填海造陆区基坑工程地下水处理实例分析_王贤能

填海造陆区基坑工程地下水处理实例分析_王贤能
填海造陆区基坑工程地下水处理实例分析_王贤能

施工经验

G E O TE CHN I C AL ENG I NEER I N G WORLD VOL .10 No .11

收稿日期 2007-4-16

填海造陆区基坑工程地下水处理实例分析

王贤能

(深圳市工勘岩土工程有限公司)

摘 要 填海造陆区因填筑材料、填筑方法各异,地质条件复杂,基坑开挖地下水处理措施与非填海造陆

区相比有其独特之处。介绍了排水盲沟和素混凝土桩止水帷幕两种方法的应用。

关键词 填海造陆区 基坑工程 排水盲沟 素混凝土桩止水帷幕

深圳地区近年来进行了大面积填海造陆工程,已经或正在填海的总面积达50k m 2

。深圳市西部沿岸地貌类型为冲积海积平原,沉积了较厚的淤泥层,东部黄金海岸主要地貌类型为沙滩、泻湖平原。西部填海造陆项目一般步骤是先抛石挤淤形成海堤或

隔堤,然后再堆载预压;填筑材料除海堤隔堤外,主要为粘性土(山皮土);在滨海滩涂、潮间带,早期填海填筑材料比较复杂,含有大量的块石、碎石。东部填海造陆项目一般采用抛填开山块石混合料方法填筑。

因填筑材料各异、地质条件复杂,填海造陆区基坑支护工程的设计和施工都面临不少特殊的岩土工程问题。在水文地质条件方面主要有以下特点:地下水直接受海水补给,并受海水涨落的影响;填石层、或填土层中含大量块石碎石,因空隙度大,赋存了丰富的地下水而且渗透能力相当强;堆载预压结构层中的砂垫层以及原海底砂土层均是主要的含水层。基于此,填海造陆区基坑工程地下水的处理措施与非填海造陆区相比有其独特之处。

1 排水盲沟的应用

当填海区地下水与海水有密切联系时,降水井抽排水量大,地下水位难以降低到设计标高;当紧邻

已建建筑物或市政道路时,降水过程中容易造成地面沉降甚至建筑物倾斜。如果基坑开挖深度浅或地下水补给有限时,可采用排水措施。如深大电话公司盐田服务楼,坑壁地层主要为填石层,且紧邻市政道路和住宅小区,经认真分析后认为在施工期间地下水位低且补给源有限,仅采取了坑壁泄水、坑底明沟抽水措施。

经堆载预压处理后的填海区,砂垫层曾作为预压排水固结法的水平排水体,在基坑开挖时却变成了地下水向坑内排泄的通道。如果基坑深度浅且砂

垫层埋深大时,可不考虑其影响;当砂垫层对基坑地下水影响较大时,则应采取降排水或止水措施。北岸长滩名苑基坑工程即是一典型实例。该工程位于深圳湾填海区内,滨海大道沙河立交桥北侧,占地面积约9300m 2

,原始地貌为滨海滩涂,后采用堆载预

压处理方法造地。地面高程5 6~7 8m,坑底高程为-1 05m,基坑开挖深度6 65~8 85m 。主要土层为填土和淤泥质土:填土层以素填土为主,由砾质粘性土组成,表部为杂填土,含较多碎石、碎块石,层厚7 2~10 4m,层底高程-0 2~-3 16m;淤泥质土呈深灰、灰黑,流塑~软塑状,层厚1 4~7 6m,平均厚度4 9m 。下伏土层为含砾粉质粘土(局部为粗砂、砾砂)及花岗岩残积土。

坑底和坑壁局部出露淤泥质土,大部分坑底为素填土,残余厚度为0 0~2 1m ,填土层底部为平均厚度0 5m 的砂垫层。基坑支护采用放坡结合土钉墙支护方案,坡率1 0 4~1 1,坡面设4~5道D48 3 5注浆钢花管土钉,长度6 0~9 0m,坡面挂 6@200双向钢筋网喷射C20混凝土护面,靠近坑底处设两道长5 0m 直径150mm@500杂木桩。

考虑到坑边距离后海及沙河入海口约300m 远,且主要透水层为砂垫层,地下水量小,未采用传统的水泥搅拌桩或旋喷桩止水,而是在坑底四周及坑内布设排水盲沟,在盲沟交叉点设集水井抽水。排水盲沟用土工布包裹碎石制作,尺寸400mm 400mm,与地基处理的排水盲沟做法一致。

在预应力管桩基础和地下室施工期间,通过盲沟系统顺畅地汇集和抽排地下水。监测数据表明,坑顶及周边道路沉降量为4 6~12 6mm,平均8 0mm;坑顶水平位移2 2~25 1mm,平均13 2mm ;坑底水平位移(测点布设在木桩上)为7 6~27 9mm,平均17 4mm;基坑周边地下管线特别是

76

岩土工程界 第10卷 第11期施工经验

南侧煤气管均未受到影响。这表明,盲沟排水系统及基坑支护结构设计施工是成功的。而紧邻西侧的碧海城基坑,地质条件和周边环境相似,采用预应力管桩与预应力锚索联合支护结构、水泥搅拌桩止水帷幕,效果并不理想。

