北京市昌平区2020-2021学年高一上学期期末质量抽测数学试题

合集下载

高中数学压轴题题型名校模考题汇总

高中数学压轴题题型名校模考题汇总

专题10压轴题题型汇总压轴题型一、保值函数型“保值函数”,又称为“k 倍值函数”,“和谐函数”,“美好区间”等等。

1、现阶段主要是一元二次函数为主的。

核心思路是转化为“根的分布”。

2、函数单调性是解决问题的入口之一。

3、方程和函数思想。

特别是通过两个端点值构造对应的方程,再提炼出对应的方程的根的关系。

如第1题1.(江苏省连云港市市区三星普通高中2020-2021学年高一上学期期中联考)对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由.2.(北京市昌平区2020-2021学年高一上学期期中质量抽测)已知函数2()f x x k =-.若存在实数,m n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为()A .(1,0]-B .(1,)-+∞C .2,0]D .(2,)-+∞3.(广东省广州市第一中学2020-2021学年高一上学期11月考试)已知函数221()x f x x-=.(1)判断函数()f x 的奇偶性并证明;(2)若不等式23()1x f x kx x +-≥在1,14x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数k 的取值范围;(3)当11,(0,0)x m n m n ⎡⎤∈>>⎢⎥⎣⎦时,函数()()1(0)g x tf x t =+>的值域为[23,23]m n --,求实数t 的取值范围.4.(江苏省盐城市实验高级中学2020-2021学年高一上学期期中)一般地,若()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”,(1)若[]1,b 为2()22f x x x =-+的跟随区间,则b =______;(2)若函数()f x m =m的取值范围是______.压轴题型二、方程根的个数1.一元二次型“根的分布”是期中考试的一个难点和热点。

北京市昌平区2023-2024学年高一下学期7月期末质量抽测地理试题(含答案)

北京市昌平区2023-2024学年高一下学期7月期末质量抽测地理试题(含答案)

昌平区2023—2024 学年第二学期高一年级期末质量抽测地理试卷 2024. 7本试卷共11页,共100分。

考试时长90分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将答题卡交回。

第一部分选择题(共50分)下列各小题均有四个选项,其中只有一项符合题意要求。

(每小题2分,共50分)调查表明,2020年北京市人口数量排名前十的乡镇外来人口比重较高。

读图1,回答第1、2题。

1. 图中乡镇A.主要分布在近郊地区B.集中分布在西部山区C.人口的自然增长率高D.以种植业为主导产业2.图中乡镇吸引外来人口迁入的主要因素是A.政治因素B.经济因素C.文化因素D.生态因素地理试卷第1页(共11页)图2为资源环境承载力和人口数量的一种假设情景。

读图,回答第3.4题。

3.若某地区水资源可承载6000 万人,耕地资源可承载7000万人,矿产资源可承载80000万人,该地区资源环境承载力可能是A. 小于6000万人B. 6000~7000 万人C. 7000~8000 万人D. 大于8000万人4.新的资源环境承载力降低的原因可能是①自然资源枯竭②科技水平提升③生态环境恶化④对外开放程度提高A. ①②B. ①③C. ②④D. ③④图3为我国某城市两个地铁站平均客流量及周边500米范围内商业设施数量统计图。

读图,回答第5、6题。

5. 甲站A.工作日客流量多于周末B.酒店的数量多于乙站C.可能是换乘车站D.与购物中心联通6.乙站所在的功能区可能是A.居住区B.工业区C.行政区D.商业区地理试卷第2页(共11页)2023年冬季,哈尔滨索菲亚大教堂(图4)、冰雪大世界(图5)等特色景观吸引大量游客。

读图,回答第7、8题。

7.哈尔滨①城市的建筑风格具有独特性和多元性②民居体现了明朗素雅的徽派建筑风格③索菲亚大教堂体现了中西方文化融合④冰雪大世界的建造依托丰富冰雪资源A. ①②③B. ①②④C. ①③④D. ②③④8.哈尔滨的民居墙体较厚是为了A.防震抗灾B.防寒保暖C.注重隐私D.抵御外敌贵州省铜仁市海拔高,云雾缭绕,昼夜温差大,为茶树生长提供了理想环境。

2020-2021北京市高中必修一数学上期末试题含答案

2020-2021北京市高中必修一数学上期末试题含答案

2020-2021北京市高中必修一数学上期末试题含答案一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .22D .23.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦7.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .48.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .69.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .1410.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 11.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+12.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .5二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数()1352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______15.如果函数()22279919mm y m m x--=-+是幂函数,且图像不经过原点,则实数m =___________.16.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 17.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .18.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.计算221(1).log 24lglog lg 2log 32+--32601(8)9⎛⎫--- ⎪⎝⎭- 23.设函数()()2log xxf x a b =-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.24.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?25.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?26.若()221x x a f x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m∴∈-∞时,8 ()9f x≥-成立,即73m≤,7,3m⎛⎤∴∈-∞⎥⎝⎦,故选B.【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.C解析:C【解析】分析:由题意分别确定函数f(x)的图象性质和函数h(x)图象的性质,然后数形结合得到关于k的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log1f x x=+右移一个单位,得()21logy f x x=-=,所以g(x)=2x,h(x-1)=h(-x-1)=h(x+1),则函数h(x)的周期为2.当x∈[0,1]时,()21xh x=-,y=kf(x)-h(x)有五个零点,等价于函数y=kf(x)与函数y=h(x)的图象有五个公共点.绘制函数图像如图所示,由图像知kf(3)<1且kf(5)>1,即:22log41log61kk<⎧⎨>⎩,求解不等式组可得:61log22k<<.即k的取值范围是612,2log⎛⎫⎪⎝⎭.本题选择C选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.7.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.8.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.9.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.10.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立; ∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.11.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.12.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

2020-2021学年北京市昌平区高一上学期期末数学试卷(附答案解析)

2020-2021学年北京市昌平区高一上学期期末数学试卷(附答案解析)

2020-2021学年北京市昌平区高一上学期期末数学试卷一、单选题(本大题共10小题,共50.0分)1.全集U={1,2,3,4,5,6},集合A={2,3},B={x|x2−6x+8=0},则集合(∁U A)∩B=()A. {4,6}B. {2,4}C. {2}D. {4}2.不等式的解集为()A. B.C. D.3.若x<3,则√9−6x+x2−|x−6|的值是()A. −3B. 3C. −9D. 94.已知a⃗=(1,2),b⃗ =(m,m+3),若a⃗⊥b⃗ ,则m=()A. −2B. 2C. −7D. 75.若b<0<a,d<c<0,则()A. ac>bdB. ac >bdC. a−c>b−dD. a−d>b−c6.袋中有2个白球,3个黑球,从中依次取出2个,则取出2个都是白球的概率是()A. 35B. 12C. 25D. 1107.已知定义在R上的函数f(x)是偶函数,且满足f(1+x)=f(1−x),当x∈[−1,1]时,f(x)=1−x2,若函数g(x)=log5x,则ℎ(x)=f(x)−g(x)在区间(0,5]内的零点的个数是()A. 2B. 3C. 4D. 58.已知函数f(x)是定义在R上的函数,当x>0时,f(x){2|x−1|−1,0<x≤212f(x−2),x>2则函数g(x)=xf(x)−1在[−6,+∞)上的所有零点之和为()A. 7B. 8C. 9D. 109.若z∈C,则“|Rez|≤1,|Imz|≤1”是“|z|≤1”成立的条件.()A. 充分非必要B. 必要非充分C. 充要D. 既非充分又非必要10.方程的解为等于()A. 1B. eC. 10D.二、单空题(本大题共4小题,共20.0分)11. 若命题“∃x 0∈R ,2x 02−3mx 0+9<0”为假命题,则实数m 的取值范围是 . 12. 幂函数y =f(x)的图象经过点(−2, −18),则满足f(x)=64的x 的值是______ .13. 在△ABC 所在平面内一点P ,满足AP ⃗⃗⃗⃗⃗ =25AB ⃗⃗⃗⃗⃗ +15AC ⃗⃗⃗⃗⃗ ,延长BP 交AC 于点D ,若AD ⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,则λ=_______.14. 已知函数f(x)=x 3+sinx +m −3是定义在[n,n +6]上的奇函数,则m +n = ______ .三、多空题(本大题共2小题,共10.0分)15. 如图所示茎叶图记录了甲、乙两组各5名同学在期末考试中的数学成绩,则甲组数据的中位数是 (1) ;乙组数据的平均数是 (2) .16. 设函数f(x)={log 2x,x >0x 2+x,x ≤0,则f[f(−2)]= ,方程f(x)=2的解为 . 四、解答题(本大题共5小题,共70.0分)17. 某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),…[90,100],整理得到如图频率分布直方图:(Ⅰ)若该样本中男生有55人,试估计该学校高三年级女生总人数;(Ⅱ)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;(Ⅲ)若规定分数在[80,90)为“良好”,[90,100]为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X ,求X 的分布列和数学期望.18. 如图,平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为交点,若AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗(1)试以a ⃗ ,b ⃗ 为基底表示DE⃗⃗⃗⃗⃗⃗ 、CG ⃗⃗⃗⃗⃗ (2)若AD =2,AB =3,∠DAB =60°,求BF ⃗⃗⃗⃗⃗ ⋅CG⃗⃗⃗⃗⃗19. 孝感为中国生活用纸之乡.为庆祝“2021年中国孝感纸都节”,在开幕式现场进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“孝感纸都”和“纸都孝感”两种标志,摇匀后抽奖,规定:参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“孝感纸都“即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“纸都孝感”标志的概率为35.(1)求盒中印有“纸都孝感”标志的小球个数;(2)求某位嘉宾抽奖两次的概率.20. 某企业为打入国际市场,决定从A 、B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)项目类别年固定成本 每件产品成本 每件产品销售价 每年最多可生产的件数 A 产品10 m 5 100 B 产品 20 4 9 60其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[3,4].另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;(2)如何投资才可获得最大年利润?请你做出规划.21. 已知集合A=,其中},B=},且A B=R,求实数的取值范围.参考答案及解析1.答案:D解析:本题考查补集、交集的求法,属于基础题.先求出集合B和∁U A,由此能求出集合(∁U A)∩B.解:∵全集U={1,2,3,4,5,6},集合A={2,3},B={x|x2−6x+8=0}={2,4},∴∁U A={1,4,5,6},则集合(∁U A)∩B={4}.故选:D.2.答案:A解析:此题考查了其他不等式的解法,考查了转化的数学思想,解答此类题的关键是掌握两数相除,同号得正,异号得负的取符号法则.解:故不等式的解集为。

2020-2021学年北京市101中学高一(上)期末数学试卷 (解析版)

2020-2021学年北京市101中学高一(上)期末数学试卷 (解析版)

2020-2021学年北京市101中学高一(上)期末数学试卷一、选择题(共10小题).1.已知函数f(x)=lg(4﹣x)的定义域为M,函数的定义域为N,则M∩N =()A.M B.N C.{4}D.∅2.sin2021°可化简为()A.sin41°B.﹣sin41°C.cos41°D.﹣cos41°3.向量“,不共线”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数y=sin(x+),x∈(﹣,]的值域为()A.B.C.D.5.已知偶函数f(x)在(﹣∞,0)上单调递减,若a=f(1),b=f(2),,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b6.甲、乙两人解关于x的方程:log2x+b+c log x2=0,甲写错了常数b,得到根为,;乙写错了常数c,得到根为,x=64.那么原方程的根正确的是()A.x=4B.x=3C.x=4或x=8D.x=2或x=3 7.已知2cos2α﹣3sin2α=1,α∈(﹣,﹣π),那么tanα的值为()A.2B.﹣2C.D.8.如图是函数y=sin x(0≤x≤π)的图象,A(x,y)是图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合).设线段AB的长为f(x),则函数f(x)的图象是()A.B.C.D.9.已知3sin(﹣α)﹣sin(π+α)=﹣,则cosα﹣sinα的取值可以为()A.B.C.D.10.如图,一个摩天轮的半径为10m,轮子的最低处距离地面2m.如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P(点P与摩天轮天轮中心O的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m的时间大约是()A.8分钟B.10分钟C.12分钟D.14分钟二、填空题(共6小题).11.已知向量=(1,﹣2),=(x,4),且∥,则实数x=.12.若角β与角的终边关于直线y=x对称,则角β的终边上的所有角的集合可以写为13.已知幂函数在(0,+∞)上单调递增,则实数m的值为14.在如图所示的方格纸中,向量,,的起点和终点均在格点(小正方形顶点)上,若与x+y(x,y为非零实数)共线,则的值为.15.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳的含量达到了危险状态,经抢修后恢复正常.排气4分钟后测得车库内一氧化碳浓度为64ppm(ppm为浓度单位,1ppm表示百万分之一),经检验知,该地下车库一氧化碳浓度y(ppm)与排气时间t (分钟)之间存在函数关系y=27﹣mt(m为常数).求得m=;若空气中一氧化碳浓度不高于0.5ppm为正常,那么至少需要排气分钟才能使这个地下车库中一氧化碳含量达到正常状态.16.已知△ABC,点P是平面上任意一点,且(λ,μ∈R),给出以下命题:①若,,则P为△ABC的内心;②若λ=μ=1,则直线AP经过△ABC的重心;③若λ+μ=1,且μ>0,则点P在线段BC上;④若λ+μ>1,则点P在△ABC外;⑤若0<λ+μ<1,则点P在△ABC内.其中真命题为.三、解答题(共4小题).17.已知函数.(1)求函数f(x)的值域:(2)若函数g(x)=log a x的图象与函数f(x)的图象有交点,请直接写出实数a的取值范围.18.已知关于x的方程的两根为sinθ和cosθ,.(1)求实数b的值;(2)求的值.19.已知函数,.(1)①直接写出函数f(x)的奇偶性;②写出函数f(x)的单调递增区间,并用定义证明;(2)计算:=;f(4)﹣5f(2)g(2)=;f(9)﹣5f(3)g(3)=;(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式,并加以证明.20.设A是由n个实数构成的一个有序数组,记作A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,i称为数组A的“元”a i的下标,如果数组S=(b1,b2,…,b m)(m≤n,m∈N+)中的每个“元”都是来自数组A中不同下标的“元”,则称S为A的“子数组”.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的“关系数”为C(A,B)=a1b1+a2b2+…+a n b n.(1)若,B=(b1,b2,b3,b4),且B中的任意两个“元”互不相等,B 的含有两个“元”的不同“子数组”共有p个,分别记为S1,S2,…,S p.①p=;②若b j∈N+,1≤b j≤101(j=1,2,3,4),记,求X的最大值与最小值;(2)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的“子数组”,求C(A,S)的最大值.参考答案一、选择题(共10小题).1.已知函数f(x)=lg(4﹣x)的定义域为M,函数的定义域为N,则M∩N =()A.M B.N C.{4}D.∅解:根据题意得,M={x|x<4},N{x|x≥4},∴M∩N=∅.故选:D.2.sin2021°可化简为()A.sin41°B.﹣sin41°C.cos41°D.﹣cos41°解:sin2021°=sin(360°×60﹣139°)=sin(﹣1390)=﹣sin139°=﹣sin41°.故选:B.3.向量“,不共线”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当向量“,不共线”时,由向量三角形性质得“”成立,即充分性成立,反之当向量“,方向相反时,满足“”,但此时两个向量共线,即必要性不成立,即向量“,不共线”是“”的充分不必要条件,故选:A.4.函数y=sin(x+),x∈(﹣,]的值域为()A.B.C.D.解:y=sin(x+)=cos x,因为x∈(﹣,],所以cos x∈[﹣,1],即函数的值域为[﹣,1].故选:B.5.已知偶函数f(x)在(﹣∞,0)上单调递减,若a=f(1),b=f(2),,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b解:因为偶函数f(x)在(﹣∞,0)上单调递减,所以f(x)在(0,+∞)上单调递增,因为a=f(1),b=f(2),=f(),又2>1>>0,则b>a>c.故选:C.6.甲、乙两人解关于x的方程:log2x+b+c log x2=0,甲写错了常数b,得到根为,;乙写错了常数c,得到根为,x=64.那么原方程的根正确的是()A.x=4B.x=3C.x=4或x=8D.x=2或x=3解:原方程可变形为:,因为甲写错了常数b,得到根为,,所以,又因为乙写错了常数c,得到根为,x=64,所以,所以原方程为,解得log2x=2或3,所以x=4或8.故选:C.7.已知2cos2α﹣3sin2α=1,α∈(﹣,﹣π),那么tanα的值为()A.2B.﹣2C.D.解:因为2cos2α﹣3sin2α=2(1﹣sin2α)﹣3sin2α=1,可得sin2α=,cos2α=,因为α∈(﹣,﹣π),所以sinα=,cosα=﹣,可得tanα==﹣.故选:D.8.如图是函数y=sin x(0≤x≤π)的图象,A(x,y)是图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合).设线段AB的长为f(x),则函数f(x)的图象是()A.B.C.D.解:当x=时,A,B两点重合,此时f(x)=0,故排除C,D;当x∈(0,)时,f(x)=π﹣2x是关于x的一次函数,其图象是一条线段,故选:A.9.已知3sin(﹣α)﹣sin(π+α)=﹣,则cosα﹣sinα的取值可以为()A.B.C.D.解:因为3sin(﹣α)﹣sin(π+α)=3cosα+sinα=﹣,所以,整理得,所以,①当时,,则②当cos时,,则故选:C.10.如图,一个摩天轮的半径为10m,轮子的最低处距离地面2m.如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P(点P与摩天轮天轮中心O的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m的时间大约是()A.8分钟B.10分钟C.12分钟D.14分钟解:由题意知,在t时摩天轮上某人所转过的角为t=t,所以在t时此人相对于地面的高度为h=10sin(t﹣)+12(t≥0);由10sin(t﹣)+12≥17,得sin(t﹣)≥,解得≤t﹣≤,即5≤t≤15;所以此人有10分钟相对于地面的高度不小于17 m.故选:B.二、填空题共6小题,每小题5分,共30分.11.已知向量=(1,﹣2),=(x,4),且∥,则实数x=﹣2.解:由已知,且,所以1×4﹣(﹣2)x=0,解得x=﹣2,故答案为:﹣212.若角β与角的终边关于直线y=x对称,则角β的终边上的所有角的集合可以写为{}.解:角α的取值集合是{α|α=2kπ+,k∈Z},角β与角的终边关于直线y=x对称,可得β=2kπ+﹣2×(﹣)=﹣+2kπ,k∈Z,可得角β的取值集合是{β|β=﹣+2kπ,k∈Z},故答案为:{β|β=﹣+2kπ,k∈Z}.13.已知幂函数在(0,+∞)上单调递增,则实数m的值为0解:由题意得:m﹣1=±1,解得:m=0或m=2,m=0时,f(x)=x2在(0,+∞)递增,符合题意,m=2时,f(x)=1,是常函数,不合题意,故答案为:0.14.在如图所示的方格纸中,向量,,的起点和终点均在格点(小正方形顶点)上,若与x+y(x,y为非零实数)共线,则的值为.解:设图中每个小正方形的边长为1,则=(2,1),=(﹣2,﹣2),=(1,﹣2),∴x+y=(2x﹣2y,x﹣2y),∵与x+y共线,∴﹣2(2x﹣2y)=x﹣2y,∴5x=6y,即=故答案为:15.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳的含量达到了危险状态,经抢修后恢复正常.排气4分钟后测得车库内一氧化碳浓度为64ppm(ppm为浓度单位,1ppm表示百万分之一),经检验知,该地下车库一氧化碳浓度y(ppm)与排气时间t (分钟)之间存在函数关系y=27﹣mt(m为常数).求得m=;若空气中一氧化碳浓度不高于0.5ppm为正常,那么至少需要排气32分钟才能使这个地下车库中一氧化碳含量达到正常状态.解:(1)∵函数y=27﹣mt(m为常数)经过点(4,64),∴64=27﹣4m,解得m=;(2)由(1)得y=,由,解得t≥32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.故答案为:(1);(2)32.16.已知△ABC,点P是平面上任意一点,且(λ,μ∈R),给出以下命题:①若,,则P为△ABC的内心;②若λ=μ=1,则直线AP经过△ABC的重心;③若λ+μ=1,且μ>0,则点P在线段BC上;④若λ+μ>1,则点P在△ABC外;⑤若0<λ+μ<1,则点P在△ABC内.其中真命题为②④.解:对于①,,此时P点在∠BAC平分线上,但未必在△ABC 的内心,则①错;对于②,由λ=μ=1知,AP=,由向量加法法则知APBC中点,AP经过△ABC的重心,则②对;对于③,λ+μ=1⇒λ=1﹣μ⇒=,当μ>1,P点在BC延长线上,不在BC边上,则③错;对于④,令t=λ+μ>1,=t,t>1,由向量加法法则知,P点在△ABC外,则④对;对于⑤,取λ═﹣1/4,μ=1/2,λ+μ=1/4,0<λ+μ<1,但P点在△ABC外,则⑤错;故答案为:②④.三、解答题共4小题,共50分.解答应写出文字说明、演算步骤或证明过程.17.已知函数.(1)求函数f(x)的值域:(2)若函数g(x)=log a x的图象与函数f(x)的图象有交点,请直接写出实数a的取值范围.解:(1)函数.则f(x)=,因为y=1﹣x在(﹣2,0)单调递减,可得f(x)值域为[1,3).(2)当0<a<1,当0<x≤2时,g(x)=log a x的图象与函数f(x)的图象恒有交点,当1<a时,当0<x≤2时,g(x)=log a x是单调递增函数,则log a2≥1,可得a≤2.则1<a≤2.故得实数a的取值范围是0<a<1或1<a≤2.18.已知关于x的方程的两根为sinθ和cosθ,.(1)求实数b的值;(2)求的值.解:(1)∵方程的两根为sinθ、cosθ,∴sinθ+cosθ=,sinθcosθ=>0,∵,∴θ+∈(,π),即sinθ+cosθ=sin(θ+)>0,∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+2×=,解得:b=(负值舍去),则b=;(2)∵(sinθ﹣cosθ)2=sin2θ+cos2θ﹣2sinθcosθ=1﹣2×=,∴sinθ﹣cosθ=,∵sinθ+cosθ=,∴===.19.已知函数,.(1)①直接写出函数f(x)的奇偶性;②写出函数f(x)的单调递增区间,并用定义证明;(2)计算:=0;f(4)﹣5f(2)g(2)=0;f(9)﹣5f(3)g(3)=0;(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式,并加以证明.解:(1)①函数f(x)为奇函数.②f(x)的单调递增区间为(﹣∞,0),(0,+∞),证明:任取x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=﹣=(﹣)(1+)因为x1,x2∈(0,+∞),且x1<x2,所以<,所以﹣<0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以f(x)在(0,+∞)上单调递增,由奇函数的性质可得f(x)在(﹣∞,0)上单调递增,故(x)的单调递增区间为(﹣∞,0),(0,+∞).(2)经过代入计算可得=0,f(4)﹣5f(2)g(2)=0,f(9)﹣5f(3)g(3)=0.(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式为f(x2)﹣5f(x)g(x)=0(x≠0),证明:f(x2)﹣5f(x)g(x)=0=﹣5••=﹣=0.20.设A是由n个实数构成的一个有序数组,记作A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,i称为数组A的“元”a i的下标,如果数组S=(b1,b2,…,b m)(m≤n,m∈N+)中的每个“元”都是来自数组A中不同下标的“元”,则称S为A的“子数组”.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的“关系数”为C(A,B)=a1b1+a2b2+…+a n b n.(1)若,B=(b1,b2,b3,b4),且B中的任意两个“元”互不相等,B 的含有两个“元”的不同“子数组”共有p个,分别记为S1,S2,…,S p.①p=6;②若b j∈N+,1≤b j≤101(j=1,2,3,4),记,求X的最大值与最小值;(2)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的“子数组”,求C(A,S)的最大值.解:(1)①根据“子数组”的定义可得,B的含有两个“元”的不同“子数组”有(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共6个,∴p=6;②不妨设b1<b2<b3<b4,=,∵1≤b j≤101(j=1,2,3,4),则当b1=1,b2=2,b3=100,b4=101时,X取得最大值为,当b1,b2,b3,b4是连续的四个整数时,X取得最小值为;(2)由B=(0,a,b,c),且a2+b2+c2=1可知,实数a,b,c具有对称性,故分为S中含0和不含0两种情况进行分类讨论,①当0是S中的“元”时,由于中的三个“元”都相等及B中三个“元”a,b,c的对称性,可只计算的最大值,∵a2+b2+c2=1,则(a+b)2≤2(a2+b2)≤2(a2+b2+c2)=2,可得,故当时a+b达到最大值,故;②当0不是S中的“元”时,,又a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,则,当且仅当时,取到最大值,故C(A,S)max=1,综上,C(A,S)max=1.。

