值时,解题关键是能否把“kPB ”转化成某条线段,这样就转化成了典型的“将军饮马问题”,而把“kPB ”转化成某条线段,最关键是能够构造出点A :只要使被构造的点A 与圆心O 的距离与半径之比等于半径与圆心到定点B 的距离之比即可,即OA:r =r:OB =k【典型例题】1.如图,Rt △ABC 中,,∠ACB=90°,∠BAC=30°,BC=√3,P 是边AC 上的一个动点,则12PA +PB 的最小值为________.A BCP MB`PC BA解析:利用30°角把12PA 转化成某一条线段,这样就把12PA +PB 转化成两条线段和差的最小值,典型的“将军饮马问题”.过P 作PM ⊥AB 于点M ,则PM=12PA ,则求12PA +PB 的最小值,即是求PM+PB 的最小值,属“一定两动”情形。

北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(提高)

北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(提高)

《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的所有点组成的图形.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)OA=OB=OC定在三角形内部(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1. 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB=45°,点在数轴上运动,若过点P 且与OA 平行(或重合)的直线与⊙O 有公共点, 设OP=x ,则的取值范围是( ).A .-1≤≤1B .≤≤C .0≤≤ D .>【思路点拨】关键是通过平移,确定直线与圆相切的情况,求出此时OP 的值. 【答案】C ;【解析】如图,平移过P 点的直线到P′,使其与⊙O 相切,设切点为Q ,连接OQ ,P x x x 2x 2x 2由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OB平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果相同.故答案为:0≤OP≤2.【总结升华】本题考查了直线与圆的位置关系问题.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若2.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG⊥AB 于D ,F 是⊙O 上的点,且,BF 交CG 于点E ,求证:CE =BE .【思路点拨】主要用垂径定理及其推论进行证明. 【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ . ∵ ,∴ .∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE .∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ . ∵ ,∴ .∴ BF =CG ,ON =OD . »»CFCB =»»CBGB =»»CFBC =»»CF GB =»»CBBG =»»CBCF =»»»CF BC BG ==∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ ,, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ ,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ ,.∴ ,. ∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD . 又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【总结升华】在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO 交BC 于点D,过O 作OE ⊥BC 于E.则三角形ABD 为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt △ODE 中,∠ODE=60°,∠DOE=30°,则DE=OD=2,BE=BD-DE=10 OE 垂直平分BC ,BC=2BE=20. 故选D类型三、与圆有关的位置关系12BN BF =12CD CG =»»CFBC =»»BGBC =»»»CF BG BC ==»»BF CG =ON OD=123.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm ,长约为8.4cm. (1)试计算烟盒顶盖ABCD 的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm 3173..【答案与解析】 (1)如图(2),作O 1E ⊥O 2O 3()332844AB cm ∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【总结升华】四边形ABCD中,AD长为7支香烟的直径之和,易求;求AB长,只要计算出如图(2)中的O1E长即可.类型四、圆中有关的计算4.(2019•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【答案与解析】解:如图,连接OD,⊙CD是⊙O切线,⊙OD⊙CD,⊙OA=CD=2,OA=OD,⊙OD=CD=2,⊙⊙OCD为等腰直角三角形,⊙⊙DOC=⊙C=45°,⊙S阴影=S⊙OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,⊙AB是⊙O直径,⊙⊙ADB=⊙ADM=90°,又⊙=,⊙ED=BD,⊙MAD=⊙BAD,在⊙AMD和⊙ABD中,,⊙⊙AMD⊙⊙ABD,⊙DM=BD,⊙DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2019•贵阳)如图,⊙O是⊙ABC的外接圆,AB是⊙O的直径,FO⊙AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,⊙B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)⊙OF⊙AB,⊙⊙BOF=90°,⊙⊙B=30°,FO=2,⊙OB=6,AB=2OB=12,又⊙AB为⊙O的直径,⊙⊙ACB=90°,⊙AC=AB=6;(2)⊙由(1)可知,AB=12,⊙AO=6,即AC=AO,在Rt⊙ACF和Rt⊙AOF中,⊙Rt⊙ACF⊙Rt⊙AOF,⊙⊙FAO=⊙FAC=30°,⊙⊙DOB=60°,过点D作DG⊙AB于点G,⊙OD=6,⊙DG=3,⊙S⊙ACF+S⊙OFD=S⊙AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5.»ABC D BC DB DC DA+=如图,△是等边三角形,是上任一点,求证:.【思路点拨】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【总结升华】本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【总结升华】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为.故选C.《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切 B.相交 C.相切或相离 D.相切或相交3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,四边形ABCD是⊙O的内接四边形,若∠B=110°,则∠ADE的度数为()A.55° B.70° C.90° D.110°5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线(和两圆都相切的直线)有( )A.1条B.2条C.3条D.4条7.(2019•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.38.如图所示,AB、AC与⊙O分别相切于B、C两点,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是( ).A.65° B.115° C.65°或115° D.130°或50°二、填空题9.如图,在⊙O中,半径OA垂直弦于点D.若∠ACB=33°,则∠OBC的大小为度.10.如图所示,EB、EC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.11.在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值= .12.(2019•巴彦淖尔)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________.14.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n边形,分别以它们的各顶点为圆心,以l为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2019•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=13∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】D;3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴.4.【答案】D;【解析】∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠B=180°,∵∠ADC+∠ADE=180°,∴∠ADE=∠B.∵∠B=110°,∴∠ADE=110°.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).6.【答案】C.【解析】本题借助图形来解答比较直观.要判断两圆公切线的条数,则必须先确定两圆的位置关系,因此必须求出两圆的圆心距,根据题中条件,在Rt△AOB中,OA=4,OB=3,所以AB=5,而两圆半径为和,且,即两圆的圆心距等于两圆的半径之和,所以两圆相外切,共有3条公切线.7.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.8.【答案】C;【解析】连接OC、OB,则∠BOC=360°-90°-90°-50°=130°.点P在优弧上时,∠BPC =∠BOC=65°;点P在劣弧上时,∠BPC=180°-65°=115°.主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题9.【答案】24.10.【答案】99°;【解析】由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.11.【答案】83.12【解析】以CQ 为直径作⊙O,当⊙O 与AB 边相切动点P 时,CQ 最短,∴OP⊥AB,∵∠B=90°,∠A=30°,∴∠POA=60°,∵OP=OQ,∴△POQ 为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r ,3r=AC=ABsin 30︒=4,∴CQ=83,∴CQ 的最小值为83.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD⊥BC,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确; ∵∠EBC=22.5°,2EC≠BE,AE=BE ,∴AE≠2CE,③不正确; ∵AE=BE,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】; ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL,∴ ,,即正八边形的边长为..1)a 22)a 2x 22x x a ⨯+=1)x a =1)a 2222241)]2)AEL S S S a x a a a =-=-=-=△正方形正八边形15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为. 本题还有其他解法,比如:设各个扇形的圆心角依次为,,…,, 则,∴ n 条弧长的和为.16.【答案】4.【解析】解:过点O 作OC⊥AB 于C ,交⊙O 于D 、E 两点,连结OA 、OB 、DA 、DB 、EA 、EB ,如图, ∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB 为等腰直角三角形,∴AB=OA=2,∵S 四边形MANB =S △MAB +S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值=S 四边形DAEB =S △DAB +S △EAB =AB•CD+AB•CE=AB (CD+CE )=AB•DE=×2×4=4.(2)1801(2)3602n n -=-121(2)(2)2n n ππ⨯⨯-=-1α2αn α12(2)180n n ααα+++=-…°1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴ ∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE, ∵DC=DE,∴∠DCE=∠AEB, ∴∠A=∠AEB;(2)∵∠A=∠AEB, ∴△ABE 是等腰三角形, ∵EO⊥CD, ∴CF=DF,∴EO 是CD 的垂直平分线, ∴ED=EC, ∵DC=DE, ∴DC=DE=EC,∴△DCE 是等边三角形,»»BFFC∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】 (1)如选命题①. 证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3.又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .(2)180n n°。

