人教版数学八年级下册:《勾股定理》应用题专题测试卷及解析

合集下载

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。

人教版八年级数学下册额第十七章《勾股定理》测试卷(含答案)

人教版八年级数学下册额第十七章《勾股定理》测试卷(含答案)

人教版八年级数学下册额第十七章《勾股定理》测试卷(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。

人教版八年级数学下册单元测试《第17章 勾股定理》(B卷)(解析版)

人教版八年级数学下册单元测试《第17章 勾股定理》(B卷)(解析版)

《第17章勾股定理》卷B一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,103.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.154.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm二、填空题5.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为cm.6.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为.三、解答题7.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).8.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.9.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?10.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交于D,E为垂足,连接CD,若BD=1,求AC的长.11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.《第17章勾股定理》卷B一、选择题1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.12【考点】勾股定理.【分析】设斜边长为x,则一直角边长为x﹣2,再根据勾股定理求出x的值即可.【解答】解:设斜边长为x,则一直角边长为x﹣2,根据勾股定理得,62+(x﹣2)2=x2,解得x=10,故选C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.2.在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是()A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,10【考点】勾股定理.【分析】由斜边与一直角边比是13:5,设斜边是13k,则直角边是5k.根据勾股定理,得另一条直角边是12k.根据题意,求得三边的长即可.【解答】解:设斜边是13k,直角边是5k,根据勾股定理,得另一条直角边是12k.根据题意,得:13k+5k+12k=60解得:k=2.则三边分别是26,24,10.故选D.【点评】用一个未知数表示出三边,根据已知条件列方程即可.熟练运用勾股定理.3.若一直角三角形两边长分别为12和5,则第三边长为()A.13 B.13或C.13或15 D.15【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12是斜边时,第三边是=;当12是直角边时,第三边是=13.故选B.【点评】如果给的数据没有明确,此类题一定要分情况求解.4.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.二、填空题5.已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为 4.8 cm.【考点】勾股定理.【分析】根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【解答】解:∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.【点评】本题考查了勾股定理的运用即直角三角形的面积的求法,属中学阶段常见的题目,需同学们认真掌握.6.如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10 .【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的三线合一得BD=8,再根据勾股定理即可求出AB的长.【解答】解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.【点评】注意等腰三角形的三线合一,熟练运用勾股定理.三、解答题7.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出图形,构造出直角三角形,利用勾股定理求解.【解答】解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.8.如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.【考点】勾股定理.【分析】由已知可以利用勾股定理求得EC的长,从而可得到CD的长,再根据勾股定理求得AC的长即可.【解答】解:∵AC⊥CE,AD=BE=13,BC=5,DE=7,∴EC==12,∵DE=7,∴CD=5,∴AC==12.【点评】此题考查学生对直角三角形的性质及勾股定理的运用.9.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.10.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交于D,E为垂足,连接CD,若BD=1,求AC的长.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】几何图形问题;数形结合.【分析】由DE垂直平分斜边AC,可得AD=CD,又由在Rt△ABC中,∠A=30°,即可求得∠BCD的度数,继而求得AB的长,则可求得答案.【解答】解:∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∵在Rt△ABC中,∠A=30°,∴∠ACB=90°﹣∠A=60°,∴∠BCD=∠ACB﹣∠ACD=30°,∵在Rt△BCD中,BD=1,∴CD=2BD=2,∴AD=CD=2,∴AB=AD+BD=3,∴AC==2.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.11.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),求这束光从点A到点B所经过路径的长.【考点】勾股定理的应用.【专题】计算题.【分析】首先过点B作BD⊥x轴于D,由A(0,2),B(4,3),即可得OA=2,BD=3,OD=4,由题意易证得△AOC∽△BDC,根据相似三角形的对应边成比例,即可得OA:BD=OC:DC=AC:BC=2:3,又由勾股定理即可求得这束光从点A到点B所经过的路径的长.【解答】解:如图,过点B作BD⊥x轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为.【点评】本题考查的是勾股定理的应用,解此题的关键是掌握辅助线的作法,掌握入射光线与反射光线的关系.。

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。

人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

人教版初中八年级数学下册第十七章《勾股定理》经典练习题(含答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 4.工人师傅常用直角尺平分一个角,做法如下:如图所示,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动直角尺,使直角尺两边相同的刻度分别与M ,N 重合(即CM =CN ).此时过直角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是( )A .HLB .SASC .SSSD .ASA 5.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS6.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 7.下列各命题中,假命题是( )A .有两边及其中一边上的中线对应相等的两个三角形全等B .有两边及第三边上高对应相等的两个三角形全等C .有两角及其中一角的平分线对应相等的两三角形全等D .有两边及第三边上的中线对应相等的两三角形全等8.如图,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .∠B =2∠DAC C .AD 平分∠EDC D .ED +AC >AD9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 11.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .1212.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④ 13.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠ 14.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个15.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题16.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.17.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .18.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .19.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .20.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.21.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.22.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .23.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.24.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.25.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.28.如图,AB AD =,AC AE =,CAE BAD ∠=∠.求证:B D ∠=∠.29.如图,在△ABC中,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,D是BC的中点,证明:∠B=∠C.30.如图,一条河流MN旁边有两个村庄A,B,AD⊥MN于D.由于有山峰阻挡,村庄B 到河边MN的距离不能直接测量,河边恰好有一个地点C能到达A,B两个村庄,与A,B 的连接夹角为90°,且与A,B的距离也相等,测量C,D的距离为150m,请求出村庄B到河边的距离.。

八年级下册《勾股定理》应用题专题测试卷(含答案3套).docx

八年级下册《勾股定理》应用题专题测试卷(含答案3套).docx

勾股定理应用题一.解答题(共21小题)1. 如图是一个边长为6的正方体木箱,点Q 在上底面的棱上,AQ 二2, —只蚂蚁从P 点!1! 发沿木箱表面爬行到点Q,求蚂蚁爬行的最短路程.2. 如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的点A 沿纸箱外表面爬到点B, 那么它所行的最短路线的氏是多少?3. 有一圆柱形油罐,如图所示,要从A 点环绕油罐建梯子到B 点,正好B 点在A 点的正 上方,已知油罐的周长为12m,高AB 为5m,问:所建梯子最短需多少米?4. 吴老师在与同学进行"蚂蚁怎样爬最近〃的课题研允时设计了以下三个问题,请你根据下 列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1) 如图(1)正方体的棱长为5cm, 一只蚂蚁欲从正方体底面上的点A 沿正方体表面爬 到点G 处;(2) 如图(2)氏方体底面是边长为5cm 的正方形,高为6cm, —只蚂蚁欲从氏方体底面 上的点A 沿长方体表面爬到点©处;(3) 如图(3)是底面周长为10cm,高为5cm 的圆柱体,一只蚂蚁欲从圆柱体底面上的点 A 沿圆柱体表面爬到点C 处.5. 有一个如图示的长方体的透明玻璃鱼缸,假设其长AD=80cm, r&i AB=60cm,水深为AE=40cm,在水面上紧贴内壁G 处有一鱼饵,G 在水面线EF 上,且EG=60cm ; 一小虫想 从鱼缸外的A 点沿壁爬进鱼缸内G 处吃鱼饵.BAA B A B 图2 图3(1)小动物应该走怎样的路线才使爬的路线最短呢?请你在图屮画出它爬行的路线,并用箭头标注.(2)求小动物爬行的最短路线长?I)6. 我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长儿何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?7. 如图,是一个三级台阶,它的每一级的氏、宽、高分别为20dm、3dm、2dm, A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是多少?8. 如图,长方体的底面边长为4cm和宽为2cm,高为5cm.若一只蚂蚁从P点开始经过4 个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长为多少cm?4cm I?叽叽9•如图所示是一段楼梯,已知AC=5m, CD=7m,楼梯宽BD=5m, 一只蚂蚁要从A点爬到B点,求蚂蚁爬行的最短路程..D10. 有一块直角三角形的绿地,量得两直角边BC 、AC 分别为6m, 8m,现在要将绿地扩 充成等腰三角形,且扩充部分是以AC 边为直角边的直角三角形,求扩充后等腰三角形绿地 的面积.(图2,图3备用)11. 如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1) 这个梯子底端离墙有多少米?(2) 如果梯子的顶端下滑了 4米,那么梯子的底部在水平方向也滑动了 4米吗?12. 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13 米,此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少 米?(假设绳子是直的,结果保留根号)13. 细心观察图形,认真分析各式,然后解答问题.OA 22=(>/r )2 + l=2,AA A图1图2 图3OA32=12+(V2)2=3, S2 = —;2OA42=12+(V3)2 =4, = ¥…(1)请用含有n (n是正整数)的等式表示上述变规律:OA n2=(2)求出OAio的长.(3)若一个三角形的面积是亦,计算说明他是第几个三角形?(4)求出S12+S22+S32+...+S102的值.14.如图所示,在一次夏令营活动屮,小明坐车从营地A点出发,沿北偏东60。

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。

精品解析:人教版八年级数学下册第17章勾股定理单元同步检测试题(解析版).docx

精品解析:人教版八年级数学下册第17章勾股定理单元同步检测试题(解析版).docx

人教版八年级数学第17章《勾股定理》单元同步检测试题时间:120分钟满分:150分一、选择题(本大题10小题,每小题4分,共40分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.&胡,点B. 1, & &C. 6, 7, 8D. 2, 3, 4【答案】B【解析】试题解析:A.(不)2+ (訴)V (厉)2,故该选项错误;B.I2+ (迈)2=(乔)1故该选项正确;C.62+7M2,故该选项错误;D.22+32#4\故该选项错误.故选B.考点:勾股定理.(■ {视频))2.如图,一根垂直于地面的旗杆在离地面5 m处折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()【答案】D【解析】试题分析:由题意得:AABC是直角三角形,所以AB= 7A C2+BC2=7122+52=13,所以旗杆折断之前的高度=“AB+BC=5+13=18.“故选:D.考点:勾股定理.3.__________ 如图,学校有一块长方形花I甫I,有极少数人为了避开拐角走“捷径",在花铺内走出了一条“路\他们仅仅少走了步路(假设2步为1 m),却踩伤了花草()A.4B. 6C. 7D. 8【答案】D【解析】根据勾股定理可得斜边长是+ 82=10m.则少走的距离是6+8-10=4m,T2步为1米,・・・少走了 8步,故答案为:D.4. 如图,数轴上点A, B 分别对应1, 2,过点B 作PQ 丄AB,以点B 为圆心,AB 长为半径画弧,交PQ 于 点C,以原点O 为圆心,OC 长为半径画弧,交数轴于点M,则点M 对应的数是()如图所示:连接OC, 由题意可得:°A2,处=1, 贝 9 AC = ^22 + I 2 = &, 故戊M 对应的数是:& 故选:B. 5. 如图,已知AB 丄CD, A ABD, A BCE 都是等腰直角三角形.如果CD=7, BE=3,那么AC 的长为()AA. 8B. 5C. 3D.4■—F B CW % ■ I 1 10 1 2 女3【解析】试题解析: 6 m【答案】B & D.力【答案】B【解析】・・・△〃£>, △BCE都是等腰直角三角形,:・BD=BA, BE二BC=3, VCZ>7,・•・BM4B=4,4 C=^AB2 + BC2=5.故选B.点睛:熟练掌握勾股定理的运用.6.如图,在厶ABC 中,AD丄BC 于D, AB=17, BD=15, DC = 6,则AC 的长为()A. 11B. 10C. 9D. 8【答案】B【解析】本题主要考查了勾股定理.利用两次勾股定理即可解答.解:VAD1BC・•・ ZADC=ZADB=90°VAB=17, BD=15,AD U J AB S D S•・・DC=6AC=^AD2 + CD2= 1 o故选B7.如图,每个小正方形的边长为1, A, B, C是小正方形的顶点,则ZABC的度数为()A. 90°B. 60°C. 45°D. 30°【答案】C【解析】试题分析:根据勾股定理即可得到AB, BC, AC的长度,进行判断即可. 解:根据勾股左理可以得到:AC=BCW,AB=V10.•・・(V5)2+(V5)2=(V10)2.AAC2+BC2=AB2.A A ABC是等腰直角三角形.A ZABC=45°.故选C.A _______c—~~8.如图,--艘轮船位于灯塔。

