ANSYS转子动力学--转子系统不平衡激励的谐响应分析

合集下载

ANSYS转子动力学分析

ANSYS转子动力学分析

(仅仅适用于线单元) Z
rotation axis: x
B
Y
A
Ф
Whirl Orbit Plots
Print orbit: PRORB
PRINT ORBITS FROM NODAL SOLUTION *****ANSYS VERIFICATION RUN ONLY***** DO NOT USE RESULTS FOR PRODUCTION
多级转子 Campbell图
Campbell Diagram …
y
ω
Elliptical whirl orbit
As frequencies split with increasing spin velocity, ANSYS identifies:
• forward (FW) and backward (BW) whirl • stable / unstable operation • critical speeds (PRCAMP)
OMEGA/CMOMGA Command
• OMEGA: 该命令指定结构在总体迪卡儿系下的转速(角速度)
转动速度可以在下列分析类型中定义:
• Static • Harmonic - Full or mode superposition • Transient - Full or mode superposition
STATIC, MODAL, HARMONIC, TRANSIENT
转子动力学求解
对比项
Stationary Frame
Rotating Frame
单元类型
BEAM4, PIPE16, MASS21, SOLID45, SOLID95, SOLID185, SOLID186, BEAM188, BEAM189.

Ansys 动力学 谐响应分析

Ansys 动力学 谐响应分析

M3-5
谐响应分析
第二节:术语和概念
包含的主题: • 运动方程 • 谐波载荷的本性 • 复位移 • 求解方法
M3-6
谐响应分析-术语和概念
运动方程
• 通用运动方程:
C u K u F M u
[F]矩阵和 {u}矩阵是简谐的,频率为 w:

F Fmaxe e u umaxei eiw t
观看结果 - POST1
观看整个结构的结果 • 进入POST1,且列出结果综述表,确定临界频率的载荷步和子步序号;
典型命令: /POST1 SET,LIST
M3-33
谐响应分析-步骤
观看结果 - POST1(接上页)
• 使用 HRCPLX 命令读入在期望频率和相角 时的结果: – HRCPLX, LOADSTEP, SUBSTEP, PHASE, ... – 例如: HRCPLX,2,4,85.7 绘制变形图,应力等值线图和其它期望的结 果。 典型命令:
M3-36
M3-24
谐响应分析-步骤
施加谐波载荷并求解(接上页)
阶梯载荷对线性变化载荷: • 采用若干子步,可以逐渐地施加载荷(线性变化载荷),或者在第 一个子步立刻施加载荷(阶梯载荷); • 谐波载荷通常是阶梯加载,因为载荷值代表的是最大振幅。
M3-25
谐响应分析-步骤
施加谐波载荷并求解(接上页)
• • 在施加谐波载荷后,下一步就是开始求解 通常采用一个载荷步,但是可以采用若干子 步,且每个子步具有不同的频率范围
HRCPLX,…
PLDISP,2 PLNSOL,… FINISH

M3-34
谐响应分析步骤
建立模型 选择分析类型和选项 施加谐波载荷和求解 观看结果

ansys 转子动力学 不平衡质量

ansys 转子动力学 不平衡质量

ansys 转子动力学不平衡质量ANSYS转子动力学是一种用于分析旋转机械系统中不平衡质量的工具。

不平衡质量是指在旋转机械系统中存在的质量分布不均匀的情况,它会导致系统产生不平衡力和振动。

不平衡质量在旋转机械系统中的影响是非常重要的,它会引起系统的振动、噪声和磨损,甚至会导致系统的故障和损坏。

因此,对不平衡质量进行准确的分析和评估是非常重要的。

ANSYS转子动力学可以通过以下步骤进行不平衡质量的分析:1. 建立转子模型:首先,需要根据实际情况建立旋转机械系统的几何模型。

这个模型可以包括转子、轴承、轴承座、连接件等各个组成部分。

2. 定义转子材料和属性:根据实际情况,需要定义转子的材料属性,例如弹性模量、密度等。

3. 定义转子的运动:需要定义转子的旋转速度和方向。

这个可以根据实际情况设置,例如转子的转速和转向。

4. 定义不平衡质量:需要定义转子上的不平衡质量分布。

这个可以根据实际情况设置,例如在转子上添加一定的质量块或者质量分布。

5. 进行转子动力学分析:使用ANSYS转子动力学工具进行分析。

工具会根据转子的几何模型、材料属性、运动和不平衡质量分布等信息,计算出转子的振动响应和不平衡力。

可以通过分析结果来评估不平衡质量对系统的影响。

6. 优化设计:根据分析结果,可以对转子的设计进行优化。

例如调整不平衡质量的位置和大小,以减小不平衡力和振动。

总之,ANSYS转子动力学是一种用于分析旋转机械系统中不平衡质量的工具,通过建立转子模型、定义转子的运动和不平衡质量分布等信息,可以计算出转子的振动响应和不平衡力,并进行优化设计。