北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

北师大版 九年级数学下册 第三章 圆 专题课讲义 圆章节复习(解析版)

圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合,是初中九年级的数学学习重点内容,下面店铺为你整理了北师大版初中数学九下第三章圆教案,希望对你有帮助。

北师大版数学九下圆教案:圆的有关性质教学过程:一、复习旧知:1、角平分线及中垂线的定义(用集合的观点解释)2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。

并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?二、讲授新课:1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O2、进一步观察,体会圆的形成,结合园的定义,分析得出:① 圆上各点到定点(圆心)的距离等于定长(半径)② 到定点的距离等于定长的点都在以定点为圆心,定长为半径的圆上。

由此得出圆的定义:圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。

圆的内部是到圆心的距离小于半径的点的集合。

同样有:圆的外部是到圆心的距离大于半径的点的集合。

4、初步掌握圆与一个集合之间的关系:⑴已知图形,找点的集合例如,如图,以O为圆心,半径为2cm的圆,则是以点O为圆心,2cm长为半径的点的集合;以O为圆心,半径为2cm的圆的内部是到圆心O的距离小于2cm的所有点的集合;以O为圆心,半径为2cm的圆的外部是到圆心O的距离大于2cm的点的集合。

⑵已知点的集合,找图形例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

判断:
1、经过三点一定可以作圆。(× )
2、三角形的外心就是这个三角形两边垂直平分 线的交点。(√ )
3、三角形的外心到三边的距离相等。(× )
4、等腰三角形的外心一定在这个三角形内。 (×)
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学,
书P125 练习
小结:
课后日记: 今天学了什么:___________ 今天的收获是:______________ 有不明白的地方吗?_______ 它是:_________________
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
巩固新知 应用新知
2、如图,
一 根 5m 长 的 绳
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.

北师大版 九年级数学下册 第三章 圆 专题课讲义 圆心角与圆周角的关系(解析版)

北师大版 九年级数学下册 第三章 圆 专题课讲义 圆心角与圆周角的关系(解析版)

圆心角与圆周角的关系课前测试【题目】课前测试如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2).【答案】(1)M为BD的中点;(2).【解析】证明:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA.又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM.∴△BAM∽△CBM,∴,即BM2=AM•CM.①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则,即DM2=AM•CM.②由式①、②得BM=DM,即M为BD的中点.(2)如图,延长AM交圆于点P,连接CP.∴∠BCP=∠PAB=∠DAC=∠DBC.∵PC∥BD,∴.③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP.而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM.④由式③、④得.总结:本题考查了相似三角形的性质,圆周角的性质,是一道较难的题目.【难度】4【题目】课前测试如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【答案】等边三角形;CP=BP+AP;当点P为的中点时,四边形APBC的面积最大,S四边形APBC=.【解析】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.∵S△APB=AB•PE,S△ABC=AB•CF,∴S四边形APBC=AB•(PE+CF),当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,∴S四边形APBC=×2×=.总结:本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB ≌△ADC 是关键.【难度】4知识定位适用范围:北师大版 ,初三年级,成绩中等以及中等以下知识点概述:圆心角与圆周角的关系是九年级下册第三章的内容,主要讲解了圆周角定理及其三条推论,它是引入圆心角之后又学习的另一个与圆有关的重要的角,该部分内容学习的重点是掌握同弧所对的圆周角与圆心角的关系,难点是应用圆周角定理解决简单问题。