专题08 勾股定理的应用-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题08 勾股定理的应用-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题08勾股定理的应用★知识归纳●勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.★实操夯实一.选择题(共8小题)1.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m,他在水中实际游了520m,那么该河的宽度为()A.440m B.460m C.480m D.500m【解答】解:根据已知数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.故选:C.2.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.3.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2m B.2.5cm C.2.25m D.3m【解答】解:在直角△ABC中,AC=1.5cm.AB﹣BC=0.5m.设水池BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2∴1.52+x2=(x+0.5)2解得:x=2.故选:A.4.如图,△ABE、△BCF、△CDG、△DAH是四个全等的直角三角形,其中,AE=5,AB=13,则EG的长是()A.7B.6C.7D.7【解答】解:由勾股定理得,BE===12,∵△ABE、△BCF、△CDG、△DAH是四个全等的直角三角形,∴∠AEB=∠BFC=∠CGD=90°,BF=CG=DH=AE=5,∴∠FEB=∠EFC=∠FGD=90°,EF=EH=12﹣5=7,∴四边形EFGH为正方形,∴EG==7,故选:A.5.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF=90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50 mm B.120 mm C.160 mm D.200 mm【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.6.如图,一轮船以8海里/时的速度从港口A出发向东北方向航行,另一轮船以6海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距()A.6海里B.8海里C.10海里D.20海里【解答】解:由题意可得:8×1=8(海里),6×1=6(海里).则两船相距:=10(海里).故选:C.7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5米,则小巷的宽为()A.2.5米B.2.6米C.2.7米D.2.8米【解答】解:在Rt△ABC中,AB===2.5(米),∴A′B=2.5米,在Rt△A′BD中,BD===2(米),∴BC+BD=2+0.7=2.7(米),故选:C.8.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B =150°,这种草皮每平方米售价2a元,则购买这种草皮需()元.A.75a B.50a C.a D.150a【解答】解:如图,作BA边的高CD,设与AB的延长线交于点D,∵∠ABC=150°,∴∠DBC=30°,∵CD⊥BD,BC=15米,∴CD=7.5米,∵AB=10米,∴S△ABC=AB×CD=×10×7.5=37.5(平方米),∵每平方米售价2a元,∴购买这种草皮至少为37.5×2a=75a(元),故选:A.二.填空题(共2小题)9.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章节中记载了一道“折竹抵地”的问题:“今有竹高一尺,末折抵地,去本三尺,问折者高几何?”译文:一根竹子,原高一丈,后来竹子折断,其竹竿恰好着地,着地处离原竹子根部3尺远,如图所示,问:原处竹子(AC)还剩 4.55尺?(1丈=10尺).【解答】解:设原处竹子(AC)还剩x尺,由题意得:x2+32=(10﹣x)2,解得:x=4.55,故答案为:4.55.10.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD= 1.5米.【解答】解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,则AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故答案是:1.5.三.解答题(共8小题)11.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD =8,AD=17,∠B=90°.求证:△ACD是直角三角形.【解答】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.12.我市某中学有一块四边形的空地ABCD(如图所示),为了绿化环境,学校计划在空地上种植草皮,经测量∠A =90°,AB=3m,DA=4m,CD=13m,BC=12m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?【解答】解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,所以∠DBC=90°,则S四边形ABCD=S△ABD+S△DBC=3×4÷2+5×12÷2=36m2;(2)所需费用为36×200=7200(元).13.如图,小颖和她的同学荡秋千,秋千AB′在静止位置时,下端B′离地面0.6米,荡秋千到AB的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.【解答】解:由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,AE2+BE2=AB2,∴(AB﹣0.8)2+2.42=AB2解得:AB=4,答:秋千AB的长为4m.14.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.【解答】解:(1)A处会受到火车的影响,理由:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200米,∴A处会受到火车的影响;(2)当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.答:A处受噪音影响的时间为16秒.15.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m 以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?【解答】解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉机周围130m以内为受噪声影响区域域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.16.如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC=6m,CE=10m,BD=14m,AB=16m,AE=2m.(1)求DE的长;(2)求四边形ABDE的面积.【解答】解:(1)在Rt△EDC中,∠EDC=90°,DC=6m,CE=10m,∴m;(2)如图,连接BE,在Rt△EBD中,BD=14m,ED=8m,∴BE2=BD2+ED2=142+82=260,∵AB=16m,AE=2m,∴AB2+AE2=162+22=260,∴AB2+AE2=BE2,∴△ABE是直角三角形,∠A=90°,∴S△ABE=×16×2=16(m2).又∵S△BDE=×14×8=56(m2).∴四边形ABDE的面积=S△ABE+S△BDE=72(m2).17.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km 处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(23﹣x),∵DA=15km,CB=8km,∴x2+152=(23﹣x)2+82,解得:x=8,∴AE=8km.答:E站应建在离A站8km处.18.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【解答】解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。

新人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(有答案解析)

新人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(有答案解析)

一、选择题1.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 2.如图,在Rt ABC ∆中,90,45,2B BCA AC ︒︒∠=∠==,点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .22B 2C 21D .1 3.已知锐角△ABC 的三边长恰为三个连续整数,AB >BC >CA ,若边BC 上的高为AD ,则BD ﹣DC =( )A .3B .4C .5D .64.有四个三角形,分别满足下列条件,其中不是直角三角形的是( )A .一个内角等于另外两个内角之和B .三个内角之比为3:4:5C .三边之比为5:12:13D .三边长分别为7、24、255.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A 32 B .237C .25 D .无法确定 6.如图,在等腰Rt △ABC ,90ABC ∠=︒,O 是ABC 内一点,10OA =,42OB =6OC =,O '为ABC 外一点,且CBO ABO '≅△△,则四边形AO BO '的面积为( )A .10B .16C .40D .80 7.以下列各数作为长度的线段,能构成直角三角形的是( ) A .1,2,3 B .3,4,6 C .1,2,3 D .7,15,17 8.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .13 9.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( ) A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠=10.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12511.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .212.如图,M N 、是线段AB 上的两点,4,2AM MN NB ===.以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连结AC BC 、,则ABC 一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形二、填空题13.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.14.如图,ABC 中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,2BD =,114AC =,则边BC 的长为_______.15.在ABC 中,=3AB ,=4AC ,=5BC ,AD 平分BAC ∠交BC 于点D ,//DE AB ,且DE 交AC 于点E ,则DE 的长为_____________.16.已知O 为平面直角坐标系的坐标原点,等腰三角形AOB 中,A(2,4),点B 是x 轴上的点,则AOB 的面积为_____.17.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 18.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.19.有一个三角形的两边长是8和10,要使这个三角形成为直角三角形,则第三边长为_______.20.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)三、解答题21.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.22.已知:如图,ABC 中,90C ∠=︒,BC AC >,点D 是AB 的中点,点P 是直线BC 上的一个动点,连接DP ,过点D 作DQ DP ⊥交直线AC 于点Q .(1)如图,当点P 、Q 分别在线段BC 、AC 上时(点Q 与点A 、C 不重合),过点B 作AC 的平行线交QD 的延长线于点G ,连接PG 、PQ .①求证:PG PQ =;②若12BC =,9AC =,设BP x =,CQ y =,求y 关于x 的函数表达式. (2)当点P 在线段CB 的延长线上时,依据题意补全下图,用等式表示线段BP 、PQ 、AQ 之间的数量关系,并说明理由.23.如图1,在ABC 中,17AB =25AC =AD 是ABC 的高,且1BD =.(1)求BC的长;⊥于点F,(2)E是边AC上的一点,作射线BE,分别过点A,C作AF BE⊥于点G,如图2,若22CG BEBE=,求AF与CG的和.24.如图,ABC中,AC=2AB=6,BC=33.AC的垂直平分线分别交AC,BC于点D,E.(1)求BE的长;(2)延长DE交AB的延长线于点F,连接CF.若M是DF上一动点,N是CF上一动点,请直接写出CM+MN的最小值为.25.在△ABC中,AB=AC,D,E分别是边BC上的两点,AD=AE,点E关于直线AC的对称点是点M,连接AM,DM;(1)如图1,当∠BAC=60°时;①依题意补全图形;②若∠BAD=α,则∠AEB=;(用含α的式子表示);③求证:DA=DM;(2)如图2,当∠BAC=90°时,依题意补全图形,用等式表示线段DC,EC,AM之间的数量关系,并证明.26.如图,已知等腰△ABC的腰AB=13cm,D是腰AB上一点,且CD=12cm,AD=5cm.(1)求证:△BDC是直角三角形;(2)求△BDC的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC=A'C,且点C为BB'的中点,∵AB=5cm,BC=1×10=5cm,2∴装饰带的长度=2AC=22222255102+=+=cm,AB BC故选:C.【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.2.B解析:B【分析】连接BP ,根据已知条件求出AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,CE=21-,证明△BDP ≌△EDP ,推出BP=EP ,当点P 与点D 重合时,即可求出PEC ∆的周长的最小值.【详解】连接BP ,在Rt ABC ∆中,90,45B BCA ︒∠=∠=︒,∴∠BAC=45BCA ∠=︒,AB=BC ,∴2222(2)2AB AC ===,∴AB=BC=1,由翻折得:BD=DE ,∠BDA=∠EDA ,AE=AB=1,∴CE=21-,在△BDP 和△EDP 中, BD ED BDP EDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△EDP ,∴BP=EP ,∴当点P 与点D 重合时,PE+PC=PB+PC=BC 的值最小,此时PEC ∆的周长最小, PEC ∆的周长的最小值为BC+CE=1+21-=2,故选:B ..【点睛】此题考查翻折的性质,勾股定理,全等三角形的判定及性质,解题的关键是根据翻折的性质证得△BDP ≌△EDP ,由此推出当点P 与点D 重合时PEC ∆的周长最小,合情推理科学论证.3.B【分析】根据勾股定理,因AD为公共边可以得到AB2﹣BD2=AC2﹣CD2再把三边关系代入解答即可.【详解】解:设BC=n,则有AB=n+1,AC=n﹣1,AB2﹣BD2=AC2﹣CD2,∴ AB2﹣AC2=BD2﹣CD2∴(n+1)2﹣(n﹣1)2=(BD﹣CD)n,∴BD﹣CD=4,故选:B.【点睛】此题主要考查了勾股定理,根据题意得出 BD﹣CD的长是解题关键.4.B解析:B【分析】根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.【详解】解:A、设一个内角为x,则另外两个内角之和为x,则x+x=180°,解得x=90°,故是直角三角形;B、设较小的角为3x,则其于两角为4x,5x,则3x+4x+5x=180°,解得x=15°,则三个角分别为45°,60°,75°,故不是直角三角形;C、因为52+122=132符合勾股定理的逆定理,故是直角三角形;D、因为72+242=252符合勾股定理的逆定理,故是直角三角形.故选:B.【点睛】本题考查三角形内角和定理,勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5.B解析:B作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.6.C解析:C【分析】连结OO′.先由△CBO ≌△ABO′,得出2,OC=O′A=10,∠OBC=∠O′BA ,根据等式的性质得出∠O′BO=90°,由勾股定理得到O′O 2=OB 2+O′B 2=32+32=64,则O′O=8.再利用勾股定理的逆定理证明OA 2+O′O 2=O′A 2,得到∠AOO′=90°,那么根据S 四边形AO′BO =S △AOO′+S △OBO′,即可求解.【详解】解:如图,连结OO′.∵△CBO ≌△ABO′,∴2OC=O′A=10,∠OBC=∠O′BA ,∴∠OBC+∠OBA=∠O′BA+∠OBA ,∴∠O′BO=90°,∴O′O 2=OB 2+O′B 2=32+32=64,∴O ′O=8.在△AOO′中,∵OA=6,O′O=8,O′A=10,∴OA 2+O′O 2=O′A 2,∴∠AOO′=90°,∴S 四边形AO′BO =S △AOO′+S △OBO′=12×6×8+1222=24+16=40. 故选:C .【点睛】本题考查了等腰直角三角形、全等三角形的性质,勾股定理及其逆定理,四边形的面积,难度适中,正确作出辅助线是解题的关键. 7.C解析:C【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】解:A 、222123+≠,∴不能构成直角三角形,故A 错误;B 、222346+≠,∴不能构成直角三角形,故B 错误;C 、(222123+=,∴能构成直角三角形,故C 正确;D 、22271517+≠,∴不能构成直角三角形,故D 错误.故选:C .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.8.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×12ab=10∴2ab=10,∵直角三角形的短直角边为a,较长的直角边为b∴a2+b2=12∴(a+b)2= a2+b2+2ab=22.故答案为B.【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.9.B解析:B【分析】根据三角形三边关系可分析出A的正误;根据勾股定理逆定理可分析出B的正误;根据三角形内角和定理可分析出C、D的正误;【详解】解:A、a b c+=,不能组成三角形,不是直角三角形;B、222a c b+=,符合勾股定理的逆定理,是直角三角形;C、由∠A+∠B=2∠C,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D、由∠A:∠B:∠C=5:12:13,可得最大角131807830C∠=︒⨯=︒,不是直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理.10.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度.【详解】在AB上取一点G,使AG=AF∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即为求CE+EG的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 11.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 12.B解析:B【分析】先根据题意确定AC 、BC 、AB 的长,然后运用勾股定理逆定理判定即可.【详解】解:由题意得:AC=AN=2AM=8,BC=MB=MN+NB=4+2=6,AB=AM+MN+NB=10∴AC 2=64, BC 2=36, AB 2=100,∴AC 2+BC 2=AB 2∴ABC 一定是直角三角形.故选:B .【点睛】 本题主要考查了勾股定理逆定理的应用,根据题意确定AC 、BC 、AB 的长是解答本题的关键.二、填空题13.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD∴=-=,则正方形丁的面积为229AD=,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.14.【分析】延长BD到F使得DF=BD根据等腰三角形的性质与判定勾股定理即可求出答案【详解】解:延长BD到F使得DF=BD∵CD⊥BF∴△BCF是等腰三角形∴BC=CF过点C作CH∥AB交BF于点H∴∠【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【详解】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=DF=2,AC=114,∴DH=BH-BD=AC-BD=34,∴HF=HC=DF-DH=2-34=54,在Rt△CDH中,∴由勾股定理可知:=1,在Rt△BCD中,∴【点睛】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.15.【分析】首先利用勾股定理逆定理证明为直角三角形然后利用角平分线性质和平行线性质求得根据角平分线定理可知再根据求得的长【详解】∵∴∴为直角三角形∵平分∴∵∴∴∴为等腰直角三角形∴如图作⊥于点∵平分∴在 解析:127【分析】首先利用勾股定理逆定理证明ABC 为直角三角形,然后利用角平分线性质和平行线性质求得45BAD CAD ∠=∠=︒,45BAD ADE ∠=∠=︒,45ADE CAD ∠=∠=︒,根据角平分线定理可知DO DE =,再根据ABC ABD ADC SS S =+求得DE 的长.【详解】∵=3AB ,=4AC ,=5BC ,∴222AB AC BC +=,∴90BAC ∠=︒,ABC 为直角三角形,∵AD 平分90BAC ∠=︒,∴45BAD CAD ∠=∠=︒,∵//DE AB ,∴45BAD ADE ∠=∠=︒,∴45ADE CAD ∠=∠=︒, ∴ADE 为等腰直角三角形,∴90AED DEC ∠=∠=︒, 如图作DO ⊥AB 于点O ,∵AD 平分BAC ∠,=3AB ,=4AC ,=5BC ,∴DO DE =,在Rt ABC 中,12ABC ABD ADC S AB AC S S =⨯⨯=+,即111222ABC SAB AC AB DO AC DE =⨯⨯=⨯⨯+⨯⨯, 可得762DE =, 127DE =, 故答案为:127.【点睛】本题考查了勾股定理逆定理、角平分线、平行线、三角形面积,解答本题的关键是熟练运用角平分线定理和三角形面积相等求解.16.8或4或10【分析】根据已知画出坐标系进而得出AE 的长以及BO 的长即可得出△AOB 的面积【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ∵点O (00)A (24)∴AE =4OE =2OA =当OA =AB 时∴解析:8或45或10【分析】根据已知画出坐标系,进而得出AE 的长以及BO 的长,即可得出△AOB 的面积.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,∵点O (0,0),A (2,4),∴AE =4,OE =2,OA 222425+=当OA =AB 时,∴AE 是△AOB 边OB 的垂直平分线,∴BE=OE=2,∴OB=4,∴B 的坐标为(4,0),此时S △AOB =12OB AE •=1442⨯⨯=8; 当OA =OB 时, ∴OB OA ==,∴B的坐标为(±0),此时S △AOB =12OB AE •=142⨯= 当OB =AB 时, 设AB OB x ==,则2BE x =-,∴2224(2)x x =+-,解得:5x =,∴5OB =,∴B 的坐标为(5,0),此时S △AOB =12OB AE •=1542⨯⨯=10; ∴△AOB 的面积为:8或10.故答案为:8或10.【点睛】此题主要考查了三角形面积以及坐标与图形的性质,利用等腰三角形的性质求得OB 的长是解题关键.17.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形 解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键. 18.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.19.或6【分析】分第三边是直角边与斜边两种情况进行讨论利用勾股定理即可求解【详解】设第三边长为x 当第三边是斜边时则x2=82+102=164;∴x=(负值舍去)当第三边是直角边时则斜边长为10∴x2+8解析:6【分析】分第三边是直角边与斜边两种情况进行讨论,利用勾股定理即可求解.【详解】设第三边长为x ,当第三边是斜边时,则x 2=82+102=164;∴x=当第三边是直角边时,则斜边长为10,∴x 2+82=102,解得:x=6,(负值舍去)故答案是:6【点睛】本题考查了勾股定理,直角三角形中,两条直角边的平方和等于斜边的平方;熟练掌握勾股定理并运用分类讨论的思想是解题关键关键.20.6【分析】设长方形门的宽x 尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x 尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x =28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x 尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.三、解答题21.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.22.(1)①见解析;②4732y x =-;(2)图见解析,222BP AQ PQ +=,理由见解析【分析】 (1)①先通过证ADQ BDG △≌△得到GD=DQ ,又因为PD ⊥DQ 便可证得PG=PQ ; ②由ADQ BDG △≌△证得AQ=BG ,因为CQ=y ,则AQ=BG=9-y ,BP=x ,则PC=12-x ,由PG=PQ ,根据勾股定理可列方程:()()2222912y x x y -+=-+,化简后不能得出y 与x 的函数关系;(2)依据题意画出图形,过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,先证ADQ BDE △≌△,得出EB=AQ ,ED=DQ ,因为PD DQ ⊥,所以EP PQ =,再根据勾股定理得出222EB PB EP +=,不难推出线段BP 、PQ 、AQ 之间的数量关系【详解】解:(1)①//BG AC ,A GBA ∴∠=∠, AD=DB GDB=ADQ ∠∠,,()ASA ADQ BDG ∴△≌△,GD=QD ∴,又PD GQ ⊥,PG=PQ ∴; ②ADQ BDG △≌△∴AQ=BG ,12BC =,9AC =, BP x =,CQ y =,∴ AQ=BG=9-y ,PC=12-x ,在Rt GBP △中,222B PB =GP G + ,在PCQ Rt △中, 222P QC =PQ C + GP PQ =,∴ 2222B PB =P QC G C ++,∴ ()()22229x =12y y x -+-+, 整理,得4732y x =-; (2)依据题意画出图形,当点P 在线段CB 的延长线上时,222AQ PB PQ += ,理由如下:过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,//EB AC ,EBD A ∴∠=∠ ,又EDB ADQ AD DB ∠=∠=, ,∴ ()ASA ADQ BDE △≌△,∴ EB=AQ ,ED=DQ ,PD DQ ⊥,∴ EP PQ =,在EBP Rt △中,222EB PB EP +=,222A Q PB PQ ∴+=.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,线段垂直平分线的性质及勾股定理,构造全等三角形是解决本题的关键.23.(1)3;(2)32【分析】(1)根据勾股定理可求AD ,再根据勾股定理可求CD ,根据BC=BD+CD 即可求解; (2)根据三角形面积公式可求AF 与CG 的和.【详解】(1)在Rt △ABD 中,∠ADB=90︒,由勾股定理得: ()22221174AB BD --,在Rt △ACD 中,∠ADC=90︒,由勾股定理得:()22222542AC AD -=-=,∴BC=BD+CD=1+2=3,∴BC 的长为3;(2)∵AF ⊥BE ,CG ⊥BE ,BE=22, ∴1122∆∆∆=+=⋅+⋅ABC ABE BCE S S S BE AF BE CG , =1()2⋅+BE AF CG , =2()AF CG +, 而12∆=⋅ABC S BC AD =134=62⨯⨯, ∴AF CG +==322, 即AF 与 CG 的和为32.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键. 24.(1)3BE =2)33【分析】(1)利用勾股定理逆定理可得ABC 是直角三角形,90B ∠=︒,连接AE ,根据线段垂直平分线的性质可得AE CE =,在Rt ABE △中利用勾股定理列出方程即可求解;(2)根据题意画出图形,若使CM MN +的值最小,则A ,M ,N 共线,且AN CF ⊥,利用全等三角形的判定与性质即可求解.【详解】解:(1)连接AE ,,∵26AC AB ==,33BC =,∴222AC AB BC =+,∴ABC 是直角三角形,90B ∠=︒,∵DE 垂直平分AC ,∴AE CE =,在Rt ABE △中,222AE AB BE =+,即222CE AB BE =+,∴()222333BE BE -=+,解得3BE =;(2)∵DE 垂直平分AC ,M 是DF 上一动点,∴AM CM =,∴CM MN AM MN +=+,若使CM MN +的值最小,则A ,M ,N 共线,且AN CF ⊥,如图,,在ABC 和CNA 中,B ANC ACB CAN AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABC ≌CNA ,∴33AN BC ==【点睛】本题考查勾股定理逆定理、全等三角形的判定与性质、线段垂直平分线的性质,灵活运用以上基本性质定理是解题的关键.25.(1)①见解析;② 60°+α;③见解析;(2)2222DC EC AM +=;见解析【分析】(1)①根据题意可直接进行作图;②由题意易得△ABC 是等边三角形,则有∠B=∠C=60°,由AD=AE ,则有∠ADE=∠AED ,然后问题可求解;③由②易得∠DAM=60°,由轴对称的性质可得AD=AE=AM ,进而可得△ADM 是等边三角形,然后问题可求证;(2)由题意易证△DMC 是直角三角形,则有222DC CM DM +=,进而可证△ADM 是等腰直角三角形,则有2DM AM =,从而等量代换即可求解.【详解】(1)解:①由题意可得如图所示:②解:∵∠BAC=60°,AB=AC ,∴△ABC 是等边三角形,∴∠B=∠C=60°,∵AD=AE ,∠BAD =α,∴∠ADE=∠AEB=60°+α故答案为60°+α;③证明:由②可得∠BAD=∠EAC ,∵∠BAC=60°,∴∠BAD+∠DAC=60°,∵点E 关于直线AC 的对称点是点M ,∴AC 垂直平分EM ,∴AE=AM ,∠EAC=∠MAC ,∴∠MAC=∠BAD ,DA =MA ,∴∠MAC+∠DAC=60°,∠DAM =60°,∴△ADM 是等边三角形,∴DA =DM ;(2)由题意可得如图所示:线段DC,EC,AM之间的数量关系:222DC EC AM+=2证明:∵点E关于直线AC的对称点是点M,∴AC垂直平分EM,∴AE=AM,∠EAC=∠MAC,∴∠MAC=∠BAD,DA=MA,∵∠BAC=90°,∴∠DAM=90°,∴△DAM是等腰直角三角形,∴2DM=,∵AC垂直平分EM,∴EC=CM,∵∠ACB=45°,∴∠ACB=∠ACM=45°,∴∠MCD=90°,∴在Rt△DMC中,222+=,DC CM DM∴222+=.2DC EC AM【点睛】本题主要考查勾股定理、等腰直角三角形的性质与判定及等边三角形的性质与判定、轴对称的性质,熟练掌握勾股定理、等腰直角三角形的性质与判定及等边三角形的性质与判定、轴对称的性质是解题的关键.26.(1)证明见解析;(2)48cm2.【分析】(1)由AB=AC=13cm,CD=12cm,AD=5cm,知道AC2=AD2+CD2,所以△BDC为直角三角形,(2)根据三角形面积公式解答.【详解】证明:(1)∵AB=AC=13cm,CD=12cm,AD=5cm,∴AC2=AD2+CD2,∴∠ADC=90°,∴∠BDC=90°,∴△BDC为直角三角形;(2)∵AB =13cm ,AD =5cm ,∴BD =13﹣5=8cm .∵CD =12cm , ∴281248()2BDC S cm ∆⨯==. 【点睛】本题考查勾股定理逆定理的应用.理解如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形是解题关键.。