谐响应

谐响应

ANSYS的谐响应分析只计算结构的稳态受迫振动,而不考虑发生在激励开始时瞬态振动,谐响应分析能够预测结构的持续动力特性,从而验证结构能否克服共振、疲劳、以及其他受迫振动引起的有害效果结构在受迫振动中的能量响应是其他响应(位移、速度、加速度等)之源,结构的能量共振是其他响应产生突变和共振之源。

当激励荷载的频率与结构系统自振频率很接近时,结构的能量响应会出现非常大的突变,即能量共振,能量共振的幅度受结构阻尼比的影响。

阻尼比越小,能量共振峰越陡峭,而对应的结构振幅就越大。

因此结构阻比在受迫振动中是不容忽视的。

阻尼是动力分析的一大特点,也是动力分析中容易引起困惑之处,由于它影响动力响应的衰减,因此对于谐响应分析十分重要。

阻尼的本质和表现是相当复杂的,相应的模型也很多。

ANSYS提供了强大又丰富的阻尼输入,比例阻尼、材料阻尼、恒定阻尼比,振型阻尼和单元阻尼。

谐响应分析有三种求解方法:完全法(容易使用,求解精度高,允许非对称矩阵,可定义各种类型荷载,但不能分析有预应力存在的谐响应)、缩减法(可以考虑预应力,由于采用主自由度求解,结果不如完全法精确)和模态叠加法(计算速度更快,可以使解按结构频率聚集,可以包含预应力效果,但不能施加非零位移约束)。

应用ANSYS的谐响应分析求解该线性结构承受正弦波动下系统的响应。

利用ANSYS提供的正弦函数方式输入实际的谐波激励,并利用后处理功能得到幅值—相位方式的输出结果。

应用ANSYS的谐响应分析可以很好的计算和分析周期载荷作用下结构的受迫振动问题,有效的克服了常规结构设计软件在这方面的欠缺。

通过ANSYS的计算表明:增大设备扰力作用方向建筑区的刚度可以有效的减少振动影响,从而限制楼层振幅。

在工作主频段(0—50HZ)以内,所选节点谐响应曲线光滑,振动幅值很小,不会产生共振,结构设计符合要求在某一频率附近,出现明显峰值,说明外力频率与固有频率相同或接近时会发生共振。

如条件允许,可进一步提高工作频率,那么为防止共振现象发生,所选频率应该远离共振区结构的动态特性分析属于动力分析范畴,主要包括模态分析,谐响应分析,瞬态动力分析和谱分析《基于ANSYS的高速电主轴静动态特性研究》作者:宋春明,赵宁,张士勇,张政武:(1)在ANSYS中建立了其轴承-主轴转子系统二维有限元模型。