2 素混凝土桩止水帷幕的应用

基坑工程常用的止水措施有水泥搅拌桩和高压旋喷桩,可单独使用形成封闭的止水帷幕,也可与支护桩相间排列共同形成止水帷幕;在填海区管线埋设基槽开挖时,也使用钢板桩作为止水和支挡措施;近年来在深圳地铁、西部通道深圳侧接线地道基坑开挖时,采用咬合桩(即配筋桩与非配筋桩咬合搭接,俗称一荤一素桩)作为支护结构也作为止水结构,这种措施止水效果好但工程投资偏大。

在填海造陆区,当坑壁土层为素填土和淤泥层时,常采用水泥搅拌桩重力式挡土墙,既止水又挡土;但在填石区或填土层中夹有大量的块石碎石时,搅拌桩成桩困难,若用高压旋喷桩,则因块石直径大,浆液喷射过程中易形成 盲区 ,基坑开挖时坑壁常发生漏水甚至涌水。位于蛇口东角头山南侧填海造陆区的某大型基坑工程,其东侧北段填石厚度达13 0m,一般块径3~25c m,夹泥量少,块石间空隙大,与海水紧密相连,采用单管旋喷桩 600@300作为止水帷幕,水泥用量要求不小于250kg m-1。试桩过程中按设计水泥用量喷浆时,孔口不返浆;当加大水泥用量至750kg m-1,孔口偶见短时返浆未见连续返浆现象,旋喷桩成桩效果差。与此地质条件相似的盐田国际行政大楼基坑工程,采用了素混凝土桩止水帷幕成功的止住了地下水。

该工程位于盐田国际集装箱码头北侧,占地面积约20000m2,设2层地下室,建设场地原为滨海地貌,填海地基处理采用填筑开山块石混合料后大能量级强夯处理,地面高程4 05~4 43m,建筑物 0 00相当于盐田理论基准面高程6 5m,坑底高程-4 4m,基坑开挖深度平均为8 7m。

主要地层有: 人工填石层,由微风化凝灰岩及微风化花岗岩的碎块石组成,块石直径一般0 2 ~0 8m,夹有少量粘性土,层厚8 8~13 7m,层底高程-4 51~-9 47m。 含有机质粉土,灰黑、黑色,含少量贝壳碎片,含大量粉砂,局部以粉砂为主,层厚0 5~6 6m。 含砂粉质粘土、含粘性土粉细砂以及残积土。

填石层中地下水量相当丰富,受海水补给且在海水潮汐影响下而涨落,勘察期间测得地下水埋深1 6~4 0m,地下水渗透系数大于80m d-1。

建设场地除西侧邻近盐田港码头查验场且分布有地下管道外,其余各侧空旷。基坑开挖主要采用放坡方案,西侧坡率1 0 8,其余各侧坡率为1 1 3,典型支护剖面见图1所示,坡面挂 6@200双向钢筋网喷射C20混凝土厚100护面,在下级坡体中设素混凝土桩止水帷幕。素混凝土桩 1000mm@ 800,采用冲孔工艺成桩,灌注塑性混凝土形成封闭的止水帷幕,有效桩长14 5m,帷幕底高程-12 2m,进入粉质粘土中不小于1 5m。塑性混凝土配料由粘土、细砂、水泥按5 4 1比例配制,坍落度200~220mm,渗透系数要求不小于10-7c m s-1[1]。西侧素混凝土桩中插入24b工字钢以加强基坑稳定性。按此方案实施后,基坑止水效果相当好,

仅坑壁有少量地下水渗漏。

图1 盐田国际行政大楼基坑止水帷幕剖面图

塑性混凝土常用低强度素混凝土替代,这种止水措施在深港西部通道深圳侧接线V I标中也成功使用。该段地道原为东滨路以东的老海堤,海堤两侧为隆起的淤泥包和内湖状海水体,海堤填石主要为花岗岩块石,直径0 3~0 8m,最大可达1 0m以上;基坑深约10m,基坑北侧两级放坡,坡率1 2,上级坡高4 0m,平台高程-1 0m,下级坡体中设素混凝土桩止水帷幕,止水效果好。

3 结语

填海造陆区地质条件特别是水文地质条件与非填海造陆区有较大的差异,基坑开挖地下水处理措施的选择应具体问题具体分析。文中介绍的深圳地区两种特别的处理方法即排水盲沟法和素混凝土桩止水帷幕法,实践表明是合理可行的。

参考文献

[1] 深圳市南华岩土工程有限公司.盐田国际行政大楼基坑支护

工程设计施工图,2004,4.

第一作者通讯地址:深圳市福田区福中路福景大厦中座21楼深圳市工勘岩土工程有限公司 邮编:518026

77

最常见的废水处理工艺一览!