人教版八年级下册二次根式、勾股定理考试测试卷(含word解析)

人教版八年级下册二次根式、勾股定理考试测试卷(含word解析)

数学试卷(二次根式、勾股定理)、单 选题(共10题;共20分)1 .在下列各式中,一定是二次根式的是( )A. 3 2B. ..Ho c. ,.a 21 D. a a3 .下列变形中,正确的是( A. (26)2=2 X 3=6 C.匕-♦ 6; - -5 -小 64 .下列组合哪个不是勾股数(A.30,40,50B. 7,24,25BT -D . '",)「;-4)7二5 .下列二次根式中,与 内是同类二次根式的是( )A.B.c.D.6 .一棵大树在一次强台风中于离地面 5 m 处折断倒下,倒下后树顶落在树根部大约12 m 处.这棵大树折断前离度估计为()7 .如图,a 、b 、c 分别表示直角三角形的三边向外作的正方形的面积,2.若式子运 在实数范围内有意义,则 A. x>1B.女1x 的取值范围是()(X>1D.<1A. 25m B. 18 m C. 17 m D. 13mA. a+b=cB.2+b 2=c 2C.ab=cD.a+b=cC. 5,12,13D. 1,2,3卜列关系正确的是8 .如果最简根式,以二8与是同类二次根式,那么使有意义的x 的取值范围是()A. x< 10 iB. x> 10C. xv 10 uD. x> 109 .等式,营=不与成立的条件是( )10 .下列根式中,最简二次根式是 ( )A.差吧.C.、填空题(共6题;共18分)11 .当a= -2时,二次根式 \f2-a 的值是12 .如图,将一根长为 20cm 的筷子置于底面直径为 5cm,高为12cm 的圆柱形水杯中,筷子 露在杯子外面的长度为 cm.13 .已知三角形的三边长分别为 ^45 cm, 厢cm, y125 cm ,则这个三角形的周长为 _______ cm.14 .如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形 A 、B 、C 、D 的边长分别是3、4、2、3,则最大正方形 E 的面积是15 .若直角三角形的两直角边长为 a 、b,且满足 标二五*9-|b —4 = 0则该直角三角形的斜边长为A. xW3'B. x>0 C. x>0且 xw3 D. x>3D.16 .中国数学史上最先完成勾股定理证明的数学家是公元 3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副 "弦图:后人称其为 赵爽弦图”(如图1) .图2由弦图变化得到, 它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH 正方形ABCD的面积分别记为 S , S 2 , S 3 , 若S i +&+Q=18,则正方形EFGH 的面积为三、计算题(共2题;共15分)17 .计算: 标i-而-1/+ 12x3—1 — 1- I18.计算:⑴廊+杀-屈-旧(2)JI (后行)-中-旧2嘎青六黄41四、解答题(共5题;共47分,19,20,22每题10分,21题5分,23题12分)19.如图,在4ABC 中,AB=13, BC=10, BC边上的中线AD=12.(1)求证:AD^BC;(2)求AC的长.20. (1)已知y/—1 - J-x,求的平方根.(2)当-4<x< 1时,化简,举+&V+16 - 2,d・占+].21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?22.综合题⑴试比较而与后调的大小;(2)你能比较谒二访与向距的大小吗?其中k为正整数.23.如图,B地在A地的正东方向,两地相距28。

【精选】人教版八年级下册数学《勾股定理》练习题(含答案)

【精选】人教版八年级下册数学《勾股定理》练习题(含答案)

《勾股定理》练习题一、选择。

1.在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别是a ,b ,c .若a =5,b =12,则c 的长为( )A B .13 C .18D .1692.如果Rt△的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( ) A .2k B .k +1 C .k 2-1D .k 2+13.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A .4米B .8米C .9米D .7米4.如图,一棵大树被台风刮断,若树在离地面3 m 处折断,树顶端落在离树底部4 m 处,则树折断之前高( )A .5 mB .7 mC .8 mD .10 m5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .116.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为( ) A .22B .32C .62D .827.如图,一个圆桶,底面直径为16 cm ,高为18 cm ,则一只小虫从下底部点A爬到上底B 处,则小虫所爬的最短路径长是( )(π取3)A .50 cmB .40 cmC .30 cmD .20 cm8.若直角三角形的三边长分别为a b -、a 、a b +,且a 、b 都是正整数,则三角形其中一边的长可能为( ) A .22B .32C .62D .829.如图,AC 是电线杆的一根拉线,测得BC =6米,∠ACB =60°,则AB 的长为( )A .12米B .C .6米D .10.在直角三角形中,若勾为3,股为4,则弦为( )A .5B .6C .7D .8二、填空。

11.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2 m ,宽为1.5 m ,现需要在相对的顶点间用一块木板加固,则木板的长为__________.12.若△ABC 中,∠C =90°.(1)若a =5,b =12,则c =__________; (2)若a =6,c =10,则b =__________;(3)若a ∶b =3∶4,c =10,则a =__________,b =__________.13.一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________. 14.如图,在东西走向的铁路上有A ,B 两站,在A ,B 的正北方向分别有C ,D两个蔬菜基地,其中C 到A 站的距离为24千米,D 到B 站的距离为12千米.在铁路AB 上有一个蔬菜加工厂E ,蔬菜基地C ,D 到E 的距离相等,且AC =BE ,则E 站距A 站__________千米.15.如图,90ACB ∠=︒,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =__________.16.如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7 m ,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3 m ,木板顶端向下滑动了0.9 m ,则小猫在木板上爬动了__________m .17.(2018·湖北襄阳)已知CD 是△ABC 的边AB 上的高,若CD =,AD =1,AB =2AC ,则BC 的长为__________. 三、解决问题。

人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(有答案解析)

人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(有答案解析)