北师大版2019届九年级数学中考专题复习:添加辅助线构造圆来解决几何问题 专题复习教案

北师大版2019届九年级数学中考专题复习:添加辅助线构造圆来解决几何问题 专题复习教案

,2019 届九年级数学中考专题复习添加辅助线构造圆来解决几何问题 专题复习教案学情分析:学生已经复习完了第一轮,掌握了初中阶段的基本数学知识和基本技能以及基本解决问题的能力,对于直线形中常见的几何问题形成了一些基本的解题策略,但从辅助圆这个新的视角解决问题还显得弱了很多.学生对于一些数学问题容易产生想法,但欠缺的是归纳总结提升,而本节课想要达到的目的,就是引导学生学会归纳总结 将以前学过的一些知识 从一个新的视角研究,简化证明过程,初步形成构造辅助圆的意识.设计意图:对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题.但辅助线的添加就被局限在直线形,实际上利用曲线形辅助线,在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表;利用辅助圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,通过多种解题方法的对比,来感受辅助圆的独特.教学目标:1.进一步巩固圆的定义和性质,能够正确利用圆的定义找到符合条件的点所在的位置;2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用作圆解决 分类讨论问题的方法;3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质,形成几何直观.教学重点:利用辅助圆解决有关问题;教学难点:建立用圆的观点看问题的意识,能够判断出构造圆的条件.教学过程:C D情景引入:一些学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?理论依据:圆周上的点到圆心的距离处处相等.我们今天来学习构造辅助圆的问题:题中无圆,心中有圆,“圆”来很完美.一、利用圆的定义来构造辅助圆定义:圆是所有到定点的距离等于定长的点的集合.例 1 、如图,已知 AB =AC =AD ,∠CBD =2∠BDC ,∠BAC =44°,则∠CAD 的度数为().A.68°B.88°C.90° D .112°分析:根据等腰三角形两底角相等求出∠ABC =∠ACB ,由 AB =AC =AD ,可知点 B 、C 、D是在以 A 为圆心的圆周上,利用同弧上的圆周角与圆心角的关系来求解.解析:∵AB =AC =AD ,∴∠ABC =∠ACB ,点 B 、 、 是在以 A 为圆心的圆周上,∴∠BDC1= ∠BAC ,∠CAD =2∠CBD ,∵∠BAC =44°,∴∠BDC =22°,∵∠CBD =2∠BDC ,∴∠CBD 2=44°,∴∠CAD =88°,故应选 B .解题策略:利用圆的定义构造圆(圆是所有到定点的距离等于定长的点的集合)建立模型:纵观例题及其变式,其共同之处都存在着同一个结构,如图所示,即共端点的三条等线段,不妨形象地称为“等线段三爪图”,让我们联想到“到定点距离等于定长的所有点的集合是圆”,即“见三爪,构建圆”.二、利用90°的圆周角所对弦是直径构造辅助圆解题策略:通过构造辅助圆,巧妙地将线段的最值问题转化为圆外一点与圆上的点的最大距离与最小距离问题,实质是90°的圆周角所对弦是直径,巧妙构造圆后,求线段最值.三、利用“四点共圆”构造辅助圆例3、如图,四边形ABCD为矩形,BE平分∠ABC,交AD于点F,∠AEC=90°.(1)A、B、C、E四点共圆吗?(2)求∠ACE的度数;(3)求证:BE⊥ED.解:(1)A、B、C、E四点共圆.理由如下:∵四边形ABCD是矩形,∴∠ABC=90°;又∵∠AEC=90°,∴∠ABC+∠AEC=180°;∴A、B、C、D四点共圆.(2)∵∠ABC=90°,BE平分∠ABC,∴∠ABE=45°,∴∠ACE=∠ABE=45°.(3)证明:连接BD;∵四边形ABCD是矩形,∴A、B、C、D四点共圆,并且BD是直径.又∵A、B、C、E四点共圆,∴A、B、C、D、E五点共圆.∴∠BED为直角,即BE⊥ED.四、当需确定等腰三角形的个数时构造圆例4.在平面直角坐标系xoy中,yA已知点A(2,3),在坐标轴上找一点P,使得△AOPO x 是等腰三角形,则这样的点P共有个.分析:先分类:①OA=OP;②PO=P A;③AO=AP;再画图.①OA=OP:以O为圆心,以OA为半径画弧,与x轴交于P1、P2、P3、P4四个点;如图:②PO=PA:OA的垂直平分线与x轴、y轴的交点分别为点P5、点P6;如图:③AO=AP:以A为圆心,以AO为半径画弧,与x轴、y轴的交点分别为点P7、点P8;解析:如图:所以,符合题意的点共有8个点.故答案为8.【答案】8解题策略:在解决这类等腰三角形问题时,通常要分三种情况讨论:(1)求作某边等于已知边(线段)时,以已知线段的一端点为圆心,以线段长为半径作圆,在此圆上寻找符合题意的点;(2)求作另某边等于已知边(线段)时,以另一端点为圆心,以线段长为半径作圆,在此圆上寻找符合题意的点;(3)使已知线段为底边,未知两边为两腰时,作已知线段的垂直平分线,在垂直平分线上找符合题意的点.变式:如图,点 A(1,-1),点 B(2,1)与点 C 组成以 AB 为腰的等腰三角形,点 C 在坐标轴上,求 C 点的坐标.C 1(0,1) ,C 2(-1,0) , C 4(3,0) ,C 5(0,2) ,C 6(4,0) ,C 7(0,0).四、总结提升1.数学方法:构造辅助圆(1)当遇有公共端点的等线段长时,通常以公共端点为圆心,等线段长为半径,构造辅助圆.(2)可以利用直径所对的圆周角是直角,以斜边为直径,构造辅助圆.(3)当四边形中出现对角互补时,利用四点共圆构造辅助圆.(4)当需确定等腰三角形的个数时,以已知线段的一端点为圆心,以线段长为半径作圆.2.数学思想:建模思想、转化思想、分类讨论思想利用构造辅助圆解决分类讨论问题,可以很快找到符合条件的点,并可以将问题转化为圆中求线段、求角度的问题.3.深入挖掘题目中的隐含条件;善于联想所学定理,巧妙地构造符合题意特征的辅助圆,再利用圆的有关性质来解决问题,往往能起到化隐为显、化难为易的解题效果!正所谓:有“圆”千里来相会,无“圆”对面不相识,“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”,一旦“圆”形毕露,则答案手到擒来!那么构造隐圆的方法还有哪些?比如:定弦定角构造圆、圆幂定理构造圆等,在后面的课程中将继续完善这个话题.例如补充:定弦定角构造辅助圆在⊙O中,若弦AB长度固定,则弦AB所对的圆周角相等.若有一固定线段AB及线段AB 所对的∠C大小固定,根据圆的知识可知:点C并不是唯一固定的点,点C在⊙O的优弧ACB上均可.∴P'C=3,∴P点运动路径长为23例、如图,边长为3的等边△ABC,D、E分别为边BC、AC上的两个动点,且BD=CE,AD、BE交于P点,求P点的运动路径长?并求CP的最小值?解:∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠BAP,而∠CBE+∠ABP=60°,∴∠BAP+∠ABP=∠APE=60°,∴∠APB=120°,∴点P在以AB为弦的⊙O上,连接OC交⊙O于点P',此时P'C最小.∵∠APB=120°,∴∠AOB=120°,∵AB=3,∴OA=3,OC=23;3π.五、课后思考:1、如图,四边形ABCD中,AB∥CD,BC=1,AB=AC=AD=2,则BD的长为()A.14B.15C.32D.23D CD CA BF A BA.3B.210-2C.213-2解:四边形ABCD中,AB∥CD,∴∠BDC=∠DBF,∴BC=DF=1,在RtΔBDF中,BF=2AB=4,DF=1,∴BD=BF2-DF2=15.2、已知AB=AC=AD,∠DAC=30°,∠BAC=80°,则∠CBD的度数为.AB D AC BD同弧所对的圆周角等于圆心角的一半,∠CBD=12C∠CAD=15°.3、同类试题:如图,在矩形A BCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为().2D.4解析:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC=BC2+OB2=62+22=210,则CE′=OC﹣OE′=210-2,故选:B.NA A4、已知点 A(0,4),B(7,0),C(7,4),连接 AC ,BC 得到矩形 AOBC ,点 D 的边 AC 上,将边 OA沿 OD 折叠,点 A 的对应边为 A ′,若点 A ′到矩形较长两对边的距离之比为 1∶3,则点 A ′的坐标为____________.答案:( 7 ,3)或( 15 ,1)或( 2 3 ,-2),解析:根据题意,点 A ′的坐标存在以下三种情况:①如图 1,当 A ′M ∶A ′N =1∶3 时,又 MN =4,所以 A ′M =1,A ′N =3,因为 OA ′=OA =4,在△Rt OA ′ 中,ON = OA '2 - AN '2 = 42 - 32 = 7 ,所以点 A ′的坐标为( 7 ,3);②如图②,当 A ′M : ′N =3:1 时,又 MN =4,所以 A ′M =3, ′N =1,因为 OA ′=OA =4,在 △Rt OA ′N中,ON = OA '2 - AN '2 = 42 - 12 = 15 ,所以点 A ′的坐标为( 15 ,1);③如图③,当 A ′M :A ′N =3:1 时,即(A ′N +4):A ′N =3:1,解得 A ′N =2,在 △Rt OA ′N 中,ON = OA '2 - AN '2 = 42 - 22 = 2 3 ,所以点 A ′的坐标为( 2 3 ,-2).5.在平面直角坐标系中,已知点 A(4,0)、B(-6,0),点 C 是 y 轴上的一个动点,当∠BCA= 45°时,点 C 的坐标为.【答案】(0,12)或(0,-12)∵BP=BA,∴BP=2,∴PD最小解析:(1)如图1,过点E在第二象限作EP⊥BA,且EP=12AB=5,则易知△P AB为等腰直角三角形,∠BAP=90°,PA=PB=52,以点P为圆心,PA(或PB)长为半径作⊙P,与y 轴正半轴交于点C,∵∠BCA为⊙P的圆周角,∴∠BCA=12∠BP A=45°,即点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1在△Rt PFC中,PF=1,PC=52,由勾股定理得:C F=PC2-PF2=7;∴OC=OF+CF=5+7=12,∴点C的坐标为(0,12)(2)如图2,在第三象限可参照(1)作同样的操作,同理求得y轴负半轴上的点C的坐标为(0,-12)综上所述,点C的坐标为(0,12)或(0,-12).6、如图,在菱形A BCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,求P、D(P、D两点不重合)两点间的最短距离.B A DO PC解:当点时P、B、D三点在一条直线上时,PD最短,BD与AC交于点,∵在菱形ABCD中,∠ABC=60°,AB=2,∴BO=3,即BD=23;=11。