最常见的废水处理工艺一览! 表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理:废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理:废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。 当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理:废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理:废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水

所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1.含氰废水 目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。

地下水处理方案

(400m3/d)地下水处理 技 术 方 案 及 报 价 编制单位:云南鼎从环保工程有限公司编制人:何晓祥 日期:二0一四年十二月

一、项目概况 本工程为地下水除铁、除锰,水质软化,处理水量为400m3/d,处理后作为洗涤用水。 二设计范围和设计依据 2.1 设计依据 1、《生活饮用水卫生标准》(GB5749—2006); 2、《室外给水设计规范》 (GB50013-2006); 3、《给水排水工程结构设计规范》 (GBJ50069—2002); 4、《给水排水工程管道结构设计规范》(GB50332-2002) 5、《给排水管道工程施工及验收规范(GB500268—2002); 6、《给水排水标准图集给水设备安装》 7、《水处理用石英砂滤料》标准CJ/T43—2005 8、《水处理用天然锰砂滤料》标准CJ/T 3041—1995 9、业主提供的其它资料。 2.2 设计范围 1、从地下水进入过渡水箱开始到处理工艺结束,出水接至除铁、除锰处理出口为止。 2、水处理工程的工艺流程,工艺设备选型,工艺设备的结构布置,电器控制等设计工作。 3、水处理设备、管道的安装调试将由我公司全面负责。

4、污水工程的动力配线,由业主将主电引止处理系统的配电控制箱,配电分配箱至各电器使用点将由我公司负责。 5、不包括供水管网。 3设计原则 1、执行现行水处理设计规范和有关规定,确保处理水质满足业主使用要求。 2、根据现场实际情况,选用先进技术、成熟工艺,在确保出水水质达标的同时,力求投资省,占地面积小,运转费用低,操作简单可靠。 3、通过设计中的总体优化,采用先进的节能技术,节约能源,最大限度地降低运行费用。 4、在确保工程各项性能指标达到标准要求的前提下,具有工艺先进、运行费用低、可靠性高、管理方便、布局合理、性价比高的特点。 5、结合工艺技术特点,自控系统设计采用先进、成熟可靠的控制技术,确保自动控制的可靠性和稳定性。 6、为保证处理系统的处理出水达到设计要求,且系统可根据实际灵活调度;设计控制子系统的各种控制参数要便于管理人员调控,可根据实际水量,并配置设备故障报警及显示,便于运行人员操作维护及管理。

基坑突泥、涌水事故应急预案

基坑突泥涌水事故应急预案 一、编制目的 针对在明挖结构土方开挖过程中可能出现的突泥、涌水情况,对潜在的基坑突泥、涌水事故做出应急准备,并对发生的基坑突泥、涌水事故进行控制,为最大限度地降低事故的损失程度和不利影响,根据《施工现场安全生产保证体系》中有关应急预案的要求,特制定本应急预案。 二、编制依据 1、《安全生产法》、《建设工程安全生产管理条例》等相关的法律、法规、标准和技术规范; 2、相关方的期望及要求; 3、集团公司颁布的职业健康安全和环境管理的文件以及《中铁隧道集团安全技术操作规程》、《中铁隧道集团安全生产管理制度》等。 三、编制原则 贯彻执行“安全第一、预防为主”的方针及相关的法律、法规、制度等,保证工程施工的顺利进行。 四、应急响应等级 一级紧急情况:项目上的应急资源能够处理的紧急情况。 二级紧急情况:项目上的应急资源无法处理,需集团公司介入的紧急情况。 三级紧急情况:项目上的应急资源无法处理,需集团公司和地方政府介入的紧急情况。 四、应急响应程序 应急响应程序为:接警→响应等级确定→应急启动→救援行动→应急结

束(恢复生产) 五、应急指挥机构的职责及分工 1、应急领导小组成员 组长:王坤 副组长:陈洪武、梁奎生 组员:王小红、吴传林、李新伟、杜闯东、李凤远、张惠军、杨道玉、陈广江、鲜双忠 2、应急领导小组职责 1)督促、检查本项目各项安全生产管理制度、事故/事件(或险情)应急救援预案的管理和落实工作。 2)结合本项目特点组织制定基坑主体结构土方开挖方案,认真部署,贯彻落实应急领导小组各项决议; 3)组织训练本项目的事故应急救援队伍,对员工进行应急救援知识培训;配备必要的防护、救援物资、设备、器材,并指定专人管理,定期对其进行检查和维护保养,确保性能完好。 4)落实施工现场必备的抢救器材和设施: 救援配臵物品一览表 5)事故/事件(或险情)发生时,立即启动事故/事件(或险情)应急救

污水处理各种工艺大全及优缺点对比

污水处理各种工艺大全及优缺点对比 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH 3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(N H4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BO D5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

基础施工过程中地下水的处理

基础施工过程中地下水的处理 前言 当基础深度在天然地下水位以下时,在基础施工中常常会遇到地下水的处理问题。一般认为,基坑开挖要具备以下的必要条件:首先保持基坑干燥状态,创造有利于施工的环境;其次是确保边坡稳定,做到安全施工,如果忽视这些必要条件,其后果是严重的。有的基坑积水或土质稀软,工人难以立足,无法施工;有的出现“流砂现象”导致边坡塌方,地质破坏;有的内部基坑土体发生较大的位移,影响邻近建筑物的安全。之所以会出现这些异常情况,都是由地下水引起的。所以,在基坑施工中应对地下水的处理给予应有的重视。 一、地下水的人工处理 地下水的处理有多种可行的方法,从降水方式来说可总分为止水法和排水法两大类。止水法,即通过有效手段,在基坑周围形成止水帷幕,将地下水止于基坑之外,如沉井法、灌浆法、地下连续墙等;排水法是将基坑范围内地表水与地下水排除,如明沟排水、井点降水等。 止水法相对来说成本较高,施工难度较大;井点降水施工简便、操作技术易于掌握,是—种行之有效的现代化施工方法,已广泛应用。本文结合工程实例对井点降水法作一简要介绍。 井点降水法,它是在拟建工程的基坑周围设能渗水的井点管,配置一定的抽水设备,不间断地将地下水抽走,使基坑范围内的地下水降低至设计深度。井点法防水适用于具有不同几何形状的基坑,它有克服流砂、稳定边坡的作用。由于基坑内土方干燥,有利机械化施工,缩短工期,保证工程质量与安全。 目前国内常用的井点降水法有轻型井点、喷射井点、电渗井点。在我国,井点降水法是新中国成立后才逐步发展起来的。在工程的基坑<槽>附近埋设大量的渗水井点管,与此同时地面组装抽水管路系