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。

北京市昌平区2022-2023学年高三上学期期末质量检测数学试题含答案

北京市昌平区2022-2023学年高三上学期期末质量检测数学试题含答案
(1)求证: 平面 ;
(2)求直线 与平面 所成角的正弦值;
(3)求直线 到平面 的距离.
19.已知椭圆 过点 ,且离心率是 .
(1)求椭圆 的方程和短轴长;
(2)已知点 ,直线 过点 且与椭圆 有两个不同的交点 ,问:是否存在直线 ,使得 是以点 为顶点的等腰三角形,若存在,求出直线 的方程;若不存在,说明理由.
对于D, 的定义域为 ,故该函数不是奇函数,故D错误.
4【答案】C【详解】不妨令 ,则 ,∴A、B不正确;
,∴D开式为 ,
令 ,解得 ,所以 .
6【答案】D【详解】 ,所以 ,
所以 .
7【答案】A【详解】由题意知,角 与角 的终边关于 轴对称时,则 ,
11.已知数列 中, ,则数列 的通项公式为__________.
12.已知双曲线 的焦点为 ,点 在双曲线上,则该双曲线的渐近线方程为__________;若 ,则 __________.
13.在 中, ,则 __________, __________.
14.若直线 与圆 有公共点,则 的最小值为__________.
9【答案】B【详解】直线 的斜率为 ,倾斜角为 ,过 作 ,垂足为 ,连接 ,
由于 ,所以三角形 是等边三角形,所以 ,
由于 ,所以 ,所以抛物线方程为 .
10【答案】C【详解】把 平移到共起点,以 的起点为原点, 所在的直线为 轴, 的方向为 轴的正方向,见下图,设 ,则
又 则点 的轨迹为以 为直径的圆,又因为 所以 故以 为直径的圆为 ,所以 的最大值就是以 为直径的圆上的点到原点距离的最大值,所以最大值为
A 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
8.图1:在一块木板上钉着若干排相互平行但相互错开 圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能的向左或向右落下,最后落入底部的格子中.在图2中,将小球放入容器中从顶部下落,则小球落入D区的路线数有()

北京市昌平区新学道临川学校2020-2021学年高一上学期第一次月考数学试题 Word版含解析

北京市昌平区新学道临川学校2020-2021学年高一上学期第一次月考数学试题 Word版含解析
在 中, ,则 ,
的定义域为 ,
则在 中, ,解得 ,
故 的定义域为 .
故选:D.
【点睛】本题考查抽象函数定义域的求法,属于基础题.
10.若函数f(x)= ,那么f(-3)的值为()
A.-2B.2C. 0D. 1
【答案】B
【解析】
【分析】
根据分段函数的解析式直接求解即可.
【详解】 .
故选:B.
【点睛】本题考查求分段函数的函数值,属于基础题.
因为 ,故 ,
即 ,即 ,
故 ,即 ,
故 ;
(2)函数 对称轴为 ,
则当 ,即 时, 在 单调递减, ;
当 ,即 时, ;
当 时, 在 单调递增, ,
.
【点睛】本题主要考查二次函数的解析式求解以及二次函数最值的问题等,属于中等题型.
22.已知函数f(x)=ax2+bx+1,(a,b为实数), ,
(1)若f(-1)=0,且函数f(x)的最小值为0,求 的表达式;
【解析】
【分析】
(Ⅰ)根据分段函数的函数解析式画出即可;
(Ⅱ)观察图象即可求出值域和单调递增区间.
【详解】(Ⅰ)函数f(x)的图象如下,
(Ⅱ)根据函数f(x)的图象可知,
f(x)的值域为 ,单调递增区间为 , .
【点睛】本题考查分段函数图象的画法,考查根据图象求函数值域和单调区间,属于基础题.
20.已知函数 .
对于D,函数的定义域为 ,故与 不是同一函数;
对于C,函数可化为 ,与 对应法则不一致,故不是同一函数;
对于B,函数可化为 即为题设中的函数,
故选:B.
【点睛】本题考查函数相等的判断,一般根据定义域、对应法则来判断,本题属于容易题.

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

2020-2021学年北京市昌平区新学道临川学校高一(上)期中数学试卷(解析版)

2020-2021学年北京市昌平区新学道临川学校高一(上)期中数学试卷(解析版)

2020-2021学年北京市昌平区新学道临川学校高一(上)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.下列函数中与函数y=x是同一函数的是()A.y=|x|B.y=C.y=()2D.y=3.当a>0且a≠1时,函数f(x)=a x+1﹣1的图象一定过点()A.(0,1)B.(0,﹣1)C.(﹣1,0)D.(1,0)4.幂函数f(x)=(m2﹣2m+1)x2m﹣1在(0,+∞)上为增函数,则实数m的值为()A.0B.1C.2D.1或25.计算log225•log32•log59的结果为()A.3B.4C.5D.66.已知函数y=f(x)定义域是[﹣2,3],则y=f(2x﹣1)的定义域是()A.B.[﹣1,4]C.D.[﹣5,5]7.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x﹣b的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)8.下图给出4个幂函数的图象,则图象与函数的大致对应是()A.①y=x,②y=x,③y=x2,④y=x﹣1B.①y=x2,②y=x3,③y=x,④y=x﹣1C.①y=x,②y=x2,③y=x,④y=x﹣1D.①y=x3,②y=x2,③y=x,④y=x﹣19.函数f(x)=log2|x|,g(x)=﹣x2+2,则f(x)•g(x)的图象只可能是()A.B.C.D.10.若函数在R上单调递减,则实数a的取值范围是()A.(0,1)B.C.D.(1,+∞)11.已知方程9x﹣2•3x+3k﹣1=0有两个实根,则实数k的取值范围为()A.[,1]B.(,]C.[,+∞)D.[1,+∞)12.已知函数对任意两个不相等的实数,都满足不等式,则实数a的取值范围是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数y=(m2﹣2m﹣2)x﹣4m﹣2在x∈(0,+∞)上为减函数,则实数m的值是.15.函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上递减,则实数a的取值范围是.16.如果非空数集A满足:①0∉A;②若∀x∈A,有∈A,那么称A是“互倒集”.给出以下数集:①{x∈R|x2+ax+1=0};②{x|x2﹣6x+1≤0};③{y|y=,x∈[1,4]};其中“互倒集”的是.(请在横线上写出所有正确答案的序号)三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知集合A={x|x2﹣5x+6=0},B={a,2,2a﹣1}.(1)求集合A;(2)若A⊆B,求实数a的值.18.化简下列各式:(1)(2)0+2﹣2•(2)﹣(0.01)0.5;(2).19.设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).(1)求f(0)的值;(2)证明:f(x)在R上是减函数.20.已知函数f(x)是定义在[﹣4,4]上的奇函数,且当x∈[0,4]时,f(x)=.(1)平面直角坐标系中,画出函数f(x)的图象;(2)根据图象,直接写出f(x)的单调增区间,同时写出函数的值域.21.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=f(x)和y=g(x)的解析式;(2)若对任意的x∈[1,4],不等式f(2x﹣3)+f(x﹣k)>0恒成立,求k的取值范围.22.如果函数f(x)在定义域内存在区间[a,b],使得该函数在区间[a,b]上的值域为[a2,b2],则称函数f(x)是该定义域上的“和谐函数”.(1)判断函数f(x)=log2(x+1)是不是“和谐函数”,并说明理由;(2)若函数是“和谐函数”,求实数t的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【分析】直接利用交集的运算法则化简求解即可.解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.2.下列函数中与函数y=x是同一函数的是()A.y=|x|B.y=C.y=()2D.y=【分析】逐一分析给定函数的定义域和解析式是否一致,进而根据同一函数的定义,可得答案.解:y=|x|与函数y=x解析式不同,不是同一函数;y==|x|与函数y=x解析式不同,不是同一函数;y=()2=x,(x≥0)与函数y=x定义域不相同,不是同一函数;y==x与函数y=x定义域解析式均相同,是同一函数;故选:D.3.当a>0且a≠1时,函数f(x)=a x+1﹣1的图象一定过点()A.(0,1)B.(0,﹣1)C.(﹣1,0)D.(1,0)【分析】根据a0=1(a≠0),因此令x+1=0即可求出函数f(x)=a x+1﹣1的图象所过的定点坐标.解:当x+1=0,即x=﹣1时,a x+1﹣1=0恒成立,故函数f(x)=a x+1﹣1的图象一定过点(﹣1,0),故选:C.4.幂函数f(x)=(m2﹣2m+1)x2m﹣1在(0,+∞)上为增函数,则实数m的值为()A.0B.1C.2D.1或2【分析】利用幂函数的定义及性质列出方程组,由此能求出实数m的值.解:∵幂函数f(x)=(m2﹣2m+1)x2m﹣1在(0,+∞)上为增函数,∴,解得m=2.故选:C.5.计算log225•log32•log59的结果为()A.3B.4C.5D.6【分析】由换底公式我们可将log225•log32•log59转化为以一个以10为底的对数,再利用对数运算性质log(an)Nm=log aN,易求结果.解:原式=••=••=6.故选:D.6.已知函数y=f(x)定义域是[﹣2,3],则y=f(2x﹣1)的定义域是()A.B.[﹣1,4]C.D.[﹣5,5]【分析】根据复合函数定义域之间的关系即可得到结论.解:∵函数y=f(x)定义域是[﹣2,3],∴由﹣2≤2x﹣1≤3,解得﹣≤x≤2,即函数的定义域为[﹣,2],故选:C.7.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x﹣b的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【分析】根据对数,指数的转化得出f(x)=(log23)x+x﹣log32单调递增,根据函数的零点判定定理得出f(0)=1﹣log32>0,f(﹣1)=log32﹣1﹣log32=﹣1<0,判定即可.解:∵实数a,b满足2a=3,3b=2,∴a=log23>1,0<b=log32<1,∵函数f(x)=a x+x﹣b,∴f(x)=(log23)x+x﹣log32单调递增,∵f(0)=1﹣log32>0f(﹣1)=log32﹣1﹣log32=﹣1<0,∴根据函数的零点判定定理得出函数f(x)=a x+x﹣b的零点所在的区间(﹣1,0),故选:B.8.下图给出4个幂函数的图象,则图象与函数的大致对应是()A.①y=x,②y=x,③y=x2,④y=x﹣1B.①y=x2,②y=x3,③y=x,④y=x﹣1C.①y=x,②y=x2,③y=x,④y=x﹣1D.①y=x3,②y=x2,③y=x,④y=x﹣1【分析】通过②的图象的对称性判断出②对应的函数是偶函数;①对应的幂指数大于1,通过排除法得到选项.解:②的图象关于y轴对称,②应为偶函数,故排除选项A,B①由图象知,在第一象限内,图象下凸,递增的较快,所以幂函数的指数大于1,故排除C故选:D.9.函数f(x)=log2|x|,g(x)=﹣x2+2,则f(x)•g(x)的图象只可能是()A.B.C.D.【分析】要判断f(x)•g(x),我们可先根据函数奇偶性的性质,结合f(x)与g(x)都是偶函数,则f(x)•g(x)也为偶函数,其函数图象关于Y轴对称,排除A,D;再由函数的值域排除B,即可得到答案.解:∵f(x)与g(x)都是偶函数,∴f(x)•g(x)也是偶函数,由此可排除A、D.又由x→+∞时,f(x)•g(x)→﹣∞,可排除B.故选:C.10.若函数在R上单调递减,则实数a的取值范围是()A.(0,1)B.C.D.(1,+∞)【分析】根据题意,由函数的单调性的性质列出不等式组,求解可得a的取值范围,即可得答案.解:根据题意,函数在R上单调递减,必有,化简可得,解可得≤a<1,即a的取值范围是[,1);故选:C.11.已知方程9x﹣2•3x+3k﹣1=0有两个实根,则实数k的取值范围为()A.[,1]B.(,]C.[,+∞)D.[1,+∞)【分析】将指数方程的解的问题,转化为二次方程的区间根的问题,即方程9x﹣2•3x+3k ﹣1=0有两个实根可转化为t2﹣2t+3k﹣1=0有两个正根,结合韦达定理有,求解即可,解:设t=3x,则t>0,则方程9x﹣2•3x+3k﹣1=0有两个实根可转化为t2﹣2t+3k﹣1=0有两个正根,则有,解得:,故选:B.12.已知函数对任意两个不相等的实数,都满足不等式,则实数a的取值范围是()A.[﹣1,+∞)B.(﹣∞,﹣1]C.D.【分析】利用复合函数的单调性以及二次函数的单调性,列出不等式组,求解即可.解:由题意可知u=x2﹣ax﹣a在上单调递减,且u=x2﹣ax﹣a>0在上恒成立,所以,解得.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.若幂函数y=(m2﹣2m﹣2)x﹣4m﹣2在x∈(0,+∞)上为减函数,则实数m的值是m =3.【分析】根据给出的函数为幂函数,由幂函数概念知m2﹣m﹣1=1,再根据函数在(0,+∞)上为减函数,得到幂指数应该小于0,求得的m值应满足以上两条.解:因为函数y=(m2﹣2m﹣2)x﹣4m﹣2既是幂函数又是(0,+∞)的减函数,所以,⇒,解得:m=3.故答案为:m=3.15.函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上递减,则实数a的取值范围是(﹣∞,﹣3].【分析】f(x)是二次函数,所以对称轴为x=1﹣a,所以要使f(x)在区间(﹣∞,4]上递减,a应满足:4≤1﹣a,解不等式即得a的取值范围.解:函数f(x)的对称轴为x=1﹣a;∵f(x)在区间(﹣∞,4]上递减;∴4≤1﹣a,a≤﹣3;∴实数a的取值范围是(﹣∞,﹣3].故答案为:(﹣∞,﹣3].16.如果非空数集A满足:①0∉A;②若∀x∈A,有∈A,那么称A是“互倒集”.给出以下数集:①{x∈R|x2+ax+1=0};②{x|x2﹣6x+1≤0};③{y|y=,x∈[1,4]};其中“互倒集”的是②③.(请在横线上写出所有正确答案的序号)【分析】由互倒集的定义知,需判断集合满足三个条件:非空数集、0∉A、若∀x∈A,有∈A.依次判断即可.解:对于①{x∈R|x2+ax+1=0},当a=3时,{x∈R|x2+ax+1=0}=∅,故不是互倒集;对于②{x|x2﹣6x+1≤0};∵△=36﹣4=32>0,∴{x|x2﹣6x+1≤0}是非空数集,且0∉{x|x2﹣6x+1≤0},若x1∈{x|x2﹣6x+1≤0},即x12﹣6x1+1≤0,则﹣6+1=≤0,故∈{x|x2﹣6x+1≤0},故是互倒集;对于③{y|y=,x∈[1,4]}=[,2],若x1∈[,2],易知∈[,2],故是互倒集;故答案为:②③.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.已知集合A={x|x2﹣5x+6=0},B={a,2,2a﹣1}.(1)求集合A;(2)若A⊆B,求实数a的值.【分析】(1)利用一元二次方程的解法能求出集合A.(2)由A⊆B,得{2,3}⊆{a,2,2a﹣1},由此能求出a的值.解:(1)集合A={x|x2﹣5x+6=0}={x|(x﹣2)(x﹣3)=0}={2,3}.(2)若A⊆B,即{2,3}⊆{a,2,2a﹣1}.所以a=3,或2a﹣1=3.当a=3时,2a﹣1=5,B={3,2,5},满足A⊆B.当2a﹣1=3时,a=2,集合B不满足元素的互异性,故舍去.综上,a=3.18.化简下列各式:(1)(2)0+2﹣2•(2)﹣(0.01)0.5;(2).【分析】直接根据指数幂以及对数的运算性质求解即可.解:(1)(2)0+2﹣2•(2)﹣(0.01)0.5;=1+•﹣[(0.1)2]0.5=1+×﹣=;(2)因为:1﹣log63=log66﹣log63=log62;所以:====1.19.设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).(1)求f(0)的值;(2)证明:f(x)在R上是减函数.【分析】(1)根据条件,通过赋值法求f(0);(2)用单调性定义进行证明.解:(1)因为对任意x,y∈R,f(x+y)=f(x)f(y),当x<0时,f(x)>1,令x=−1,y=0,则f(−1)=f(−1)f(0),因为f(−1)>1,所以f(0)=1;(2)证明:若x>0,则﹣x<0,所以f(x−x)=f(0)=f(x)f(−x),所以,故x∈R,f(x)>0,任取x1<x2,则f(x2)=f(x1+x2−x1)=f(x1)f(x2−x1),因为x2−x1>0,所以0<f(x2﹣x1)<1,所以f(x2)<f(x1),故f(x)在R上是减函数.20.已知函数f(x)是定义在[﹣4,4]上的奇函数,且当x∈[0,4]时,f(x)=.(1)平面直角坐标系中,画出函数f(x)的图象;(2)根据图象,直接写出f(x)的单调增区间,同时写出函数的值域.【分析】(1)根据解析式作图即可;(2)根据图象可直接得出单调增区间和函数的值域.解:(1)f(x)的图象如图所示,(2)由图象可知,函数的增区间为:(﹣4,﹣2),(﹣1,1),(2,4),函数的值域为:[﹣4,4].21.已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(1)确定y=f(x)和y=g(x)的解析式;(2)若对任意的x∈[1,4],不等式f(2x﹣3)+f(x﹣k)>0恒成立,求k的取值范围.【分析】(1)设g(x)=a x(a>0且a≠1),由a3=8解得a=2.故g(x)=2x.再根据函数是奇函数,求出n的值,得到f(x)的解析式;(2)根据函数为奇函数和减函数,转化为即对一切x∈[1,4],有3tx﹣3<k恒成立,再利用函数的单调性求出函数的最值即可.解:(1)设g(x)=a x(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.∴f(x)=,∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴n=1,∴f(x)=,(x∈R);(2)由(Ⅰ)知f(x)=,易知f(x)在R上为减函数,又f(x)是奇函数,∴f(2x﹣3)+f(x﹣k)>0,∴f(2x﹣3)>﹣f(x﹣k)=f(k﹣x),∵f(x)在R上为减函数,由上式得2x﹣3<k﹣x,即对一切x∈(1,4),有3x﹣3<k恒成立,令m(x)=3x﹣3,x∈[1,4],易知m(x)在(1,4)上递增,∴m(x)≤3×4﹣3=9,∴k>9,即实数k的取值范围是(9,+∞).22.如果函数f(x)在定义域内存在区间[a,b],使得该函数在区间[a,b]上的值域为[a2,b2],则称函数f(x)是该定义域上的“和谐函数”.(1)判断函数f(x)=log2(x+1)是不是“和谐函数”,并说明理由;(2)若函数是“和谐函数”,求实数t的取值范围.【分析】本题(1)根据题目所给的定义构造出函数F(x)=f(x)﹣x2验证特殊值确定a,b从而判断f(x)=log2(x+1)是“和谐函数”,(2)将函数是“和谐函数”,转化为g(x)=x2在[1,+∞)上至少有两个不相等的实数根求解.解:(1)函数f(x)=log2(x+1)的定义域为(﹣1,+∞),且在(﹣1,+∞)上单调递增;考察函数F(x)=f(x)﹣x2=log2(x+1)﹣x2,x∈(﹣1,+∞);因为F(0)=log2 1﹣0=0,取a=0,则F(a)=0,即f(a)=a2;F(1)=log2 2﹣1=0,取b=1,则F(b)=0,即f(b)=b2;因为f(x)在[a,b]上单调递增;所以f(x)在区间[a,b]上的值域为[f(a),f(b)],即为[a2,b2];所以函数f(x)=log2(x+1)是(﹣1,+∞)上的“和谐函数”;(2)因为g(x)在[1,+∞)单调递增;因为函数g(x)=+t(x≥1)是“和谐函数”;所以存在[a,b]⊆[1,+∞),使得函数在区间[a,b]上的值域为[a2,b2];即g(a)=a2,g(b)=b2.因此g(x)=x2,即+t=x2在[1,+∞)上至少有两个不相等的实数根;令=u,u≥0,方程可化为u2+1=u+t;即u2﹣u+1﹣t=0在[0,+∞)上至少有两个不相等的实数根;记h(u)=u2﹣u+1﹣t,h(u)的对称轴为直线u=;所以;解得<t≤1,即t的取值范围为(,1].。