一、选择题1.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .452.如图,在等腰ABC ∆中,,AB AC =点E 为AC 的中点,且CD CE =.若60,4A EF cm ∠=︒=,则DF 的长为( )A .12cmB .10cmC .8cmD .6cm 3.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 4.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 5.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .486.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm 7.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,下列结论:①AD 是BAC ∠的平分线;②∠ADB=120°;③DB=2CD ;④若CD=4,83AB =△DAB 的面积为20.其中正确的结论共有( )A .1个B .2个C .3个D .4个 8.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 9.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h = 10.如图,在△ABC 中,∠C =90°,点D 在边BC 上,AD =BD ,DE 平分∠ADB 交AB 于点E .若AC =12,BC =16,则AE 的长为( )A .6B .8C .10D .12 11.若实数m 、n 满足340m n --=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B 7C .57D .以上都不对 12.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( )A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠= 二、填空题13.如图,ABC 中,AB 5=,BC 6=,BC 边上的中线AD 4=,则ADC ∠=________.14.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.15.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.16.已知一个直角三角形的两边长分别是a ,b ,且a ,b 满足340a b -+-=.则斜边长是____________17.如图,在四边形ABCD 中,22AD =,27AB =,10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.18.如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,这棵树有的高是______________ .19.如图,∠AOD =90°,OA =OB =BC =CD ,若AC =3,则AD =_______.20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD的面积=______________.三、解答题21.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.22.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?23.已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°(1)若D为△ACB内部一点,如图,AE=BD吗?说明理由(2)若D为AB边上一点,AD=5,BD=12,求DE的长24.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC;(2)在图2中画出一个面积为13的格点正方形DEFG;H;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1的格点直角三角形JKL.(4)在图4中画出一个周长为321025.如图,△ABC中,AB=42,∠ABC=45°,D是BC边上一点,且AD=AC,若BD﹣DC=1.求DC的长.26.如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BE=AC,点F为BC 的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)求证:△BDE≌△ADC;(2)求证:AC⊥MC;(3)若AC=m,则点A、点M之间的距离为(用含m的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.2.A解析:A【分析】由已知可得DF⊥AB,∠D=∠AEF=30°,所以根据含30°角的直角三角形性质可以算得DF的值.【详解】解:∵AB=AC,∠A=60°,∴ΔABC 为等边三角形,∴∠ACB=60°,∵CD=CE ,∴∠CED=∠D=12∠ACB=30°, ∴∠AEF=30°, ∴∠AFE=180°-∠A-∠AEF=90°,∵EF=4cm ,∴设AF=x ,则AE=2x ,∴由勾股定理得:22244x x +=,∴∴AF AE == ∴2BF AB AF AE AF =-=-=∵∠D=30°, ∴2BD BF ==, ∴22223DF BD BF BF =-=,∴DF=16412BF ==-=, 故选A .【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质、勾股定理的应用是解题关键. 3.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 4.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.5.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴,∴S 2=122x x ⨯⨯=24AB ,同理:S 12AC ,S 32BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1,如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6, ∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.6.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即222251213AC BC +=+=cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 7.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出=163DAB S ,故④错误. 【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅,∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒, ∴3122BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒,∴343AC CD ==,∴11==843=16322DAB S BD AC ⨯⨯,故④错误.故选:C .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.8.C解析:C【分析】分Q 在CB 延长线上和Q 在BC 延长线上两种情况分类讨论,求出CQ 长,根据线段的和差关系即可求解.解:如图1,当Q 在CB 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=, ∴BQ=CQ-BC=31-;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 3131.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.9.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长2234+,高为12cm ,由勾股定理可得:杯里面管长22512+=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.10.C解析:C【分析】首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB ===,∵AD=BD ,DE 平分∠ADB 交AB 于点E . ∴1102AE BE AB ===, 故选:C .【点睛】本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方. 11.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.12.B解析:B【分析】根据三角形三边关系可分析出A的正误;根据勾股定理逆定理可分析出B的正误;根据三角形内角和定理可分析出C、D的正误;【详解】解:A、a b c+=,不能组成三角形,不是直角三角形;B、222a c b+=,符合勾股定理的逆定理,是直角三角形;C、由∠A+∠B=2∠C,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D、由∠A:∠B:∠C=5:12:13,可得最大角131807830C∠=︒⨯=︒,不是直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理.二、填空题13.【分析】根据中线的性质及勾股定理的逆定理即可求出的度数【详解】∵边上的中线∴∵∴【点睛】本题考查中线的性质勾股定理的逆定理的应用掌握相应的性质定理是解答此题的关键解析:90【分析】根据中线的性质及勾股定理的逆定理即可求出ADC∠的度数.【详解】∵AB5=,BC6=,BC边上的中线4AD=,∴BD3=,∵222345+=,∴ADC ADB90∠∠==.【点睛】本题考查中线的性质勾股定理的逆定理的应用,掌握相应的性质定理是解答此题的关键.14.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC中AC=1AB=xBC=3-x解得1<x<2;①∵1<x解析:43或53【分析】根据三角形的三边关系:两边之和大于第三边,即可得到关于x的不等式组,求出x的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC中,AC=1,AB=x,BC=3-x.1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 15.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.16.5或4【分析】根据绝对值和算术平方根具有非负性可得ab 的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a =3b =4当ab 为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a 、b 的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a ,b 40b -=,∴a−3=0,b−4=0,解得:a =3,b =4,当a ,b 为直角边,5=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.17.+24【分析】连结BD 可求出BD=6再根据勾股定理逆定理得出△BDC 是直角三角形两个三角形面积相加即可【详解】解:连结BD ∵∴∵∴BD=6∵BD2=36CD2=64BC2=100BD2+CD2=BC解析:+24【分析】连结BD ,可求出BD=6,再根据勾股定理逆定理,得出△BDC 是直角三角形,两个三角形面积相加即可.【详解】解:连结BD ,∵90BAD ∠=︒, ∴BD =∵AD =,AB =∴BD=6,∵BD 2=36,CD 2=64,BC 2=100,BD 2+CD 2=BC 2,∴∠BDC=90°,S △ABD =122272142⨯⨯=, S △BDC =168242⨯⨯=, 四边形ABCD 的面积是= S △ABD + S △BDC =214+24故答案为:214+24.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.15米【分析】根据题意确定已知线段的长再根据勾股定理列方程进行计算【详解】设BD=米则AD=()米CD=()米∵∴解得即树的高度是10+5=15米故答案为:15米【点睛】本题主要考查了勾股定理的应用解析:15米【分析】根据题意确定已知线段的长,再根据勾股定理列方程进行计算.【详解】设BD=x 米,则AD=(10x +)米,CD=(30x -)米,∵222CD AD AC -=,∴()()222301020x x --+=, 解得5x =.即树的高度是10+5=15米.故答案为:15米.【点睛】本题主要考查了勾股定理的应用,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.19.【分析】设OA=OB=BC=CD=a 可知AB=AC=AD=由题意知AC=3即可求出AD 的长;【详解】∵OA=OB=BC=CD ∴设OA=OB=BC=CD=a ∵∠AOD=90°∴AC===∴∵AC==3解析:32【分析】设OA=OB=BC=CD=a ,可知2a ,5a ,10a ,由题意知AC=3,即可求出AD 的长;【详解】∵ OA=OB=BC=CD ,∴ 设OA=OB=BC=CD=a ,∵∠AOD=90°,∴ AC=22AO OC + =()222a a + =5a , ∴2222(3)10AD OD OA a a a =+=+=,∵AC=5a =3,∴ a=35 ∴ AD=3510⨯=32 故答案为:32.【点睛】本意考查了等腰直角三角形的性质,勾股定理,正确掌握等腰直角三角形的性质和勾股定理是解题的关键;20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S SS =-即可求解.【详解】解:连接AC , ,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =,∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒,∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为(b ﹣a )2, ∴c 2=4×12ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2; (2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10,∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.22.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt△ACB'中,52+(x-1)2=x2,解得:x=13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.23.(1)AE=BD,见解析;(2)13【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD;(2)由全等三角形的性质可得BD=AE=12,∠CAE=∠CBD=45°,由勾股定理可求DE的长.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴CD=CE,AC=BC,∠ECD=∠ACB=90°,∴∠ACE=∠BCD在△ACE和△BCD中∵EC=CD,∠ACE=∠BCD,AC=BC,∴△ACE≌△BCD(SAS)∴AE=BD;(2)如图,由(1)可知:△ACE≌△BCD,∴BD=AE=12,∠CAE=∠CBD=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,即52+122=ED2∴DE=13;【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△ACE≌△BCD是本题的关键.24.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(213(3)根据勾股定理画出长为5的线段,即可;(4)根据勾股定理画出长为2,22,10的三角形,即可.【详解】(1)∵2121ABC S=⨯÷=,∴ABC 即为所求;(2)∵EF=FG=GD=DE=222313+=,∴正方形DEFG 的面积为13;(3)HI=22345+=;(4)∵KL=22112+=,JL=222222+=,JK=221310+=,且222(2)(22)(10)+=∴JKL 是直角三角形,且周长为3210+.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.25.DC =2.【分析】过点A 作AE ⊥BC 于点E ,则∠AEB=90°,DE=CE ,结合∠ABC=45°可得出∠BAE=45°,进而可得出AE=BE ,在Rt △ABE 中,利用勾股定理可求出BE 的长,即BD+12DC=4,结合BD-DC=1可求出DC 的长.【详解】解:过点A 作AE ⊥BC 于点E ,如图所示.∵AD =AC ,AE ⊥BC ,∴∠AEB =90°,DE =CE .∵∠ABC =45°,∴∠BAE =45°,∴AE =BE .在Rt △ABE 中,AB =∴AE 2+BE 2=AB 2,即BE 2+BE 2=()2,∴BE =4,∴BD +12DC =4. 又∵BD ﹣DC =1, ∴DC +1+12DC =4, ∴DC =2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在Rt △ABE 中,利用勾股定理求出BE 的长是解题的关键.26.(1)证明见解析;(2)证明见解析;(3.【分析】(1)先根据垂直的定义可得BDE 和ADC 都是直角三角形,再利用HL 定理证明三角形全等即可;(2)先根据(1)中的全等三角形可得DBE DAC ∠=∠,再根据三角形全等的判定定理与性质可得DBE FCM ∠=∠,从而可得DAC FCM ∠=∠,然后根据角的和差、等量代换即可得证;(3)先根据(2)中的全等三角形可得BE CM =,从而可得CM AC m ==,再在Rt ACM △中,利用勾股定理即可得.【详解】(1)AD BC ⊥,90BDE ADC ∠∴∠==︒,∴BDE 和ADC 都是直角三角形,在BDE 和ADC 中,DE DC BE AC =⎧⎨=⎩, ()BDE ADC HL ∴≅;(2)BDE ADC ≅,DBE DAC ∠=∠∴,点F 为BC 的中点,BF CF ∴=,由对顶角相等得:BFE CFM ∠=∠, 在BEF 和CMF 中,BF CF BFE CFM EF MF =⎧⎪∠=∠⎨⎪=⎩,()BEF CMF SAS ∴≅,FBE FCM ∴∠=∠,即DBE FCM ∠=∠,DAC FCM ∠=∠∴, 又在Rt ACD △中,90DAC ACD ∠+∠=︒,90FCM ACD ∴∠+∠=︒,即90ACM ∠=︒,AC MC ∴⊥;(3)如图,连接AM ,BEF CMF ≅,BE CM ∴=,,BE AC AC m ==,CM AC m ∴==,AC MC ⊥,ACM ∴是直角三角形,222AM AC CM m ∴+,即点A 、点M 2m .【点睛】本题考查了直角三角形全等的判定定理与性质、直角三角形的性质、勾股定理等知识点,熟练掌握三角形全等的判定方法是解题关键.。

人教版八年级数学下册《第17章 勾股定理》(A卷)

人教版八年级数学下册《第17章 勾股定理》(A卷)