统,通过井群连续抽吸地下水,使基坑范围内的地下水位降低到基坑以下一定深度,以保持基坑干燥状态。通常把这一方法叫做井点降水法。 井点降水法具有下列优点:施工简便,操作技术易于掌握;适应性强,可用于不同几何图形的基坑;降水后土壤干燥,便于机械化施工和后续工作工序的操作;井点作用下土层固结,土层强度增加,边坡稳定性提高;地下水通过滤水管抽走,防止了流砂的危害;节省支撑材料,减少土方工程量等。井点降水法已成为目前在含水透水位土层实施的一种行之有效的方法。 1.轻型井点降水法 (1)轻型井点抽水系真空作用抽水,除管路系统外,很大程度取决于抽水设备。目前常用的真空泵型、隔膜泵型配套抽水装置。 轻型井点井点管、过滤管、集水总管、主管、阀门等组成管路系统,并由抽水设备启动,在井点系统中形成真空,并在井点周围一定范围形成一个真空区,真空区通过矽井扩展到一定范围。在真空力的作用下,井点附近的地下水通过砂井,经过滤器被强制性吸入井点系统内而使井点附近的地下水位得到降低。在作业过程中,井点附近的地下水位与真空区外的地下水位之间,存在一个水头差,在该水头差作用下,真空区外的地下水是以重力方式流动的。所以常把轻型井点降水称真空强制抽水法,更确切地说应是真空—重力抽水法。只有在这两个力作用下,基坑地下水才会降低,并形成一定范围的降水的漏斗抛物线。 井点管与总管的联接可用钢管和透明塑料管,因受真空力的作用,塑料管内装有弹簧,以加强抗外部张力,保证地下水流畅通。 总管与总管的联接有法兰法和套箍法两种形式。 (2)施工时应注意的问题 经过降低地下水位后,土壤会产生固结,也就会在抽水影响半径