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

期末考试综合检测试卷-2020-2021学年高一数学同步练习和分类专题(人教A版2019必修第二册)

高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。

北京市2020-2021学年高一上学期期末数学试题汇编:函数选择题 (答案详解)

北京市2020-2021学年高一上学期期末数学试题汇编:函数选择题 (答案详解)

2021北京高一数学上学期期末汇编:函数选择题一.选择题(共23小题)1.(2020秋•昌平区期末)下列函数中,既是奇函数又在上是增函数的是 A .B .C .D .2.(2020秋•通州区期末)函数且在上单调递减,则实数的取值范围是 A .B .C .D .3.(2020秋•西城区校级期末)函数的图象是 A .B .C .D .4.(2020秋•通州区期末)如果是定义在上的函数,使得对任意的,均有,则称该函数是“函数”.若函数是“函数”,则实数的取值范围是 A .,,B .,,C .,D .,5.(2020秋•朝阳区期末)下列函数中,既是奇函数又在区间上单调递增的是 A .B .C .D .6.(2020秋•西城区期末)函数的定义域是 A .B .C .,,D .,,7.(2020秋•石景山区期末)下列函数中,在区间上为减函数的是 A .B .C .D .(0,)+∞()()2xf x -=3()f x x =()f x lgx=1()f x x=,0()(03,0x a x f x a a x x ⎧=>⎨->⎩…1)a ≠R a ()(1,)+∞(0,1)1[,1)31(0,]3|(1)|y lg x =-()()f x R x R ∈()()f x f x -≠-()y f x =X -sin cos y x x a =++X -a ()(-∞1)(1-⋃)+∞(-∞2)(2-⋃)+∞[1-1][2-2](0,1)()sin y x=y =3y x =-y lgx=11y lgx x =+-()(0,)+∞(1,)+∞(01)(1⋃)+∞[01)(1⋃)+∞(1,1)-()11y x=-2x y =(1)y ln x =+2xy -=8.(2020秋•朝阳区期末)已知函数可表示为 1234则下列结论正确的是 A .(4)B .的值域是,2,3,C .的值域是,D .在区间,上单调递增9.(2020秋•东城区期末)已知为奇函数,且当时,,则的值为 A .B .C .D .10.(2020秋•海淀区期末)下列函数中,是奇函数且在区间上单调递减的是 A .B .C .D .11.(2020秋•丰台区期末)下列函数是奇函数的是 A .B .C .D .12.(2020秋•西城区校级期末)以下函数既是偶函数又在上单调递减的是 A .B .C .D .13.(2020秋•石景山区期末)已知函数是奇函数,且当时,,则 A .B .0C .1D .214.某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后与的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是 ()y f x =()x02x <<24x < (46)x < (68)x ……y()(f f )3=()f x {14}()f x [14]()f x [48]()f x 0x >()2f x x =-1()2f -()52-32-3252(0,)+∞()2y x=-12y x=1y x -=3y x =()()2xf x =2()log f x x=2()f x x =3()f x x =(0,)+∞()4()f x x =()f x =1()(2xf x =12()log ||f x x =()f x 0x >21()f x x x=+(1)(f -=)2-y x y x ()A .①③B .①④C .②③D .②④15.(2020秋•石景山区期末)如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,是圆锥形漏斗中液面下落的高度,则与下落时间(分)的函数关系表示的图象只可能是 A .B .C .D .16.(2020秋•海淀区校级期末)如图是函数的图象,是图象上任意一点,过点作轴的平行线,交其图象于另一点,可重合).设线段的长为,则函数的图象是 A .B.H H t ()sin (0)y x x π=……(,)A x y A x (B A B AB ()f x ()f x ()C .D .17.(2020秋•昌平区期末)已知函数.若存在实数,,使得函数在区间上的值域为,则实数的取值范围为 A .,B .C .,D .18.(2020秋•西城区校级期末)已知函数的定义域是,满足(2)且对于定义域内任意,都有成立,那么(2)(4)的值为 A .1B .2C .3D .419.(2020秋•通州区期末)已知函数,则 A .是奇函数,且在上单调递增B .是奇函数,且在上单调递减C .是偶函数,且在上单调递增D .是偶函数,且在上单调递减20.(2020秋•大兴区期末)下列函数中,值域为区间,的是 A .B .C .D .21.(2020秋•大兴区期末)已知函数是上的减函数,则的范围是 A .B .,C .D .,22.(2020秋•海淀区校级期末)已知偶函数在上单调递减,若(1),(2),,则,,的大小关系为 A .B .C .D .23.(2020秋•东城区期末)若函数是上的减函数,,则下列不等式一定成立的是 A .(a )B .C .(a )D .2()f x x k =-m n ()fxk ()(1-0](1,)-+∞(2-0](2,)-+∞()f x (0,)+∞f 1=x y ()()()f xy f x f y =+f f +()()(1)(1)f x ln x ln x =++-()(f x )(0,1)(0,1)(0,1)(0,1)[2)+∞()2()2f x x =()21x f x =+()||2f x x =+1()f x x x=+5,1()1,1ax x f x x x+⎧⎪=⎨>⎪⎩…R a ()(,0)-∞[4-)+∞(,4)-∞-[4-0)()f x (,0)-∞a f =b f =1()2c f =-a b c ()a b c >>a c b >>b a c >>c a b>>()f x R 0a >()2()f a f <1()()f a f a<f (2)f a <2()(1)f a f a <-2021北京高一数学上学期期末汇编:函数选择题参考答案一.选择题(共23小题)1.【分析】由基本初等函数的性质逐一判断即可.【解答】解:对于,为非奇非偶函数,不符合题意;对于,为奇函数,且在上是增函数,符合题意;对于,为非奇非偶函数,不符合题意;对于,为奇函数,在上是减函数,不符合题意.故选:.【点评】本题主要考查函数奇偶性与单调性的判断,熟练掌握基本初等函数的性质是解题的关键,属于基础题.2.【分析】根据分段函数的单调性建立不等式关系进行求解即可.【解答】解:若函数在上为减函数,则满足,即,得,故选:.【点评】本题主要考查函数单调性的应用,结合分段函数的单调性的性质建立不等式关系是解决本题的关键,是基础题.3.【分析】求出函数的定义域,利用定义域进行排除即可.【解答】解:由得,即函数的定义域为,排除,,,故选:.【点评】本题主要考查函数图象的识别和判断,利用定义域是否满足,结合排除法是解决本题的关键,是基础题.4.【分析】根据题意,设,则有,结合“函数”的定义可得方程无解,结合余弦函数的性质分析可得答案.【解答】解:根据题意,设,则,则,若函数是“函数”,即无解,A ()2x f x -=B 3()f x x =RC ()f x lgx =D 1()f x x=(0,)+∞B R 00130a a a <<⎧⎨-⎩ (01)13a a <<⎧⎪⎨⎪⎩ (103)a <…D 10x ->1x >(1,)+∞A B D C ()sin cos f x x x a =++()()2cos 2f x f x x a +-=+X -()()2cos 20f x f x x a +-=+=()sin cos f x x x a =++()sin()cos()sin cos f x x x a x x a -=-+-+=-++()()2cos 2f x f x x a +-=+()y f x =X -()()2cos 20f x f x x a +-=+=又由,,必有或,即的取值范围为,,,故选:.【点评】本题考查函数的奇偶性的性质以及应用,关键是理解“函数”的含义,属于基础题.5.【分析】分别判断函数的奇偶性和单调性是否满足即可.【解答】解:.是奇函数,当时,函数为增函数,满足条件.函数的定义域为,,关于原点不对称,函数为非奇非偶函数,不满足条件..当时,函数为减函数,不满足条件..函数的定义域为,关于原点不对称,函数为非奇非偶函数,不满足条件.故选:.【点评】本题主要考查函数奇偶性和单调性的判断,结合函数奇偶性和单调性的性质是解决本题的关键,是基础题.6.【分析】根据函数成立的条件建立不等式关系进行求解即可.【解答】解:要使函数有意义,则,即,即函数的定义域为,,,故选:.【点评】本题主要考查函数定义域的求解,结合函数成立的条件建立不等式关系是解决本题的关键,是基础题.7.【分析】可看出前三个选项的函数在上都是增函数,从而只能选.【解答】解:,和在上都为增函数,在上是减函数.故选:.【点评】本题考查了反比例函数、指数函数和对数函数的单调性,考查了计算能力,属于基础题.8.【分析】根据表格,结合函数定义域和值域的性质分别进行判断即可.【解答】解:由题意知(4),得(4)(3),故错误,函数的值域为,2,3,,故正确,错误,在定义域上不单调,故错误,故选:.【点评】本题主要考查函数定义域和值域的判断,结合函数定义域和值域的关系是解决本题的关键,是基础题.cos [1x ∈-1]1a <-1a >a (-∞1)(1-⋃)+∞A X -A sin y x =01x <<B [0)+∞C 01x <<D (0,)+∞A 010x x >⎧⎨-≠⎩01x x >⎧⎨≠⎩(01)(1⋃)+∞C (1,1)-D 11y x=-2x y =(1)y ln x =+(1,1)-2x y -=(1,1)-D f 3=(f f )f =2=A {14}B C ()f x D B9.【分析】根据题意,由函数的解析式求出的值,结合函数的奇偶性计算可得答案.【解答】解:根据题意,当时,,则,又由为奇函数,则,故选:.【点评】本题考查函数奇偶性的性质以及应用,涉及函数值的计算,属于基础题.10.【分析】根据函数奇偶性和单调性的性质是否满足进行判断即可.【解答】解:.函数为偶函数,不满足条件..函数的定义域为,,为非奇非偶函数,不满足条件..函数为奇函数,且当时,为减函数,满足条件..函数为奇函数,当时为增函数,不满足条件.故选:.【点评】本题主要考查函数奇偶性和单调性的判断,结合函数的性质是解决本题的关键,是基础题.11.【分析】根据题意,依次分析选项函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于,,是指数函数,不是奇函数,不符合题意,对于,,是对数函数,不是奇函数,不符合题意,对于,,是二次函数,是偶函数,不是奇函数,不符合题意,对于,,是奇函数,符合题意,故选:.【点评】本题考查函数的奇偶性的判断,注意常见函数的奇偶性,属于基础题.12.【分析】根据常见函数的奇偶性和单调性判断即可.【解答】解:对于,函数在递增,不合题意;对于,函数不是偶函数,不合题意;对于,函数不是偶函数,不合题意;对于,函数既是偶函数又在上单调递减,符合题意;故选:.【点评】本题考查了函数的单调性和奇偶性问题,是一道基础题.1(2f 0x >()2f x x =-113(2222f =-=-()f x 113()()222f f -=-=C A B [0)+∞C 0x >1y x=D 0x >C A ()2x f x =B 2()log f x x =C 2()f x x =D 3()f x x =D A (0,)+∞B C D (0,)+∞D13.【分析】由奇函数定义得,(1),根据的解析式,求出(1),从而得到.【解答】解:是定义在上的奇函数,,(1),又当时,,(1),,故选:.【点评】本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.14.【分析】解题的关键是理解图象表示的实际意义,进而得解.【解答】解:由图可知,点纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:.【点评】本题考查读图识图能力,考查分析能力,属于基础题.15.【分析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取1.5分钟时,液面下降高度与漏斗高度的比较.【解答】解:由于所给的圆锥形漏斗上口大于下口,当时间取时,漏斗中液面下落的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:.【点评】本题考查函数图象,还可以正面分析得出结论:圆柱液面上升速度是常量,则(这里的是漏斗中剩下液体的体积)与成正比(一次项),根据圆锥体积公式兀,可以得出中,为正数,另外,与成反比,可以得出^中,为正数.所以选择第二个答案.16.【分析】根据线段的长和之间的关系,通过取特殊点及某一段上的的值,得出相应的函数值,从而判断出正确选项即可.【解答】解:当时,,两点重合,此时,故排除,;当时,是关于的一次函数,其图象是一条线段,故选:.【点评】考查导函数的图象与图象变化,以及识图能力,体现了数形结合的思想,属基础题.(1)f f -=-0x >f (1)f -()f x R ()()f x f x ∴-=-(1)f f -=-0x >21()f x x x=+f ∴2112=+=(1)2f ∴-=-A A C 1212t 12B V V t 13V =2r h 2H at bt =+a t r H at =2bt +b AB x x 2x π=A B ()0f x =C D (0,2x π∈()2f x x π=-x A17.【分析】求出函数在定义域上单调递增,由此建立方程的两个不相等的非负实数根,再由,求出的范围.【解答】解:由函数,可知函数在区间上单调递增,要使得函数在区间上的值域为,只需,即,的两个不相等的非负实数根,所以,解得,即实数的取值范围为,,故选:.【点评】本题考查了二次函数的性质,涉及到一元二次方程的实数根的问题,考查了学生的运算能力,属于中档题.18.【分析】由(4)(2)(2)(2),可得(4),从而得到所求.【解答】解:(4)(2)(2)(2),(4).(2)(4),故选:.【点评】本题考查抽象函数的应用,求出(4),是解题的关键,是基础题.19.【分析】由已知结合函数奇偶性定义及复合函数的单调性进行检验即可判断.【解答】解:,则,故为偶函数,当时,单调递减,故选:.【点评】本题主要考查了函数奇偶性及单调性的判断,属于基础题.()f x f f ⎧=⎪⎨=⎪⎩220x x k --=124400k x x k =+>⎧⎨=-⎩V …k 2()f x x k =-()f x ()f x f f ⎧=⎪⎨=⎪⎩m k n k ⎧-=⎪⎨-=⎪⎩220x x k --=124400k x x k =+>⎧⎨=-⎩V …10k -<…k (1-0]A f (22)f f =⨯=f +2f =f 2=f (22)f f =⨯=f +2f =f ∴2=f ∴f +123=+=C f 2=2()(1)(1)(1)f x ln x ln x ln x =++-=-()()f x f x -=()f x 01x <<2()(1)f x ln x =-D20.【分析】由题意,求出各个函数的值域,可得结论.【解答】解:由与,故它的值域为,,故错误;由于,故它的值域为,故错误;由于,故它的值域为,,故正确;由于,当时,,当 时,,故它的值域为,,,故错误,故选:.【点评】本题主要考查求函数的值域,属于基础题.21.【分析】根据题意,由函数的单调性的定义可得,解之即可得答案.【解答】解:因为函数是上的减函数,所以,解得,即的取值范围为,.故选:.【点评】本题考查分段函数的单调性,属于基础题.22.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:因为偶函数在上单调递减,所以在上单调递增,因为(1),(2),,又,则.故选:.【点评】本题主要考查函数奇偶性与单调性的综合,考查利用函数的性质比较函数值的大小,属于基础题.23.【分析】可取,从而可判断出选项,都错误;可得出,根据是上的减函数可得出(a ),从而判断错误,这样只能选.【解答】解:时,,,,都错误;2()20f x x =…[0)+∞A ()21011x f x =+>+=(1,)+∞B ()||22f x x =+…[2)+∞C 1()f x x x=+0x >()2f x …0x <()2f x -…[2)(+∞-∞⋃2]D C 051a a <⎧⎨+⎩…5,1()1,1ax x f x x x+⎧⎪=⎨>⎪⎩…R 051a a <⎧⎨+⎩…40a -<…a [4-0)D ()f x (,0)-∞()f x (0,)+∞a f =b f =11()(22c f f =-=12102>>>b a c >>C 1a =A B 2a a <()f x R f (2)f a >C D 1a =21,a a a a==∴21()(),()()f a f a f a f a==A ∴B,,是上的减函数,(a ),即错误;,,且是上的减函数,,即正确.故选:.【点评】本题考查了举反例说明不等式不成立的方法,减函数的定义,配方法的运用,考查了计算能力,属于基础题.0a > 2a a <()f x R f ∴(2)f a >C 22213(1)1()024a a a a a --=-+=-+>21a a ∴>-()f x R 2()(1)f a f a ∴<-D D。

