人教版数学八年级上册学案11.3 多边形及其内角和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.3 多边形及其内角和
11.3.1 多边形
学习目标:
1.了解多边形及有关概念.
2.理解正多边形及其有关概念.
预习
阅读教材,完成预习内容.
知识探究
1.在平面内,由一些线段首尾顺次相接组成的封闭图形叫做________.如果一个多边形由n条线段组成,那么这个多边形叫做________.(一个多边形由几条线段组成,就叫做几边形.)
2.相邻两边组成的角叫做____________,多边形的边与它的邻边的延长线组成的角叫做
____________.
3.连接多边形的不相邻的两个顶点的线段,叫做________________.
4.各个角都相等,各条边都相等的多边形叫做________.
自学反馈
1.下列图形不是凸多边形的是( )
2.n边形有________条边,________个顶点,________个内角.
点拨:在多边形的概念中,要分清以下几个方面:
(1)在平面内;
(2)若干线段不在同一直线上;
(3)首尾顺次相接;
(4)所形成的封闭图形.
活动1小组讨论
1.请列出生活中的一些多边形,并指出其特征.
解:房屋顶是三角形,因为三角形有稳定性;螺母底面为六边形,是为了方便安装和拆卸;黑板为四边形,是为了满足教学的使用;等等.
点拨:生活中存在很多的多边形,它们的形状都是为了与生活相适应.
2.多边形的内角、外角及对角线.
(1)多边形相邻两边组成的角叫做多边形的内角.
(2)多边形的边与它的邻边的延长线组成的角叫做多边形的外角.
(3)连接多边形不相邻的两个顶点的线段叫做多边形的对角线.
(4)多边形用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针顺序.
(5)正多边形各个角都相等,各条边都相等.(如下图所示)
点拨:判断一个n边形是正n边形的条件:(1)各边相等,(2)各角相等.
3.合作探究,完成下表,将你的思路与同学交流、分享.
课堂小结
1.多边形及其内角、外角、对角线.
2.正多边形的概念.
11.3.2多边形的内角和
学习目标:
通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题.
预习
阅读教材,完成预习内容.
问题1:你知道三角形的内角和是多少度吗?
解:三角形的内角和等于180°.
问题2:你知道任意一个四边形的内角和是多少度吗?
学生展示探究成果
方法1:分成2个三角形180°×2=360°
方法2:分割成4个三角形180°×4-360°=360°
方法3:分割成3个三角形180°×3-180°=360°
点拨:从一个顶点出发和各顶点相连,把四边形的问题转化为三角形的问题.
问题3:你知道五边形的内角和是多少度吗?
问题4:你知道六边形、七边形的内角和分别是多少度吗?
知识探究
列表探索n边形的内角和公式:____________.
自学反馈
1.十二边形的内角和是________.
2.一个多边形当边数增加1时,它的内角和增加________.
3.一个多边形的内角和是720°,则此多边形共有________个内角.
4.如果一个多边形的内角和是1 440°,那么这是________边形.
活动1小组讨论
问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?点拨:求六边形外角和等于多少度,用六个平角减去六边形的内角和即可得出.
问题2:n边形外角和等于多少度?
探索发现:n边形外角和等于360°.
活动2跟踪训练
1.(1)八边形的内角和等于________度;
(2)九边形的内角和等于________度;
(3)十边形的内角和等于________度.
2.一个多边形的内角和等于1 800°,这个多边形是________边形.
3.七边形的外角和为________.
4.正多边形的一个外角等于20°,则这个正多边形的边数是________.
5.内角和与外角和相等的多边形是________边形.
课堂小结
通过三角形向四边形、五边形…的转化,体会转化思想在几何中的运用,体会从特殊到一般的认识问题的方法.
课堂小练
一、选择题
1.如图,这个五边形ABCDE的内角和等于( )
A.360° B.540° C.720° D.900°
2.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣
3,2),(b,m),(c,m),则点E的坐标是()
A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)
3.已知一个正多边形的内角是140°,则这个正多边形的边数是()
A.6
B.7
C.8
D.9
4.一个多边形内角和是1080º,则这个多边形的对角线条数为()
A.26
B. 24
C.22
D.20
5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一
种地砖镶嵌地面,可供选择的地砖共有()
A.1种
B.2种
C.3种
D.4种
6.下列几种形状的瓷砖中,只用一种不能够铺满地面的是( )
A.正六边形.
B.正五边形.
C.正方形.
D.正三角形.
7.一个多边形对角线的条数是边数的3倍,则这个多边形是( )