深基坑底板涌水原因分析及监理控制措施

深基坑底板涌水原因分析及监理控制措施 发表时间:2016-08-06T15:04:15.310Z 来源:《基层建设》2016年11期作者:马楚耿 [导读] 本文主要针对深基坑底板的涌水原因及监理控制措施展开了分析。 珠海市卓越建设工程咨询有限公司广东珠海 519000 摘要:本文主要针对深基坑底板的涌水原因及监理控制措施展开了分析,通过结合具体的工程实例,系统探讨了涌水的原因及不利后果,并给出了一系列相应的监理控制措施,以期能为有关方面的需要提供参考借鉴。 关键词:深基坑;底板;涌水;监理控制 随着如今我国建筑施工的不断发展,深基坑的施工已成为了建筑施工中的必备环节。但是在实际的工程施工中,深基坑底板的施工却存在着涌水的故障,严重影响着施工的进行。因此,我们需要对涌水的原因进行分析,并采取有效的措施做好监理控制,以保障整体深基坑工程的施工质量。 1 工程概况 某工程开挖深度从-15.0m~-18.0m不等,局部达到-22.0m。降水井底标高-20.0m,降水井有效长度18.0m,下部2.0m为沉淀管。底板顶标高-14.60m,塔楼区域底板厚3000mm,采用C35(P8)防水抗渗混凝土;垫层设计厚度10cm,C15普通混凝土,其上空铺单层 1.2mm厚格雷斯防水卷材;塔楼基础配筋上筋为4层双向C32@150,下筋为4层双向C32@150,核心筒部位为双向4层C32@150+双向2层C40@150,塔楼基础底板面积为2800m2,单次浇筑方量约为8000m3。 2 底板涌水原因分析 在浇筑塔楼底板混凝土时,突然发现在底板核心筒附近及西南角有三处涌水现象,为查明涌水原因,监理组织了建设单位、施工单位、结构顾问、基坑支护设计顾问等相关人员召开专题会议,通过现场踏勘,判断为地下承压水通过勘探孔上涌引起。 3 涌水的不利后果 地下室底板由于承压水上涌形成了大范围的孔洞,造成底板和地基脱离,存在不利后果。 (1)由于地下室底板直接和地下水接触,长期浸泡,对地下室底板的自防水不利。 (2)由于地基土的反力和水浮力发生变化,对地下室底板的受力不利。 (3)桩基顶面一定范围内无基础覆盖,降低桩基承载力,对桩基水平承载能力产生较大影响。 (4)地下水对底板长期浸泡,增加了对底板混凝土和钢筋的腐蚀,可能会降低底板的使用年限。 为避免产生上述严重后果,监理必须要求施工单位重视涌水问题处理,采用科学的施工方法,有效地控制并完善处理此次事件。 4 监理控制要点 出现涌水险情后,监理要求施工单位立即暂停涌水处的混凝土浇筑并进行积极处理,避免涌出的地下水影响底板混凝土质量;使用钢板网(1.5m×1.5m范围)将漏水部位隔离,隔离部位的混凝土浇筑至距离板顶0.7m,并用1台1m3/h自吸泵抽水,抽水能力应大于渗水量,在中间位置用钢管引流。 组织建设单位、施工单位、结构顾问、基坑支护设计顾问等召开专题例会,现场查看渗漏部位,并共同研讨处理方案。要求施工单位对目前涌水区域加强观测与巡查,关注涌出的水量是否增大,涌水是否变浑浊,涌水情况是否发生质变。若发生此情况,立即通知各参建单位,按照抢险处理,并对底板混凝土进行全部排查,若发现新的渗水点,须立即标记并通报。 4.1 督促施工单位在混凝土浇筑完成7d后对涌水点附近的混凝土进行取芯 (1)监理在审核施工单位提交的涌水处理方案中,应查看施工单位是否根据图纸,选取受力较小的部位、强度质量具有代表性的部位及便于安放钻芯机和操作的部位,同时避开主筋、预埋件和管线。 (2)要求施工单位根据监理、结构设计顾问审批通过的方案中的取芯部位取芯。 (3)要求施工单位取芯前通知监理、建设单位、结构设计顾问等单位进行共同见证。 (4)芯样的加工和试件的技术要求应符合CECS03—2007《钻芯法检测混凝土强度技术规程》的要求,有效芯样试件的数量每个部位不应少于3个。 (5)要求施工单位对芯样的钻取和封存保留照片记录。 4.2 雷达法检测底板混凝土 4.2.1 检测方法的选择 为确切保证底板混凝土质量,需要对混凝土进行进一步的检测,根据目前建筑行业的技术水平对混凝土密实度检测的方法有两种,即声波法和雷达法,两者对比如下。 (1)声波法是一种有损检测,在混凝土检测时,检测区域内的混凝土整个遭破坏,同时对周围混凝土产生微裂缝,即声波孔本身影响大底板的整体受力。 (2)在声波孔开孔时势必会造成涌水部位附近的底板成为最薄弱处,考虑到地下水压力较大,为防止地下水从开孔处(或开孔处的微裂缝)涌出,监理不建议开孔。 (3)雷达法是一种无损检测,可直接在混凝土表面进行电磁波的发射和接收工作。 综合上述比较分析,雷达检测技术作为一项新兴的无损检测技术,与目前各种混凝土检测技术相比较,适用范围广、探测精度高、检测效率高,对被探测表面要求相对较低,故监理向建设单位建议选择此方法进行检测。 4.2.2 对涌水点附近的混凝土进行雷达法检测 (1)要求施工单位编制雷达法检测方案,报监理、建设单位、结构设计顾问审批。 (2)根据现场实际情况,在方案中划定检测范围,并清理混凝土表面以达到检测要求,如以现场渗水点为中心,每2m往外以方格网

水处理工艺

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O 段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N (NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点 1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低; 2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。另外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。

地下水除铁除锰工艺流程

地上式溶解氧法除铁除锰工艺流程,有几种形式。选用什么样的流程主要取决于原水的化学成分,如水的碱性;铁和锰的含量。在北方寒冷地区,当水中碱度大于2.0mg/l;铁小于2.0mg/l;锰小于1.5mg/l时可采用简单爆气一级过滤法处理,达到除铁除锰的目的。当水中铁的含量大于5mg/l;锰大于1.5mg/l时一般采用二级过滤工艺,一级过滤先除铁,二级过滤再除锰原因是当铁和锰同时存在于水中时,铁能干扰锰的去除,特别是铁和锰的含量较高时,除锰就更困难。海拉尔净水所除铁除锰工艺,就依据上述原理和实践经验设计的。海拉尔除铁除锰净水工程,是我局给水处理能力最大的设计,既包括原有水厂除铁设备的扩能,又有新建除锰设计。 其设计参数如下: 1、水质资料:Fe 5mg/l;Mn 1.5-3.0mg/l 碱度6mg/l- 10 mg/l 2、处理能力:15400t/d 3、工艺流程:由于原水含铁量在5mg/l,锰为3.0mg/l含量较高,所以根据前面所述原理,必须采用曝气→一级过滤→二次曝气→二次过滤工艺流程,方能将水中的铁和锰除去,若采用曝气→一级过滤的简单工艺是不可能达到除锰的目的。 在施工设计之前,我们到海拉尔水电段净水所调查时,发现既有采用简单曝气一级过滤工艺二组240t/h无阀过滤池出水槽内沉积约20mm左右厚的黑色锰质沉淀物,据水电段反映,这些锰质沉淀在给水管道中也有大量结垢沉积,有的地方已造成管道严重堵塞,甚至完全不能通水。本次设计,为了尽可能除锰,又在原有二组和新建一组无阀滤池一级除铁后的过滤出水,增加了机械强制曝气措施,其目的有二个,一是尽量除去一级处理出水中的二氧化碳,提高水的PH值(据有关资料介绍,表面曝气法可以去除50%-70%的二氧化碳);二是尽可能的向一级出水中充氧(溶解氧饱和度可达80%-90%),将水中的二价锰大部分氧化成三价锰,然后进入二级过滤时(采用普通快滤池8格),将水中的锰和一级过滤后残留在