北京市2020-2021学年高三上学期期末数学试题汇编:平面解析几何

北京市2020-2021学年高三上学期期末数学试题汇编:平面解析几何

2021北京高三数学上学期期末汇编:平面解析几何一.选择题(共18小题)1.(2020秋•倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A .22144x y -=B .22144y x -=C .2214y x -=D .2214x y -=2.(2020秋•朝阳区期末)已知双曲线2222:1(0,0)x y C a b a b -=>>的左焦点为F ,右顶点为A ,过F 作C 的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D3.(2020秋•丰台区期末)若关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解,则(a = )A .2BC .1D .24.(2020秋•昌平区期末)已知抛物线24y x =上一点P 到焦点F 的距离为5,那么点P 到y 轴的距离是( ) A .2B .3C .4D .55.(2020秋•东城区期末)与圆22(1)5x y +-=相切于点(2,2)的直线的斜率为( ) A .2-B .12-C .12D .26.(2020秋•石景山区期末)若抛物线24y x =上的点A 到焦点的距离为10,则点A 到y 轴的距离是( ) A .6B .7C .8D .97.(2020秋•海淀区期末)抛物线2y x =的准线方程是( ) A .12x =-B .14x =-C .12y =-D .14y =-8.(2020秋•通州区期末)抛物线24y x =的准线方程是( ) A .2x =-B .1x =-C .1x =D .2x =9.(2020秋•通州区期末)如图是等轴双曲线形拱桥,现拱顶离水面5m ,水面宽30AB m =.若水面下降5m ,则水面宽是( )(结果精确到0.1)m 1.41≈ 2.24 2.65)A .43.8mB .44.8mC .52.3mD .53.0m10.(2020秋•西城区期末)已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为( )A .0B .1C .2D .311.(2020秋•西城区期末)已知双曲线22221x y a b -=的焦距等于实轴长的2倍,则其渐近线的方程为( )A .y =B .2y x =±C .y =D .12y x =±12.(2020秋•朝阳区期末)设抛物线2:4C y x =的焦点为F ,准线l 与x 轴的交点为M ,P 是C 上一点.若||4PF =,则||(PM = )A B .5C .D .13.(2020秋•石景山区期末)直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是( ) A .相切B .相交C .相离D .不确定14.(2020秋•东城区期末)已知抛物线22(0)y px p =>的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且||3||AF FB =,则点A 到y 轴的距离为( )A .5B .4C .3D .215.(2020秋•海淀区期末)已知直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,若//l AB ,则实数a 的值为( ) A .1B .1-C .2D .2-16.(2020秋•昌平区期末)已知直线1y kx =+与圆2240x x y -+=相交于M ,N 两点,且||23MN ,那么实数k 的取值范围是( ) A .143k --B .403kC .0k 或43k -D .403k -17.(2020秋•朝阳区期末)在平面直角坐标系xOy 中,已知直线(0)y mx m =>与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=,则实数k 的取值范围是( )A .(2,2)-B .[-C .(-∞,2)(2-⋃,)+∞D .(,[22,)-∞-+∞18.(2020秋•海淀区期末)如图所示,在圆锥内放入两个球1O ,2O ,它们都与圆锥相切(即与圆锥的每条母线相切),切点圆(图中粗线所示)分别为1C ,2.C 这两个球都与平面α相切,切点分别为1F ,2F ,丹德林()G Dandelin ⋅利用这个模型证明了平面α与圆锥侧面的交线为椭圆,1F ,2F 为此椭圆的两个焦点,这两个球也称为Dandelin 双球.若圆锥的母线与它的轴的夹角为30︒,1C ,2C 的半径分别为1,4,点M 为2C 上的一个定点,点P 为椭圆上的一个动点,则从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是( )A .6B .8C .D .二.填空题(共10小题)19.(2020秋•东城区期末)已知双曲线2222:1(0,0)x y M a b a b-=>>,ABC ∆为等边三角形.若点A 在y 轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC ∆的中位线,则双曲线M 的离心率为 .20.(2020秋•海淀区校级期末)已知F 是双曲线22:18y C x -=的右焦点,P 是双曲线C 上的点,A .①若点P 在双曲线右支上,则||||AP PF +的最小值为 ; ②若点P 在双曲线左支上,则||||AP PF +的最小值为 .21.(2020秋•通州区期末)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(4,0),若以线段OA 为直径的圆与直线2y x =在第一象限交于点B ,则直线AB 的方程是 .22.(2020秋•顺义区期末)设抛物线2y mx =的焦点为(1,0)F ,则m = ;若点A 在抛物线上,且||3AF =,则点A 的坐标为 .23.(2020秋•房山区期末)在平面直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点.若直线l 的倾斜角为45︒,则OAB ∆的面积为 .24.(2020秋•石景山区期末)已知双曲线的两个焦点为(3,0)-,(3,0),一个顶点是,则C 的标准方程为 ;C 的焦点到其渐近线的距离是 .25.(2020秋•海淀区期末)已知双曲线2212y x -=的左、右焦点分别为1F ,2F ,点(3,4)M -,则双曲线的渐近线方程为 ;12||||MF MF -= .26.(2020秋•昌平区期末)已知双曲线2221(0)9x y a a -=>的离心率是54,则双曲线的右焦点坐标为 .27.(2020秋•顺义区期末)已知椭圆22:1168x y C +=的左、右焦点分别为1F ,2F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得△12AF F 为等腰直角三角形; ②存在唯一一个m ,使得1ABF ∆为等腰直角三角形; ③存在m ,使1ABF ∆的周长最大. 其中,所有真命题的序号为 .28.(2020秋•丰台区期末)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为12y x =,那么该双曲线的离心率为 .三.解答题(共9小题)29.(2020秋•海淀区校级期末)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点.(Ⅰ)求椭圆C 的方程;(Ⅰ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若0OA AB ⋅=,且||3||2AB OA =,求OAB ∆的面积. 30.(2020秋•通州区期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为点A ,B ,且||4AB =,椭圆C 离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.31.(2020秋•顺义区期末)已知椭圆2222:1(0)x y C a b a b +=>>经过点(0,1)M 和1)2N .(Ⅰ)求椭圆C 的方程;(Ⅰ)若直线:l y kx m =+与椭圆C 交于A ,B 两点,且坐标原点O 到直线l .求证:以AB 为直径的圆经过点O .32.(2020秋•丰台区期末)已知椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点.(Ⅰ)求椭圆W 的方程;(Ⅰ)直线AB 与x 轴交于点(,0)M m ,过点M 作不垂直于坐标轴且与AB 不重合的直线l ,l 与椭圆W 交于C ,D 两点,直线AC ,BD 分别交直线x m =于P ,Q 两点,求证:||||PM MQ 为定值.33.(2020秋•石景山区期末)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e ,且经过点(0,1)D .(Ⅰ)求椭圆C 的方程;(Ⅰ)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于M ,N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由.34.(2020秋•东城区期末)已知椭圆2222:1(0)x y C a b a b +=>>过点(2,0)A -,(2,0)B ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点(G E ,G 不重合),ET x ⊥轴,垂足为T .求证:||||||||TA GA TB GB =.35.(2020秋•海淀区期末)已知椭圆2222:1(0)x y W a b a b +=>>,且经过点C .(Ⅰ)求椭圆W 的方程及其长轴长;(Ⅰ)A ,B 分别为椭圆W 的左、右顶点,点D 在椭圆W 上,且位于x 轴下方,直线CD 交x 轴于点Q .若ACQ ∆的面积比BDQ ∆的面积大D 的坐标.36.(2020秋•房山区期末)已知椭圆2222:1(0)x y G a b a b +=>>,且过(0,1)点.(Ⅰ)求椭圆G 的方程;(Ⅰ)设不过原点O 且斜率为13的直线l 与椭圆G 交于不同的两点C ,D ,线段CD 的中点为M ,直线OM 与椭圆G 交于E ,F ,证明:||||||||MC MD ME MF ⋅=⋅.37.(2020秋•昌平区期末)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点D ,判断||||AB DF 是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.2021北京高三数学上学期期末汇编:平面解析几何参考答案一.选择题(共18小题)1.【分析】由顶点坐标可知双曲线的焦点在y 轴上,再根据双曲线的几何性质,列得关于a 、b 、c 的方程组,解之即可.【解答】解:由题意知,双曲线的焦点在y轴上,且222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得2a =,2b =,c =所以双曲线的标准方程为22144y x -=.故选:B .【点评】本题考查双曲线标准方程的求法,熟练掌握a 、b 、c 的含义与关系是解题的关键,考查学生的运算求解能力,属于基础题.2.【分析】过点D 作DC AF ⊥于点C ,易知C 为AF 的中点,从而有||2a cCF +=,由点到直线的距离公式可知||DF b =,再由||||cos ||||DF CF AFD OF DF ∠==,代入相关数据,进行运算即可. 【解答】解:过点D 作DC AF ⊥于点C ,||||DF DA =,∴点C 为AF 的中点,1||||22a cCF AF +∴==, 而点(,0)F c -到渐近线b y x a =-的距离为||||bc DF b ==, ||||cos ||||DF CF AFD OF DF ∴∠==,即2a cbc b +=,222()22()c a c b c a ∴+==-,即2220c ac a --=,2c a ∴=或c a =-(舍),∴离心率2ce a==. 故选:B .【点评】本题考查双曲线的几何性质,主要包含渐近线、离心率,考查学生的数形结合思想、逻辑推理能力和运算能力,属于基础题.3.【分析】由方程组无解得到直线4210x y ++=与直线210x ay ++=平行,再由直线与直线平行的性质能求出a . 【解答】解:关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解, ∴直线4210x y ++=与直线210x ay ++=平行, ∴21421a =≠, 解得1a =. 故选:C .【点评】本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题. 4.【分析】由抛物线的方程即可求出p 的值,再由抛物线的定义即可求解. 【解答】解:由抛物线的方程可得:2p =,又由抛物线的定义可知点P 到F 的距离等于点P 到抛物线的准线的距离, 则点P 到y 轴的距离为||5142pPF -=-=, 故选:C .【点评】本题考查了抛物线的方程以及定义,属于基础题.5.【分析】根据题意,求出圆的圆心坐标,设圆心为C ,切点(2,2)为P ,求出PC 的斜率,由切线的性质分析可得答案.【解答】解:根据题意,圆22(1)5x y +-=,其圆心为(0,1),设圆心为C ,切点(2,2)为P , 则211202PC K -==-, 则切线的斜率2k =-, 故选:A .【点评】本题考查直线与圆的位置关系,涉及切线的性质,属于基础题. 6.【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可.【解答】解:抛物线24y x =的准线方程为:1x =-,抛物线24y x =上的点A 到焦点的距离为10,可得9A x =,则A 到y 轴的距离是:9. 故选:D .【点评】本题考查抛物线的简单性质的应用,考查计算能力.7.【分析】抛物线2y x =的焦点在x 轴上,且开口向右,21p =,由此可得抛物线2y x =的准线方程. 【解答】解:抛物线2y x =的焦点在x 轴上,且开口向右,21p =,∴124p =, ∴抛物线2y x =的准线方程为14x =-. 故选:B .【点评】本题考查抛物线的标准方程,考查抛物线的几何性质,定型与定位是关键. 8.【分析】直接利用抛物线方程,求解准线方程即可. 【解答】解:抛物线24y x =的准线方程是1x =-, 故选:B .【点评】本题考查抛物线的简单性质的应用,准线方程的求法,是基础题.9.【分析】建立平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>,写出点A 的坐标,并将其代入方程,求得t 的值,再令30y =-,解出x 的值即可. 【解答】解:建立如图所示的平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>, 拱顶离水面5m ,水面宽30AB m =,∴点A 为(15,5)-,将其代入22y x t -=得,22(5)(15)t --=, 解得400t =, 22400y x ∴-=,设水面下降5m 后,水面宽为CD ,此时点C 和D 的纵坐标均为30-,把30y =-代入22400y x -=,有2900400x -=,解得x =±44.8CD m ∴=≈.故选:B .【点评】本题考查等轴双曲线的概念,双曲线方程的应用,考查学生将所学知识运用于实际的能力,属于基础题.10.【分析】求出(1,0)到直线的距离,结合圆的半径,判断求解即可. 【解答】解:点(1,0)到直线34120x y -+=3=,因为半径为2的圆经过点(1,0),所以圆心到直线34120x y -+=的距离的最小值为:321-=. 故选:B .【点评】本题考查直线与圆的位置关系的应用,点到直线的距离的应用,是基础题. 11.【分析】利用双曲线方程列出方程,推出a ,b 的关系,即可得到渐近线方程.【解答】解:双曲线22221x y a b -=的焦距等于实轴长的2倍,b =,其渐近线的方程为:y =. 故选:A .【点评】本题考查双曲线的简单性质的应用,渐近线方程的求法,是基础题. 12.【分析】根据条件求出P 的纵坐标,进而求解结论.【解答】解:P 是C 上一点.且||4PF =,413P PD x x ∴==+⇒=代入24y x =得212Py =,PM ∴===故选:C .【点评】本题考查抛物线的性质以及计算能力,属于基础题.13.【分析】由直线l 过定点圆C 的圆心,可知直线与圆相交. 【解答】解:直线:1l y kx =+过点(0,1)P , 而(0,1)P 是圆22:(1)4C x y +-=的圆心,∴直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是相交.故选:B .【点评】本题考查直线与圆位置关系的应用,是基础题.14.【分析】根据题意得到p 的值,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C ,再利用三角形相似得到BC 和AC 的关系,从而得到BF ,AF ,CF 的关系,求出4AD =,即可得到答案.【解答】解:焦点F 到准线的距离为2p =,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C , 则BCE ACD ∆∆∽, 所以13BC BE BF AC AD AF ===, 记BC x =,则3AC x =, 因为||3||AF FB =, 所以1142BF AB x ==,332AF BF x ==, 因为32CF BC BF x =+=,F 为AC 的中点, 所以24AD FG ==, 即点A 到y 轴的距离为432p-=. 故选:C .【点评】本题考查了抛物线性质的应用,涉及了抛物线定义的理解和应用,在涉及抛物线上的点到焦点距离的问题时,一般会转化为到准线的距离开解决.15.【分析】由题意利用斜率公式,两直线平行的性质,求得a 的值. 【解答】解:直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,∴直线AB 的斜率为21121+=+, 若//l AB ,则11a-=,求得1a =-, 故选:B .【点评】本题主要考查斜率公式,两直线平行的性质,属于基础题.16.【分析】当弦长||MN =利用弦长公式求得弦心距1d =,故当||23MN ,则1d ,由此求得k 的范围.【解答】解:当弦长||MN =1d = 若||23MN ,则1d ,即圆心(2,0)到直线20kx y -+=的距离1d =,求得4[3k ∈-,0],故选:D .【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式、弦长公式的应用,属于基础题.17.【分析】根据奇函数对称性得出A ,C 关于原点对称,于是||1PB =,从而直线l 与单位圆有交点,根据点到直线的距离公式列出不等式求出k 的范围. 【解答】解:3()f x x =和y mx =都是奇函数,B ∴为原点,且A ,C 两点关于原点对称.∴原点O 为线段AC 的中点, ∴2PA PC PB +=,直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=, |||2|2||2PA PC PB PB ∴+===,||1PB ∴=.即P 为单位圆221x y +=上的点.∴直线:3l y kx =+与单位圆有交点, ∴1,解得22k 或22k -.故选:D .【点评】本题考查了函数图象与方程的关系,考查直线与圆的位置关系,属于中档题.18.【分析】在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R ,连接1O Q ,11O F ,1PO ,1PF ,2O R ,利用△1O PF ≅△1O PQ 全等,得到1PF PQ =,当点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和最小时,即当P 为直线VM 与椭圆的交点时,求解即可得到答案.【解答】解:如图所示,在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R , 连接1O Q ,11O F ,1PO ,1PF ,2O R ,在△1O PF 与△1O PQ 中,111O Q O F r ==,其中1r 为球1O 半径, 1190O QP O FP ∠=∠=︒,1O P 为公共边,所以△11O PF ≅△1O PQ ,所以1PF PQ =, 设P 沿圆锥表面到达M 的路径长为d , 则1PF d PQ d PQ PR QR +=++=,当且仅当P 为直线VM 与椭圆的交点时取等号,21416tan 30tan 30O R O Q QR VR VQ -=-=-===︒︒,故从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是6. 故选:A .【点评】本题以Dandelin 双球作为几何背景考查了椭圆知识的综合应用,涉及了两条线段距离之和最小的求解,解题的关键是确定当P 为直线VM 与椭圆的交点时取得最值. 二.填空题(共10小题)19.【分析】易知,等边ABC ∆的边长为4a ,不妨取点B 为(2)a ,将其代入双曲线的方程可得a b =,再由e =【解答】解:双曲线M 的实轴为ABC ∆的中位线,∴等边ABC ∆的边长为4a ,假设点B 在第一象限,则点B 的坐标为(2)a ,将其代入双曲线M 的方程有,2222431a a a b-=,∴1ab =,离心率e ==.【点评】本题考查双曲线的几何性质,包含a 、b 、c 的含义与关系,离心率,考查学生的逻辑推理能力和运算求解能力,属于基础题.20.【分析】由题意知,(3,0)F ,①当A ,P ,F 按此顺序三点共线时,||||AP PF +取得最小值;②设双曲线的左焦点为F ',由双曲线的定义可知,||||2PF PF '=+,当A ,P ,F '按此顺序三点共线时,||||AP PF +取得最小值.【解答】解:由题意知,(3,0)F ,①||||||9AP PF AF +=,当且仅当A ,P ,F 按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为9;②设双曲线的左焦点为(3,0)F '-,由双曲线的定义知,||||22PF PF a'-==,所以||||||||2||2211AP PF AP PF AF ''+=+++==,当且仅当A ,P ,F '按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为11. 故答案为:9;11.【点评】本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题. 21.【分析】求出OA 的中点即为圆心,求出||OA 即为圆的半径,得到圆的方程与直线2y x =联立,求出点B 的坐标,即可得到直线AB 的方程.【解答】解:因为O 为坐标原点,点A 的坐标为(4,0), 所以OA 的中点坐标为(2,0),且||4OA =,所以以线段OA 为直径的圆的圆心为(2,0),半径2r =, 所以圆的方程为22(2)4x y -+=,联立方程22(2)42x y y x ⎧-+=⎨=⎩,解得00x y =⎧⎨=⎩或4585x y ⎧=⎪⎪⎨⎪=⎪⎩,因为点B 在第一象限,所以48(,)55B ,又(4,0)A ,所以直线AB 的方程为8050(4)445y x --=--,即240x y +-=. 