北师大版九年级下册数学《弧长及扇形的面积》圆说课教学课件复习提高

北师大版九年级下册数学《弧长及扇形的面积》圆说课教学课件复习提高
18
(3)转动轮转no,传送带上的物品A 被传送多少厘米? n cm
18
创设情境 出示目标
知识 经历探索弧长计算公式和扇形面积计算公
目标
式的过程;了解弧长计算公式和扇形面积 计算公式,并运用公式解决问题。
能力 了解弧长和扇形面积公式后,能运用公 目标 式解决问题,训练学生的数学运用能力 。
情感 体验教学活动充满着探索与创造,感受 目标 数学的严谨性以及数学结论的确定性 。
周长约是6.70m, 面积约是3.58㎡
创设情境 温故知新
(1)已知⊙O的半径为R,⊙O的周长是 多少?⊙O的面积是多少?
C=2πR,S⊙O=πR2
A
R
(2)什么叫圆心角?
O B
顶点在圆心,两边和圆相交所组成 的角叫做圆心角如图中的∠AOB
创设情境 出示目标
如图,某传送带的一个转动轮的半 径为10cm. (1)转动轮转一周,传送带上的物品 A被传送多少厘米? 20πcm (2)转动轮转1o,传送带上的物品A 被传送多少厘米? cm
∴(78π

2 4
)x=12.4,又78π

2 4
≈3.10(米 2)
所以,x=4.00(米)
答:该输水管中水的 流速应达到每秒4.00米
B
A
O
课件
巩固旧知 出示目标
巩固旧知 出示目标
生活中的圆弧与扇形
创设情境 出示目标
创设情境 出示目标
创设情境 出示目标
创设情境 出示目标
我们上体育课掷铅球练习时, 要在指定的圆圈内进行,这个 圆的直径是2.135m。这个圆的 周长与面积是多少呢?(结果 精确到0.01)
A
B
扇形

北师大版九年级下册数学《车轮为什么做成圆形》圆复习说课教学课件

北师大版九年级下册数学《车轮为什么做成圆形》圆复习说课教学课件

情境导入
你会比较两个梯子哪个更陡吗?你有哪些办法?
知识讲解
实例1:如图①②,梯子AB和EF哪个更陡?你是怎样 判断的?你有几种判断方法?
图①
图②
实例2:如图③④,梯子AB和EF哪个更陡?你是怎样判断的?
梯子的铅直高度与其水平距离 的比相同时,梯子就一样陡.
你能设法验证这个结论吗?
比值大的梯子陡.
(1)
(2)
).
(6).如图 (2)
). tan A 0.7,
( ).
). tan A 0.7或 tan A 0.7
知识点 2 正切的应用
议一议 如图,梯子AB的倾斜程度与
B
C 1.当梯子与地面所成的角为锐角A时,
梯子的竖直高度 水平宽度 ,
因此可用梯子的倾斜角的正切值来描述梯子的倾斜程度. 2.当倾斜角确定时,其对边与邻边之比随之确定,这一比值 只与倾斜角的大小有关,而与物体的长度无关.
A.都没有变化
BA.都扩大为原来的2倍
C.都缩小为原来的一半 D.不能确定是否发生变化
5、如图,在网格中,小正方形的边长均为1,点A,B,C都在格
点上,则∠ABC的正切值是( D )
A.2 B. 2 5 C. 5 D. 1
5
5
2
课堂小结
1、理解了正切与坡度的概念. 2、 3、数形结合的方法;构造直角三角形的意识. 4、“一般 → 特殊 → 一般” 数学思想方法.
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得
BC 15 . AC 8
2、如图,在R 3
4
根据题意得∠BCD=∠CAB,
所以
BC 6 3 .
AC 8 4