转子动力学不平衡响应

转子动力学不平衡响应

转子动力学不平衡响应转子动力学是研究转子在旋转过程中的振动和不平衡响应的学科。

在实际工程中,转子的不平衡响应是一个重要的问题,它会导致转子系统产生振动、噪音甚至失效。

因此,对转子动力学不平衡响应进行深入研究具有重要的理论和实际意义。

转子动力学不平衡响应是指转子在旋转过程中由于不平衡而产生的振动响应。

不平衡是指转子的质量分布不均匀,导致转子在旋转时产生的离心力不平衡。

这种不平衡力会引起转子系统的振动,进而影响系统的稳定性和工作性能。

转子动力学不平衡响应的研究主要包括以下几个方面。

需要确定转子系统的动力学模型。

转子系统可以看作是一个刚体,其运动可以用欧拉方程来描述。

在建立动力学模型时,需要考虑转子的几何形状、材料性质、支承方式等因素,以及考虑外部载荷的影响。

通过建立合理的动力学模型,可以准确地描述转子在旋转过程中的运动规律。

需要确定转子系统的振动特性。

振动特性包括转子的固有频率、振型和振幅等。

固有频率是指转子系统在没有外部激励时自由振动的频率,它与转子的几何形状和材料性质有关。

振型是指转子系统在固有频率下的振动形态,它反映了转子的振动分布情况。

振幅是指转子系统在受到外部激励时的振动幅度,它与外部激励的幅值和频率有关。

通过研究转子系统的振动特性,可以了解转子系统的固有特性和受到外部激励时的响应情况。

然后,需要进行转子系统的动力学分析。

动力学分析是指通过求解转子系统的运动方程,得到转子在旋转过程中的振动响应。

在动力学分析中,需要考虑转子的不平衡力、支承刚度、阻尼等因素对转子系统的影响。

通过动力学分析,可以得到转子系统的振动响应曲线,进而评估转子系统的稳定性和工作性能。

需要进行转子系统的振动控制和优化设计。

振动控制是指通过采取一定的措施,减小转子系统的振动响应。

常用的振动控制方法包括增加转子的刚度、改变支承方式、使用阻尼器等。

优化设计是指通过优化转子的几何形状、材料性质和支承参数等,使转子系统的振动响应达到最优。

ANSYS双转子电机的转子谐响应分析[转]

ANSYS双转子电机的转子谐响应分析[转]

ANSYS双转⼦电机的转⼦谐响应分析[转]/s/blog_9e19c10b0102vd5y.html【问题描述】⼀个双转⼦电机如图所⽰该电机含有两个转⼦:内转⼦和外转⼦。

内转⼦是⼀根实⼼轴,较长;它的两端通过轴承与机架相连;在两端距离轴承不远的地⽅装有两个圆盘(图中没有绘制,在有限元分析中圆盘会⽤质量单元表⽰),⽽且右边的圆盘上存在不平衡质量,该不平衡质量产⽣了不平衡的⼒。

外转⼦是⼀根空⼼轴,它套在内转⼦外⾯。

外转⼦的左端与机架通过轴承相连,右端⾯通过轴承与内转⼦连接(图中没有表⽰出来)。

在外转⼦上也有两个圆盘,这两个圆盘不存在偏⼼质量的问题。

内转⼦的转速是14000转每分,⽽外转⼦的转速是21000转每分。

所有的相关⼏何尺⼨,轴承的参数,以及圆盘的质量和惯性量,在下⾯建模的时候给出。

现在要对该双转⼦电机进⾏转⼦动⼒学仿真,具体是做谐响应分析,⽬的是考察:(1)7号节点(内转⼦上)和12号节点(外转⼦上)的幅值与频率的关系图。

也就是要绘制这两个点的幅频关系曲线。

(2)在某⼀个给定频率处的转轴轨迹图。

(3)在某⼀个给定频率处转轴的涡动动画。

《注》该算例来⾃于ANSYS APDL转⼦动⼒学部分的帮助实例。

【范例说明】给出本例⼦的⽬的,是想说明:(1)如何⽤ANSYS经典界⾯做转⼦的谐响应分析。

(2)如何对转⼦系统中的轴承建模。

(3)如何建模不平衡质量。

【问题分析】1. 对于内转⼦⽤梁单元BEAM188建模,对于外转⼦也⽤BEAM188建模。

由于这⾥涉及到圆盘的位置,集中质量的位置,准备⽤直接建模法。

这就是说,先创建节点,然后由节点创建单元。

2. 对于4个轴承,使⽤COMBI214建模,该单元是⼆维的弹簧/阻尼单元,⽀持在两个⽅向上定义刚度和阻尼特性。

3.对于4个圆盘,使⽤MASS21建模。

质点单元创建在相应的转轴上,设置其质量和转动惯量。

4.由于内外转⼦的转速不同,需要分别定义两个组件,并对每个组件给以不同的转速。

ansys-谐响应分析

ansys-谐响应分析
f
实部
F1max

可以使用APDL语言计算,但要确保角度单位 为度(缺省为弧度)。
M3-21
谐响应分析-步骤
施加谐波载荷并求解命令(接上页)
*AFUN,DEG FK,… F,… SFA,… SFL,… SFE,… SF,…
M3-22
谐响应分析-步骤
施加谐波载荷并求解(接上页)
M3-23
谐响应分析-步骤
• •
M3-10
谐响应分析-术语和概念
求解方法
求解简谐运动方程的三种方法: • 完整法
– 为缺省方法,是最容易的方法; – 使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。