初中数学试卷《第17章勾股定理》(A卷)一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= .2.△ABC,AC=6,BC=8,当AB= 时,∠C=90度.3.等边三角形的边长为6cm,则它的高为cm.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= .5.直角三角形两直角边长分别为5和12,则它斜边上的高为.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为.8.等腰三角形的两边长为2和4,则底边上的高为.9.若等腰直角三角形斜边长为2,则它的直角边长为.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是cm2.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是三角形.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,1216.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.417.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)27.如图,△ABC中,CD⊥AB于D.(1)图中有个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?30.(8分)学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较=a2+b2c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= mm;b= mm;较长的一条边长c= mm.比较a2+b2c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:,类比勾股定理的验证方法,相信你能说明其能否成立的理由.《第17章勾股定理》(A卷)参考答案与试题解析一、填空题(共14小题,每题2分,共28分)1.△ABC中,∠C=90°,a=9,b=12,则c= 15 .【考点】勾股定理.【分析】根据勾股定理即可解决.【解答】解:根据勾股定理,得c==15.【点评】主要是考查了勾股定理,熟记9,12,15勾股数.2.△ABC,AC=6,BC=8,当AB= 10 时,∠C=90度.【考点】勾股定理.【分析】由已知得,这是一个直角三角形,则根据勾股定理即可求解.【解答】解:∵∠C=90°∴AB为斜边∴AC2+BC2=AB2,∴AB=10【点评】本题利用了勾股定理来求解,是基础知识比较简单.3.等边三角形的边长为6cm,则它的高为3cm.【考点】等边三角形的性质;勾股定理.【分析】作底边上的高.根据等腰三角形的三线合一,以及勾股定即可求解.【解答】解:底边的一半是3.再根据勾股定理,得它的高为=3cm.【点评】考查了等腰三角形的三线合一性质以及勾股定理.4.△ABC中,∠C=90°,∠A=30°,则BC:AC:AB= 1::2 .【考点】勾股定理.【分析】根据直角三角形各角的度数判断出其所对边的长短,再根据直角三角形的性质及勾股定理解答.【解答】解:∵∠A=30°,∴BC为最短边,设其为1,∵∠C=90°,∴AB为最长边,∴AB=2BC=2,∴AC==,∴BC:AC:AB=1::2.【点评】需注意:在求30°的直角三角形的各边之比时,应设最短边为1,再根据勾股定理解答.5.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,看清题中条件即可.6.等腰三角形的顶角为120°,底边上的高为3,则它的周长为12+6.【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.【解答】解:∵等腰三角形的顶角为120°,底边上的高为3,∴腰长=6,底边的一半=3,∴周长=6+6+2×3=12+6.故答案为:12+6.【点评】本题考查勾股定理及等腰三角形的性质的综合运用.7.若直角三角形两直角边之比为3:4,斜边长为20,则它的面积为96 .【考点】勾股定理.【分析】首先根据比值设出两直角边,利用勾股定理即可求出直角边的长,代入面积公式求解即可.【解答】解:根据题意,设两直角边是3x、4x,则(3x)2+(4x)2=202,解得x=4,所以两直角边为12,16;×12×16=96,所以它的面积是96.【点评】根据比值设出两直角边利用勾股定理求解是本题的考查点.8.等腰三角形的两边长为2和4,则底边上的高为.【考点】勾股定理;等腰三角形的性质.【分析】根据已知确定底边与腰,从而根据勾股定理求得底边上的高.【解答】解:∵等腰三角形底边上的高与底边上的中线互相重合,∴底边上的高与腰长,底边的一半构成直角三角形,∵底边长是2,∴底边的一半是1,∴底边上的高==.【点评】本题应根据三角形三边关系先得到此等腰三角形的腰长与底边的值.然后利用勾股定理求解.9.若等腰直角三角形斜边长为2,则它的直角边长为.【考点】等腰直角三角形.【分析】利用勾股定理,设直角边为a,则2a2=4求解即可.【解答】解:∵三角形为等腰直角三角形,∴设两直角边为a,则a2+a2=22解得a=【点评】本题需注意根据等腰直角三角形的特点,利用勾股定理进行解答,还要注意,三角形的边长是正值.10.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是30 cm2.【考点】勾股定理的应用.【专题】应用题.【分析】根据三角形花坛的三边长可知符合勾股定理的逆定理的表达式,根据勾股定理的逆定理,可知此三角形为直角三角形,再代入直角三角形的面积公式即可求解.【解答】解:∵52+122=132,∴此三角形为直角三角形,两直角边分别为5cm和12cm,∴花坛面积=×5×12=30(cm2).【点评】本题主要是根据勾股定理的逆定理推出此三角形为直角三角形,再根据直角三角形的面积解答.11.已知△ABC的三边a,b,c满足(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,则△ABC是直角三角形.【考点】勾股定理的逆定理;非负数的性质:偶次方.【分析】根据给出的条件求出三角形的三边长,再根据勾股定理的逆定理来判定三角形的形状.【解答】解:∵(a﹣5)2+(b﹣12)2+c2﹣26c+169=0,∴(a﹣5)2+(b﹣12)2+(c2﹣26c+169)=0,∴(a﹣5)2+(b﹣12)2+(c﹣13)2=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形.【点评】本题考查了特殊方程的解法与及勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.13.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.14.若一个三角形的三边长分别为3,4,x,则使此三角形是直角三角形的x的值是5或.【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=;所以第三边的长为5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、选择题(共4小题,每题3分,共12分)15.下列各组数中,不能构成直角三角形的一组是()A.1,2,B.1,2,C.3,4,5 D.6,8,12【考点】勾股定理的逆定理.【分析】符合勾股定理的逆定理是判定直角三角形的方法之一.【解答】解:根据勾股定理的逆定理知,三角形三边满足c2=a2+b2,三角形就为直角三角形,四个选项,只有D中不满足,故选D.【点评】本题考查了勾股定理的逆定理的应用,是基础知识,要熟练掌握.16.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.【点评】本题需先求出AD长,利用了两次勾股定理进行推理计算.17.已知三角形的三边长之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【考点】勾股定理的逆定理.【分析】由已知得其有两条边相等,并且符合勾股定理的逆定理,从而可判断三角形的形状.【解答】解:由题意设三边长分别为:x,x, x∵x2+x2=(x)2,∴三角形一定为直角三角形,并且是等腰三角形.故选D.【点评】本题考查了勾股定理的逆定理,三角形三边关系满足a2+b2=c2,三角形为直角三角形.18.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长()A.4cm B.8cm C.10cm D.12cm【考点】勾股定理.【分析】设斜边长为x,表示出一直角边为(x﹣2)cm,然后利用勾股定理列出方程求解即可.【解答】解:设斜边长为x,则直角边为(x﹣2)cm,由勾股定理得,x2=(x﹣2)2+62,解得x=10,所以,它的斜边长为10cm.故选C.【点评】本题考查了勾股定理,熟记定理并列出方程是解题的关键.三、解答题(共60分)19.如图,每个小正方形的边长是1.①在图①中画出一个面积是2的直角三角形;②在图②中画出一个面积是2的正方形.【考点】作图—代数计算作图.【分析】面积是2的直角三角形只需两直角边长为2,2即可;面积是2的正方形的边长为,是直角边长为1,1的两个直角三角形的斜边长.【解答】解:.【点评】直角三角形的两直角边的积等于面积的2倍;边长为无理数应先找到所求的无理数是直角边长为哪两个有理数的直角三角形的斜边长.21.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前至少有多高?【考点】勾股定理的应用.【专题】探究型.【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC即可解答.【解答】解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC===10m,∴旗杆的高=AB+BC=2.8+10=12.8m.答:这根旗杆被吹断裂前至少有12.8米高.【点评】本题考查的是勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.22.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).【考点】勾股定理的应用.【专题】应用题.【分析】首先根据三角形的内角和定理的推论求得∠BCD=90°;再根据直角三角形的性质求得CD的长,最后运用勾股定理求得BC的长即可.【解答】解:在直角△BCD中,∵∠ABD=150°,∠D=60°,∴∠BCD=90°∠CBD=30°,∴CD=BD=16,∴BC===16≈16×1.732≈27.7km.【点评】综合运用了三角形的内角和定理的推论“30°角所对的直角边是斜边的一半”及勾股定理.23.如图,△ABC中,AB=15cm,AC=24cm,∠A=60°.求BC的长.【考点】勾股定理.【分析】在解决三角形问题时常需构成直角三角形来解决.∠A=60°应在这个直角三角形中.然后利用勾股定理来进行解答.【解答】解:过B作BD⊥AC于D.∴∠BDA=∠BDC=90°∵∠A=60°∴∠ABD=30°∵AB=15 cm∴AD=AB=cm,∴BD=cm,CD=AC﹣AD=cm,∴BC===21cm【点评】本题的难点在于作辅助线,要求是构造直角三角形,所给的特殊角在直角三角形中.24.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.【考点】勾股定理.【分析】AD为高,那么题中有两个直角三角形.AD在这两个直角三角形中,设BD为未知数,可利用勾股定理都表示出AD长.求得BD长,再根据勾股定理求得AD长.【解答】解:设BD=x,则CD=14﹣x,在Rt△ABD中,AD2+x2=132,在Rt△ADC中,AD2=152﹣(14﹣x)2,所以有132﹣x2=152﹣(14﹣x)2,132﹣x2=152﹣196+28x﹣x2,解得x=5,在Rt△ABD中,AD==12.【点评】本题考查了勾股定理,解决本题的关键在于利用两个直角三角形的公共边找到突破点.主要利用了勾股定理进行解答.26.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【考点】勾股定理的应用.【专题】应用题.【分析】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.【点评】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.27.如图,△ABC中,CD⊥AB于D.(1)图中有 C 个直角三角形;A、0B、1C、2D、3(2)若AD=12,AC=13,则CD= 5 ;(3)若CD2=AD•DB,求证:△ABC是直角三角形.【考点】勾股定理的逆定理.【专题】计算题;证明题.【分析】(1)根据直角三角形的判定定理,△ACD和△BCD是直角三角形;(2)根据勾股定理求出CD的值;(3)再通过给出的条件CD2=AD•DB,推出△ABC的三边关系,判定它是直角三角形.【解答】解:(1)C;(2)CD==5;(3)AC2=AD2+CD2①BC2=CD2+BD2②①+②得AC2+BC2=2CD2+AD2+BD2=2AD•BD+AD2+BD2=(AD+BD)2=AB2∴△ABC是直角三角形.【点评】本题考查了直角三角形的判定与及勾股定理等内容.28.小明把一根长为160cm的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC,已知风筝的高AD=40cm,你知道小明是怎样弯折铁丝的吗?【考点】勾股定理的应用.【分析】设出腰的长,则底边的长可表示出来,又已知等腰三角形的高,在Rt△ABD中运用勾股定理可解得腰长.【解答】解:设腰长AB=AC=xcm,则BC=160﹣2x,BD=BC=80﹣x,在Rt△ABD中,AB2=BD2+AD2,即x2=(80﹣x)2+402,解之得:x=50,∴AB=AC=50cm,BC=160﹣2×50=60cm.所以小明在先量取铁丝50cm弯折一次,再量取60cm弯折一次,然后与铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.【点评】本题考查正确运用勾股定理.29.去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路.如图中线段AB,经测量,在A地北偏东60°方向,B地西偏北45°方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【考点】解直角三角形的应用﹣方向角问题.【专题】应用题.【分析】本题要求的实际上是C到AB的距离,过C点作CD⊥AB,CD就是所求的线段,由于CD是条公共直角边,可用CD表示出AD,BD,然后根据AB的长,来求出CD的长.【解答】解:过C点作CD⊥AB于D,由题可知:∠CAD=30°,设CD=x千米,tan∠CAD=,所以AD==x,由CD⊥AB,得到∠CDB=90°,又∠CBD=45°,所以△CDB为等腰直角三角形,则BD=CD=x,∵AB=2,∴x+x=2,∴x====﹣1>0.7.∴计划修筑的这条公路不会穿过公园.【点评】解直角三角形的应用关键是构建直角三角形,如果有共用直角边的,可以利用公共边来进行求解.30.学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2+b2=c2,或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 9 mm.比较=a2+b2>c2(填写“>”,“<”,或“=”);(2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a= 6 mm;b= 8 mm;较长的一条边长c= 11 mm.比较a2+b2<c2(填写“>”,“<”,或“=”);(3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:若△ABC是锐角三角形,则有a2+b2>c2若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2,类比勾股定理的验证方法,相信你能说明其能否成立的理由.【考点】勾股定理的证明.【专题】阅读型.【分析】熟悉勾股数,然后根据大边对大角,小边对小角,确定第三边的长,从而保证三角形的形状.如取较小的两边是6,8,若是直角三角形,则第三边应是10.故要保证它是锐角三角形,只需取9.要保证它是钝角三角形,只需取11.证明的时候,充分运用勾股定理结合完全平方公式即可分析证明.【解答】解:(1)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=9mm.比较=a2+b2>c2;(2)较短的两条边长分别是a=6mm;b=8mm;较长的一条边长c=11mm.比较a2+b2<c2;(3)若△ABC是锐角三角形,则有a2+b2>c2;若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2.当△ABC是锐角三角形时,理由:过点A作AD⊥BC,垂足为D,设CD为x,则有BD=a﹣x.根据勾股定理,得b2﹣x2=AD2=c2﹣(a﹣x)2,即b2﹣x2=c2﹣a2+2ax﹣x2.∴a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0;∴a2+b2>c2.当△ABC是钝角三角形时,理由:过B作BD⊥AC,交AC的延长线于D.设CD为x,则有BD2=a2﹣x2,根据勾股定理,得(b+x)2+a2﹣x2=c2,即a2+b2+2bx=c2.∵b>0,x>0,∴2bx>0,∴a2+b2<c2.【点评】本题考查了勾股定理的证明,在给定三角形的三边的时候,还要注意三角形的三边关系.注意勾股定理的熟练运用以及完全平方公式的灵活变形.-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达。

人教版初中数学八年级数学下册第二单元《勾股定理》检测(含答案解析)(1)

人教版初中数学八年级数学下册第二单元《勾股定理》检测(含答案解析)(1)