防涌水涌砂应急措施

防涌水涌砂应急措施 隧道涌砂涌水处理应采取“防、排、截、堵相结合。因地制宜,综合治理”的原则。 一、施工概况 1#风道竖井结构内净空尺寸6.1×14.1m,矩形断面,开挖深度35.375m,围护体系采用钻孔灌注桩+钢管支撑的支护型式,竖井基坑采用1000mm@1500mm钻孔灌注桩,桩间采用100mm厚C20钢筋网喷混凝土挡土,沿基坑竖向布7道609mm钢管内支撑。 二、岩土工程地质条件 双井地形西高东低,自然地面标高在37-37.8m之间。竖井开挖深度范围主要包括以下土层:粉细砂④3层、中粗砂④4层、圆砾乱石⑤层、中粗砂⑤1层、粉细砂⑤2层、粉质粘土⑥层、中粗砂⑦1 层及粉细砂⑦2层。 三、地下水类型 本段线赋存三层地下水,地下水类型分别为上层滞水(一)、潜水(二)和层间潜水(三), 上层滞水(一):水位标高为30.75m,水位埋深为6.43m,,含水层为粉细砂层、粉质粘土层、粉土层、杂填土层。 潜水(二):水位标高为25.05m,水位埋深为12.13m,含水层为中粗砂层、粉质粘土层、圆砾卵石层。 层间潜水(三):水位标高为19.98,水头埋深为17.2m,含水层主要为中粗层、粉质粘土层、圆砾卵石层。

四、涌水涌砂发生情况与原因分析 基坑开挖深度至29.8m时,局部围护桩之间出现漏水涌砂现象。根据现场实际情况、基坑围护设计等进行分析,造成涌水涌砂发生 的原因: 根据《岩土工程勘察报告》中现况地下水情况,竖井开挖深度29.8m (标高8.10m)已进入承压水(三)水头线以下,由于此段地层为粉细砂、中粗砂层,地下水较丰富,补给充足,略具有承压性,开挖深度较深,为地下水汇集之地,同时竖井周边降水效果不明显,砂层自身稳定性很差,小股水流造成竖井西北侧围护桩桩间出现流沙现象,流沙越来越严重,最终造成涌水涌砂。 五、应急抢险处理措施 竖井出现涌水涌砂险情后,应及时采取有针对性的应急抢险处理措施,其具体措施如下: 1、回填反压。当竖井土方开挖时围护桩桩间出现涌水涌砂,并且流动速度比较大,应立即停止开挖,对该处采用砂袋进行回填反压,回填高度至保证桩间涌砂流动,达到只流水不流沙为止,然后再考虑固砂止水方案,这样可避免事故的发生。 2、双液浆堵水。应本标段施工工期紧张,未设置止水帷幕,只采用竖井周边井管降水降低承压水头,根据现况反映,降水井起到一定的作用,但降水减压效果未达到设计要求,应立即采用补救措施。对漏水量大,漏水点较深的情况,可采用双液浆堵水方案。采用水泥浆和水玻璃的混合浆液注浆加固处理,形成具有一定强度的止水帷幕,

常见污水处理工艺对比

常见污水处理工艺对比 一、A/O工艺 1、基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2、A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1) 效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的

福建省漳州市古雷石化园区B-14号填海造地工程

福建省漳州市古雷石化园区B-14号填海造地工程 海洋环境影响报告书简本 一、项目概况 (1)项目名称:福建省漳州市古雷石化园区B-14号填海造地工程 (2)业主单位:古雷港经济开发区海域收购储备中心 (3)地理位置:位于福建省漳浦古雷镇东山湾东岸已建明达建材码头北侧近岸滩地水域。工程西南、东南、东北、西北角坐标分别为23°50′13.054″N、117°35′49.373″E,23°50′12.956″N、117°36′14.418″E,23°50′35.336″N、117°36′14.522″E,23°50′35.433″N、117°35′49.462″E。 (4)工程性质:项目属于填海造地工程,从环境保护的角度考虑,填海造地工程为社会区域开发活动,属于生态型环境影响的建设项目。 (5)用海面积:填海造地面积为48.8189 hm2,输砂管道建设临时用海面积约为4.1384 hm2。 图1 本项目宗海位置图 (6)建设内容:本工程已形成封闭海域,可直接进行吹填,因此不涉及新建临时护岸,只包括填海造地。