缩减法*
– 使用缩减矩阵,比完整法更快; – 需要选择主自由度,据主自由度得到近似的 [M]矩阵和[C]矩阵。

模态叠加法**
施加谐波载荷并求解 • 所有施加的载荷以规定的频率(或频率 范围)简谐地变化 • “载荷”包括: – 位移约束-零或非零的 – 作用力 – 压强 • 注意: 如果要施加重力和热载荷,它 们也被当作简谐变化的载荷来考虑!
典型命令:
DK,… ! 或 D或DSYM
DA,... DL,…
M3-19
谐响应分析-步骤
M3-27
谐响应分析-步骤
观看结果 - POST26
位移-频率关系曲线 • 首先定义 POST26 变量 – 节点和单元数据表 – 用大于等于二的数据识别 – 变量1包含各频率,并是预先定义了的
M3-28
谐响应分析-步骤
观看结果 - POST26(接上页)
• 定义变量(接上页) – 挑选可能发生最大变形的节点,然后选择自由度的方向; – 定义变量的列表被更新。

ansys谐响应分析演示文稿

ansys谐响应分析演示文稿
– 每一个自由度上的谐位移,通常和施加的载荷不同相 – 其它多种导出量,例如应力和应变等
谐响应分析
…定义和目的
谐响应分析用于设计:
• 旋转设备(如压缩机、发动机、泵、涡轮机械等)的支座、固定装置和 部件
• 受涡流(流体的漩涡运动)影响的结构,例如涡轮叶片、飞机机翼、桥 和塔等
谐响应分析
…定义和目的
• 谐响应分析只能计算结构的稳态响应,不考虑发生在激励开始时的瞬态振动。
• 谐响应分析是一种线性分析,任何非线性环节即使定义也会被忽略。
• 输入:
– 已知大小和频率的谐载荷(力、压力和强迫位移) – 同一频率的多种载荷,力和位移可以是同相或不同相的。表面载荷和体载荷的相位角度
可以指定为零。
• 输出:
ansys谐响应分析演示文稿
ansys谐响应分析
谐响应分析
A、谐响应分析的定义和目的 B、关于谐响应分析的基本术语和概念 C、谐响应分析在ANSYS中的应用 D、谐响应分析的实例练习
谐响应分析
定义和目的
什么是谐响应分析?
• 确定一个线性结构在持续的周期性(随时间成正弦或余弦变化)荷载作用下的持 续的周期性响应(稳态响应)。
虚部
谐响应分析-术语和概念
谐载荷
• 随时间成正弦或余弦变化的载荷
• 同时作用的谐载荷必须是相同频率
的载荷 实部
• 相位角ψ允许不同相位的多个载荷 同时作用,ψ缺省值为零
• 施加的全部载荷都假设是简谐的, 包括温度和重力。
谐响应分析-术语和概念
频率
频率
•频率反映载荷随时间变化的快慢 •谐响应分析输出的是响应量随频率的变化关系图 •在谐分析中,所有节点振动的频率都相同,但振动的相位可能不同 •在谐分析中,必须指定频率范围及其分割数(nsubst)。 •Ansys谐分析中的自动频率分割法能自动大致估计并选择共振频率,有效避 免无关频率分析过细,重要频带(共振频率附近的频率)分析较少的现象。

基于ANSYS的转子系统不平衡响应分析

基于ANSYS的转子系统不平衡响应分析

Un a a c s o s ay i ft e Ro o y t m s d o b ln e Re p n eAn l sso h t r S se Ba e n ANS YS
L o g C I C n , HANG n , HANG e g b ri g Z F n -o
用工况 下工作 转速低 于一 阶 临界 转 速 , 子 主轴 属 于刚性 转 子 。 离心机 不平衡 响应 大 小受 转速 、 转 激振
力、 每组 筒体 配重差 等 因素影响 , 动平衡研 究主要是 解 决粉 体压 缩导致 的 非线性 激振 力和转 子转盘 的平 衡 问题 。为 未来新 的 离心机 转子 系统研 发设 计提供 了一 定的理 论参考 依据 。 关 键词 : 限元 模型 ; 有 转子 系统 ; 不平衡 响应 ; 振动 中图分类 号 :E T9 文献标识 码 : A 文 章编号 :00— 89 21 )2一 16— 3 10 82 (0 1 1 O 1 0
( eerhIst eo hm c D fne B in 0 2 5 C i ) R sac tu f e i n it C  ̄ ees, e i 120 , hn jg a
Ab ta t A ma h maia d lw ih c n b ac l td i o t i e y t e sr s n lsso o o y t m. sr c : t e t l c mo e h c a e c lu a e s b an d b t sa a y i f r trs se A h e a i t e e n f i lme t d l s sa l h d b ef i lme t n l s o wae A YS T e c r eo n a a c e ne mo e tb i e yt nt ee n ay i s f r - NS . h u v f b ln e r — ie s h i e a s i u s o s , e k a d r s n n e  ̄e u n y u d r d f r n o d t n r b a n d T e a ay i s o s ta h p n e p a n eo a c q e c n e i e e t c n i o s a e o t i e . h n l ss h w h t t e f i w r i g s e d i lwe h n t e f s c t a p e , n e r t r h f i r i o o . b ln e r s o s ft e o k n p e s o rt a h rt r i l e d a d t oo a t si d r tr Un aa c e p n e o i i c s h s g h c n r u e i a fce y t e s e d e ct g f r ea d t e weg t i e e c f a h c l d r T e man p r o e e t f g s f td b h p e , x i n c n i h f r n e o c yi e . i u p s i e i o h df e n h