故答案为:240x y +-=.【点评】本题考查了直线方程的求解,涉及了圆的标准方程的求解、直线与圆交点的求解,属于中档题. 22.【分析】利用抛物线的焦点坐标,求解m 即可;利用抛物线的定义,转化求解A 的坐标. 【解答】解:抛物线2y mx =的焦点为(1,0)F , 可得14m=,解得4m =; 点A 在抛物线24y x =上,且||3AF =,设点A 的横坐标为x ,则13x +=,2x =, 把2x =代入抛物线方程,可得A的纵坐标为:±所以(2,A ±. 故答案为:4;(2,±.【点评】本题考查抛物线的简单性质的应用,抛物线的定义的应用,是基础题.23.【分析】由抛物线的方程可得焦点的坐标及准线方程,由题意设直线l 的方程与抛物线联立求出两根之和,由抛物线的性质可得到焦点的距离等于到准线的距离可得弦长||AB 的值,求出原点到直线的距离,代入面积公式可得面积的值.【解答】解:抛物线24y x =的焦点(1,0)F ,准线方程为1x =- 由题意设直线l 的斜率1y x =-,设1(A x ,1)y ,2(B x ,2)y , 联立214y x y x=-⎧⎨=⎩,整理可得:2610x x -+=,可得126x x +=,所以弦长12||628AB x x p =++=+=, 原点O 到直线l的距离d =,所以11||822AOB S AB d ∆=⋅==故答案为:【点评】本题考查求抛物线的性质及点到直线的距离公式和三角形的面积公式,属于中档题.24.【分析】设双曲线方程为22221(0,0)x y a b a b-=>>,则2a =,3c =,由此能求出C 的方程,再求焦点到其渐近线的距离即可.【解答】解:双曲线C 的两个焦点为(3,0)-,(3,0),一个顶点是0),∴设双曲线方程为22221(0,0)x y a b a b-=>>,且a ,3c =,2963b ∴=-=,C ∴的方程为:22163x y -=.故其渐近线为y =,即0x ±=,C ∴的焦点到其渐近线的距离为:d ==故答案为:22163x y -=【点评】本题考查双曲线的方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.25.【分析】利用双曲线方程直接求解渐近线方程;求出焦点坐标,然后利用双曲线的定义求解即可得到12||||MF MF -.【解答】解:双曲线2212y x -=的渐近线方程为:y =,双曲线的焦点坐标(,0),M 在双曲线上,所以12||||22MF MF a -=-=-,故答案为:y =;2-.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线方程的求法,定义的应用,是基础题. 26.【分析】利用离心率求出a ,然后求解双曲线的焦点坐标.【解答】解:双曲线2221(0)9x y a a -=>的离心率是54,54=,解得4a =,则5c =, 所以双曲线的右焦点坐标为(5,0). 故答案为:(5,0).【点评】本题考查双曲线的简单性质的应用,焦点坐标的求法,是基础题.27.【分析】当0m =时,12F AF ∠最大,求出△12AF F 为等腰直角三角形即可判断①;求出1ABF ∆为等腰直角三角形时,m 的值,即可判断②;利用椭圆定义可得1ABF 的周长最大值,结合m 的取值范围即可判断③.【解答】解:由方程知4a =,b =c ,当0m =时,12F AF ∠最大,此时122145AF F AF F ∠=∠=︒,所以12F AF ∠的最大值为90︒, 又12AF AF =,所以△12AF F 为等腰直角三角形,即存在唯一一个0m =,使得△12AF F 为等腰直角三角形,故①正确;当0m =时,1245AF F ∠=︒,由椭圆的对称性可得121245BF F AF F ∠=∠=︒,11AF BF =, 所以190AF B ∠=︒,此时1ABF ∆为等腰直角三角形,当0m ≠时,若1ABF ∆为等腰直角三角形,则4m -<<-,此时点A 的坐标为(,m m --,代椭圆方程,解得(4,m =--,故当0m =或1ABF ∆为等腰直角三角形,故②错误; 由椭圆的定义得,1ABF ∆的周长11||||||AB AF BF =++ 2222||(2||)(2|)4||||||AB a AF a BEF a AB AF BF =+-+-=+--,因为22||||||AF BF AB +,所以22||||||0AB AF BF --,当AB 过点2F 时取等号,所以1122||||||4||||||4AB AF BF a AB AF BF a ++=+--,即直线x m =过椭圆的右焦点2F 时,1ABF ∆的周长最大,此时直线AB 的方程为x m c ===44m -<<, 所以存在m ,使1ABF ∆的周长最大,故③正确. 故答案为:①③.【点评】本题主要考查椭圆的性质,考查数形结合的解题思想,考查分析问题与求解问题的能力,是中档题.28.【分析】由题意可得12b a =,即224a b =,结合222a b c +=,可得2254c a =,开方可得c e a=的值.【解答】解:由题意可得双曲线的渐近线方程为by x a =±,故可得12b a =,即224a b =,又222a bc +=,故2224a a c +=,2254c a =,解得c e a ==【点评】本题考查双曲线的简单性质,涉及离心率的求解,属中档题. 三.解答题(共9小题) 29.【分析】(Ⅰ,且经过点,列方程组,解得a ,b ,c ,进而可得答案. (Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,得224()4x kx m ++=,由△0>,得2241k m +>,结合韦达定理可得12x x +,12x x ,由0OA AB ⋅=,推出OA AB ⊥,进而设直线OA 的方程为1y x k=-,联立直线AB 的方程得1y ,1x ,代入椭圆的方程可得22224(1)4k m k +=+,再计算222222144(1)||(41)(4)k k AB k k +=++,2224(1)||4k OA k +=+,进而可得22222||369||(41)4AB k OA k ==+,解得214k =,进而可得OAB ∆的面积213||||||24S OA AB OA ==,即可得出答案. 【解答】解:(Ⅰ)由题意可得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =,∴椭圆方程为2214x y +=.(Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y , 联立y kx m =+与2244x y +=,得224()4x kx m ++=, 222(41)8440k x kmx m ∴+++-=,∴△22222(8)4(41)(44)16(41)0km k m k m =-+-=+->,即2241k m +>,则122841kmx x k -+=+,21224441m x x k -=+,因为0OA AB ⋅=,所以OA AB ⊥,设直线OA 的方程为1y x k =-,联立直线AB 的方程得121m y k =+,1121kmx ky k -=-=+, 代入221144x y +=,所以222()4()411km m k k -+=++,化简得22224(1)4k m k +=+,所以2222222222224(1)(41)(4)4(1)94141444k k k k k k m k k k k +++-++-=+-==+++,所以||AB =, 所以2222222222216(1)(41)144(1)||(41)(41)(4)k k m k k AB k k k ++-+==+++, 所以2222222112224(1)||()(1)()114m m k OA ky y k k k k +=-+=+==+++, 所以22222||369||(41)4AB k OA k ==+, 得22216(41)k k =+,解得214k =, 此时222224(1)2541417k m k k +==<++,满足△0>, 由22214(1)4(1)204||141744k OA k ++===++, 所以OAB ∆的面积2113315||||||||||222417S OA AB OA OA OA ==⨯==. 【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 30.【分析】(Ⅰ)根据题意列方程组,得a ,b ,进而可得椭圆的方程.(Ⅰ)分两种情况①若直线l 的斜率不存在时,②若直线l 的斜率存在时,直线AM ,BN 的交于点Q ,是否早定直线4x =上.【解答】解:(Ⅰ)因为||4AB =,椭圆C 离心率为12, 所以22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(Ⅰ)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为(1,0),所以直线l 的方程是1x =.所以点M 的坐标是3(1,)2,点N 的坐标是3(1,)2-.所以直线AM 的方程是1(2)2y x =+,直线BN 的方程是3(2)2y x =-.所以直线AM ,BN 的交点Q 的坐标是(4,3).所以点(4,3)在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k . 所以直线l 的方程为(1)y k x =-.联立方程组22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y ,整理得2222(34)84120k x k x k +-+-=, 显然△0>.不妨设1(M x ,1)y ,2(N x ,2)y ,所以2122834k x x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是11(2)2y y x x =++.令4x =,得1162y y x =+.直线BN 的方程是22(2)2y y x x =--.令4x =,得2222y y x =-. 所以12121212121212626(1)2(1)6(1)(2)2(2)(1)2222(2)(2)y y k x k x k x x k x x x x x x x x -----+--=-=+-+-+- 1212122112126(1)(2)2(2)(1)2[3(22)(22)]k x x k x x k x x x x x x x x ---+-=--+--+- 12122[25()8]k x x x x =-++22222(412)582[8]3434k k k k k -⨯=-+++22228244024322()034k k k k k --++==+.所以点Q 在直线4x =上.【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 31.【分析】(Ⅰ)根据题意可得所以1b =,22311a b +=,解得2a =,进而可得椭圆的方程. (Ⅰ)联立直线l 与椭圆的方程可得关于x 的一元二次方程,设1(A x ,1)y ,2(B x ,2)y ,由韦达定理得12x x +,12x x ,由点到直线的距离公式可得原点O 到直线l的距离d ==,解得2254(1)m k =+,计算1212OA OB x x y y ⋅=+为0,即可得出结论.【解答】解:(Ⅰ)因为椭圆经过点(0,1),所以1b =,又因为椭圆经过点1)2,所以23114a +=,解得2a =,所以椭圆的方程为2214x y +=,(Ⅰ)证明:由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x kmx m +++-=, 由题意,△22222(8)4(14)(44)1616640km k m k m =-+-=-++>,即22140k m +->, 设1(A x ,1)y ,2(B x ,2)y ,所以122841kmx x k +=-+,21224441m x x k -=+,因为原点O 到直线l,所以d ==即2254(1)m k =+,因为12121212()()OA OB x x y y x x kx m kx m ⋅=+=+++22222121222448(1)()(1)4141m kmk x x km x x m k km m k k -=++++=+-+++222544041m k k --==+,所以OA OB ⊥.因此以AB 为直径的圆过原点O .【点评】本题考查椭圆的方程,直线与椭圆的相交问题,定点问题,解题中需要一定的计算能力,属于中档题. 32.【分析】(Ⅰ)把点A ,B 的坐标代入椭圆方程,求出a ,b 的值,即可得到椭圆W 的方程;(Ⅰ)先求出m 的值,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,与椭圆方程联立,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理得到22121222121212,1313k k x x x x k k -+=-=++,再求出点P ,Q 的纵坐标,得到||||PM MQ 的表达式,把上式代入化简,即可得到||||PM MQ 为定值1. 【解答】解:(Ⅰ)由椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点,得2b =,29114a +=,所以212a =.所以椭圆W 的方程为221124x y +=.(Ⅰ)(0,2)A ,(3,1)B --,∴直线AB 的方程为:2y x =+,令0y =得:2m =-,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,由22(2),1124y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)1212120k x k x k +++-=,且△0>,设1(C x ,1)y ,2(D x ,2)y ,则22121222121212,1313k k x x x x k k -+=-=++, 记直线AC 的方程为1122y y x x --=,令2x =-,得P 点的纵坐标11(22)(2)P k x y x -+=,记直线BD 的方程为2211(3)3y y x x ++=++, 令2x =-,得Q 点的纵坐标22(1)(2)3Q k x y x -+=+,112122122212212121212112221221(22)(2)2(3)(2)||||||||(1)(2)||(2)31212122412224()1221313||||1212221312122(13)|| 1.12122(13)PQ k x y x x x PM k x MQ y x x x k k x x x x x x k k k x x x x k k k x k k x -+++===-+++--⨯+⨯++++++++==-+++-++==-++ 所以||||PM MQ 为定值1. 【点评】本题主要考查了椭圆的标准方程,考查了直线与椭圆的定义,考查了学生的计算能力,是中档题. 33.【分析】(Ⅰ)利用已知条件求出b ,结合离心率求解a ,即可得到椭圆方程.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,求出M ,N 的坐标,然后求解AM AN k k +.的表达式,推出结果即可.【解答】解:(Ⅰ)由已知1b =,c e a = 又222a b c =+,解得2a =,1b =.所以椭圆C 的方程为2214x y +=.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则△216(112)0k =->,解得k <.(*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =,k =(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为121211AM AN y yk k x x +=+++ 121212(4)(4)3321111k x k x k kk x x x x ++=+=++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++ 222222323(2)1426443211414k k k k k k k k -++=+--++++ 223(242)20363k k k k -+=+=-, 所以AM AN k k =-. 所以BAM OAN ∠=∠.【点评】本题考查椭圆的简单性质,以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.34.【分析】(Ⅰ)由题意及a ,b ,c 之间的关系求出a ,b 的值,进而求出椭圆的方程;(Ⅰ)由题意开始直线l 的方程,与椭圆联立,由判别式为0求出参数之间的关系,设G ,E 的坐标,由题意可得G ,E 用直线的参数表示的坐标,进而求出||||TA TB 与||||GA GB 的表示,可证得||||||||TA GA TB GB =.【解答】解:(Ⅰ)由题意可得222212a c e a a b c=⎧⎪⎪==⎨⎪=+⎪⎩,解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(Ⅰ)由题意可得直线l 的斜率存在且不为0,设直线l 的方程为:(0)y kx m m =+≠,22143y kx m x y =+⎧⎪⎨+=⎪⎩,整理可得:222(34)84120k x kmx m +++-=, 由题意可得△0=,即22226416(34)(3)0k m k m -+-=,解得:2234m k =+ 设1(G x ,0),0(E x ,0)y 则1m x k =-,024434km kx k m-==-+, 因为ET x ⊥轴,所以4(kT m-,0), 4|2||||42||2|4|||24||2||2()|k TA k m m k m k TB m k m k m -+-+-===++--, 又因为|2||||2||||2||2|m GA m k k m GB m k k-+-==++, 所以可证:||||||||TA GA TB GB =. 【点评】本题考查求椭圆的方程及直线与椭圆相切的性质,及证明的方法,属于中档题. 35.【分析】(Ⅰ)由已知点,椭圆的离心率以及a ,b ,c 的关系式即可求解;(Ⅰ)根据已知条件推出OD 与BC 平行,设出点D 的坐标,利用平行关系以及点D 在椭圆上联立方程即可求解. 【解答】解:(Ⅰ)由已知可得:22222431c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得4a =,2b =,c =故椭圆的方程为:221164x y +=,且长轴长为28a =;(Ⅰ)因为点D 在x 轴下方,所以点Q 在线段AB (不包括端点)上, 由(Ⅰ)可知(4,0)A -,(4,0)B ,所以AOC ∆的面积为142⨯=因为ACQ ∆的面积比BDQ ∆的面积大所以点Q 在线段OB (不包括端点)上,且OCQ ∆的面积等于BDQ ∆的面积, 所以OCB ∆的面积等于BCD ∆的面积, 所以//OD BC , 设(,)D m n ,0n <,则n m ==, 因为点D 在椭圆W 上,所以221164m n +=,解得2m =,n = 所以点D的坐标为(2,.【点评】本题考查了椭圆的方程以及直线与椭圆的位置关系的应用,涉及到三角形面积问题,考查了学生的运算能力,属于中档题. 36.【分析】()I利用离心率为3,且过(0,1)点,列出方程组求解a ,b ,得到椭圆方程. ()II 设直线l 的方程为:1(0)3y x m m =+≠,由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=,通过△0>,推出m 的范围,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理,求直线OM 的方程,与椭圆联立,求解E 、F ,利用弦长公式,计算证明即可.【解答】()I解:根据题意:2222311c a a b a c b b c ⎧=⎪⎧=⎪⎪⎪=-⇒=⋯⋯⋯⋯⋯⋯⋯⋯⋯⎨⎨⎪⎪==⎩⎪⎪⎩(4分)所以椭圆G 的方程为2219x y +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)()II 证明:设直线l 的方程为:1(0)3y x m m =+≠⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)即2226990x mx m ++-=,需△22368(99)0m m =-->即202m <<⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) 设1(C x ,1)y ,2(D x ,2)y ,CD 中点0(M x ,0)y ,则123x x m +=-,2129(1)2x x m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)12000311,2232x x x m y x m m +==-=+=⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分) 那么直线OM 的方程为:00y y x x =即13y x =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)由22191232x x y y x y ⎧⎧=+=⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=⎪⎪⎩⎩, 不妨令(E F ⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分) 那么221212111||||||(1)[()4]449MC MD CD x x x x ⋅==++-2259[(3)4(1)]182m m =--⋅-25(2)2m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(13分)||||ME MF ⋅=25(2)2m -⋯⋯⋯⋯⋯⋯⋯⋯⋯(14分)所以||||||||MC MD ME MF ⋅=⋅.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题. 37.【分析】(Ⅰ)依题意长轴长为4,且离心率为12.求出a ,c ,然后求解b ,得到椭圆方程. ()II 直线:(1)l y k x =-,代入椭圆方程,利用韦达定理以及弦长公式求出||AB ,求出AB 中点坐标,通过(1)当0k =时,所以||4||AB DF =.(2)当0k ≠时,线段AB 的垂直平分线方程求出D ,得到||DF ,然后转化求解即可、【解答】解:(Ⅰ)依题意24a =,2a =,离心率为12,1c =,则23b =,(4分) 故椭圆C 的方程为22143x y +=.(5分) ||()||AB II DF 是定值.(6分) 理由如下:由已知得直线:(1)l y k x =-,(7分)代入椭圆方程22143x y +=,消去y 得2222(43)84120k x k x k +-+-=,(8分) 所以△22222(8)4(43)(412)1441440k k k k =--+-=+>,(9分)设1(A x ,1)y ,2(B x ,2)y 则2122843k x x k +=+,212241243k x x k -=+,(10分)所以2222221211212||()()(1)[()4]AB x x y y k x x x x =-+-=++-。