一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .3 2.如图,2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则ABC 中AB 边上的高长为( )A .35B .25C .35D .3223.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =7,b =25,c =24B .a =11,b =41,c =40C .a =12,b =13,c =5D .a =8,b =17,c =15 4.如图,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )A .103B .256C .203D .1545.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.86.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .487.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm8.如图,在Rt ABC 中,AB AC =,BAC 90∠=︒,点D ,E 为BC 上两点.DAE 45∠=︒,F 为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论: ①CE BF =;②222BD CE DE +=;③ADE 1S AD EF 4=⋅△;④222CE BE 2AE +=,其中正确的是( )A .①②③④B .①②④C .①③④D .②③ 9.如图,90ABC ︒∠=,//AD BC ,以B 为圆心,BC 长为半径画弧,与射线AD 相交于点E ,连接BE ,过点C 作CF BE ⊥,垂足为F .若6AB =,10BC =,则EF 的长为( )A .1B .2C .3D .410.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .511.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( ) A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠=12.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .125二、填空题13.已知在ABC 中,45ABC ︒∠=,32AB =,1BC =,且以AB 为边作等腰Rt ABD ,90ABD ︒∠=,连结CD ,则CD 的长为________.14.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)15.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,25AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.16.在ABC ∆中,AC =8,45C ∠=︒,AB =6,则BC =___________.17.在平面直角坐标系中有两点A(5,0),B(2,1),如果点C 在坐标平面内,且由点A 、O 、C 连成的三角形与△AOB 全等(△AOC 与△AOB 不重合),则点C 的坐标是_________ 18.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____ 19.如图,在边长为3ABC 中,过点C 作垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为_________.20.如图ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB ,交BC 于点E ,若CE =2,则BE =______________.三、解答题21.在ABC 中,AB c =,BC a =,AC b =.如图1,若90C ∠=︒时,根据勾股定理有222+=a b c .(1)如图2,当ABC 为锐角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(2)如图3,当ABC 为钝角三角形时,类比勾股定理,判断22a b +与2c 的大小关系,并证明;(3)如图4,一块四边形的试验田ABCD ,已知90B ∠=︒,80AB =米,60BC =米,90CD =米,110AD =米,求这块试验田的面积.22.如图,在△ABC 中,∠C =90°,AB 的垂直平分线DE 交AC 于点E ,垂足是D ,F 是BC 上一点,EF 平分∠AFC ,EG ⊥AF 于点G .(1)试判断EC 与EG ,CF 与GF 是否相等;(直接写出结果,不要求证明)(2)求证:AG =BC ;(3)若AB =10,AF +BF =12,求EG 的长.23.为迎接十四运,我区强力推进“三改一通一落地”,加速城市更新步伐.绿地广场有一块三角形空地将进行绿化,如图,在ABC 中,AB AC =,E 是AC 上的一点,5CE =,13BC =,12BE =.(1)判断ABE △的形状,并说明理由.(2)求线段AB 的长.24.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积;()2求证:22AB AC BE BC -=⋅.25.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如下图,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 、试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出_________(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如下图,将(1)中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)﹒如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如下图,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠.①试判断DEF 的形状,并说明理由.②直接写出DEF 的面积.26.如图,在等边ABC 中,AO 是BAC ∠的角平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边CDE △,连接BE .(1)求证:≌ACD BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连接CP 、CQ 使5CP CQ ==,若8BC =时,求PQ 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可.【详解】∵E 是AB 中点,DE AB ⊥,∴DE 是AB 的垂直平分线,∴DA DB =,则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-, ∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出△ABC 的面积和AB 的长,利用三角形面积公式可得答案.【详解】过C 作CD ⊥AB 于D ,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△,∵AB == ∴1322AB CD ⋅=,则5CD ==, 故选:A .【点睛】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.3.B解析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A 、72+242=52,能构成直角三角形,不符合题意;B 、112+402≠412,不能构成直角三角形,符合题意;C 、52+122=132,能构成直角三角形,不符合题意;D 、82+152=172,能构成直角三角形,不符合题意.故选:B .【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.4.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°, ∴6BC ===,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.5.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出13比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴223213OA OB =+=∴A 所表示的数为13-∵23.612.9613=<,23.713.6913=>, ∴13-3.6和-3.7之间,∵23.6513.322513=>,∴13-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.6.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x , ∴DE=22AE AD -=32x , ∴S 2=132x x ⨯⨯=23AB , 同理:S 1=23AC ,S 3=234BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1, 如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6,∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即222251213AC BC +=+=cm故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 8.A解析:A【分析】①利用全等三角形的判定得AFB ≌AEC ,再利用全等三角形的性质得结论;②利用全等三角形的判定和全等三角形的性质得FD DE =,再利用勾股定理得结论;③利用等腰三角形的性质得AD EF EF 2EG ⊥=,,再利用三角形的面积计算 结论;④利用勾股定理和等腰直角三角形的性质计算得结论.【详解】解:如图:对于①,因为BAC 90FA AE DAE 45∠∠=︒⊥=︒,,,所以CAE 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,FAB 90DAE BAD 45BAD ∠∠∠∠=︒--=︒-,因此CAE FAB ∠∠=.又因为BAC 90AB AC ∠=︒=,,所以ABC ACB 45∠∠==︒.又因为FB BC ⊥,所以FBA ACB 45∠∠==︒.因此AFB ≌()AEC ASA △,所以CE BF =.故①正确.对于②,由①知AFB ≌AEC ,所以AF AE =.又因为DAE 45FA AE ∠=︒⊥,,所以FAD DAE 45∠∠==︒,连接FD , 因此AFD ≌()AED SAS △.所以FD DE =.在Rt FBD △中,因为CE BF =,所以222222BD CE BD BF FD DE +=+==.故②正确.对于③,设EF 与AD 交于G .因为FAD DAE 45AF AE ∠∠==︒=,,所以AD EF EF 2EG ⊥=,. 因此ΔADE 11S AD EG AD EF 24=⨯⨯=⨯⨯. 故③正确.对于④,因为CE BF =, 又在Rt FBE △中,22222CE BE BF BE FE +=+= 又AEF △是以EF 为斜边的等腰直角三角形,所以22EF 2AE =因此,222CE BE 2AE +=.故④正确.故选A .【点睛】本题考查了全等三角形的判定,全等三角形的性质,勾股定理,等腰三角形的性质和三角形的面积. 9.B解析:B【分析】根据题意结合勾股定理可求出AE 长,再根据//AD BC ,可证明AEB CBF ∠=∠,即可证明()ABE FCB AAS ≅,得出结论BF=AE ,即可求出EF .【详解】根据题意可知BC=BE=10,90BAE BFC ∠=∠=︒.在Rt ABE △中,22221068AEBE AB . ∵//AD BC ,∴AEB CBF ∠=∠,∴()ABE FCB AAS ≅,∴BF=AE=8,∴EF=BE-BF=10-8=2.故选:B . 【点睛】本题考查三角形全等的判定和性质,平行线的性质以及勾股定理.利用“角角边”证明ABE FCB ≅是解答本题的关键.10.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键. 11.B解析:B【分析】根据三角形三边关系可分析出A 的正误;根据勾股定理逆定理可分析出B 的正误;根据三角形内角和定理可分析出C 、D 的正误;【详解】解:A 、a b c +=,不能组成三角形,不是直角三角形;B 、222a c b +=,符合勾股定理的逆定理,是直角三角形;C 、由∠A+∠B=2∠C ,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D 、由∠A :∠B :∠C=5:12:13,可得最大角131807830C ∠=︒⨯=︒,不是直角三角形. 故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理. 12.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF 的最小值即为点C 到AB 的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC =125,即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键.二、填空题13.或5【分析】根据点C 和点D 与AB 的位置关系分类讨论分别画出对应的图形根据等腰直角三角形的性质勾股定理分别求解即可【详解】解:若点C 和点D 在AB 的同侧时如下图所示延长BC 交AD 于E ∵△ABD 为等腰直角解析:13或5【分析】根据点C 和点D 与AB 的位置关系分类讨论,分别画出对应的图形,根据等腰直角三角形的性质、勾股定理分别求解即可.【详解】解:若点C 和点D 在AB 的同侧时,如下图所示,延长BC 交AD 于E∵△ABD 为等腰直角三角形,∠ABD=90°,45ABC ︒∠=∴BD=32AB =∠DBC=∠ABD -∠ABC=45°∴226AB BD +=,∠DBC=∠ABC∴BE ⊥AD ,BE 是AD 的中线 ∴BE=DE=12AD=3 ∴CE=BE -BC=2在Rt △CDE 中,2213CE DE +=若点C 和点D 在AB 的两侧时,如下图所示,过点D 作DE ⊥CB 交CB 延长线于E∵△ABD 为等腰直角三角形,∠ABD=90°,45ABC ︒∠=∴BD=32AB =,∠DBE=180°-∠ABD -∠ABC=45°∴△EDB 为等腰直角三角形,DE=BE∵DE 2+BE 2=BD 2∴2DE 2=()232解得:DE=3∴BE=3∴CE=BE +BC=4在Rt △CDE 中,CD=225CE DE +=;综上:CD=13或5.故答案为:13或5.【点睛】此题考查的是等腰直角三角形的性质及判定和勾股定理,掌握等腰直角三角形的性质及判定、勾股定理和分类讨论的数学思想是解题关键. 14.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB=解析:2+4a【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a即蚂蚁爬行的最短路线的长度为2+4a .故答案是2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 15.【分析】根据中点的含义先求解作点C 关于AB 对称点则连接交AB 于P 连接此时的值最小由对称性可知于是得到再证明然后根据勾股定理即可得到结论【详解】解:为的中点作点C 关于AB 对称点交于则连接交AB 于P 连接 解析:25【分析】根据中点的含义先求解,BD 作点C 关于AB 对称点C ',则OC OC '=,连接DC ',交AB 于P ,连接BC ',此时PD PC PD PC DC ''+=+=的值最小,由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥于是得到90C BC '∠=︒,再证明4BC BC '==,然后根据勾股定理即可得到结论.【详解】解:4AC BC D ==,为BC 的中点,90ACB ∠=︒,2CD BD ∴==, 45CBA ∠=︒,作点C 关于AB 对称点C ',CC '交AB 于O ,则OC OC '=,连接DC ',交AB 于P ,连接BC '.此时PD PC PD PC DC ''+=+=的值最小.由对称性可知45C BA CBA '∠=∠=︒,,AB CC '⊥ ∴90C BC '∠=︒,∴BC BC '⊥,点C 关于AB 对称点C ',∴AB 垂直平分CC ',∴4BC BC '==,根据勾股定理可得22422 5.DC '+=故答案为:5【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质与判定,勾股定理的应用,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.16.【分析】有两种情况可能是锐角三角形可能是钝角三角形过A 点作AD 垂直于BC 当为锐角三角时BC=CD+BD 当为钝角三角形时BC=CD-BD 利用勾股定理求出各边即可得到答案【详解】如图过点A 作垂足为D 当为 解析:422±【分析】ABC ∆有两种情况,可能是锐角三角形,可能是钝角三角形,过A 点作AD 垂直于BC ,当为ABC ∆锐角三角时,BC=CD+BD ,当ABC ∆为钝角三角形时,BC=CD-BD 利用勾股定理求出各边即可得到答案.【详解】 如图,过点A 作AD BC ⊥ 垂足为D当为ABC ∆锐角三角时,AC =8,45C ∠=︒,90ADC ∠=︒∴ AD=CD=42在Rt ABD ∆中 22226(42)3632AB AD -=-=-∴ BC=CD+BD=422当为ABC ∆钝角三角时,同理可得 CD=2 ,BD=2∴ BC=CD-BD=422故答案为:422【点睛】本题考查了三角形的分类,勾股定理的应用,准确的画出图形是解决本题的关键. 17.或或【分析】设点C 的坐标为先根据两点之间的距离公式可得的值再根据全等三角形的性质建立方程组解方程组即可得【详解】设点C 的坐标为由题意分以下两种情况:(1)当时则即解得或则此时点C 的坐标为或(与点B 重 解析:(2,1)-或(3,1)-或(3,1)【分析】设点C 的坐标为(,)C a b ,先根据两点之间的距离公式可得2222,,,AC OC AB OB 的值,再根据全等三角形的性质建立方程组,解方程组即可得.【详解】设点C 的坐标为(,)C a b ,(5,0),(0,0),(2,1)A O B ,222(5)AC a b ∴=-+,222OC a b =+,222(25)(10)10AB =-+-=,222(20)(10)5OB =-+-=,由题意,分以下两种情况:(1)当AOC AOB ≅时,则,AC AB OC OB ==,2222,AC AB OC OB ∴==,即2222(5)105a b a b ⎧-+=⎨+=⎩, 解得21a b =⎧⎨=-⎩或21a b =⎧⎨=⎩, 则此时点C 的坐标为(2,1)C -或(2,1)C (与点B 重合,不符题意,舍去);(2)当OAC AOB ≅时,则,AC OB OC AB ==,2222,AC OB OC AB ∴==,即2222(5)510a b a b ⎧-+=⎨+=⎩, 解得31a b =⎧⎨=-⎩或31a b =⎧⎨=⎩, 则此时点C 的坐标为(3,1)C -或(3,1)C ;综上,点C 的坐标为(2,1)-或(3,1)-或(3,1),故答案为:(2,1)-或(3,1)-或(3,1).【点睛】本题考查了两点之间的距离公式、全等三角形的性质、利用平方根解方程等知识点,熟练掌握全等三角形的性质,并正确分两种情况讨论是解题关键.18.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形 解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键. 19.2【分析】根据△ABC 为等边三角形BP 平分∠ABC 得到∠PBC=30°利用PC ⊥BC 所以∠PCB=90°根据含30°直角三角形边的特殊关系和勾股定理即可解答【详解】解:∵△ABC 为等边三角形BP 平分解析:2【分析】根据△ABC 为等边三角形,BP 平分∠ABC ,得到∠PBC=30°,利用PC ⊥BC ,所以∠PCB=90°,根据含30°直角三角形边的特殊关系和勾股定理即可解答.【详解】解:∵△ABC 为等边三角形,BP 平分∠ABC , ∴1302PBC ABC ∠=∠=︒ , ∵PC ⊥BC ,∴∠PCB=90°,在Rt △PCB 中,设PC x =,则 2PB x =,根据勾股定理可得:(()2222x x +=,且0x >, 解得:2x =,∵∠ABC 的平分线是PB ,∴点P 到边AB 所在直线的距离与点P 到边BC 所在直线的距离相等.故答案为:2.【点睛】本题考查了等边三角形的性质、角平分线的性质、利用勾股定理求值,解决本题的关键是等边三角形的性质. 20.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE 垂直平分AB ∴AE =BE ∴∠EAB =∠B =225°∴∠AEC =∠EAB +∠B =45°∵∠C =90°∴AC =CE =2A解析:【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE 垂直平分AB ,∴AE =BE ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴AC =CE =2,AE 2=AC 2+CE 2,∴AE =2CE =22,∴BE =AE =22.故答案为:22.【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.三、解答题21.(1)猜想:222a b c +> ,证明见解析;(2)猜想:222+b a c <,证明见解析;(3)四边形ABCD 的面积是()240030002+米2.【分析】(1)先作高线如图2,过点A 作AD BC ⊥于点D ,构造两个直角三角形,设CD x =,则BD a x =-,由勾股定理和AD 构造等式2222()b x c a x -=-- ,利用放缩法可得 222b a c +>(2)先作高线如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,构造两个直角三角形设CD y =,则BD a y =+,利用勾股定得2222()b y c a y -=-+,整理得,2222b a c ay +=-利用放缩法222b a c +<(3)如图4,连接AC .过点D 作DE AC ⊥于点E ,由勾股定理求出100AC = 设AE x =,则EC=100-x ,由勾股定理构造方程222211090(100)x x -=--,解方程的70x =,再求出DE ,利用分割法求面即可【详解】解:(1)猜想:222a b c +> ,证明:如图2,过点A 作AD BC ⊥于点D ,设CD x =,则BD a x =-,在Rt ACD △中,有222b x AD -=,在Rt ABD △中,有222()c a x AD --= ,∴2222()b x c a x -=-- ,解之:2222b a c ax +=+,∵a b c x ,,,均为正数,∴222b a c +> ;(2)猜想:222b a c +<证明:如图3,过点A 作AD BC ⊥,交BC 的延长线于点D ,设CD y =,则BD a y =+,在Rt ACD △中,有222b y AD -=,在Rt ABD △中,有222()c a y AD -+= , ∴2222()b y c a y -=-+,解之:2222b a c ay +=-,∵a b c y ,,,均为正数,∴222b a c +< ;(3)如图4,连接AC .在Rt ABC 中,有222AC AB BC =+,∴222806010000AC =+=,∵0AC >,∴100AC = ,过点D 作DE AC ⊥于点E ,设AE x =,则EC=100-x ,在Rt ADE 中,有222AD AE DE -=,即222110x DE -=,在Rt CDE △中,有222CD CE DE -=,即22290(100)x DE --= ,∴222211090(100)x x -=--,解之:70x =,在Rt ADE 中,有2222211070DE AD AE =-=-,∴DE=602±∴DE=602,∴1122ABC ADC ABCD S S S AB BC AC DE =+=⨯⨯+⨯⨯四边形, =11608010060222=⨯⨯+⨯⨯, =240030002+(米2),∴四边形ABCD 的面积是()240030002+米2.【点睛】本题考查作高线,勾股定理,利用勾股定理推出锐角三角形,钝角三角形结论,用分割法求四边形面积,掌握高线最烦,利用勾股定理构造方程,判读锐角三角形与钝角三角形,利用分割法四边形求面是解题关键.22.(1),EC EG CF GF ==;(2)证明见解析;(3)EG 的长是134. 【分析】(1)根据角平分线性质得出EC =EG ,再根据勾股定理推出CF =GF 即可.(2)连接BE ,推出AE =BE ,根据HL 证出Rt △AGE ≌Rt △BCE 即可.(3)求出BC ,根据勾股定理求出AC ,设EG =EC =x ,则AE =8﹣x ,在Rt △AGE 中,由勾股定理得出方程62+x 2=(8﹣x )2,求出方程的解即可.【详解】(1)解:EC =EG ,CF =GF ,理由是:∵∠C =90°,EG ⊥AF ,EF 平分∠AFC ,∴CE =EG ,∵EF =EF ,∴由勾股定理得:2222,,CF EF CE GF EF EG =-=-∴ CF =GF .(2)证明:连接BE ,∵AB 的垂直平分线DE ,∴AE =BE ,在Rt △AGE 和Rt △BCE 中,AE BE EG EC =⎧⎨=⎩, ∴Rt △AGE ≌Rt △BCE (HL ),∴AG =BC .(3)解:,,AG BC FG FC ==∴ AG =BC =BF +GF ,212,AF BF AG GF BF AG +=++==∴AG =BC =12×12=6, 在Rt △ABC 中,由勾股定理得:8,AC ===设EG =EC =x ,则AE =8﹣x ,在Rt △AGE 中,由勾股定理得:62+x 2=(8﹣x )2,22366416,x x x ∴+=-+1628,x ∴= 解得:31,4x =∴EG 的长是31.4【点睛】本题考查的是角平分线的性质定理,勾股定理的应用,线段的垂直平分线的性质定理,直角三角形全等的判定与性质,掌握以上知识是解题的关键.23.(1)ABE △是直角三角形;理由见解析;(2)线段AB 的长为16.9.【分析】(1)根据勾股定理的逆定理证明即可;(2)设AB AC x ==,则5AE x =-,由勾股定理列得222BE AE AB +=,代入数值得22212(5)x x +-=,计算即可.【详解】解:(1)ABE △是直角三角形.理由:∵22222213169,12144,525BC BE CE ======,∴222169BE CE BC +==,∴90BEC ∠=︒,∴BE AC ⊥,∴ABE △是直角三角形.(2)设AB AC x ==,则5AE x =-,由(1)可知ABE △是直角三角形,∴222BE AE AB +=,∴22212(5)x x +-=,解得16.9x =,∴线段AB 的长为16.9.【点睛】此题考查勾股定理及逆定理,熟练掌握勾股定理及逆定理的运算及应用是解题的关键. 24.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论.【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠=在Rt ADC 中,13,5,AC CD ==2213514412AD ∴=-=在Rt ADB 中,20,12,AB AD ==22201225616BD ∴=-==16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-, ()22222AB AC AB AD DC ∴-=-+222AB AD DC =-- 22BD DE =-()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+22AB AC BE BC ∴-=⋅.【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.25.(1)DE BD CE =+;(2)结论DE BD CE =+成立,证明见解析;(3)①DFE △为等边三角形,证明见解析.2. 【分析】(1)由题意可知90ADB CEA ∠=∠=︒,又可推出ABD CAE ∠=∠,即可证明(AAS)ADB CEA ≌,得出BD AE =,AD CE =.即推出DE AD AE BD CE =+=+.(2)由题意易证ABD CAE ∠=∠,即证明(AAS)ADB CEA ≌,同理即DE AD AE BD CE =+=+.(3)①由(2)知(AAS)ADB CEA ≌,得出BD AE =,由ABD CAE ∠=∠,易证FBD FAE ∠=∠,又由题意可知FB=FA ,即证明出(SAS)FBD FAE ≌,得出结论FD FE =,BFD AFE ∠=∠,即可求出60DFE ∠=︒,即证明DEF 为等边三角形. ②由DE n =,DEF 为等边三角形,即可求出DEF 的面积.【详解】(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴(AAS)ADB CEA ≌, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+.故答案为:DE BD CE =+.(2)结论DE BD CE =+成立;理由如下:∵180BAD CAE BAC ∠+∠=︒-∠,180BAD ABD ADB ∠+∠=︒-∠,BDA BAC ∠=∠,∴ABD CAE ∠=∠,在BAD 和ACE △中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴(AAS)BAD ACE ≌, ∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+.(3)①DEF 为等边三角形,理由:由(2)得,BAD ACE ≌△△,∴BD AE =,∵ABD CAE ∠=∠,∴ABD FBA CAE FEC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE ∠中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)FBD FAE ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒,∴DEF 为等边三角形.②∵DEF 为等边三角形. ∴DEF的高为2DE .∴213224DFE S DE DE ==. 【点睛】本题考查三角形全等的判定和性质,等边三角形的判定和性质以及勾股定理.熟练掌握判定三角形全等的方法是解答本题的关键.26.(1)见详解;(2)6【分析】(1)由△ABC 与△DCE 是等边三角形,可得AC =BC ,DC =EC ,∠ACB =∠DCE =60°,又由∠ACD +∠DCB =∠ECB +∠DCB =60°,即可证得∠ACD =∠BCE ,所以根据SAS 即可证得△ACD ≌△BCE ;(2)首先过点C 作CH ⊥BQ 于H ,由等边三角形的性质,即可求得∠DAC =30°,则根据等腰三角形“三线合一”与直角三角形中的勾股定理即可求得PQ 的长.【详解】(1)证明:ABC 和CDE △均为等边三角形,∴AC BC =,CD CE =,60ACB DCE ∠=∠=︒,∵60ACD DCB DCB BCE ∠+∠=∠+∠=︒,∴ACD BCE∠=∠,∴≌ACD BCE;(2)过点C作CH⊥BQ于H,∵△ABC是等边三角形,AO是角平分线,∴∠DAC=30°,∵△ACD≌△BCE,∴∠PBC=∠DAC=30°,∴在Rt△BHC中,CH=12BC=12×8=4,∵PC=CQ=5,CH=4,∴PH=QH225-43=,∴PQ=6.【点睛】此题考查了全等三角形的判定与性质,等腰三角形、等边三角形的性质以及勾股定理,此题综合性较强,但难度不大,解题时要注意数形结合思想的应用.。