ansys谐响应分析

ansys谐响应分析

ANSYS谐响应分析谐响应分析是用于确定线性结构在受正弦载荷作用时的稳态响应,目的是计算出结构在几种频率下的响应,并得到响应随频率变化的曲线。

其输入为已知大小和频率的谐波载荷(力、压力和强迫位移);同一频率的多种载荷,可以是相同或不相同的。

其输出为每一个自由度上的谐位移,通常和施加的载荷不同;或其它多种导出量,例如应力和应变等。

谐响应分析能预测结构的持续动力特性,从而验证设计能否成功地克服共振、疲劳,以及其他受迫振动引起的不良影响。

同时,通过谐响应分析可以用来探测共振响应;可以确定一个给定的结构能否能经受住不同频率的各种正弦载荷(例如:以不同速度运行的发动机)。

谐响应分析有三种求解方法:完整法、缩减法及模态叠加法。

三种方法都有其相应的适用条件。

这里主要介绍模态叠加法。

模态叠加法是通过对模态分析得到的振型乘上因子并求和计算出结构的响应,是所有求解方法中最快的。

使用何种模态提取方法主要取决于模型大小和具体的应用场合。

模态叠加法可以使解按结构的固有频率聚集,可产生更平滑且更精确的响应曲线图,同时可以包含预应力效果。

(对于机械结构来看,预应力含义为预先使其产生应力,其好处是可以提高构造本身刚性,减少振动和弹性变形,改善受拉模块的弹性强度,提高结构的抗性。

)有预应力的谐响应分析可用缩减法和模态叠加法进行。

对于有预应力的谐响应分析,为了在模态叠加法谐响应分析中包含预应力效果,必须首先进行有预应力的模态分析。

在完成了有预应力模态分析后,就可以像一般的模态叠加法那样进行分析了。

而对于对于有预应力的模态分析,由于结构预应力会改变结构的刚性,因此预应力结构模态分析是结构设计中必须考虑的因素。

预应力模态分析步奏与常规模态分析大致相同,其差别在于:(1)先对造成预应力的外力进行静力分析;(2)在静力分析和模态求解中打开PSTRES,on命令,表示考虑了预应力效应。

模态叠加法进行谐响应分析的步骤如下:一、建模1)只能用线性的单元和材料,忽略各种非线性的性质。

ANSYS谐响应分析(3)

ANSYS谐响应分析(3)
– – – – 建模 选择分析类型与求解选项 施加谐波载荷并求解 查看结果
Training Manual
DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0
建模
• 模和材料,忽略各种非线性; –必须输入材料密度; –注意:如果ALPX(热膨胀系数)和ΔT均不为零,就有可 能不经意地包含了简谐热载荷。为了避免这种事情发 生,请将ALPX设置为零. 如果参考温度 [TREF]与均匀 节点温度 [TUNIF]不一致, 那么ΔT为非零值; –请参阅《动力学分析总论》建模需要考虑的问题。
POST26:确定各临界频率和相角
• 注意:最大振幅=3.7出现在48Hz,85.7º时
Training Manual
DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0 DYNAMICS 11.0
• 其中力与位移都是谐波形式的
{F} = {Fmax e iψ }e iω t = ({F1 }+ i{F2 }) e iω t {u } = {u max e iφ }e iω t = ({u 1 }+ i{u 2 }) e iω t
• 谐分析的运动方程
(−ω2 [M ] + iω[C] + [K ])({u1}+ i{u 2 }) = ({F1}+ i{F2 })
POST26:确定各临界频率和相角
• 确定各临界频率和相角
Training Manual
– 用图形显示最高振幅发生时的频率; – 由于位移与施加的载荷不同步(如果存在阻尼),需要 确定出现最大振幅时的相位角;
• 要进行上述工作,首先要选择振幅+相位选项。 • 然后用表列出变量(列表结果见下页)。