2020-2021学年北京市西城区高一上学期期末考试数学试卷及答案

2020-2021学年北京市西城区高一上学期期末考试数学试卷及答案

绝密★启用前2020-2021学年北京市西城区高一上学期期末考试数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{}1,0,2,3A =-,{21,}B xx k k ==-∈N ∣,那么A B =()A .{}1,0-B .{}1,2-C .{}0,3D .{}1,3-答案:D【分析】根据交集的定义可求AB .解:因为{21,}B xx k k ==-∈N ∣,故B 中的元素为大于或等于1-的奇数, 故{}1,3A B =-, 故选:D. 2.方程组22x y x x +=⎧⎨+=⎩的解集是() A .()(){}1,1,?1,1- B .()(){}1,1,2,2- C .()(){}1,1,2,2-- D .()(){}2,2,2,2--答案:C【分析】解出方程组202x y x x +=⎧⎨+=⎩得解,再表示成集合的形式即可.解:由方程组202x y x x +=⎧⎨+=⎩可得22x y =-⎧⎨=⎩或11x y =⎧⎨=-⎩ 所以方程组202x y x x +=⎧⎨+=⎩的解集是()(){}1,1,2,2--故选:C3.函数11lg x x y =+-的定义域是() A .(0,)+∞ B .(1,)+∞C .()0,11(),⋃+∞D .[)0,11(),⋃+∞答案:C【分析】根据对数式的真数大于零、分式的分母不为零,求解出x 的取值范围即为定义域. 解:因为010x x >⎧⎨-≠⎩,所以01x <<或1x >,所以函数的定义域为:()()0,11,+∞,故选:C.点评:结论点睛:常见函数的定义域分析: (1)偶次根式下被开方数大于等于零; (2)分式分母不为零; (3)对数式的真数大于零; (4)0y x =中{}0x x ≠.4.为了解学生在“弘扬传统文化,品读经典文学”月的阅读情况,现从全校学生中随机抽取了部分学生,并统计了他们的阅读时间(阅读时间[]0,50t ∈),分组整理数据得到如图所示的频率分布直方图.则图中a 的值为()A .0.028B .0.030C .0.280D .0.300答案:A【分析】根据五个矩形的面积和为1列式可得结果.解:由(0.0060.0400.0200.006)101a ++++⨯=得0.028a =. 故选:A5.若a b >,则一定有() A .11a b< B .|a |>|b|C 22a bD .33a b >答案:D【分析】利用不等式的性质或反例逐项检验后可得正确的选项.解:取1,1a b ==-,则11a b>,||||a b =,22a b =,故A 、B 、C 均错误, 由不等式的性质可得33a b >,故D 正确. 故选:D.6.在平行四边形ABCD 中,设对角线AC 与BD 相交于点O ,则AB CB +=() A .2BO B .2DOC .BDD .AC答案:B【分析】根据向量的线性运算可得正确的选项.解:因为四边形ABCD 为平行四边形,故0AO CO +=, 故22AB CB AO OB CO OB OB DO +=+++==, 故选:B.7.设23m n =,则m ,n 的大小关系一定是() A .m n > B .m n <C .m n ≥D .以上答案都不对答案:D【分析】根据23m n =可分三种情况讨论:,,m n m n m n >=<,根据指数函数的单调性分析出每一种情况下,,0m n 的大小关系,由此得到,m n 的大小关系.解:当m n >时,因为2xy =为()0,∞+上增函数,所以232m n n =>,所以312n⎛⎫> ⎪⎝⎭,所以0n >,所以0m n >>;当m n =时,312n⎛⎫= ⎪⎝⎭,所以0n =,所以0m n ==; 当m n <时,因为2xy =为()0,∞+上增函数,所以232m n n =<,所以312n⎛⎫< ⎪⎝⎭,所以0n <,所以0m n <<, 故选:D.点评:方法点睛:已知(,1m na ba b =>或)0,1a b <<,比较,m n 大小的常用方法:(1)分类讨论法:,,m n m n m n <=>,根据指数函数的单调性分析出,m n 的大小关系;(2)数形结合法:在同一平面直角坐标系作出,x x y a y b ==的图象,作直线y t =与两图象相交,根据交点横坐标的大小关系判断出,m n 的大小关系.8.从2015年到2020年,某企业通过持续的技术革新来降低其能源消耗,到了2020年该企业单位生产总值能耗降低了20%.如果这五年平均每年降低的百分率为x ,那么x 满足的方程是() A .50.2x = B .()510.8x -=C .50.2x =D .5(1)0.8x -=答案:D【分析】根据题设逐年列出生产总值能耗后可得正确的选择.解:设2015年该企业单位生产总值能耗为a ,则2016年该企业单位生产总值能耗()1a x -,2017年该企业单位生产总值能耗()21a x -,2018年该企业单位生产总值能耗()31a x -,2019年该企业单位生产总值能耗()41a x -,2020年该企业单位生产总值能耗()51a x -,由题设可得()510.8a x a -=即()510.8x -=, 故选:D.9.设,a b 是非零向量,则“存在实数λ,使得a b =λ”是“a b a b +=+”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件答案:B【分析】由题意结合向量共线的性质分类讨论充分性和必要性是否成立即可. 解:存在实数λ,使得λab ,说明向量,a b 共线,当,a b 同向时,a b a b +=+成立, 当,a b 反向时,a b a b +=+不成立,所以,充分性不成立.当a b a b +=+成立时,有,a b 同向,存在实数λ,使得λa b 成立,必要性成立,即“存在实数λ,使得λa b ”是“a b a b +=+”的必要而不充分条件.故选B.点评:本题主要考查向量共线的充分条件与必要条件,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力. 10.设()f x 为定义在R 上的函数,函数()1f x +是奇函数.对于下列四个结论:①()10f =;②()()11f x f x -=-+;③函数()f x 的图象关于原点对称; ④函数()f x 的图象关于点()1,0对称; 其中,正确结论的个数为() A .1 B .2C .3D .4答案:C【分析】令()()1g x f x =+,①:根据()00g =求解出()1f 的值并判断;②:根据()g x 为奇函数可知()()g x g x -=-,化简此式并进行判断;根据()1y f x =+与()y f x =的图象关系确定出()f x 关于点对称的情况,由此判断出③④是否正确. 解:令()()1g x f x =+,①因为()g x 为R 上的奇函数,所以()()0010g f =+=,所以()10f =,故正确; ②因为()g x 为R 上的奇函数,所以()()g x g x -=-,所以()()11f x f x -+=-+,即()()11f x f x -=-+,故正确;因为()1y f x =+的图象由()y f x =的图象向左平移一个单位得到的,又()1y f x =+的图象关于原点对称,所以()y f x =的图象关于点()1,0对称,故③错误④正确,所以正确的有:①②④, 故选:C.点评:结论点睛:通过奇偶性判断函数对称性的常见情况:(1)若()f x a +为偶函数,则函数()y f x =的图象关于直线x a =对称; (2)若()f x a +为奇函数,则函数()y f x =的图象关于点(),0a 成中心对称. 二、填空题11.已知向量()1,2a =-,()3,1b =-,那么a b -=__________. 答案: 5【分析】求出a b -的坐标后可得a b -.解:因为()1,2a =-,()3,1b =-,故()4,3a b -=-,故5a b -=, 故答案为:512.若方程220x x a -+=有两个不相等的正实数根,则实数a 的取值范围是__________. 答案:01a <<【分析】根据条件可得1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,列出不等式求解即可.解:由方程220x x a -+=有两个不相等的正实数根,设为12,x x则1212000x x x x ∆>⎧⎪+>⎨⎪>⎩,即1212440200a x x x x a ∆=->⎧⎪+=>⎨⎪=>⎩,解得01a << 故答案为:01a <<13.设定义在R 上的奇函数()f x 在()0+∞,上为增函数,且()20f =,则不等式()0f x <的解集为__________.答案:(,2)(0,2)-∞-⋃解:定义在R 上的奇函数()f x 在()0+∞,上为增函数, 则(0)0f =,且()f x 在(,0)-∞为增函数, 由于(2)0f =,则(2)0f -=,函数图象关于原点对称,画出函数的模拟图象可知, 不等式()0f x <的解集为(,2)(0,2)-∞.故答案为:(,2)(0,2)-∞.14.某厂商为推销自己品牌的可乐,承诺在促销期内,可以用3个该品牌的可乐空罐换1罐可乐.对于此促销活动,有以下三个说法:①如果购买10罐可乐,那么实际最多可以饮13罐可乐; ②欲饮用100罐可乐,至少需要购买67罐可乐:③如果购买*()n n ∈N 罐可乐,那么实际最多可饮用可乐的罐数1()2n f n n -⎡⎤=+⎢⎥⎣⎦.(其中[]x 表示不大于x 的最大整数) 则所有正确说法的序号是__________. 答案:②③.【分析】①10罐可乐有10个可乐空罐,第一次可换3罐可乐还剩1个空罐,第二次可换1罐可乐还剩2个空罐,由此算出最多可饮用的可乐罐数;②:先分析购买66罐可乐的情况,再分析购买67罐可乐的情况,由此确定出至少需要购买的可乐罐数;③:先分析购买1到9罐可乐分别可饮用多少罐可乐以及剩余空罐数,然后得到规律,再分奇偶罐数对所得到的规律进行整理,由此计算出()f n 的结果.解:①:购买10罐可乐时,第一次可换3罐还剩1个空罐,第二次可换1罐还剩2个空罐,所以最多可饮用103114++=罐可乐,故错误;②:购买66罐时,第一次可换22罐可乐,第二次可换7罐可乐还剩1个空罐, 第三次可换2罐可乐还剩2个空罐,第四次可换1罐可乐还剩2个空罐,所以一共可饮用662272198++++=罐;购买67罐时,第一次可换22罐可乐还剩1个空罐,第二次可换7瓶可乐还剩2个空罐, 第三次可换3罐可乐,第四次可换1罐可乐还剩1个空罐,所以一共可饮用6722731100++++=罐;所以至少需要购买67罐可乐,故正确;③:购买1到9罐可乐分别可饮用可乐罐数以及剩余空罐数如下表所示:由表可知如下规律:(1)当购买的可乐罐数为奇数时,此时剩余空罐数为1,当购买的可乐罐数为偶数时,此时剩余的空罐数为2; (2)实际饮用数不是3的倍数;(3)每多买2罐可乐,可多饮用3罐可乐,(4)实际饮用的可乐罐数要比购买的可乐罐数的1.5倍少0.5或1; 设购买了n 罐可乐,实际可饮用的可乐罐数为()f n ,所以()()()**3221,312,m n m m N f n m n m m N ⎧-=-∈⎪=⎨-=∈⎪⎩,即()()()**3121,2322,2n n m m N f n n n m m N -⎧=-∈⎪⎪=⎨-⎪=∈⎪⎩,即()()()**121,222,2n n n m m N f n n n n m m N -⎧+=-∈⎪⎪=⎨-⎪+=∈⎪⎩,又因为12,22n n --可看作12n -⎡⎤⎢⎥⎣⎦,即不大于12n -的最大整数,所以1()2n f n n -⎡⎤=+⎢⎥⎣⎦成立,故正确;故答案为:②③.点评:关键点点睛:解答本题时,一方面需要通过具体购买的可乐罐数去分析实际饮用的可乐罐数,另一方面需要对实际的购买情况进行归纳,由此得到购买的可乐罐数与实际饮用的可乐罐数的关系,从而解决问题. 三、双空题15.已知函数0.52log ,0()2,0x x f x x x x >⎧=⎨+≤⎩,那么()2f =_________;当函数()y f x a =-有且仅有三个零点时,实数a 的取值范围是__________. 答案:1-10a -<<【分析】由()0.52log 2f =可得结果,函数()y f x a =-有且仅有三个零点,即函数()y f x =的图象与y a =的图象仅有三个交点,作出函数()y f x =的图象,根据图象可得答案.解:()0.52log 21f ==-函数()y f x a =-有且仅有三个零点,即函数()y f x =的图象与y a =的图象仅有三个交点.作出函数()y f x =的图象,如图.由图可知,当10a -<<时,函数()y f x =的图象与y a =的图象有三个交点. 所以函数()y f x a =-有且仅有三个零点时,实数a 的取值范围是10a -<< 故答案为:1-;10a -<< 四、解答题16.某校高一年级1000名学生全部参加了体育达标测试,现从中随机抽取40名学生的测试成绩,整理并按分数段[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图如下(I )估计该校高一年级中体育成绩大于或等于70分的学生人数;(II )现从体育成绩在[)60,70和[)80,90的样本学生中随机抽取2人,求其中恰有1人体育成绩在[)60,70的概率. 答案:(I )750;(II )35【分析】(I )根据折线图可以得到体育成绩大于或等于70分的学生人数,从而可以估计出该校高一年级中体育成绩大于或等于70分的学生频率,进而得到学生人数. (II )利用列举法可得基本事件的总数和随机事件中基本事件的个数,从而可求概率. 解:(I )根据折线图可以得到体育成绩大于或等于70分的学生人数为1431330++=,所以该校高一年级中体育成绩大于或等于70分的学生人数估计为:30100075040⨯=. (II )体育成绩在[)60,70和[)80,90的人数分别为2、3,分别记为,,,,a b A B C 若随机抽取2人,则所有的基本事件为:()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a A a B a C b A b B b C A B A C B C ,故基本事件的总数为10.其中恰有1人体育成绩在[)60,70的基本事件的个数有6个, 设A 为:“恰有1人体育成绩在[)60,70”,则()63105P A ==. 点评:思路点睛:古典概型的概率的计算,关键是基本事件的总数和随机事件中基本事件的个数的计算,计算时可采用枚举法、树形图等帮助计数(个数较少时),也可以利用排列组合的方法来计数(个数较大时). 17.设函数4()3f x x x=++(1)求函数()f x 的图像与直线2y x =交点的坐标:(2)当(0,)x ∈+∞时,求函数()f x 的最小值(3)用单调性定义证明:函数()f x 在()2,+∞上单调递增.答案:(1)()4,8或()12--,(2)7(3)证明见解析. 【分析】(1)由432x x x++=解出方程可得答案. (2)利用均值不等式433x x ++≥可得答案. (3)由定义法证明函数单调性的步骤即可证明.解:(1)由432x x x++=,即2340x x --=,解得4x =或1x =- 所以函数()f x 的图像与直线2y x =交点的坐标为()4,8或()12--, (2)当0x >时,4()337f x x x =++≥= 当且仅当4x x=,即2x =时,取得等号. 所以当(0,)x ∈+∞时,函数()f x 的最小值为7.(3)任取12,2x x >,且12x x <则()()2121224433f x f x x x x x ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()2111211222444x x x x x x x x x x ⎛⎫-= ⎪⎝⎭-=-+-+ ()()2112112122441x x x x x x x x x x ⎛⎫-= ⎪⎝⎭=--- 由12,2x x >,且12x x <,则124x x >,210x x ->所以1240x x ->,则()12122140x x x x x x ->- 所以()()210f x f x ->,即()()21f x f x >所以函数()f x 在()2,+∞上单调递增点评:思路点睛:本题考查利用函数的奇偶性求参数,证明函数的单调性和利用单调性解不等式.证明函数的单调性的基本步骤为:(1)在给定的区间内任取变量12,x x ,且设12x x <.(2)作差()()12f x f x -变形,注意变形要彻底,变形的手段通常有通分、因式分解、配方、有理化等.(3)判断符号,得出()()12f x f x ,的大小.(4)得出结论.18.以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(I )若甲、乙两组的数学平均成绩相同,求a 的值;(II )求乙组平均成绩超过甲组平均成绩的概率;(III )当3a =时,试比较甲、乙两组同学数学成绩的方差的大小.(结论不要求证明) 答案:(I )1a =;(II )45;(III )甲组同学数学成绩的方差大于乙组同学数学成绩的方差.【分析】(I )先求解出甲、乙两组的数学平均成绩,根据平均成绩相同求解出a 的值; (II )先确定出a 的所有可取值,再求解出满足条件的a 的取值,根据满足条件a 的取值个数与总的可取值个数的比值求解出对应概率;(III )根据数据的分布情况直接判断出甲、乙两组同学数学成绩的方差大小. 解:(I )因为889292272909190271,3333a a x x ++++++====甲乙,且x x =甲乙,所以27227133a +=,所以1a =; (II )记“乙组平均成绩超过甲组平均成绩”为事件A , 因为乙组平均成绩超过甲组平均成绩,所以27127233a +>,所以1a >, 所以a 的可取值有:{}2,3,4,5,6,7,8,9,共8个数,又因为{}0,1,2,3,4,5,6,7,8,9a ∈,集合中共有10个元素,所以()84105P A ==; (III )甲组同学数学成绩的方差大于乙组同学数学成绩的方差. (理由如下:因为889292272909193274,3333x x ++++====甲乙,所以22222722722728892923233339s ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==甲, 22222742742749091931433339s ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==乙,因为321499>,所以22s s >甲乙) 19.设函数21()21x x f x +=- (I )若()2f a =,求实数a 的值;(II )判断函数()f x 的奇偶性,并证明你的结论;(III )若()f x m ≤对于[)1,x ∈+∞恒成立,求实数m 的最小值.答案:(I )2log 3;(II )奇函数,证明见解析;(III )3.【分析】(I )代入x a =,得到21221a a +=-,由此求解出2a 的值,即可求解出a 的值; (II )先判断奇偶性,然后分析定义域并计算()(),f x f x -的数量关系,由此完成证明;(III )先求解出()f x 在[)1,+∞上的最大值,再根据()max m f x ⎡⎤≥⎣⎦求解出m 的最小值.解:(I )因为()2f a =,所以21221a a +=-,所以21222a a +=⋅-且21a ≠, 所以23a =,所以2log 3a =;(II )()f x 为奇函数,证明如下:因为210x -≠,所以定义域为{}0x x ≠关于原点对称, 又因为()()211221211221x x x x x x f x f x --+++-===-=----,所以()f x 为奇函数; (III )因为()2121221212121x x x x x f x +-+===+---, 又因为21x y =-在[)1,+∞上递增,所以221x y =-在[)1,+∞上递减,所以()()1max 211321f x f ==+=⎡⎤⎣⎦-,又因为()f x m ≤对于[)1,x ∈+∞恒成立,所以()max m f x ⎡⎤≥⎣⎦,所以3m ≥,所以m 的最小值为3.点评:思路点睛:判断函数()f x 的奇偶性的步骤如下:(1)先分析()f x 的定义域,若()f x 定义域不关于原点对称,则()f x 为非奇非偶函数,若()f x 的定义域关于原点对称,则转至(2);(2)若()()f x f x =-,则()f x 为偶函数;若()()f x f x -=-,则()f x 为奇函数.20.经销商经销某种农产品,在一个销售季度内,每售出1吨该产品获利润500元,未售出的产品,每1吨亏损300元.经销商为下一个销售季度购进了130吨该农产品.以x (单位:吨,100150x ≤≤)表示下一个销售季度内的市场需求量,y (单位:元)表示下一个销售季度内销售该农产品的利润.(I )将y 表示为x 的函数:(II )求出下一个销售季度利润y 不少于57000元时,市场需求量x 的范围.答案:(I )80039000,10013065000,130150x x y x -≤<⎧=⎨≤≤⎩;(II )[]120150,. 【分析】(I )分情况考虑:100130,130150x x ≤<≤≤,分别求解出每一种情况下y 的表示,由此可得到y 关于x 的分段函数;(II )根据条件分段列出不等式,求解出每一个不等式的解集,由此求解出市场需求量x 的范围.解:(I )当100130x ≤<时,此时130吨的该农产品售出x 吨,未售出()130x -吨, 所以()500300130y x x =--,即80039000y x =-;当130150x ≤≤时,此时130吨的该农产品全部售出,所以500130y =⨯,即65000y =,综上可知:80039000,10013065000,130150x x y x -≤<⎧=⎨≤≤⎩; (II )当100130x ≤<时,令8003900057000x -≥,解得120130x ≤<, 当130150x ≤≤,此时6500057000>符合,所以市场需求量x 的范围是[]120150,. 21.设函数()f x 的定义域为R .若存在常数(0)m m ≠,对于任意x ∈R ,()()f x m mf x +=成立,则称函数()f x 具有性质Γ.记P 为满足性质Γ的所有函数的集合.(I )判断函数y x =和2y =是否属于集合P ?(结论不要求证明)(II )若函数()x g x =,证明:()g x P ∈;(III )记二次函数的全体为集合Q ,证明:P Q =∅.答案:(I )y x =不属于集合P ,2y =属于集合P ;(II )证明见解析;(III )证明见解析.【分析】(I )根据性质Γ的定义判断y x =与2y =是否具有性质Γ,由此判断出函数y x =和2y =是否属于集合P ;(II )先根据定义证明函数()xg x =具有性质Γ,然后即可证明()g x P ∈; (III )将问题转化为证明二次函数不具备性质Γ,先假设二次函数具备性质Γ,然后通过已知条件推出与条件矛盾的结果,由此完成证明.解:(I )y x =不属于集合P ,2y =属于集合P ;(理由如下:设()f x x =,若()()f x m mf x +=,则有x m mx +=,解得0m =,不符题意,所以y x =不具有性质Γ,所以y x =不属于集合P ;设()2f x =,若()()f x m mf x +=,则有22m =,所以1m =,所以2y =具有性质Γ,所以2y =属于集合P )(II )证明如下:因为()x g x =,不妨令()()g x m mg x +=,所以x m x m +=,所以m m =,显然关于m 的方程有解:2m =,所以()xg x =具有性质Γ, 所以()g x P ∈;(III )根据题意可知:P Q =∅⇔二次函数不具备性质Γ,假设存在二次函数()()20f x ax bx c a =++≠具备性质Γ,所以存在常数()0m m ≠对于任意x ∈R 都有()()f x m mf x +=成立,所以存在常数()0m m ≠使()()22a x m b x m c amx bmx cm ++++=++成立,所以存在常数()0m m ≠使()2222ax am b x am bm c amx bmx cm +++++=++成立,所以22a am am b bm am bm c cm =⎧⎪+=⎨⎪++=⎩,解得0,0,1a b m ===,这与假设中0a ≠矛盾,所以假设不成立,所以二次函数都不具备性质Γ,所以P Q =∅.点评:关键点点睛:解答本题第三问的关键是将待证明的问题转化为分析二次函数是否具备性质Γ,再通过“反证”的思想完成证明.。

北京市2020-2021学年高一数学上学期期末考试试题(含解析)

北京市2020-2021学年高一数学上学期期末考试试题(含解析)

北京市东城区2020-2021学年高一数学上学期期末考试试题(含解析)一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x33.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.6.(5分)下列各式正确的是()A.B.C.D.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是.12.(5分)sin的值为.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为.(写出符合条件的一个函数即可)14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有.(注:请写出所有正确结论的序号)四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).2020-2021学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M【分析】利用集合与集合的关系直接求解.【解答】解:∵集合M={0},N={﹣1,0,1},∴M⫋N.故选:C.【点评】本题考查集合的关系的判断,考查交集、并集、子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x3【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=|x|,是偶函数,符合题意;对于B,y=lnx,是对数函数,不是偶函数,不符合题意;对于C,y=e x,是指数函数,不是偶函数,不符合题意;对于D,y=x3,是幂函数,不是偶函数,不符合题意;故选:A.【点评】本题考查函数的奇偶性的判断,关键是掌握常见函数的奇偶性,属于基础题.3.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.【分析】直接利用函数的单调性和子区间之间的关系求出结果.【解答】解:根据函数y=sin x的单调递增区间:[](k∈Z),当k=0时,单调增区间为[],由于为[]的子区间,故选:D.【点评】本题考查的知识要点:函数的单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题”∀x∈A,2x∈B”的否定为∃x∈A,2x∉B,故选:A.【点评】本题主要考查含有量词的命题的否定,比较基础.5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.【分析】直接利用不等式的应用和函数的单调性的应用求出结果.【解答】解:由于a>b,且a和b的正负号不确定,所以选项ACD都不正确.对于选项:B由于函数y=2x为单调递增函数,且a>b,故正确故选:B.【点评】本题考查的知识要点:函数的单调性的应用,不等式的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.(5分)下列各式正确的是()A.B.C.D.【分析】利用正弦函数、余弦函数、正切函数的单调性和诱导公式直接求解.【解答】解:在A中,sin>0>sin=﹣sin,故A错误;在B中,<cos,故B正确;在C中,>,故C错误;在D中,>cos=sin,故D错误.故选:B.【点评】本题考查命题真假的判断,考查正弦函数、余弦函数、正切函数的单调性和诱导公式等基础知识,考查运算求解能力,是基础题.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】可以取特殊值讨论充要性.【解答】解:若a,b为正实数,取a=1,b=1,则a+b=2,则“a,b为正实数”是“a+b>2”的不充分条件;若a+b>2,取a=1,b=0,则b不是正实数,则“a+b>2”是“a,b为正实数''的不必要条件;则“a,b为正实数”是“a+b>2”的既不充分也不必要条件,故选:D.【点评】本题考查命题充要性,以及不等式,属于基础题.8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9【分析】由题意令V=2m/s,0m/s,则可求出耗氧量,求出之比.【解答】解:鲑鱼游速为2m/s时的耗氧量为:令v=2=,即,即,即o=8100,鲑鱼静止时耗氧量为:令v=0=,即,即o'=100,故鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为,故选:C.【点评】本题考查对数求值,属于中档题.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点【分析】直接利用函数的图象和函数的性质及参数的范围求出函数的交点的情况,进一步确定结果.【解答】解:根据函数的解析式画出函数的图象:①对于选项A:当t<0或t≥2时,有0个交点,故正确.②对于选项B:当t=0或时,有1个交点,故正确.③对于选项C:当t=时,只有一个交点,故错误.④对于选项D:当,只有一个交点,故错误.故选:AB.【点评】本题考查的知识要点:函数的图象的应用,利用函数的图象求参数的取值范围,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)【分析】直接利用函数的对称性和函数的单调性的应用求出结果.【解答】解:函数f(x)=4|x|+x2+a,①对于选项A:由于x∈R,且f(﹣x)=f(x),故函数f(x)为偶函数.故选项A正确.②对于选项B:由于x2≥0,所以,故4|x|+x2≥1所以当x=0时a=﹣2时,f(x)<0,故选项B错误.③对于选项C:由于函数f(x)的图象关于y轴对称,在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故f(x)在(﹣∞,﹣1)上单调递减,故选项C正确.④对于选项D:由于函数的图象关于y轴对称,且在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故存在实数a=0时,当x∈(﹣∞,﹣1]∪[1,+∞)时,不等式成立,故选项D正确.故选:ACD.【点评】本题考查的知识要点:函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是(﹣1,1).【分析】解不等式1﹣x2>0即可.【解答】解:令1﹣x2>0,解得﹣1<x<1,即函数的定义域为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查函数定义域的求法及不等式的求解,属于基础题.12.(5分)sin的值为﹣.【分析】原式中的角度变形后,利用诱导公式化简,计算即可得到结果.【解答】解:sin=sin(2π﹣)=﹣sin=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为f(x)=.(写出符合条件的一个函数即可)【分析】由函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,即是符合要求的一个函数.【解答】解:∵函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,∴函数f(x)=()x即是符合要求的一个函数,故答案为:f(x)=()x.【点评】本题主要考查了指数函数的单调性和值域,是基础题.14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.【分析】①利用交集定义直接求解.②利用并集定义直接求解.【解答】解:①设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B.故答案为:A∩B.②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.故答案为:A∪C.【点评】本题考查并集、交集的求法,考查并集、交集定义等基础知识,考查运算求解能力,是基础题.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=0或1 .【分析】结合已知函数解析式,把x=﹣2代入即可求解f(﹣2),结合已知函数解析式及f(t)=1,对t进行分类讨论分别求解.【解答】解:f(x)=则f(﹣2)=2﹣2=,∵f(t)=1,①当t≥1时,可得=1,即t=1,②当t<1时,可得2t=1,即t=0,综上可得t=0或t=1.故答案为:;0或1【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有①②④.(注:请写出所有正确结论的序号)【分析】直接利用函数的图象求出函数的解析式,进一步利用函数的额关系式再利用函数的性质的应用求出结果.【解答】解:浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t ﹣1(a>0且a≠1),函数的图象经过(2,2)所以2=a2﹣1,解得a=2.①当x=0时y=,故选项A正确.②当第8个月时,y=28﹣1=27=128>60,故②正确.③当t=1时,y=1,增加0.5,当t=2时,y=2,增加1,故每月的增加不相等,故③错误.④根据函数的解析式,解得t1=log210+1,同理t2=log220+1,t3=log230+1,所以2t2=2log220+2=log2400+2>t1+t2=log2300+2,所以则2t2>t1+t3.故④正确.故答案为:①②④.【点评】本题考查的知识要点:函数的性质的应用,定义性函数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.【分析】(1)根据题意,求出集合A,进而由补集的性质分析可得答案;(2)根据题意,结合集合间的关系分析可得答案.【解答】解:(1)根据题意,因为A={x|x2+3x+2<0}={x|﹣2<x<﹣1}.因为全集U=R,所以∁U A={x|x≤﹣2或x≥﹣1},(2)根据题意,∁U A={x|x≤﹣2或x≥﹣1},若B⊆∁U A,当m﹣1≥﹣1或m≤﹣2,即m≥0或m≤﹣2,所以m的取值范围为(﹣∞,﹣2]∪[0,+∞).【点评】本题考查集合的补集运算,涉及集合的子集关系,属于基础题.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.【分析】(1)利用函数值,转化求解函数的解析式,推出函数的周期;(2)利用函数的自变量的范围,求出相位的范围,然后求解正弦函数的最值.【解答】解:(1)因为,所以.又因为φ∈,所以φ=.所以.所以f(x)最的小正周期.(2)因为x∈[0,2π],所以.当,即时,f(x)有最大值2,当,即x=2π时,f(x)有最小值.【点评】本题考查函数的周期以及函数的最值的求法,考查转化思想以及计算能力,是中档题.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.【分析】(1)由题意利用任意角的三角函数的定义,同角三角函数的基本关系,求得tanβ的值.(2)由题意利用诱导公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:(1)因为β的终边与单位圆交于点B,B点的纵坐标为,所以.因为,所以.所以.(2)因为α的终边与单位圆交于点A,A点的纵坐标为,所以.因为,所以,故===.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式,属于基础题.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.【分析】(1)定义域为R,然后求出f(﹣x),得f(﹣x)=﹣f(x),所以为奇函数;(2)直接由指数函数的单调性可判断函数f(x)的单调性;(3)不等式变形,由奇函数的性质得出ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立,令关于a的函数g(a)=xa+1﹣x>0在(﹣∞,2]上恒成立,g(a)一定单调递减,所以满足则只需解出x的范围.【解答】解:(1)f(x)为奇函数.因为f(x)定义域为R,,所以f(﹣x)=﹣f(x).所以f(x)为奇函数;(2)在(﹣∞,+∞)是增函数.因为y=3x在(﹣∞,+∞)是增函数,且y=3﹣x在(﹣∞,+∞)是减函数,所以在(﹣∞,+∞)是增函数,(3)由(1)(2)知f(x)为奇函数且f(x)(﹣∞,+∞)是增函数.又因为f(ax﹣1)+f(2﹣x)>0,所以f(ax﹣1)>﹣f(2﹣x)=f(x﹣2).所以ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立.令g(a)=xa+(1﹣x),a∈(﹣∞,2].则只需,解得所以﹣1<x≤0.所以x的取值范围为(﹣1,0].【点评】考查函数的奇函数的判断即函数的单调性,使用中档题.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).【分析】(1)由新定义的元素即可求出f A(1)与f B(1)的值,再分情况求出A*B;(2)对x是否属于集合A,B分情况讨论,即可证明出f A*B(x)=f A(x)•f B(x);(3)利用(2)的结论即可证明出*运算具有交换律和结合律.【解答】解:(1)∵A={1,2,3},B={2,3,4,5},∴f A(1)=﹣1,f B(1)=1,∴A*B={1,4,5};(2)①当x∈A且x∈B时,f A(x)=f B(x)=﹣1,所以x∉A*B.所以f A*B(x)=1,所以f A*B(x)=f A(x)•f B(x),②当x∈A且x∉B时,f A(x)=﹣1,f B(x)=1,所以x∈A*B.所以f A*B(x)=﹣1,所以f A*B(x)=f A(x)•f B(x),③当x∉A且x∈B时,f A(x)=1,f B(x)=﹣1.所以x∈A*B.所以f A*B(x)=﹣1.所以f A*B(x)=f A(x)•f B(x).④当x∉A且x∉B时,f A(x)=f B(x)=1.所以x∉A*B.所以f A*B(x)=1.所以f A*B(x)=f A(x)•f B(x).综上,f A*B(x)=f A(x)•f B(x);(3)因为A*B={x|f A(x)•f B(x)=﹣1},B*A={x|f B(x)•f A(x)=﹣1}={x|f A(x)•f B(x)=﹣1},所以A*B=B*A.因为(A*B)*C={x|f A*B(x)•f C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},A*(B*C)={x|f A(x)•f B*C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},所以(A*B)*C=A*(B*C).【点评】本题主要考查了集合的基本运算,考查了新定义问题,是中档题.。