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章 勾股定理的应用》练习题-附答案(人教版)

八年级数学下册《第十七章勾股定理的应用》练习题-附答案(人教版)一、选择题1.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A.4米B.5米C.6米D.7米2.某工程的测量人员在规划一块如图所示的三角形土地时,在BC上有一处古建筑D,使得BC 的长不能直接测出,工作人员测得AB=130米,AD=120米,BD=50米,在测出AC=150米后,测量工具坏了,使得DC的长无法测出,请你想办法求出BC的长度为( )A.90米B.120米C.140米D.150米3.《九章算术》第九章有如下题目,原文:今有垣高一丈,倚木于垣,上与垣齐.引木却行一尺,其木至地.问木长几何?译文是:今有墙高1丈,倚木杆于墙.使木杆之上端与墙平齐.牵引木杆下端退行1尺,则木杆(从墙上)滑落至地上.间木杆长是多少?(1丈=10尺,1尺=10寸)( )A.5尺5寸B.1丈1尺C.5丈5寸D.5丈5尺4.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 2C. 3D. 55.如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.则小明到达的终止点与原出发点的距离是( )A.90米B.100米C.120米D.150米6.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m7.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水深是( )尺A.3.5B.4C.4.5D.58.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)( )A.12 mB.13 mC.16 mD.17 m9.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )A. 3B. 5C. 6D.710.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为( )A.32B.43C.53D.8511.如图,已知线段BC,分别以B、C为圆心,大于12BC为半径作弧,两弧相交于E、F两点,连接CE,过点E作射线BA,若∠CEA=60°,CE=4,则△BCE的面积为( )A.4B.4 3C.8D.8 312.如图,圆柱形纸杯高8 cm,底面周长为12 cm,在纸杯内壁离杯底2 cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为( )3 B.6 2 C.10 D.以上答案都不对二、填空题13.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.14.在平面直角坐标系中,点P(﹣5,2)到原点的距离是.15.如图,要做一个两条直角边的长分别是7 cm和4 cm的三角尺,斜边长应为 cm.16.如图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),四边形ABCD为长方形,如果黄芳同学想从A岛到C岛,则至少要经过________米.17.某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.18.如图,在平面直角坐标系中,已知点P(2,1),点A是x轴上的一个动点,当△PAO是等腰三角形时,点A的坐标为.三、解答题19.如图所示,一棵36米高的树被风刮断了,树顶落在离树根24米处,求折断处的高度AB.20.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?21.如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5003m 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?22.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?23.如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=6,BD=8,求ED的长.24.如图,在△ABC中,AD是BC边的中线,∠BAD=90°,AB=2,AC=11,求BC的长.25.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?参考答案1.D2.C3.C4.D5.B.6.A.7.C8.D.9.B.10.A11.B.12.C.13.答案为:30 3.14.答案为:3.15.答案为:65.16.答案为:370.17.答案为:(23,0).18.答案为:A(4,0),(5,0),(﹣5,0).19.解:设AB=x米,则AC=(36﹣x)米∵AB⊥BC∴AB2+BC2=AC2∴x2+242=(36﹣x)2.∴x=10∴折断处的高度AB是10米.20.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.21.解:(1)过B点作BE∥AD如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500 3 m由勾股定理可得:AC2=BC2+AB2所以AC=1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°.即点C在点A的北偏东30°的方向.22.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.23.(1)证明:∵△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=∠90°∴AC=BC,EC=DC,∠B=∠CAB=45°,∠ACE=∠BCD=90°﹣∠ACD在△ACE和△BCD中∴△ACE ≌△BCD(SAS);(2)解:∵△ACE ≌△BCD∴∠CAE =∠B ,AE =BD =8∵∠CAB =∠B =45°∴∠EAD =45°+45°=90°在Rt △EAD 中,由勾股定理得:ED =10.24.解:延长AD 至点E ,使AD =ED ,连结CE.∵D 是BC 的中点,∴BD =CD.在△ABD 和△ECD 中∵⎩⎨⎧AD =ED ,∠ADB =∠EDC ,BD =CD ,∴△ABD ≌△ECD(SAS)∴EC =AB = 2∴∠CED =∠BAD =90°.在Rt △AEC 中,∵AE 2=AC 2﹣EC 2∴AE =(11)2-(2)2=3∴AD =12AE =32. 在Rt △ABD 中,∵BD 2=AB 2+AD 2∴BD =172∴BC =2BD =17.25.解:作AB⊥MN,垂足为B在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160∴ AB=12AP=80∵点 A到直线MN的距离小于100m∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响那么AC=100(m)由勾股定理得: BC2=1002﹣802=3600∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响那么AD=100(m),BD=60(m)∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/s,t=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒.。

新人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(含答案解析)(4)

新人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(含答案解析)(4)