Ansys中谐响应分析理论概述

Ansys中谐响应分析理论概述

* 谐响应分析的概述* 1谐响应分析的概念谐响应分析(Harmonic Response Analysis)用于确定线性结构在承受一个或多个随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下得响应值(通常是位移)对频率的曲线,从这些曲线上可以找到“峰值”响应,并进一步考虑频率对应的应力。

从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。

谐响应分析技术只计算结构的稳态受迫振动。

发生在激励开始时的瞬态振动不在谐响应分析中考虑。

谐响应分析是一种线性分析。

任何非线性特性,如塑性和接触单元,即使定义了也被忽略,但在分析中可以包含非对称系统矩阵。

谐响应分析同样也可分析有预应力的结构。

* 2谐响应分析的理论基础谐响应分析的基本运动方程为:(4-1)通用运动方程为:(4-2)简谐运动的分析方程为:(4-3)(4-4)其中:—激振力矩阵—刚度矩阵—质量矩阵—位移矩阵—载荷幅值—实部载荷—虚部载荷—载荷函数的相位角—位移幅值这里假设刚度矩阵、质量矩阵是定值,要求材料是线弹性的、使用最小位移理论(不包括非线性)、阻尼为、激振力(简谐载荷)为。

谐响应分析的输入条件包括:(1)已知幅值和频率的简谐载荷(力、压力和强迫位移)(2)简谐载荷可以是具有多种频率的多种载荷,力和位移可以相同或者不相同,但是压力分布载荷只能指定零相位角。

谐响应分析的输出结果分析包括:(1)每个自由度的谐响应位移,通常情况下谐响应位移和施加的载荷是不相同的。

(2)应力和应变等其它导出值。

* 3谐响应分析的求解基本方法(1)完整法(full)—为缺省方法,是最容易的方法;—使用完整的结构矩阵,且允许非对称矩阵(例如:声学矩阵)。

—允许定义各种类型的荷载;预应力选项不可用;(2)缩减法(reduced)—使用缩减矩阵,比完整法更快;—需要选择主自由度,据主自由度得到近似的 [M]矩阵和[C]矩阵。