2023年北师大版九年级数学下册第三章《圆》复习检测试卷附答案解析

2023年北师大版九年级数学下册第三章《圆》复习检测试卷附答案解析

2023年九年级数学下册第三章《圆》复习检测试卷一、单选题1.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且点C ,D 在AB 的异侧,连接AD ,BD ,OD ,OC ,若∠ABD =15°,且AD ∥OC ,则∠BOC 的度数为()A .120°B .105°C .100°D .110°2.如图,⊙O 的直径BC=12cm ,AC 是⊙O 的切线,切点为C ,AC=BC ,AB 与⊙O 交于点D ,则 CD的长是()A .πcmB .3πcmC .4πcmD .5πcm 3.已知⊙O 的半径为3,点P 到圆心O 的距离为4,则点P ()A .在⊙O 内B .在⊙O 上C .在⊙O 外D .无法确定4.三角板ABC 中,∠ACB=90°,∠B=30°,AC=2,三角板绕直角顶点C 逆时针旋转,当点A 的对应点A′落在AB 边的起始位置上时即停止转动,则B 点转过的路径长为()A .32πB πC .2πD .3π5.如图,ABC 中,8AB AC ==,BC =BC 边上一点O 为圆心作O ,分别与AB ,AC 相切于点D ,E ,则AD 的长为()A .4.5B .5C .5.5D .66.如图,四边形ABCD 的顶点B ,C ,D 都在A 上,//AD BC ,140BAD ∠=︒,3AC =,则 BC的弧长为()A .53πB .52πC .32πD .56π7.如图,在扇形纸片OAB 中,10,36,OA AOB OB =∠=︒在桌面内的直线l 上.现将此扇形在直线l 上按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为()A .13πB .12πC .11πD .10π8.如图,⊙O 是Rt △ABC 的外接圆,∠ACB =90°,过点C 作⊙O 的切线,交AB 的延长线于点D.设∠A =α,∠D =β,则()A .α﹣βB .α+β=90°C .2α+β=90°D .α+2β=90°9.两直角边分别为15和20的直角三角形的外接圆半径为()A .12.5B .25C .20D .1010.如图,在平面直角坐标系中,已知⊙A 经过点E ,B ,O ,C 且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (﹣3,2),则cos ∠OBC 的值为()A .23B .13C .13D .211.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B=135°,则 AC 的长()A.4πB.2πC.πD.2 3π12.如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC =2,则OC的最大值为()A.22+2B.22+4C.25D.25+2二、填空题13.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为.14.如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.15.如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是边形.16.如图,已知点C是弧AB上的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.17.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.三、解答题18.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.19.如图,等腰三角形ABC中,BA=BC,以AB为直径作圆,交BC于点E,圆心为O.在EB上截取ED=EC,连接AD并延长,交⊙O于点F,连接OE、EF.(1)试判断△ACD的形状,并说明理由;(2)求证:∠ADE=∠OEF.20.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.21.如图,⊙O的直径AB垂直弦CD于点E,AB=8,∠A=22.5°,求CD的长.22.已知:如图,∠PAC=30o,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O,交射线AP于E、F两点,求圆心O到AP的距离及EF的长.23.如图,直线y=333x 与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P与y轴相切于点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.答案解析部分1.B2.B3.C4.C5.A6.A7.B8.9.A 10.B11.B12.A 13.50°14.5015.616.11017.4π﹣1218.解:连接OC ,∵弦CD ⊥AB ,∴CE=12CD=8,在Rt △OCE 中,OE==6.19.【答案】解:(1)△ACD 是等腰三角形.理由:连接AE ,∵AB 是⊙O 的直径,∴∠AED=90°,∴AE ⊥CD ,∵CE=ED ,∴AC=AD ,∴△ACD 是等腰三角形;(2)证明:∵∠ADE=∠DEF+∠F ,∠OEF=∠OED+∠DEF ,而∠OED=∠B ,∠B=∠F ,∴∠ADE=∠OEF .20.【答案】解:过点O 作OG ⊥AP 于点G连接OF ∵DB=10cm ,∴OD=5cm ∴AO=AD+OD=3+5=8cm∵∠PAC=30°∴OG=12AO=cm∵OG ⊥EF ,∴EG=GF∵GF=cm ∴EF=6cm .21.【答案】解:∵AB=8,∴OC=OA=4,∵∠A=22.5°,∴∠COE=2∠A=45°,∴CE=OE∵直径AB 垂直弦CD 于E ,∴222CE OE OC +=,即2216CE =∴CE =,∴CD =.22.【答案】解:过点O 作OG ⊥AP 于点G ,连接OF ,解直角三角形OAG 可得OG ,AG 的值,然后再利用垂径定理求EF 的值.23.【答案】解:∵直线y=3x +与x 轴、y 轴分别相交于A ,B 两点,∴A 点的坐标为(-3,0),B 点的坐标为(0,),∴AB=2.如图,将圆P 沿x 轴向左移动,当圆P 与该直线相切于C 1时,连结P 1C 1,则P 1C 1=1,易知△AP 1C 1∽△ABO ,=,∴AP 1=2,∴P 1的坐标为(-1,0),同理可得P 2的坐标为(-5,0).-5与-1之间的整数(不含-5和-1)有:-4,-3,-2,故满足题意的点P 的个数是3\。

初三数学知识点归纳北师大版

初三数学知识点归纳北师大版

初三数学知识点归纳北师大版初三数学知识点归纳北师大版涵盖了初中数学的核心内容,为学生提供了一个系统性的复习框架。

以下是北师大版初三数学的主要知识点归纳:1. 数与式- 实数的概念和分类,包括有理数和无理数。

- 绝对值的性质和运算法则。

- 代数式的运算,包括加减乘除和乘方运算。

- 因式分解的方法,如提公因式法、公式法和分组分解法。

2. 方程与不等式- 一元一次方程的解法,包括移项和合并同类项。

- 一元二次方程的解法,如直接开平方法、配方法、公式法和因式分解法。

- 不等式的基本性质和解法,包括一元一次不等式和一元二次不等式。

- 含绝对值的不等式的解法。

3. 函数- 函数的概念,包括定义域、值域和对应法则。

- 一次函数的图象和性质,以及一次函数与一元一次方程的关系。

- 二次函数的图象和性质,包括开口方向、顶点坐标和对称轴。

- 反比例函数的图象和性质,以及反比例函数与一次函数的关系。

4. 几何图形- 线段、射线和直线的性质和关系。

- 角的概念和分类,包括锐角、直角、钝角和平角。

- 多边形的性质,如三角形的内角和定理和多边形的内角和定理。

- 圆的性质,包括圆心角、弧长和扇形面积的计算。

5. 统计与概率- 数据的收集和整理,包括统计表和统计图的绘制。

- 描述性统计,如众数、中位数和平均数的计算。

- 概率的基本概念,包括随机事件和概率的计算方法。

- 简单事件的概率计算,如古典概型和几何概型。

通过以上知识点的归纳,学生可以对初三数学有一个清晰的认识和掌握,为中考做好充分的准备。

在复习过程中,建议学生结合实际例题进行练习,以加深对知识点的理解和应用能力。

同时,定期进行模拟测试,以检验学习效果和查漏补缺。

北师大版九年级下册数学[圆的对称性—知识点整理及重点题型梳理](提高)