(7)工程投资:工程总投资估算为41981万元(不含面层及以上的构筑物)。 (8)建设进度:本项目建设期约为9个月。 二、施工期主要环境问题 施工期主要环境污染因素包括悬浮泥沙入海对工程附件水质、沉积物和生态环境等产生的影响;施工船舶废水、施工营地废水、施工机械尾气、施工扬尘、施工噪声、施工建筑垃圾、船舶垃圾和生活垃圾排放等。 施工期主要的非污染环境影响因素包括:项目填海对局部海域水动力及海底冲淤趋势的变化、施工过程对海洋生物的影响、施工期溢油风险问题等。 三、区域环境质量现状 (1)海洋水动力环境质量现状 根据国家海洋局第三海洋研究所的观测资料,本调查区属于正规半日潮流区,各站涨、落潮流流向,因地而异,各地点的流向都以较小的幅度偏摆于该地点水道纵轴的方向,在垂直于水道纵轴的方向流速很小。各站的潮流表现出较为明显的往复流特征,驻波性质明显,在高、低平潮附近时刻,流速最小,在半潮面附近时刻,流速达到最大。 (2)地形地貌与冲淤环境现状 在天然状态下,东山湾水深、海岸比较稳定,没有大规模的泥沙流,泥沙来源不多,淤积物主要是悬移质,淤积速度相当缓慢,本项目用海区所处岸滩区域总体变化不大,处于相对稳定的状态。 (3)海水水质现状 国家海洋局第三海洋研究所于2014年11月10日和28日开展东山湾秋季水质监测,于2015年3月20日和3月27日开展东山湾春季水质监测,监测项目包括水温、盐度、悬浮物、pH、DO、COD、活性磷酸盐、无机氮、硫化物、石油类、重金属(钴、铜、铅、锌、镉、汞、砷、铬、镍)。春秋两季调查结果表明,项目所在海域海水中除部分站位无机氮、活性磷酸盐指标超标外,其余各项目均符合不同功能区划的海水水质标准。结合东山湾历史监测数据,无机氮超标这是目前我国近岸海域普遍面临的问题,特别是在海口与海湾地区;另外,东山湾内海水养殖用海面积较大,养殖品种也较多较杂,在高密度的养殖生物生长过

常见污水处理工艺汇总

1物理法: 1.沉淀法:主要去除废水中无机颗粒及SS 2.过滤法:主要去除废水中SS和油类物质等 3.隔油:去除可浮油和分散油 4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心分离:微小SS的去除 6.磁力分离:去除沉淀法难以去除的SS和胶体等 2化学法: 1.混凝沉淀法:去除胶体及细微SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 3物理化学法: 1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2.离子交换法:回收贵重金属,放射性废水、有机废水等 3.萃取法:难生物降解有机物、重金属离子等 4.吹脱和汽提:溶解性和易挥发物质的去除。 重点介绍 (随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优点) 4生物法 1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种方法的统称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图:

SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。 CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图: (3)AO法 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 工艺流程图: 优点: 1)系统简单,运行费低,占地小 2)以原污水中的含碳有机物和内源代谢产物为碳源,节省了投加外碳源的费用 3)好氧池在后,可进一步去除有机物 4)缺氧池在先,由于反硝化消耗了部分碳源有机物,可减轻好氧池负荷 5)反硝化产生的碱度可补偿硝化过程对碱度的消耗 (4)AAO法 AAO法又称A2O法,是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。 工艺流程图:

地下水处理方案1

(400m3/d) 地下水处理 技 术 方 案 及 报 价 编制单位: 云南鼎从环保工程有限公司编制人: 何晓祥 日期: 二0 一四年十二月

一、项目概况 本工程为地下水除铁、除锰, 水质软化, 处理水量为 400m3/d, 处理后作为洗涤用水。 二设计范围与设计依据 2、1 设计依据 1、《生活饮用水卫生标准》(GB5749—2006); 2、《室外给水设计规范》(GB50013-2006); 3、《给水排水工程结构设计规范》(GBJ50069 —2002); 4、《给水排水工程管道结构设计规范》(GB50332-2002) 5、《给排水管道工程施工及验收规范(GB500268—2002); 6、《给水排水标准图集给水设备安装》 7、《水处理用石英砂滤料》标准CJ/T43—2005 8、《水处理用天然锰砂滤料》标准CJ/T 3041 —1995 9、业主提供的其它资料。 2、2 设计范围 1、从地下水进入过渡水箱开始到处理工艺结束, 出水接至除铁、除锰处理出口为止。

2 、水处理工程的工艺流程, 工艺设备选型, 工艺设备的结构布置, 电器控制等设计工作。 3 、水处理设备、管道的安装调试将由我公司全面负责。 4 、污水工程的动力配线, 由业主将主电引止处理系统的配电 控制箱,配电分配箱至各电器使用点将由我公司负责。 5 、不包括供水管网。 3 设计原则 1 、执行现行水处理设计规范与有关规定, 确保处理水质满足业主使用要求。 2 、根据现场实际情况, 选用先进技术、成熟工艺, 在确保出水水质达标的同时,力求投资省,占地面积小,运转费用低, 操作简单可靠。 3 、通过设计中的总体优化, 采用先进的节能技术, 节约能源, 最大限度地降低运行费用。 4 、在确保工程各项性能指标达到标准要求的前提下, 具有工艺先进、运行费用低、可靠性高、管理方便、布局合理、性价比高的特点。 5 、结合工艺技术特点, 自控系统设计采用先进、成熟可靠的控制技术, 确保自动控制的可靠性与稳定性。 6 、为保证处理系统的处理出水达到设计要求, 且系统可根据实际灵活调度; 设计控制子系统的各种控制参数要便于管理人员调控,可根据实际水量,并配置设备故障报警及显示, 便于运行人员操作维护及管理。