ANSYS动力学分析指南-谐响分析

ANSYS动力学分析指南-谐响分析

§2.1谐响应分析的定义与应用任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。

分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。

从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。

该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。

(见图1)。

谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。

图1(a)典型谐响应系统。

F0及ω已知,u0和Φ未知。

(b)结构的瞬态和稳态动力学响应。

谐响应分析是一种线性分析。

任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。

分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题(参见<<ANSYS耦合场分析指南>>的第5章)。

谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。

§2.2谐响应分析中用到的命令建模过程与执行谐响应分析可以使用其它类型分析相同的命令。

同样,无论进行何种类型的分析,均可以从用户图形界面(GUI)中选择等效的选项来建模和求解。

在后面的“谐响应分析实例(命令或批处理方式)”中,将会给出进行一个谐响应分析需要执行的命令(GUI方式或者批处理方式运行ANSYS时用到的)。

而“谐响应分析实例(GUI方式)”则描述了如何用ANSYS用户图形界面的菜单执行同样实例分析的过程。

(要了解如何用命令和用户图形界面进行建模,请参阅《ANSYS建模与网格指南》)。

《ANSYS命令参考手册》中有更为详细的ANSYS命令说明,它们是按字母顺序进行组织的。

§2.3三种求解方法谐响应分析可采用三种方法:完全法(Full)、缩减法(Reduced)、模态叠加法(Mode Superposition)。

ansys谐响应分析解析

ansys谐响应分析解析

确定一个线性结构在持续的周期性(随时间成正弦或余弦变化)荷载作用下的持 续的周期性响应(稳态响应)。 谐响应分析只能计算结构的稳态响应,不考虑发生在激励开始时的瞬态振动。 谐响应分析是一种线性分析,任何非线性环节即使定义也会被忽略。 输入:
– – 已知大小和频率的谐载荷(力、压力和强迫位移) 同一频率的多种载荷,力和位移可以是同相或不同相的。表面载荷和体载荷的相位角度 可以指定为零。
频率
频率
•频率反映载荷随时间变化的快慢 •谐响应分析输出的是响应量随频率的变化关系图 •在谐分析中,所有节点振动的频率都相同,但振动的相位可能不同 •在谐分析中,必须指定频率范围及其分割数(nsubst)。
培训手册
ANSYS80谐响应分析——段志东制作
•Ansys谐分析中的自动频率分割法能自动大致估计并选择共振频率,有效避 免无关频率分析过细,重要频带(共振频率附近的频率)分析较少的现象。
• [F]矩阵和 {u}矩阵是简谐的,频率为 w :
F Fmax ei eiwt (F1 iF2 )eiwt u u max ei eiwt (u1 iu 2 )eiwt
• 谐响应分析的运动方程:
(w2 M iwC K)(u1 iu 2 ) (F1 iF2 )
注意: 如果ALPX(热膨胀系数)和T均不为零,就有可能不经意地包
含了简谐热载荷。为了避免这种事情发生,请将ALPX设置为零
请参阅第一章中的建模需要考虑的问题
3-14 建模
培训手册
ANSYS80谐响应分析——段志东制作
– 具有阻尼 – 施加载荷是复数载荷(例如:虚部为非零的载荷)
培训手册
ANSYS80谐响应分析——段志东制作
• •

ansys谐响应分析

ansys谐响应分析

比如,在ANSYS谐响应分析中要给出这样的语句
FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角)
HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载
NSUBST,100, !指定频率从0到2.5之间分100步进行计算
K, 8,-600.0000,-500.0000,0.000000
K, 9, 0.000000,-500.0000,0.000000
K,10, 85.00000,-500.0000,0.000000
K,11, 685.0000,-500.0000,0.000000
K,12, 685.0000, 0.000000,0.000000
KEYW,PR_MULTI,0
KEYW,PR_CFD,0
/GO
!TERIAL PROTERTIES
MP,DENS,1,2490 !MAT 1 FOR DAM
MP,EX,1,20E9
MP,PRXY,1,.167
MP,DENS,2,2660 !MAT 2 FOR FOUNDATION
A, 1, 2, 4, 3
A, 3, 4, 6, 5
A, 8, 9, 1, 7
A, 9,10, 2, 1
A,10,11,12, 2
ASEL,S,LOC,Y,0.,100.
AATT,1,,1
CM,ADAM,AREA
ASEL,S,LOC,Y,-500.,0
AATT,2,,1
CM,AFOUND,AREA
HROUT,ON
EQSLV,FRONT,0,
PSTRES,0

ansys谐响应分析步骤

ansys谐响应分析步骤

谐响应分析步骤full(完全法)允许定义各种类型的荷载;预应力选项不可用;reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等)modesuperpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应,可以包含预应力,可以考虑振型阻尼,不能施加非零位移1Full法步骤第1步:载入模型Plot>Volumes第2步:指定分析标题并设置分析范畴1设置标题等UtilityMenu>File>ChangeTitleUtilityMenu>File>ChangeJobnameUtilityMenu>File>ChangeDirectory2选取菜单途径MainMenu>Preference,单击Structure,#.击OK第3步:定义单元类型MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现ElementTypes对话框,单击Add现LibraryofElementTypes对话框,选择StructuralSolid,再右滚动栏选择Brick20node95,然后单击OK,单击ElementTypes对话框中的Close按钮就完成这项设置了。

第4步:指定材料性能选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModelso出现DefineMaterialModelBehavior对话框'在右侧Structura卜Linear>Elastic>lsotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。

第5步:划分网格选取菜单途径MainMenu>Preprocessor>Meshing>MeshTool,!l!现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现MeshVolumes对话框,其他保持不变单击PickAll,完成网格划分。

Ansys转子动力学

Ansys转子动力学

基于ANSYS的转子动力学分析1、题目描述如图1-1所示,利用有限原原理计算转子临界转速以及不平衡响应。

图1-1 转子示意图及尺寸2、题目分析采用商业软件ANSYS进行分析,转子建模时用beam188三维梁单元,该单元基于Timoshenko梁理论,考虑转动惯量与剪切变形的影响。