北师大版九年级下册数学[圆的对称性—知识点整理及重点题型梳理](提高)

北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习圆的对称性—知识讲解(提高)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【总结升华】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【总结升华】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【总结升华】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【总结升华】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形. 类型三、圆心角、弧、弦之间的关系及应用5.已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .【思路点拨】本题主要是考查弧、弦、圆心角之间的关系,要证AD =BC ,只需证AD BC =或证∠AOD=∠BOC 即可.【答案与解析】证法一:如图①,∵ AB =CD ,∴ A B C D =.∴ A B B DC D B D -=-,即AD BC =, ∴ AD =BC .证法二:如图②,连OA 、OB 、OC 、OD ,∵ AB =CD ,∴ ∠AOB =∠COD .∴ ∠AOB -∠DOB =∠COD -∠DOB ,即∠AOD =∠BOC ,∴ AD =BC .【总结升华】在同圆或等圆中,证两弦相等时常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,必须借助已知的等弦进行推理.举一反三:【变式】如图所示,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB . 求证:AC BD =.【答案】证法一:如上图所示,连OC、OD,则OC=OD,∵OA=OB,且12OM OA=,12ON OB=,∴OM=ON,而CM⊥AB,DN⊥AB,∴Rt△COM≌Rt△DON,∴∠COM=∠DON,∴A C B D=.证法二:如下图,连AC、BD、OC、OD.∵M是AO的中点,且CM⊥AB,∴AC=OC,同理BD=OD,又OC=OD.∴AC=BD,∴A C B D=.。

九年级数学下册知识讲义-3圆内接正多边形(附练习及答案)-北师大版

九年级数学下册知识讲义-3圆内接正多边形(附练习及答案)-北师大版

一、考点突破1. 了解圆内接正多边形的有关概念。

2. 理解并掌握正多边形半径和边长、边心距、中心角之间的关系。

3. 会应用正多边形和圆的有关知识画正多边形。

二、重难点提示重点:圆内接正多边形的定义及相关性质。

难点:正多边形半径、中心角、弦心距、边长之间的关系。

考点精讲 1. 圆内接正多边形的有关概念 ① 顶点都在同一个圆上的正多边形叫做圆内接正多边形。

这个圆叫做该正多边形的外接圆。

② 正多边形的中心、半径、边心距、中心角正多边形的外接圆的圆心叫做这个正多边形的中心;正多边形的外接圆的半径叫做这个正多边形的半径;正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距;正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

如图:五边形ABCDE 是⊙O 的内接正五边形, 圆心O 叫做这个正五边形的中心; OA 是这个正五边形的半径; OM 是这个正五边形的边心距。

AOB 叫做这个正五边形的中心角。

A E【要点诠释】① 只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

② 求正n 边形中心角的常用方法:正n 边形有n 条边,每条边对应一个中心角,所以正n 边形的中心角为。

(正n 边形中心角度数与正n 边形的一个外角相等)2. 特殊的圆内接正多边形的半径、弦心距、边长之间的关系① 正三角形——在中进行:;② 正四边形——在中进行,;③ 正六边形——在中进行,。

D E OC OB O D B A CA A B【规律总结】正多边形的外接圆半径R 与边长a 、边心距r 之间的关系:R 2=r 2+(a )2,连接正n 边形的半径,弦心距,把正n 边形的有关计算转化为直角三角形中的问题。

典例精讲例题1 (义乌市)一张圆心角为45°的扇形纸板和圆形纸板按如下图所示方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( )A. 5:4B. 5:2C.:2D.:思路分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可。

北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

北师大版九年级数学下册《圆——圆周角和圆心角的关系》教学PPT课件(6篇)

D
O2
O1
E
B
F
新知探究
【跟踪训练】
1.圆内接四边形ABCD中,∠A, ∠B, ∠C的度数之比是
135°
1:2:3,则这个四边形最大角的度数是_________.
D
A
2.四边形ABCD内接于圆,AD∥BC,AB+CD=AD+BC ,
25
若AD=4,BC=6,则四边形ABCD的面积为_______.
A
A
O
O
BB
C
C
课堂小测
3. 如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC等于( D )
A
A.60°
B.50°
C.40°
D.30°
O
B
C
课堂小测
4 . 如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E.若
∠AOD=60°,则∠DBC的度数为( A)
A.30°
B.40°
C.50°
B
D.60°
D
C
OC垂直平分AD
(1)OC与AD的位置关系是__________________;
A
平行
(2)OC与BD的位置关系是___________;
4
(3)若OC=2cm,则BD=______cm.
O1
O
B
新知探究
4.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
解:连接AO并延长交⊙O于点E,
3 . 当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆
心角∠AOC的大小关系会怎样?
提示:能否也转化为1的情况?
A
C
过点B作直径BD.由1可得:

九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版九年级数学圆知识点总结(北师大版)一、圆的定义1、圆:平面上到定点的距离等于定长的所有点组成的图形。

2、圆心:圆中心的点叫做圆心。

3、半径:连接圆心和圆上任意一点的线段叫做半径。

4、直径:通过圆心且两端都在圆上的线段叫做直径。

二、圆的性质1、圆的对称性(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。

(2)圆是中心对称图形,其对称中心是圆心。

2、圆心角和圆周角(1)顶点在圆心上的角叫做圆心角。

(2)顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

3、圆的基本性质(1)半径相等的圆是等圆。

(2)直径是圆中最长的弦。

(3)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4、圆的面积和周长(1)圆的面积 S=πr²,其中r为半径。

(2)圆的周长 C=2πr,其中r为半径。

三、点和圆的三种位置关系1、点在圆内:点和圆心的距离小于半径。

2、点在圆上:点和圆心的距离等于半径。

3、点在圆外:点和圆心的距离大于半径。

四、直线和圆的三种位置关系1、直线和圆相离:直线和圆没有公共点。

2、直线和圆相切:直线和圆只有一个公共点。

3、直线和圆相交:直线和圆有两个公共点。

五、圆和圆的位置关系1、外离:两圆没有公共点,且一个圆在另一个圆外面。

2、外切:两圆只有一个公共点,且一个圆在另一个圆外面。

3、相交:两圆有两个公共点。

4、内切:两圆只有一个公共点,且一个圆在另一个圆里面。

5、内含:两圆没有公共点,且一个圆在另一个圆里面。

六、正多边形和圆1、把正多边形的各边中心连向它的各边所在直线时,中心和边的垂线组成的角叫做正多边形的中心角。

2、正多边形的半径和边数之间存在如下关系:半径=r,边数n=2πr/α,其中α为正多边形的中心角。

七、弧长和扇形面积1、弧长公式:l=nπr/180,其中n为弧度制下的扇形圆心角。

2、扇形面积公式:S=nπr²/360,其中n为扇形圆心角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初三数学圆的总复习一. 教学内容: 1. 圆锥的侧面积 2. 圆的总复习二. 教学目标:1. 能利用圆锥的侧面积公式计算实际问题2. 灵活运用本章的知识解决综合问题三. 教学重点、难点:1. 能利用圆锥的侧面积公式计算实际问题2. 灵活运用本章的知识解决综合问题四. 课堂教学:知识要点:1. 圆锥的侧面展开图是一个扇形,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为πrl。