常用生活污水处理工艺介绍及对比

几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。 由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;

填海造陆区基坑工程地下水处理实例分析_王贤能

施工经验 G E O TE CHN I C AL ENG I NEER I N G WORLD VOL .10 No .11 收稿日期 2007-4-16 填海造陆区基坑工程地下水处理实例分析 王贤能 (深圳市工勘岩土工程有限公司) 摘 要 填海造陆区因填筑材料、填筑方法各异,地质条件复杂,基坑开挖地下水处理措施与非填海造陆 区相比有其独特之处。介绍了排水盲沟和素混凝土桩止水帷幕两种方法的应用。 关键词 填海造陆区 基坑工程 排水盲沟 素混凝土桩止水帷幕 深圳地区近年来进行了大面积填海造陆工程,已经或正在填海的总面积达50k m 2 。深圳市西部沿岸地貌类型为冲积海积平原,沉积了较厚的淤泥层,东部黄金海岸主要地貌类型为沙滩、泻湖平原。西部填海造陆项目一般步骤是先抛石挤淤形成海堤或 隔堤,然后再堆载预压;填筑材料除海堤隔堤外,主要为粘性土(山皮土);在滨海滩涂、潮间带,早期填海填筑材料比较复杂,含有大量的块石、碎石。东部填海造陆项目一般采用抛填开山块石混合料方法填筑。 因填筑材料各异、地质条件复杂,填海造陆区基坑支护工程的设计和施工都面临不少特殊的岩土工程问题。在水文地质条件方面主要有以下特点:地下水直接受海水补给,并受海水涨落的影响;填石层、或填土层中含大量块石碎石,因空隙度大,赋存了丰富的地下水而且渗透能力相当强;堆载预压结构层中的砂垫层以及原海底砂土层均是主要的含水层。基于此,填海造陆区基坑工程地下水的处理措施与非填海造陆区相比有其独特之处。 1 排水盲沟的应用 当填海区地下水与海水有密切联系时,降水井抽排水量大,地下水位难以降低到设计标高;当紧邻 已建建筑物或市政道路时,降水过程中容易造成地面沉降甚至建筑物倾斜。如果基坑开挖深度浅或地下水补给有限时,可采用排水措施。如深大电话公司盐田服务楼,坑壁地层主要为填石层,且紧邻市政道路和住宅小区,经认真分析后认为在施工期间地下水位低且补给源有限,仅采取了坑壁泄水、坑底明沟抽水措施。 经堆载预压处理后的填海区,砂垫层曾作为预压排水固结法的水平排水体,在基坑开挖时却变成了地下水向坑内排泄的通道。如果基坑深度浅且砂 垫层埋深大时,可不考虑其影响;当砂垫层对基坑地下水影响较大时,则应采取降排水或止水措施。北岸长滩名苑基坑工程即是一典型实例。该工程位于深圳湾填海区内,滨海大道沙河立交桥北侧,占地面积约9300m 2 ,原始地貌为滨海滩涂,后采用堆载预 压处理方法造地。地面高程5 6~7 8m,坑底高程为-1 05m,基坑开挖深度6 65~8 85m 。主要土层为填土和淤泥质土:填土层以素填土为主,由砾质粘性土组成,表部为杂填土,含较多碎石、碎块石,层厚7 2~10 4m,层底高程-0 2~-3 16m;淤泥质土呈深灰、灰黑,流塑~软塑状,层厚1 4~7 6m,平均厚度4 9m 。下伏土层为含砾粉质粘土(局部为粗砂、砾砂)及花岗岩残积土。 坑底和坑壁局部出露淤泥质土,大部分坑底为素填土,残余厚度为0 0~2 1m ,填土层底部为平均厚度0 5m 的砂垫层。基坑支护采用放坡结合土钉墙支护方案,坡率1 0 4~1 1,坡面设4~5道D48 3 5注浆钢花管土钉,长度6 0~9 0m,坡面挂 6@200双向钢筋网喷射C20混凝土护面,靠近坑底处设两道长5 0m 直径150mm@500杂木桩。 考虑到坑边距离后海及沙河入海口约300m 远,且主要透水层为砂垫层,地下水量小,未采用传统的水泥搅拌桩或旋喷桩止水,而是在坑底四周及坑内布设排水盲沟,在盲沟交叉点设集水井抽水。排水盲沟用土工布包裹碎石制作,尺寸400mm 400mm,与地基处理的排水盲沟做法一致。 在预应力管桩基础和地下室施工期间,通过盲沟系统顺畅地汇集和抽排地下水。监测数据表明,坑顶及周边道路沉降量为4 6~12 6mm,平均8 0mm;坑顶水平位移2 2~25 1mm,平均13 2mm ;坑底水平位移(测点布设在木桩上)为7 6~27 9mm,平均17 4mm;基坑周边地下管线特别是 76

常见的几种污水处理工艺

常见的几种污水处理工艺 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段溶解氧(DO)不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N (NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,

可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。 3.A/O工艺的缺点 1、由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低; 2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。另外,内循环液来自曝气池,含有一定的DO,使A段难以保持

相关文档
最新文档