每个节点有6个(三个平动,三个转动)或7各自由度(第七个自由度为翘曲,可选)。

轴承用combine214单元模拟。

该单元可以模拟交叉刚度和阻尼。

只能模拟拉压刚度,不能模拟弯曲或扭转刚度。

该单元如图2-1所示,其有两个节点组成,一个节点在转子上,另一个节点在基础上。

图 2-1 combine214单元对于质量圆盘,可以用mass21单元模拟,该单元有6个自由度,可以模拟X,Y,Z 三个方向的平动质量以及转动惯性。

3、计算与结果分析 3.1 转子有限元模型建模时,采用钢的参数,密度取37800/kg m ,弹性模量取112.1110pa ,泊松比取0.3。

轴承刚度与阻尼如表1所示,不考虑交叉刚度与阻尼,且为各项同性。

表 3-1 轴承刚度与阻尼参数Kxx Kyy Cxx Cyy 4e7N/m4e7N/m4e5N.s/m4e5N.s/m将转子划分为93个节点共92个单元。

有限元模型如图3-1所示。

图3-1 转子有限元模型施加约束时,由于不考虑纵向振动与扭转振动,故约束每一节点的纵向与扭转自由度,同时约束轴承的基础节点。

施加约束后的模型如3-2所示。

图3-2 施加约束后的有限元模型3.1 转子临界转速计算在ANSYS中可以很方便的考虑陀螺力矩的影响。

考虑陀螺力矩时,由于陀螺矩阵是反对称矩阵,所以求取特征值时要用特殊的方法。

本文考虑陀螺力矩的影响,分析了在陀螺力矩的影响下,转子涡动频率随工作转速的变化趋势,其Campell图如图3-3所示。

同时给出了转子的前四阶正进动涡动频率与反进动涡动频率以及固有频率。

如表3-2所示。

表3-2 转子涡动频率随转速的变化Ω(rpm)010000200003000040000ω(Hz)54.73854.83355.02755.24855.478 F1ω(Hz)54.73854.13153.93853.71853.489 B1ω(Hz)174.12174.85175.61176.38177.14 2Fω(Hz)174.12173.31172.55171.78171.02 2Bω(Hz)301.97303.56305.18306.82308.46 3Fω(Hz)301.97300.35298.76297.19295.63 3Bω(Hz)484.00488.60493.24497.93502.65 F4ω(Hz)484.00479.44474.92470.45466.02 4B图3-3 转子Campell图从表3-2与图3-3可以看出,陀螺力矩提高了转子的正向涡动频率,降低了转子的反向涡动频率。

3转子动力学谐波响应

3转子动力学谐波响应

7.5 例子:对基础激励的模态叠加谐响应
圆盘上边沿点uz 圆盘中心点uy 圆盘中心点ux
响应是相对于基础的运动
3转子动力学谐波响应
谐波响应分析 稳态不平衡响应
谐波响应分析
谐波响应计算动力系统对正弦载荷的稳态响应(幅值不随时间变化)
Ω2
4
3
2
1
在转子动力学中,谐波响 应分析可以理解为在坎贝 尔图(由模态分析得到) 的一条路径上的扫描 1,2,3,4:所有的路径 都可以看作为谐波响应, 但是各条路径得用不同分 析过程。
路径4:旋转速度扫描,激励频率不变 1. 2. 3. 4. 5. 6. 7. 8. 由于陀螺矩阵与Ω 1有关,因此必须用Full方法 模型的旋转速度方向由OMEGA命令给定(对多个转子用CMOMEGA命令) 模型的旋转速度大小也由OMEGA命令给定(对多个转子用CMOMEGA命令) 激励由F命令指定 OMEGA通过do循环设定 不能在/post26中观察结果,因频率没有变化 可以通过/post1把结果放入一个数组中,然后用VPLOT画图(见实例) 激励力的方向和大小可以在载荷步间变化或保持不变,如果力是来源于不平衡 质量,力应该与OMEGA的平方出正比,如果并非如此,则可以是其它规律
例B: SYNCHRO, f0 = 1e3 f,node(0,0,0),fy,f0 f,node(0,0,0),fz,,-f0 f0是不平衡质量值
1. 2. 3. 4.
路径3:旋转速度与激励频率成比例 由于陀螺矩阵与Ω 1有关,因此必须用Full方法 模型的旋转速度方向由OMEGA命令给定(对多个转子用CMOMEGA命令),方 向矢量由单位旋转速度确定,如 OMEGA,1. 模型的旋转速度大小由HARFREQ定(不是OMEGA!),OMEGA根据SYNCHRO 命令 与HARFRQ成比例,比例因子为命令”SYNCHRO,Factor“ 中的Factor 激励由F命令定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档