2. 圆锥的侧面积与底面积之和称为圆锥的全面积3. 本章的知识机构图【典型例题】例1. 已知圆锥的母线与高的夹角为30°,母线长为4cm,则它的侧面积为 cm2(结果保留π)。

答案:8π例2. 一个扇形的弧长为4π,用它做一个圆锥的侧面,则该圆锥的底面半径为答案:2例3. 如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线l上。

依次以B、C′、D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为AA′ 、交CD于点P。

A′A″ 、A″A ,其中AA′(1)求矩形A′BC′D′的对角线A′C′的长;(2)求AA′ 的长;(3)求图中的(4)求图中的解:(1)A′′C=部分的面积S;部分的面积T。

2+1=cm×2=πcm(2)AA′ =180。

90π90π()25S==πcm23604(3)。

(4)连接BP,在Rt△BCP中,BC=1,BP=2,∴∠BPC=30°,CP=.∴∠ABP=30°.2∴T=S扇形ABP+S△PBC=30π×2+3=(+3)cm2.例4. 如下图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2。

过D、E两点作直线PQ,与BC边所在的直线MN相交于点F。

(1)求tan∠ADE的值;(2)点G是线段AD上的一个动点(不运动至点A、D),GH⊥DE,垂足为H,设DG为x,四边形AEHG的面积为y,请求出y与x之间的函数关系式;(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O 与直线PQ相切,同时又与矩形ABCD的某一边相切。

问满足条件的⊙O有几个?并求出其中一个圆的半径。

解:(1)∵矩形ABCD中,∠A=90°,AD=8,AE=2∴tan∠ADE=AE=22=2(2)∵DE=AD+AE=82+(22)2=6,∴sin∠ADE===,cos∠ADE===6262在Rt△DGH中,∵GD=x,∴GH=DG⋅sin∠ADE=1x3∴DH=DG·cos∠ADE=22x,x=x2∴S△DGH=DH·GH=x∴S△AED=AD·AE=×8×22=822∴y=S△AED-S△DGH=8xy=-22x+82。

即y与x之间的函数关系式是(3)满足条件的⊙O有4个。

以⊙O在AB的左侧与AB相切为例,求⊙O半径如下:∵AD∥MN,∴△AED∽△BEF。

∴∠PFN=∠EDA。

1∴sin∠PEN=sin∠EDA=。

∵AE=2BE,∴△AED与△BEF的相似比为2∶1。

AD=2,FB=4∴。

过点O作OI⊥PQ,垂足为I,设⊙O的半径为r,那么FO=4-r。

∵sin∠PFN=OI=r=1,∴r=1。

(满足条件的⊙O还有:⊙O在AB的右侧与AB相切,这时r=2;⊙O在CD的左侧与CD相切,这时r=3;⊙O在CD的右侧与CD相切,这时r=6)例5. 已知⊙O的半径为1,以O为原点,建立如图所示的直角坐标系。

有一个正方形ABCD,顶点B的坐标为(-,0),顶点A在x轴上方,顶点D在⊙O上运动。

(1)当点D运动到与点A、O在一条直线上时,CD与⊙O相切吗?如果相切,请说明理由,并求出OD所在直线对应的函数表达式;如果不相切,也请说明理由。

(2)设点D的横坐标为x,正方形ABCD的面积为S,求出S与x的函数关系式,并求出S的最大值和最小值。

解:(1)CD与⊙O相切。

因为A、D、O在一直线上,∠ADC=90°,所以∠CDO=90°,所以CD是⊙O的切线。

CD与⊙O相切时,有两种情况:①切点在第二象限时(如图①),设正方形ABCD的边长为a,则a2+(a+1)2=13.解得a=2,或a=-3(舍去)。

过点D作DE⊥OB于E,则Rt△ODE∽Rt△OBA, OD所以OB=DEBA=OEOA,所以DE=213。

OE=313,所以点D1的坐标是(-313,213),y=-x。

所以OD所在直线对应的函数表达式为图①②切点在第四象限时(如图②),设正方形ABCD的边长为b,则b2+(b-1)2=13,解得b=-2(舍去),或b =3。

过点D作DF⊥OB于F,则Rt△ODF∽Rt△OBA,图②所以ODOFDF2333==,所以OF=,DF=OBOABA1313(23,-)1313 所以点D2的坐标是3y=-x2所以OD所在直线对应的函数表达式为图③(2)如图③,过点D作DG⊥OB于G,连接BD、OD,则BD2=BG2+DG2=(BO-OG)2+OD2-OG2=(--x)2+1-x2=14+2x 所以S=AB2=1BD2=7+x2。

因为-1≤x≤1,所以S的最大值为7+,S的最小值为7-。

例6. 如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm。

半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。

设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm。

(1)当t(2)当△ABCO与直径DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积。

解:(1)①如图1,当点E与点C重合时,AC⊥OE,OC=OE=6cm,所以AC 与半t==1(s)圆O所在的圆相切。

此时点O运动了2cm,所求运动时间为:。

②如图2,当点OF。

在Rt△FOB中,∠FBO=30°,OB=12cm,则OF=6cm,即OF等于半圆O的半径,所以AB与半圆O所在的圆相切。

此时点O运动了8cm,所求运动时间为t=8=4(s)。

图 2③如图3,当点O运动到BC的中点时,AC⊥OD,OC=OD=6cm,所以AC与半圆O所在的圆相切,此时点O运动了14cm,所求运动时间为:t=14=7(s)。

图 3④如图4,当点O运动到B点的右侧,且OB=12cm时,过点O作OQ⊥直线AB,垂足为Q。

在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ等于半圆O所在的圆的半径,所以,直线AB与半圆O所在的圆相切,此时点O运动了32cm,所求运动时间为:t=32=16(s)。

因为半圆O在运动中,它所在的圆与AC所在的直线相切只有上述①、③两种情形;与AB所在的直线相切只有上述②、④两种情形;与BC所在直线始终相交。

所以只有当t为1s,4s,7s,16s时,△ABC的一边所在的直线与半圆O所在的圆相切。

图4(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图2与图3所示的两种情形。

①如图2,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:S扇形EOM=1π×62=9π(cm2)4。