2020-2021学年北京市昌平区高一(下)期末数学试卷(附答案详解) (1)

2020-2021学年北京市昌平区高一(下)期末数学试卷(附答案详解) (1)

2020-2021学年北京市昌平区高一(下)期末数学试卷一、单选题(本大题共10小题,共50.0分) 1. 在复平面内,复数i1+i 对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. sin23π6=( )A. 12B. −12C. √32D. −√323. 已知角α终边经过点P(−3,y),且tanα=43,则cosα=( )A. −35B. ±35C. 45D. ±454. 已知△ABC 中,∠C =90°,AC =2,BC =1,则AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =( ) A. 2 B. √5 C. 4D. 2√55. 已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则ω,φ分别是( )A. ω=1,φ=−π6 B. ω=2,φ=π6 C. ω=1,φ=−π3 D. ω=2,φ=π36. 在△ABC 中,若a 2+c 2=b 2−√3ac ,则∠B =( )A. π6B. π3C. 2π3D. 5π67. 要得到函数y =3sin(2x −π6)的图象,只需将函数y =3sin2x 的图象( )A. 向右平移π6个单位长度 B. 向左平移π6个单位长度 C. 向右平移π12个单位长度D. 向左平移π12个单位长度8. 已知正四棱锥的侧棱长为2,高为√2.则该正四棱锥的表面积为( )A. 4√3B. 2+4√3C. 4+4√3D. 4+8√39.在平面直角坐标系xOy中,AB⏜,CD⏜,EF⏜,GH⏜是单位圆上的四段弧(如图),点P在其中一段上,角α是以Ox为始边,OP为终边.则“点P在CD⏜上”是“tanα>sinα>cosα”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件10.在棱长为1的正方体ABCD−A1B1C1D1中,M,N分别为AA1,CC1的中点,O为底面ABCD的中心,点P在正方体的表面上运动,且满足NP⊥MO,则下列说法正确的是()A. 点P可以是棱BB1的中点B. 线段NP的最大值为√22C. 点P的轨迹是平行四边形D. 点P轨迹的长度为1+√2二、单空题(本大题共6小题,共30.0分))的定义域是______.11.函数y=3tan(x−π412.设a∈R,复数z=(1−i)(a−i).若复数z是纯虚数,则a=______;若复数z在复平面内对应的点位于实轴上,则a=______.13.已知单位向量a⃗,b⃗ 满足a⃗⋅b⃗ =1,则a⃗与b⃗ 夹角的大小为______;|a⃗−2b⃗ |=______.214.已知l是平面β外的一条直线.给出下列三个论断:①α⊥β;②l⊥α;③l//β.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:______.15.已知sinα+3cosα=0,则sin2α+cos2α=______.16. 设向量m ⃗⃗⃗ =(4cos x 2,0),n ⃗ =(sin x2,1),函数f(x)=m ⃗⃗⃗ ⋅n ⃗ .若函数f(x)的定义域为[a,b],值域为[−1,2].给出下列四个结论: ①π3; ②5π6;③π; ④7π6.则b −a 的值可能是______.(填上所有正确的结论的序号) 三、解答题(本大题共5小题,共70.0分) 17. 已知sinα=35,且α是第二象限角.(Ⅰ)求sin2α及tan2α的值; (Ⅱ)求cos2αsin(π4−α)的值.18. 已知向量a ⃗ =(1,2),b ⃗ =(3,−2).(Ⅰ)求|a ⃗ −b ⃗ |;(Ⅱ)求向量a ⃗ 与向量b ⃗ 的夹角θ的余弦值;(Ⅲ)若|c ⃗ |=√10,且(2a ⃗ +c ⃗ )⊥c ⃗ ,求向量a ⃗ 与向量c ⃗ 的夹角.19.在△ABC中,a=73c,sinC=3√314.再从条件①、条件②这两个条件中选择一个作为已知,求:(Ⅰ)∠A的大小;(Ⅱ)cosB和b的值.条件①:b−a=1;条件②:ccosA=−32.20.如图,在直四棱柱ABCD−A1B1C1D1中,AB//CD,AB⊥AD,E为AA1上一点,AB=AD=AE=1,CD=2.(Ⅰ)求证:BE⊥AD;(Ⅱ)求证:BE//平面CDD1C1;(Ⅲ)设平面EBC与棱DD1交于点F,确定点F的位置,并求出线段DF的长度.21.已知函数f(x)=sinωx2cosωx2+√3cos2ωx2−√32(ω>0).(Ⅰ)若f(x)的最小正周期为π,求f(x)的单调递增区间;(Ⅱ)若f(x)≥√32在[0,π3]上恒成立,求实数ω的取值范围;(Ⅲ)若ω=1,g(x)=10f(x−π3)−8,证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.答案和解析1.【答案】A【解析】解:∵i1+i =i(1−i)(1+i)(1−i)=12+12i,∴复数i1+i 对应的点的坐标为(12,12),位于第一象限.故选:A.利用复数代数形式的乘除运算化简,求出复数所对应点的坐标得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.【答案】B【解析】解:sin23π6=sin(4π−π6)=sin(−π6)=−sinπ6=−12.故选:B.利用三角函数的诱导公式化简求解即可.本题考查了三角函数的化简求值问题,主要考查了三角函数诱导公式的应用,考查了化简运算能力,属于基础题.3.【答案】A【解析】解:∵角α终边经过点P(−3,y),且tanα=43,∴tanα=43=y−3,y=−4,∴cosα=√(−3)2+(−4)2=−35.故选:A.根据已知条件,结合任意角的三角函数的定义,即可求解.本题主要考查了任意角的三角函数的定义,属于基础题.4.【答案】C【解析】解:在Rt △ABC 中,AB =√AC 2+BC 2=√5, ∴cosA =AC AB=√5,∴AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA =√5×2√5=4.故选:C .根据平面向量的数量积运算法则,即可得解.本题考查平面向量的数量积运算,考查运算求解能力,属于基础题.5.【答案】D【解析】解:由图象可得最小正周期T =4(π3−π12)=π, 所以ω=2πT=2,由五点作图法可得2×π12+φ=π2,可得φ=π3. 故选:D .由图象可求得最小正周期T ,从而可求得ω,再由五点作图法可求得φ,从而可得答案. 本题主要考查由y =Asin(ωx +φ)的部分图象确定其解析式,考查运算求解能力,属于基础题.6.【答案】D【解析】解:因为a 2+c 2=b 2−√3ac , 所以由余弦定理可得cosB =a 2+c 2−b 22ac=−√3ac 2ac=−√32, 因为B ∈(0,π), 所以B =5π6.故选:D .由已知利用余弦定理可得cosB =−√32,结合范围B ∈(0,π),可求B 的值.本题主要考查了余弦定理在解三角形中的应用,属于基础题.7.【答案】C)的图象,只需将函数y=3sin2x的图象向右【解析】解:要得到函数y=3sin(2x−π6个单位长度即可,平移π12故选:C.由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.8.【答案】C【解析】解:如图,由题可知正四棱锥V−ABCD中,VO=√2,VB=2,则OB=√VB2−VO2=√4−2=√2,故AB=√2OB=2,×4+2×2=4+所以该正四棱锥的表面积为4×√344√3故选:C.根据条件作图可求得该四棱锥的底面边长,进而可求得其表面积.本题考查棱锥的结构特征,考查空间想象能力和思维能力,数形结合思想,属于基础题.9.【答案】A【解析】解:①若点P在CD⏜上,根据题意作出如下图形:过点P作PM⊥x轴,垂足为M,∵点P在CD⏜上,且∠α=∠xOP,∴1>MP>OM>0,>0,则可得:sinα=MP>0,cosα=OM>0,tanα=MPOM故可得:tanα>sinα>cosα,∴充分性成立,②若点P在GH⏜上,根据题意作出如下图形:过点P作PN⊥x轴,垂足为N,∵点P在GH⏜上,且∠α=∠xOP,∴1>ON>PN>0,>0,则可得:sinα=−NP<0,cosα=−ON<0,tanα=NP0N故可得:tanα>sinα>cosα,∴必要性不成立,∴点P在CD⏜上是tanα>sinα>cosα的充分不必要条件.故选:A.利用三角函数的定义,结合充分必要条件的定义可得正确结论.本题考查了三角函数的定义,解题的关键是能够利用数形结合的思想,作出图形,找到sinα,cosα,tanα所对应的三角函数线进行比较,属于中档题.10.【答案】B【解析】解:如图,连接AC ,A 1C ,取CD 中点F ,CB 中点E ,连接NF ,NE ,EF . 因为M ,O 分别为AA 1,AC 的中点,所以MO//A 1C .在正方体中,A 1C ⊥平面C 1DB ,又平面NEF//平面C 1DB ,所以A 1C ⊥平面NEF . 所以,MO ⊥平面NEF ,故P 点的轨迹为△NEF . 所以P 点的轨迹长度为△NEF 的周长为3√22,NP 的最大值为NE ,即为√22.故选:B .过N 点作与直线MO 垂直的平面,该平面与正方体表面的交线即为P 点的轨迹.根据正方体的性质得MO//A 1C ,A 1C ⊥平面C 1DB ,所以MO ⊥平面C 1DB ,又因为N 为CC 1中点,故分别取CD 中点F ,CB 中点E ,则P 点的轨迹为△NEF .本题考查正方体的性质,考查线面垂直和面面平行的应用,属于中档题.11.【答案】{x|x ≠kπ+3π4,k ∈ Z}【解析】解:令x −π4≠π2+kπ,k ∈Z , 解得x ≠kπ+3π4,k ∈Z ,所以函数y =3tan(x −π4)的定义域为{x|x ≠kπ+3π4,k ∈ Z},故答案为:{x|x ≠kπ+3π4,k ∈ Z}.利用正切函数的定义域以及整体代换思想即可求解.本题考查了正切函数的定义域问题,考查了学生的运算能力,属于基础题.12.【答案】1 −1【解析】解:z =(1−i)(a −i)=(a −1)+(a +1)i , 若复数z 是纯虚数,则{a −1=0a +1≠0,∴a =1,若复数z 在复平面内对应的点位于实轴上,则a +1=0,∴a =−1. 故答案为:1,−1.利用复数的运算法则、几何意义即可得出.本题考查了复数的运算法则、几何意义,属于基础题.13.【答案】π3 √3【解析】解:根据题意,设a ⃗ 与b ⃗ 夹角为θ,单位向量a ⃗ ,b ⃗ 满足a ⃗ ⋅b ⃗ =12,则有a ⃗ ⋅b ⃗ =cosθ=12, 又由0≤θ≤π,则θ=π3,|a ⃗ −2b ⃗ |2=a ⃗ 2+4b ⃗ 2−4a ⃗ ⋅b ⃗ =3,则|a⃗ −2b ⃗ |=√3; 故答案为:π3,√3.根据题意,设a ⃗ 与b ⃗ 夹角为θ,由数量积的计算公式可得a ⃗ ⋅b ⃗ =cosθ=12,求出cosθ的值,即可得第一空答案;又由|a ⃗ −2b ⃗ |2=a ⃗ 2+4b ⃗ 2−4a ⃗ ⋅b ⃗ ,代入数据即可得答案.本题考查向量数量积的计算,涉及向量夹角和模的计算,属于基础题.14.【答案】①②⇒③或②③⇒①【解析】解:若α⊥β,l⊥α,l是平面β外的一条直线,则由线面垂直的性质和线面平行的判定定理得l//β.∴①②⇒③是真命题;若l⊥α,l//β,则由面面垂直的判定定理得α⊥β.∴②③⇒①是真命题.故答案为:①②⇒③或②③⇒①.若α⊥β,l⊥α,l是平面β外的一条直线,则由线面垂直的性质和线面平行的判定定理得l//β;若l⊥α,l//β,则由面面垂直的判定定理得α⊥β.本题考查正确命题的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力,是中档题.15.【答案】−12【解析】解:由sinα+3cosα=0,得sinα=−3cosα,即tanα=−3,∴sin2α+cos2α=2sinαcosα+cos2αsin2α+cos2α=2tanα+1tan2α+1=−6+1(−3)2+1=−12.故答案为:−12.由已知求得tanα=−3,再由同角三角函数基本关系式及倍角公式化弦为切求解.本题考查三角函数的化简求值,考查同角三角函数基本关系式与倍角公式的应用,是基础题.16.【答案】②③④【解析】解:∵向量m⃗⃗⃗ =(4cos x2,0),n⃗=(sin x2,1),函数f(x)=m⃗⃗⃗ ⋅n⃗=4sin x2cos x2+0=2sinx.若函数f(x)的周期为2π,定义域为[a,b],值域为[−1,2],故当a=2kπ−π6,b=2kπ+π2,k∈Z时,b−a取得最小值为2π3;故当a=2kπ−π6,b=2kπ+7π6,k∈Z时,b−a取得最大值为4π3,故答案为:②③④.由题意利用两个向量的数量积公式、二倍角公式化简函数的解析式,再利用正弦函数的图象和性质,求得b −a 的最小值和最大值,从而得出结论.本题主要考查两个向量的数量积公式,二倍角公式,正弦函数的图象和性质,属于中档题.17.【答案】解:(Ⅰ)已知sinα=35,且α是第二象限角.∴cosα=−45,tanα=−34.则sin2α=2sinαcosα=−2425,tan2α=2tanα1−tan 2α=−247; (Ⅱ)cos2αsin(π4−α)=cos 2α−sin 2αsin π4cosα−cos π4sinα=√22cosα−√22sinα=√22(cosα−sinα)=√22=−√25.【解析】(Ⅰ)由已知求得cosα,tanα的值,再由同角三角函数基本关系式及倍角公式求解;(Ⅱ)展开二倍角的余弦及两角差的正弦,整理后结合已知及(Ⅰ)中求得的cosα值得答案. 本题考查三角函数的化简求值,考查同角三角函数基本关系式、倍角公式及两角差的三角函数,是基础题.18.【答案】解:(Ⅰ)因为a ⃗ =(1,2),b ⃗ =(3,−2), 所以a ⃗ −b ⃗ =(−2,4).所以|a ⃗ −b ⃗ |=√(−2)2+42=2√5.(Ⅱ)因为a ⃗ ⋅b ⃗ =1×3+2×(−2)=−1,|a ⃗ |=√12+22=√5,|b ⃗ |=√32+(−2)2=√13, 所以cosθ=a⃗ ⋅b ⃗ |a ⃗ ||b⃗ |=√5×√13=−√6565. (Ⅲ)因为(2a ⃗ +c ⃗ )⊥c ⃗ , 所以(2a⃗ +c ⃗ )⋅c ⃗ =0. 即2a ⃗ ⋅c ⃗ +c ⃗ 2=0.所以2|a ⃗ ||c ⃗ |cos〈a ⃗ ,c ⃗ 〉+|c ⃗ |2=0. 即2×√5×√10×cos〈a ⃗ ,c ⃗ 〉+10=0,所以cos〈a⃗,c⃗ 〉=−√22.因为〈a⃗,c⃗ 〉∈[0,π],所以〈a⃗,c⃗ 〉=3π4.【解析】(Ⅰ)根据题意,求出a⃗−b⃗ 的坐标,进而计算可得答案;(Ⅱ)根据题意,由向量夹角公式计算可得答案;(Ⅲ)根据题意,由向量垂直的判断方法可得(2a⃗+c⃗ )⋅c⃗=0.即2a⃗⋅c⃗+c⃗2=0,据此计算可得答案.本题考查向量数量积的性质以及应用,涉及向量夹角、向量模的计算,属于基础题.19.【答案】解:选择①:b−a=1.(1)在△ABC中,因为a=73c,sinC=3√314,所以由正弦定理得sinA=ac sinC=√32.因为b−a=1,所以a<b.所以0<∠A<π2.所以∠A=π3.(Ⅱ)因为a=73c,所以a>c.所以0<∠C<π2.因为sinC=3√314,所以cosC=√1−sin2C=1314.所以cosB=cos[π−(A+C)]=−cos(A+C)=sinAsinC−cosAcosC=√32×3√314−1 2×1314=−17.法一:所以sinB=√1−cos2B=4√37.由正弦定理得4√37=√32,即7b=8a.因为b−a=1,所以b=8.法二:因为b−a=1,所以a=b−1.因为a=73c,所以c=37a=37(b−1).所以b2=a2+c2−2accosB=(b−1)2+949(b−1)2−2(b−1)×37(b−1)×(−17).所以49b2=64(b−1)2.所以7b=8(b−1).所以b=8.(或15b2−128b+64=0.即(15b−8)(b−8)=0)所以b=815或b=8.因为b−a=1,所以b=815(舍).所以b=8.解:选择②:ccosA=−32.(Ⅰ)在△ABC中,因为a=73c,sinC=3√314,所以由正弦定理得sinA=ac sinC=√32.在△ABC中,ccosA=−32,所以π2<∠A<π.所以∠A=2π3.(Ⅱ)因为a=73c,所以a>c.所以0<∠C<π2.因为sinC=3√314,所以cosC=√1−sin2C=1314.所以cosB=cos[π−(A+C)]=−cos(A+C)=sinAsinC−cosAcosC=√32×3√314+1 2×1314=1114.法一:所以sinB=√1−cos2B=5√314.因为ccosA=−32,所以c=−32−12=3.由正弦定理得5√314=3√314,所以b=5.法二:因为ccosA=−32,所以c=−32−12=3.所以a=73c=7.所以b2=a2+c2−2accosB=49+9−2×7×3×1114=25.所以b=5.【解析】选择①:b−a=1.(1)在△ABC中,由a=73c,sinC=3√314,结合正弦定理得sinA.由b−a=1,得a<b,推出∠A.(Ⅱ)由a=73c,推出0<∠C<π2.由sinC=3√314,推出cos C,cos B,再由正弦定理(解法1)或余弦定理(解法2)可得b.选择②:ccosA=−32.(Ⅰ)在△ABC中,因为a=73c,sinC=3√314,结合正弦定理得sinA.由b−a=1,得a<b,推出∠A.(Ⅱ)因为a=73c,推出0<∠C<π2.由sinC=3√314,推出cos C,cos B,再由正弦定理(解法1)或余弦定理(解法2)可得b.本题考查正弦定理,余弦定理的应用,属于中档题.20.【答案】(Ⅰ)证明:在直四棱柱ABCD−A1B1C1D1中,因为AA1⊥平面ABCD,AD⊂平面ABCD,所以AA1⊥AD.因为AB⊥AD,AB∩AA1=A,所以AD⊥平面ABB1A1.因为BE⊂平面ABB1A1,所以BE⊥AD.(Ⅱ)证明:法一:因为AB//CD,AA1//DD1,AB∩AA1=A,CD∩DD1=D,所以平面ABB1A1//平面CDD1C1.因为BE⊂平面ABB1A1,所以BE//平面CDD1C1.法二:取CD中点H,连接BH.因为AB=1,CD=2,AB//CD,所以AB//HD且AB=HD.所以ABHD是平行四边形.所以BH//AD且BH=AD.在DD1上取点G,使DG=AE=1,连接EG.所以AE//DG且AE=DG.所以ADGE是平行四边形.所以EG//AD且EG=AD.所以BH//EG且BH=EG.所以BEGH是平行四边形.所以BE//GH.因为BE⊄平面CDD1C1,GH⊂平面CDD1C1,所以BE//平面CDD1C1.(Ⅲ)解:法一:延长CB,DA交于点G,连结GE,延长GE交DD1于点F,连接CF.因为AB//CD,AB=1,CD=2,所以A,B分别为GD,GC的中点.因为AE//DF,所以E为GF的中点.所以DF=2AE=2.法二:由(Ⅱ)法二,在平面CDD1C1中作CF//GH,交DD1于点F,连接EF.所以CF//BE.所以点F即为平面EBC与棱DD1的交点.因为H为CD中点,所以G为DF中点.因为DG=AE=1,所以DF=2.【解析】(Ⅰ)推导出AD⊥平面ABB1A1,利用线面垂直的性质定理即可得证;(Ⅱ)法一:推导出平面ABB1A1//平面CDD1C1,利用面面平行的性质定理即可得证;法二:取CD中点H,连接BH,推导出BH//AD且BH=AD.在DD1上取点G,使DG=AE= 1,连接EG,推导出EG//AD且EG=AD,从而可得BEGH是平行四边形,可得BE//GH,再利用线面平行的判定定理即可得证;(Ⅲ)法一:延长CB,DA交于点G,连结GE,延长GE交DD1于点F,连接CF,推导出E为GF的中点,即可求得DF的长度.法二:由(Ⅱ)法二,在平面CDD1C1中作CF//GH,交DD1于点F,连接EF,推导出G为DF中点,即可求得DF的长度.本题主要考查线线垂直的判定,线面平行的判定,线段长的求法,考查空间想象能力与逻辑推理能力,属于中档题.21.【答案】解:(Ⅰ)因为f(x)=sinωx2cosωx2+√3cos2ωx2−√32=12×2sinωx2cosωx2+√3×1+cosωx2−√32=12sinωx+√32cosωx=sin(ωx+π3),因为f(x)的最小正周期为π,所以ω=2,所以f(x)=sin(2x+π3),因为函数y=sinx的单调递增区间为[2kπ−π2,2kπ+π2](k∈Z),由2kπ−π2≤2x+π3≤2kπ+π2,得kπ−5π12≤x≤kπ+π12,所以f(x)的单调递增区间为[kπ−5π12,kπ+π12](k ∈Z); (Ⅱ)由(Ⅰ)可知,f(x)=sin(ωx +π3),要使f(x)≥√32在[0,π3]上恒成立,只需sin(ωx +π3)≥√32在[0,π3]上恒成立,因为x ∈[0,π3],ω>0, 所以ωx +π3∈[π3,πω3+π3],当ωx +π3=π3时,即x =0时,sin(ωx +π3)=√32;当ωx +π3=2π3时,sin(ωx +π3)=√32, 所以要使f(x)≥√32在[0,π3]上恒成立,只需π3<πω3+π3≤2π3,即0<ω≤1,所以ω的取值范围是(0,1];(Ⅲ)要证明存在无穷多个互不相同的正整数x 0,使得g(x 0)>0,就是要证明存在无穷多个互不相同的正整数x 0,使得10sinx 0−8>0,即sinx 0>45,由45<√32可知,存在0<α0<π3,使得sinα0=45, 由正弦函数的性质可知,当x ∈(α0,π−α0)时,均有sinx >45, 因为y =sinx 的周期为2π,所以当x ∈(2kπ+α0,2kπ+π−α0)(k ∈Z)时,均有sinx >45, 因为对任意的整数k ,(2kπ+π−α0)−(2kπ+α0)=π−2α0, 因为π3<π−2α0<π,所以对任意的正整数k ,都存在正整数x k ∈(2kπ+α0,2kπ+π−α0)(k ∈Z),使得sinx k >45,亦即存在无穷多个互不相同的正整数x 0,使得g(x 0)>0.