②如图3,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H。

则PH=BH。

在Rt△OBH中。

∠OBH=30°,OB=6cm,则OH=3cm,BH=3cm,BP=6cmS∆POB=1×6×3=93(cm2)2,又因为∠DOP=2∠DBP=60°,1S扇形DOP=π×62=6π(cm2)6所以。

所求重叠部分面积为:S∆POB+S扇形DOP=(93+6π)(cm2)。

【模拟试题】(答题时间:60分钟)一、选择题1. 下列命题中的真命题是()A. 三点确定一个圆C. 圆周角等于圆心角的一半2. 如图,⊙O的直径为10厘米,弦OM的长的取值范围是()A. 3≤OM≤5C. 3<OM<5B. 平分弦的直径垂直弦 D. 在同圆或等圆中等弧所对的圆周角相等 AB的长为6cm,M是弦AB上的一动点,则线段B. 4≤OM≤5 D. 4<OM<53. 如图,ΔABC为等腰直角三角形,∠A=90°,AB=AC=2,⊙A与BC相切,则图中阴影部分的面积为()A. 1-π2 B. 1-π3 C. 1-π4 D. 1-π51VB=VA3 4. 如图,点B在圆锥母线VA上,且,过点B作平行于底面的平面截得一个小圆锥,若小圆锥的侧面积为S1,原圆锥的侧面积为S,则下列判断中正确的是()1S1=S3 A. 1S1=S4 B. 1S1=S6 C. 1S1=S9 D.5. 一机械零件的横截面如图所示,作⊙O1的弦AB与⊙O2相切,且AB//O1O2,如果AB=10cm,则下列说法正确的是()A. 阴影面积为100πcmC. 阴影面积为50πcm 22 B. 阴影面积为25πcmD. 因缺少数据,阴影面积无法计算2二、填空题:1. 在ΔABC,∠C=90°,AC=3,BC=4,点O是ΔABC的外心,现在以O为圆心,分别以2、2.5、3、为半径作⊙O,则点C与⊙O的位置关系分别是_____________.2. 如图在⊙O中,直径AB⊥弦CD,垂足为P,∠BAD=30°,则∠AOC的度数是________度. OPB D3. 在RtΔABC,斜边AB=13cm,BC=12cm,以AB的中点O为圆心,2.5cm为半径画圆,则直线BC和⊙O的位置关系是________________.4. 把一个半径为12厘米的圆片,剪去一个圆心角为120°的扇形后,用剩下的部分做成一个圆锥侧面,那么这个圆锥的侧面积是___________.5. 如图,四边形ABCD是正方形,曲线DA1B1C1D1 叫做“正方形的渐开线”,其中弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按A、B、C、D循环,它依次连接,取AB=1,则曲线DA1B1C1D1的长是___________.三、解答题:1. 已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD,请你仔细观察后回答:图中共有几个等腰三角形?把它们分别写出来,并说明你的理由.2. 如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为弧BF的中点,BF 交AD于E,且BE⋅EF=32,AD=6,(1)求证:AE=BE;(2)求DE的长;(3)求BD的长.3. 如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE;(1)若将图(a)中的半径OB所在的直线向上平移交OA于F,交⊙O于B',其他条件不变(如图(b)),那么上述结论CD=CE还成立吗?为什么?(2)若将图(a)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA 的(a)延长线与CF的交点,其他条件不变(如图(c)),那么上述结论CD=CE还成立吗?为什么?4. 如图,⊙O的半径OC与直径AB垂直,点P在OB上运动(点O、B除外),CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.(1)求证:ED是⊙O的切线;(2)当OC=2,ED=2时,求∠E的正切值tanE和图中阴影部分的面积.游戏公平吗(教案)教材:北师大版九年级下册第四章第三节授课教师:山东省菏泽市第二十一中学祁永娜一、教学目标:1.通过具体问题情境,让学生进一步体会如何评判一些游戏活动的公平性,对于不公平的游戏能够修改规则使其公平.2.经历游戏实验、过程分析、结果探究等学习过程,尝试从不同角度寻求解决问题的方法,并能有效的解决问题.3.让学生体会数学与生活的密切联系,使学生在学习活动中感受数学的价值,体验成功的愉悦,激发学生学习数学的兴趣.二、重点:利用概率和获胜时的得分值评判游戏的公平性和制定公平的游戏规则.难点:利用概率和获胜时的得分值评判游戏的公平性和制定公平的游戏规则. 关键:把某一实验过程中所有可能发生的情况全部列举出来.三、教学过程1.前置补偿2.学法指导3.自主学习4.合作探究5.知识运用本节课的设计说明:一、新理念、新思路、新手段设计的思路是从学生原有知识和已有经验入手,即从已经学过的求一步和两步事件发生的概率,到利用概率和得分值来评判游戏的公平性,再到如何制定公平的游戏规则,层层深入,循序渐进.教师尽可能地指导学生学习方法,引导学生自主学习、合作探究,尽量做到:知识由学生探究;方法由学生寻找;规律由学生总结. 在这种思路下,我采取“一题多问”,将学生容易混淆的问题,集中在同一个问题情境中,如摸球游戏中摸出一球后放回与摸出一球后不放回,是两个不同类型的题目,放在一起有利于学生根据数据的分析,产生数学思考,同时也让他们经历知识的形成过程. 并且我在教学过程中适时配以课件帮助学生突破难点.二、利用问题、引起质疑、激发兴趣由摸球游戏提出问题,引起学生质疑,激发学习兴趣.学生经过紧张的学习之后,注意力已经度过了最佳时期,我在“知识运用”中又设计了几道学生感兴趣的应用题,如搭配衣服和拼图游戏,并配以动画演示帮助学生分析,再次提高学生的学习兴趣.三、教法灵活、教材用活、学生学活我灵活利用课本教材,注重认知前提,在学习“掷骰子”题目之前设计了几道前置补偿题,把学新知必备的知识移置过来,复习和再认识,为学习新知奠定坚实的基础,使学生在教师的启发引导下,能自学、会合作.四、内容充实、训练扎实、目标落实本节课的难点是利用列举法求一些较复杂事件发生的概率,我在“知识运用”中分A、B两组题目进行强化训练,并安排一组难度稍大的选做题,以满足不同层次学生的需要.将这三种不同类型的题目分类,让学生自己体会并总结出解决这几类题目的方法.使他们不再是单纯的模仿与记忆,而是利用新旧知识的重组,进行纳入和构建.进而使学生自我形成初中阶段求概率的知识体系,达到能评判游戏公平性的目的.。

相关文档
最新文档