【解析】(Ⅰ)利用三角恒等变换将函数f(x)的解析式进行化简变形,然后利用三角函数的周期公式求出ω,由正弦函数的单调性进行分析求解即可;(Ⅱ)由题意可知,sin(ωx +π3)≥√32在[0,π3]上恒成立,利用三角函数的性质,转化为π3<πω3+π3≤2π3,求解即可;(Ⅲ)将问题转化为证明存在无穷多个互不相同的正整数x0,使得sinx0>45,利用特殊角的三角函数以及正弦函数的性质可知,存在0<α0<π3,使得sinα0=45,结合周期性可知,当x∈(2kπ+α0,2kπ+π−α0)(k∈Z)时,均有sinx>45,即可证明.本题考查了函数与不等式的综合应用,涉及可三角函数恒等变换的应用,三角函数周期公式的应用,三角函数的单调性的求解,考查了逻辑推理能力与化简运算能力,属于中档题.第21页,共21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌平区2020-2021学年第一学期高一年级期末质量抽测数学试卷第一部分(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项)1. 已知集合{0,1,2,4}A =,{1,2,3}B =,则A B =( ) A. {0,1,2,3,4} B. {3} C. {1,2} D. {0,4}C根据题中条件,由交集的概念,可直接得出结果. 因为集合{0,1,2,4}A =,{1,2,3}B =, 所以{1,2}A B =.故选:C.2. 下列函数中,既是奇函数又在(0,)+∞上是增函数的是( ) A. ()2-=x f x B. 3()f x x = C. ()lg f x x =D. 1()f x x=B将选项中的函数逐一检验,可得答案. 对于A ,()2-=x f x 不是奇函数,错误;对于B ,3()f x x =既是奇函数又在(0,)+∞上是增函数,正确; 对于C ,()lg f x x =不是奇函数,错误;对于D ,1()f x x=在(0,)+∞上是减函数,错误;故选:B3. 已知点(1,1),(3,4)A B -,则||AB =( )A. B. 5 C. D. 29C首先求出AB 的坐标,再根据向量模的坐标公式计算可得; 因为(1,1),(3,4)A B -,所以()()()3,41,12,5AB =--=所以22AB =故选:C4. 函数()f x 的图象向右平移一个单位长度,所得图象与曲线e x y =关于直线y x =对称,则()f x =( )A. 1e x -B. 1e x +C. ln(1)x -D. ln(1)x +D先得出曲线e x y =关于直线y x =对称的曲线方程,再由换元法求出函数()f x 的解析式. 曲线e x y =关于直线y x =对称的曲线为ln y x =,即(1)ln f x x -= 令1,1t x x t =-=+,则ln(1)()f t t +=,即()ln(1)f x x =+故选:D关键点睛:解决本题时,关键是由同底的指数函数和对数函数关于直线y x =对称,再由换元法求出解析式.5. 已知矩形ABCD 中,13AE AB =,若AD a =,AB b =,则CE =( )A .23a b -+B.23a b -- C. 23a b +D. 23a b -B先由题中条件,得到13AE AB =,再由平面向量的线性运算,用AD 和AB 表示出CE ,即可得出结果.因为13AE AB =,所以13AE AB =, 所以()122333CE AE AC AB AB AD AB AD b a =-=-+=--=--.故选:B.6. 2020年11月5日—11月10日,在上海国家会展中心举办了第三届中国国际进口博览会,其中的“科技生活展区”设置了各类与人民生活息息相关的科技专区.现从“高档家用电器”、“智能家居”、“消费电子”、“服务机器人”、“人工智能及软件技术”五个专区中选择两个专区参观,则选择的两个专区中包括“人工智能及软件技术”专区的概率是( ) A.110B.310C.25D.35先分别对五个专区作标记,列举出总的基本事件,以及满足“选择的两个专区中包括人工智能及软件技术专区”所对应的基本事件,基本事件的个数比即为所求概率.分别记“高档家用电器”、“智能家居”、“消费电子”、“服务机器人”、“人工智能及软件技术” 五个专区为A 、B 、C 、D 、E ;从这五个专区中选择两个专区参观,所包含的基本事件有:AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,共10个基本事件;选择的两个专区中包括“人工智能及软件技术”专区(即E 专区),所对应的基本事件有:AE ,BE ,CE ,DE ,共4个基本事件;因此,选择的两个专区中包括“人工智能及软件技术”专区的概率是42105P ==.故选:C. 7. 已知23x =,28log 9y =,则2x y +=( )A. 3B. 4C. 8D. 9A根据指对运算化简2log 3x =,再根据对数运算法则计算2x y +的值.223log 3x x =⇔=,28log 9y = 222228822log 3log log 3log 8399x y ⎛⎫∴+=+=⨯== ⎪⎝⎭.故选:A. 8. 某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[90,100],样品数据分组为[90,92),[92,94),[94,96),[96,98),[98,100].已知样本中产品净重小于94克的个数为36,则样本中净重大于或等于92克并且小于98克的产品的个数是( )A. 45B. 60C. 75D. 90先得出[90,92),[92,94),[94,96),[96,98)对应的频率,再由净重小于94克的个数为36,求出样本容量,最后由[92,94),[94,96),[96,98)对应的频率得出答案.[90,92),[92,94),[94,96),[96,98)对应的频率分别为:0.1,0.2,0.3,0.25设样本容量为n因为净重小于94克的个数为36,所以()0.10.236n +=,解得120n =则样本中净重大于或等于92克并且小于98克的产品的个数为()0.20.30.2512090++⨯=故选:D9. 已知四边形ABCD 中,//AB CD ,则 “||||AC BD =”是“四边形ABCD 是矩形”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件B根据充分条件,必要条件定义即可判断.解:充分性:在四边形ABCD 中,//AB CD ,||||AC BD =,则四边形ABCD 为平行四边形,不一定是矩形;必要性:四边形ABCD 是矩形,则一定有||||AC BD =;故“||||AC BD =”是“四边形ABCD 是矩形”的必要而不充分条件.故选:B . 10. 已知函数2()f x x k .若存在实数,m n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为( )A. (1,0]-B. (1,)-+∞C. (2,0]-D. (2,)-+∞A由函数解析式可得函数在[)0,+∞上单调递增,依题意可得f f ⎧=⎪⎨=⎪⎩为方程220--=x x k 的两不相等的非负实数根,利用根的判别式及韦达定理计算可得; 解:因2()f x x k ,所以2()f x x k 在[)0,+∞上单调递增,要使得函数()f x在区间上的值域为,所以f f ⎧=⎪⎨=⎪⎩,即m k n k ⎧-=⎪⎨-=⎪⎩220--=x x k 的两不相等的非负实数根,所以()()2122400k x x k ⎧∆=--⨯->⎪⎨=-≥⎪⎩,解得10k -≤<,即(]1,0k ∈-故选:A 第二部分(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11. 已知命题2:(2,),4p x x ∀∈+∞>,则p ⌝为_______.2(2,),4x x ∃∈+∞≤根据全称命题的否定,可直接得出结果.命题2:(2,),4p x x ∀∈+∞>的否定为p ⌝:2(2,),4x x ∃∈+∞≤. 故答案为:2(2,),4x x ∃∈+∞≤12. 已知函数3x y =,则函数在区间[1,3]上的平均变化率为_______ 12根据平均变化率的定义计算可得答案. 由定义可知,平均变化率为()()3127312312f f --==-. 13. 已知1x >,则11y x x =+-的最小值为_____ ,当y 取得最小值时x 的值为______ . (1). 3 (2). 2 分析】利用基本不等式求出最小值以及y 取得最小值时x 的值.10x ->,11111311y x x x x ∴=+=-++≥=-- 当且仅当2x =时取等号 故答案为:3;214. 已知向量(1,)a k =,(2,2)b =,且a b +与a 共线,则实数k =______ .1先得出a b +,再根据向量共线的坐标表示列出方程,即可求出结果. 因为向量(1,)a k =,(2,2)b =,所以(3,2)a b k +=+, 又a b +与a 共线,所以3(2)0k k -+=,解得1k =. 故答案为:115. 某学校开展了“国学”系列讲座活动,为了了解活动效果,用分层抽样的方法从高一年级所有学生中抽取10人进行国学素养测试,这10名同学的性别和测试成绩 (百分制) 的茎叶图如图所示.则男生成绩的75%分位数为______;已知高一年级中男生总数为80人,试估计高一年级学生总数为________ .(1). 77.5 (2). 200根据75%分位数的求法,结合题中数据,即可得答案;根据分层抽样的定义,即可求得高一年级学生总数.将男生成绩从小到大排列可得:64、76、77、78,共4个数据,且475%3⨯=, 所以男生成绩的75%分位数为777877.52+=; 设高一年级学生总数为n ,因为用分层抽样方法抽取10人中,男生有4人,且高一年级中男生总数为80人, 所以48010n=,解得200n =, 故答案为:77.5;200.16. 已知函数12,? ,()2,.x x a f x a x x a -⎧<⎪=⎨-≥⎪⎩(Ⅰ)若1a =,则函数()f x 的零点是________;(Ⅱ)如果函数()f x 满足对任意1(,)x a ∈-∞,都存在2(,)x a ∈+∞,使得21()()f x f x =,称实数a为函数()f x 的包容数.在给出的①12;② 1;③ 32三个数中,为函数()f x 的包容数是________.(填出所有正确答案的序号) (1). 2 (2). ②③(Ⅰ)根据函数解析式,令()0f x =,再分类讨论,分别计算可得;(Ⅱ)由题意可得1()f x 的值域为2()f x 的值域的子集,分别讨论三种情况,由指数函数的单调性和一次函数的单调性,求得值域,即可判断.解:(Ⅰ)当1a =,12,1,()2, 1.x x f x x x -⎧<⎪=⎨-≥⎪⎩,令()0f x =,即1120x x -<⎧⎨=⎩或120x x ≥⎧⎨-=⎩解得2x =,故函数的零点为2(Ⅱ)由题意可得1()f x 的值域为2()f x 的值域的子集,当12a =时,由12x <时,112()20,2x f x --⎛⎫=∈ ⎪⎝⎭;由12x 时,1()1,2f x x ⎛⎤=-∈-∞ ⎥⎝⎦, 1210,2,2-⎛⎫⎛⎤-∞ ⎪ ⎥⎝⎦⎝⎭,不满足题意;当1a =时,由1x <时,1()2(0,1)x f x -=∈;由1x 时,(]()2,1f x x =-∈-∞,(0,1)(⊆-∞,1],满足题意;当32a =时,由32x <时,112()20,2x f x -⎛⎫=∈ ⎪⎝⎭,; 由32x 时,3()3,2f x x ⎛⎤=-∈-∞ ⎥⎝⎦, 1230,2,2⎛⎫⎛⎤⊆-∞ ⎪ ⎥⎝⎦⎝⎭,满足题意.综上可得函数()f x 的包容数是②③. 故答案为:2;②③本题考查函数的零点问题和函数的任意性、存在性问题解法,注意运用转化思想和函数的单调性,考查化简运算能力.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤)17. 已知全集=U R ,{|2A x x a =≤-或}x a ≥,{}250B x x x =-<.(I )当1a =时,求A B ,A B ,()U C A B ⋂;(II )若A B B =,求实数a 的取值范围.(I ){}|15A B x x ⋂=≤<,{|1A B x x ⋃=≤-或}0x >,{}()|01U C A B x x ⋂=<<;(II )7a ≥或0a ≤(I )利用集合的交并补运算的定义求解即可;(II )A B B =,即B A ⊆,列不等式可得实数a 的取值范围.【详解】(I )当1a =时,{|1A x x =≤-或}1x ≥,{}{}250|05B x x x x x =-<=<<,则{}|15A B x x ⋂=≤<,{|1A B x x ⋃=≤-或}0x >,{}|11U C A x x =-<<,{}()|01U C A B x x ∴⋂=<<;(II )A B B =,即B A ⊆ 则25a -≥或0a ≤,即实数a 的取值范围是7a ≥或0a ≤ 18. 已知关于x 的方程222(1)30x m x m -++-=有两个不等实根.(Ⅰ)求实数m 的取值范围; (Ⅱ)设方程的两个实根为12,x x ,且21212()()120x x x x +-+-=,求实数m 的值;(Ⅲ)请写出一个整数m 的值,使得方程有两个正整数的根.(结论不需要证明) (Ⅰ)()2,-+∞;(Ⅱ)1m =;(Ⅲ)6m =(Ⅰ)依题意0∆>,解得即可;(Ⅱ)利用韦达定理得到()1221x x m +=+,再代入方程,解得即可;(Ⅲ)依题意找出合适的m 即可;解:(Ⅰ)因为方程222(1)30x m x m -++-=有两个不相等实数根,所以[]()222(1)430m m ∆=-+-->,即240m +>,解得2m >-,即()2,m ∈-+∞ (Ⅱ)因为方程222(1)30x m x m -++-=的两个实根为12,x x ,所以()1221x x m +=+,2123x x m =-,又21212()()120x x x x +-+-=,所以()()22121120m m +-+-=⎡⎤⎣⎦,解得1m =或52m =-,又()2,m ∈-+∞,所以1m =(Ⅲ)当6m =时,方程214330x x -+=,解得111x =,23x =满足条件;19. 某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表:(Ⅰ)试根据上述数据,求这个班级女生在该周的平均锻炼时长;(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率; (Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s >(Ⅰ)由表中数据计算平均数即可;(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可;(Ⅲ)根据数据的离散程度结合方差的性质得出2212s s >(Ⅰ)这个班级女生在该周的平均锻炼时长为53687682911306.53862120⨯+⨯+⨯+⨯+⨯==++++小时(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有3人,记为,,a b c ,女生有2人,记为,A B 从中任选2人的所有情况为{,},{,},{,},{,}a b a c a A a B ,{,},{,},{,}b c b A b B ,{,},{,},{,}c A c B A B ,共10种,其中选到男生和女生各1人的共有6种故选到男生和女生各1人的概率63105P == (Ⅲ)2212s s >关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.20. 已知函数1()log (02af x a x =>+且1)a ≠. (1)试判断函数()f x 的奇偶性; (2)当2a =时,求函数()f x 的值域;(3)若对任意x ∈R ,()1f x ≥恒成立,求实数a 的取值范围.(1)偶函数;(2)(]1-∞-,;(3)112⎡⎫⎪⎢⎣⎭,.(1)先求得函数的定义域为R ,再由()()f x f x -=,可判断函数()f x 是奇偶性;(2)由110022x x ≥<≤+,,所以2211()log log 122f x x =≤=-+,以及对数函数的单调性可得函数()f x 的值域;(3)对任意x ∈R ,()1f x ≥恒成立,等价于[]min ()1f x ≥,分01a <<,和>1a ,分别求得函数的最值,可求得实数a 的取值范围. (1)因为1()log (02af x a x =>+且1)a ≠,所以其定义域为R ,又11()log log ()22aa f x f x x x -===-++,所以函数()f x 是偶函数; (2)当2a =时,21()log 2f x x =+,因为110022x x ≥<≤+,,所以2211()log log 122f x x =≤=-+, 所以函数()f x 的值域为(]1-∞-,; (3)对任意x ∈R ,()1f x ≥恒成立,等价于[]min ()1f x ≥,当01a <<,因为110022x x ≥<≤+,,所以11()log log 22a a f x x =≥+,所以1log 12a ≥,解得112a ≤<, 当>1a ,因为110022x x ≥<≤+,,所以11()log log 22a a f x x =≤+,所以函数()f x 无最小值,所以此时实数a 不存在,综上得:实数a 的取值范围为112⎡⎫⎪⎢⎣⎭,. 方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可); ② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.1121. 已知集合12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥.对于1212(,,,),(,,,)n n n A a a a B b b b S ==∈,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---;A 与B 之间的距离为1(,)||ni i i d A B a b ==-∑.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -; (2)若对于任意的,,n A B C S ∈,有n A B S -∈,求k 的值并证明:(,)(,)d A C B C d A B --=. (1)()1,1,0,1,1;4;(2)0k =;证明见解析. (1)直接代入计算A B -和(,)d A B ;(2)根据{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,可计算得0k =;然后表示出()()1|()|,ni i i i i a d A C B C c b c =-----=∑,分别讨论0i c =与1i c =两种情况.(1)()()12,21,11,12,211,1,0,1,1A B -=-----=; 1(,)||1+1+0+1+1=4ni i i d A B a b ==-=∑;(2)证明:因为12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥, 1122(||,||,||)n n n A B a b a b a b S -=---∈,所以对于任意的,n A B S ∈,即对{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,所以得0k =.设12(,,,)n n C c c c S =∈ 则()()1|()|,ni i i i i a d A C B C c b c =-----=∑,当0i c =时,()()=i i i i i i a c b c a b ----;当1i c =时,()()()()=11i i i i i i i i a c b c a b a b ------=-. 所以()()()11||(,)||,n ni i i i i i i i d A a c b c a b d A B B C C ==--=--=-=-∑∑解答该题的关键是需要注意理解并表示出()()1|()|,ni i i i i a d A C B C c b c =-----=∑,然后代入化简判断0i c =与1i c =两种情况.。

相关文档
最新文档