一、选择题1.下列各组线段能构成直角三角形的一组是( )A .30,40,50B .8,12,13C .5,9,13D .3,4,6 2.ABC 中,A ∠,B ,C ∠的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )A .ABC =+∠∠∠B .::1:1:2A BC ∠∠∠= C .222b a c =+D .::1:1:2a b c =3.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC 的值为( )A .352 B .512- C .5﹣1 D .512+ 4.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 5.如图,已知ABC 中,45ABC ∠=︒,F 是高AD 和BE 的交点,5AC =,2BD =,则线段DF 的长度为( )A .2B .2C 3D .16.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .487.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 8.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .22 9.若实数m 、n 满足|m ﹣3|+4n -=0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .5或7C .12D .12或7+7 10.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个11.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②1x y -=,③2125xy +=,④7x y +=.其中说法正确的是( )A .①②B .①②③C .①②④D .①②③④ 12.如图,在平面直角坐标系中,点P 为x 轴上一点,且到A (0,2)和点B (5,5)的距离相等,则线段OP 的长度为( )A .3B .4C .4.6D .25 二、填空题13.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.14.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .15.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.16.已知ABC 中,90C ∠=︒,2cm,6cm AB AC BC =+=,则ABC 的面积为_______. 17.在平面直角坐标系中,点A(0,-3),B(4a +4,-3a),则线段AB 的最小值为 ___________.18.如图,在三角形纸片ABC 中,∠ACB =90°,BC =6,AB =10,如果在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,那么CE 的长为________.19.如图,所有四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、18,则正方形B 的面积为____.20.如图ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB ,交BC 于点E ,若CE =2,则BE =______________.三、解答题21.已知:如图,ABC 中,90C ∠=︒,BC AC >,点D 是AB 的中点,点P 是直线BC 上的一个动点,连接DP ,过点D 作DQ DP ⊥交直线AC 于点Q .(1)如图,当点P 、Q 分别在线段BC 、AC 上时(点Q 与点A 、C 不重合),过点B 作AC 的平行线交QD 的延长线于点G ,连接PG 、PQ .①求证:PG PQ =;②若12BC =,9AC =,设BP x =,CQ y =,求y 关于x 的函数表达式. (2)当点P 在线段CB 的延长线上时,依据题意补全下图,用等式表示线段BP 、PQ 、AQ 之间的数量关系,并说明理由.22.如图,在直角坐标系内.(1)作出ABC ,其中(3,1)A ,(1,2)B ,(4,3)C ;(2)作ABC 关于x 轴的轴对称图形DEF ;(3)求ABC 的周长和面积,23.如图,△ABC 中,AC =15,AB =25,CD ⊥AB 于点D ,CD =12.(1)求线段AD 的长度;(2)判断△ABC 的形状并说明理由.24.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?25.在如图方格纸中,每个小方格的边长为1.请按要求解答下列问题:(1)以格点为顶点,画一个三角形ABC,使∠ACB=90°,三边中有两边边长都是无理数;(2)在图中建立正确的平面直角坐标系,并写出ABC各顶点的坐标;'''.(不要求写作法).(3)作ABC关于y轴的轴对称图形A B C26.在△ABC中,∠A、∠B、∠C的对边分别用a、b、c来表示,且a、b、c满足关系a-+|a﹣b +1|+(c﹣9)2=0,试判断△ABC的形状,并说明理由.40【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确; B 、∵82+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.D解析:D【分析】根据三角形内角和定理可判断A 和B ,根据勾股定理可判断C 和D .【详解】A.A B C ∠=∠+∠,180A B C ∠+∠+∠=︒,2180A ∴∠=︒,∴90A ∠=︒,ABC ∴为直角三角形,不符合题意,故A 错误;B.::1:1:2A B C ∠∠∠=,A B ∴∠=∠,2C A ∠=∠,又∵180A B C ∠+∠+∠=︒,2180A A A ∴∠+∠+∠=︒,45A ∠=︒,290C A ∴∠=∠=︒,ABC ∴为直角三角形,不符合题意,故B 错误;C.222b a c =+,ABC ∴是直角三角形,不符合题意,故C 错误;D.::1:1:2a b c =,b a ∴=,2c a =,222a b c ∴+≠,ABC ∴不是直角三角形,符合题意,故D 正确.故选D .【点睛】本题考查了三角形内角和定理,以及勾股定理的逆定理,熟练掌握各知识点是解答本题的关键.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中.3.B解析:B【分析】先由勾股定理求出AB=5,再由BD=BC=1,得AE=AD=AB-BD=51-,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴AB=2222215AC BC +=+=,∵BD=BC=1,∴AE=AD=AB-BD=51-,∴51AE AC -=, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 4.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC =A 'C ,且点C 为BB '的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.5.D解析:D【分析】先证明△BDF ≌△ADC ,得到5【详解】解:∵AD 和BE 是△ABC 的高线,∴∠ADB=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠CAD+∠C=90°,∴∠DBF=∠CAD ,∵45ABC ∠=︒,∴∠BAD=45°,∴BD=AD ,∴△BDF ≌△ADC ,∴在Rt △BDF 中,1==.故选:D【点睛】本题考查了全等三角形的判定与性质,勾股定理等知识,证明△BDF ≌△ADC 是解题关键. 6.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x , ∴AD=BD=12AB=12x ,∴,∴S 2=12x x ⨯=24AB ,同理:S 1=24AC ,S 32BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1, 如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6,∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.8.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 9.D解析:D【分析】根据非负数的性质分别求出m 、n ,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m ﹣0,∴|m ﹣3|=00,∴m ﹣3=0,n ﹣4=0,解得,m =3,n =4,当45,则△ABC 的周长=3+4+5=12,当4,则△ABC 的周长==,故选:D .【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.10.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;=,不需调整;=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.11.D解析:D【分析】根据正方形的性质、直角三角形的性质、直角三角形的面积的计算公式以及勾股定理按顺序判断即可.【详解】①∵ABC 为直角三角形,∴22225x y AB +==,故①正确;②由图可知:1x y CE -===,故②正确;③由图可知:四个直角三角形与小正方形面积之和等于大正方形面积,由此可得:141252xy ⨯+=,即:2125xy +=, 故③正确;④由①③相加可得:222150xy x y +++=,即()249x y +=,故7x y +=,故④正确;故选:D .【点睛】本题考查了勾股定理及正方形和三角形的边的关系,此图被称为弦图,熟悉勾股定理并认清图中的关系是解答本题的关键.12.C解析:C【分析】设点P (x ,0),根据两点间的距离公式列方程,即可得到结论.【详解】解:设点P (x ,0),根据题意得,x 2+22=(5﹣x )2+52,解得:x =4.6,∴OP =4.6,故选:C .【点睛】本题考查了利用勾股定理求两点间的距离,熟练掌握两点间的距离公式是解题的关键.二、填空题13.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】 解:由图可知,22125OB =+ ∴5OA OB ==A 表示的数为5- ∵225(5)()2<, ∴552<,∴552->-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.14.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M解析:262【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .【详解】解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,)MN mm ====故答案为:【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键. 15.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.16.cm2【分析】设BC=acmAC=bcm 则a+b=即可得到根据勾股定理得到进而得到根据三角形面积公式即可求解【详解】解:设BC=acmAC=bcm 则a+b=∴即∵∠C=90°∴∴∴cm2故答案为:c 解析:12cm 2 【分析】设BC=acm ,AC=bcm ,则,即可得到()26a b +=,根据勾股定理得到22=4a b +,进而得到22ab =,根据三角形面积公式即可求解.【详解】解:设BC=acm ,AC=bcm ,则,∴()26a b +=, 即2226a b ab ++=,∵∠C=90°,∴222=4a b AB +=,∴22ab =, ∴11=22ABC S ab =△cm 2. 故答案为:12cm 2 【点睛】本题考查了完全平方公式,勾股定理等知识,准确掌握两个知识点并建立联系是解题关键.17.【分析】根据勾股定理可得整理配方即可求解【详解】解:根据勾股定理可得:∵∴线段AB 的最小值为故答案为:【点睛】本题考查勾股定理的应用完全平方公式的应用根据勾股定理表示出是解题的关键 解析:245【分析】 根据勾股定理可得()()2224433AB a a =++-,整理配方即可求解.【详解】解:根据勾股定理可得:()()22222757644332514255525AB a a a a a ⎛⎫=++-=++=++ ⎪⎝⎭, ∵27576576552525a ⎛⎫++≥ ⎪⎝⎭, ∴线段AB 的最小值为245, 故答案为:245. 【点睛】 本题考查勾股定理的应用、完全平方公式的应用,根据勾股定理表示出2AB 是解题的关键.18.3【分析】利用勾股定理可求出AC=8根据折叠的性质可得BD=ABDE=AE 根据线段的和差关系可得CD 的长设CE=x 则DE=8-x 利用勾股定理列方程求出x 的值即可得答案【详解】∵∠ACB =90°BC =解析:3【分析】利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB ,DE=AE ,根据线段的和差关系可得CD 的长,设CE=x ,则DE=8-x ,利用勾股定理列方程求出x 的值即可得答案.【详解】∵∠ACB =90°,BC =6,AB =10,∴,∵BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,∴BD=AB=10,DE=AE ,∠DCE=90°,∴CD=BD-BC=10-6=4,设CE=x ,则DE=AE=AC-CE=8-x ,∴在Rt △DCE 中,DE 2=CE 2+CD 2,即(8-x )2=x 2+42,解得:x=3,∴CE=3,故答案为:3【点睛】本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键. 19.8【分析】如图(见解析)先根据正方形的面积公式可得再根据勾股定理可得然后根据正方形的面积公式可得最后又利用勾股定理可得的值由此即可得出答案【详解】如图正方形ACD 的面积依次为4618在中四边形MNG 解析:8【分析】如图(见解析),先根据正方形的面积公式可得2226,18,4EF EG ON ===,再根据勾股定理可得212FG =,然后根据正方形的面积公式可得2212MN FG ==,最后又利用勾股定理可得2OM 的值,由此即可得出答案.【详解】 如图,正方形A 、C 、D 的面积依次为4、6、18, 2226,18,4EF EG ON ∴===,在Rt EFG 中,22212FG EG EF =-=,四边形MNGF 是正方形,∴由正方形的面积公式得:2212MN FG ==,在Rt MON 中,2221248OM MN ON =-=-=,则正方形B 的面积为28OM =,故答案为:8.【点睛】本题考查了正方形的面积公式、勾股定理,熟练掌握勾股定理是解题关键.20.2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论【详解】∵DE 垂直平分AB ∴AE =BE ∴∠EAB =∠B =225°∴∠AEC =∠EAB +∠B =45°∵∠C =90°∴AC =CE =2A解析:2【分析】根据线段垂直平分线的性质和等腰直角三角形的性质即可得到结论.【详解】∵DE 垂直平分AB ,∴AE =BE ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB +∠B =45°,∵∠C =90°,∴AC =CE =2,AE 2=AC 2+CE 2,∴AE 2CE =2,∴BE =AE =2.故答案为:2【点睛】此题考查了线段垂直平分线的性质以及等腰直角三角形性质.此题难度不大,注意数形结合思想的应用.三、解答题21.(1)①见解析;②4732y x =-;(2)图见解析,222BP AQ PQ +=,理由见解析【分析】(1)①先通过证ADQ BDG △≌△得到GD=DQ ,又因为PD ⊥DQ 便可证得PG=PQ ; ②由ADQ BDG △≌△证得AQ=BG ,因为CQ=y ,则AQ=BG=9-y ,BP=x ,则PC=12-x ,由PG=PQ ,根据勾股定理可列方程:()()2222912y x x y -+=-+,化简后不能得出y 与x 的函数关系;(2)依据题意画出图形,过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,先证ADQ BDE △≌△,得出EB=AQ ,ED=DQ ,因为PD DQ ⊥,所以EP PQ =,再根据勾股定理得出222EB PB EP +=,不难推出线段BP 、PQ 、AQ 之间的数量关系【详解】解:(1)①//BG AC ,A GBA ∴∠=∠, AD=DB GDB=ADQ ∠∠,,()ASA ADQ BDG ∴△≌△,GD=QD ∴,又PD GQ ⊥,PG=PQ ∴; ②ADQ BDG △≌△∴AQ=BG ,12BC =,9AC =, BP x =,CQ y =, ∴ AQ=BG=9-y ,PC=12-x ,在Rt GBP △中,222B PB =GP G + ,在PCQ Rt △中, 222P QC =PQ C + GP PQ =,∴ 2222B PB =P QC G C ++,∴ ()()22229x =12y y x -+-+, 整理,得4732y x =-; (2)依据题意画出图形,当点P 在线段CB 的延长线上时,222AQ PB PQ += ,理由如下:过点B 作//AC BE 交QD 的延长线于点E ,连接PE ,//EB AC ,EBD A ∴∠=∠ ,又EDB ADQ AD DB ∠=∠=, ,∴ ()ASA ADQ BDE △≌△,∴ EB=AQ ,ED=DQ ,PD DQ ⊥,∴ EP PQ =,在EBP Rt △中,222EB PB EP +=,222A Q PB PQ ∴+=.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,线段垂直平分线的性质及勾股定理,构造全等三角形是解决本题的关键.22.(1)图见解析;(2)图见解析;(3)ABC的周长为2510+,面积为52.【分析】(1)利用A,B,C各点坐标在平面坐标系中描出即可;(2)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(3)利用割补法求解可得到面积,借助网格利用勾股定理分别求出三边即可求得周长.【详解】解:(1)ABC如图所示;(2)DEF如图所示;(3)1115 231212132222 ABCS∆=⨯-⨯⨯-⨯⨯-⨯⨯=,ABC的周长=2222221212132510AB AC BC++=+++++=+.【点睛】本题考查坐标与图形变换——轴对称,勾股定理.熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(1)9;(2)△ABC是直角三角形,理由见详解.【分析】(1)根据勾股定理即可求解;(2)根据勾股定理的逆定理即可得到结论.【详解】(1)∵CD ⊥AB ,∴∠ADC =∠BDC =90°,在Rt △ADC 中,∵∠ADC =90°,AC =15,CD =12,∴AD 2=AC 2−CD 2=152−122=81,∵AD >0,∴AD =9;(2)△ABC 是直角三角形,理由如下:∵AB =25,AD =9,∴BD =AB−AD =25−9=16,在Rt △CDB 中,∵∠BDC =90°,∴BC 2=CD 2+BD 2=122+162=400,∵BC >0,∴BC =20,∵AC 2+BC 2=152+202=252=AB 2,∴∠ACB =90°,∴△ABC 为直角三角形.【点睛】本题考查的是勾股定理、勾股定理的逆定理;熟练掌握勾股定理和勾股定理的逆定理是解决问题的关键.24.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c ,∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米,由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 25.(1)见解析;(2)见解析,A(0,0),B(﹣5,0),C(﹣4,2);(3)见解析【分析】(1)每个小正方形的边长为1,对角线就是无理数,根据要求画出图形(答案不唯一).(2)构建平面直角坐标系,写出坐标即可;(3)分别作出 A ,B ,C 的对应点 A ',B ',C'即可.【详解】解:(1)如图,△ABC 即为所求(答案不唯一).(2)平面直角坐标系如图所示,A (0,0),B (﹣5,0),C (﹣4,2).(3)如图,△A′B′C′即为所求.【点睛】本题考查作图-轴对称变换,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.△ABC 是直角三角形;理由见解析.【分析】先求出a 、b 、c 的值,再通过计算得到a 2+c 2=b 2,根据勾股定理逆定理即可判断△ABC 是直角三角形.【详解】解:△ABC 是直角三角形.理由是:据题意得:a ﹣40=0,a ﹣b +1=0,c ﹣9=0,解得:a=40,c=9,b=41,∵a2+c2=402+92=1681, b2=412=1681,∴a2+c2=b2,∴△ABC是直角三角形.【点睛】本题考查了勾股定理逆定理,算术平方根、绝对值、偶次方的非负性,根据题意求出a、b、c的值是解题关键.。

八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习(含解析答案)

八年级数学勾股定理的实际应用专题练习一.选择题(共5小题)1.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15 C.5≤a≤12D.5≤a≤133.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是_________.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是_________,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为_________,请说明理由.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?19.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.20.请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:=_________.路线2:=_________.所以选择路线_________(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.21.如图,正方体边长为30cm,B点距离C点10cm,有一只蚂蚁沿着正方体表面从A点爬到B点,其爬行速度为每秒2cm,则这只蚂蚁最快多长时间可爬到B点?22.如图,长方体的底面边长分别为1cm和3cm,高为6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B(B为棱的中点),那么所用细线最短需要多长?如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要多长?23.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.若AB=4,BC=4,CC1=5,(1)请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2)求蚂蚁爬过的最短路径的长.24.如图,长方体的长为15,宽为10,高为20,点B离点C的距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?25.如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.26.如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?27.如图所示,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是多少米?(结果不取近似值)参考答案与试题解析一.选择题(共5小题)1.图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A.3m B.5m C.7m D.9m考点:勾股定理的应用.专题:应用题;压轴题.分析:为了不让羊吃到菜,必须<等于点A到圆的最小距离.要确定最小距离,连接OA交半圆于点E,即AE 是最短距离.在直角三角形AOB中,因为OB=6,AB=8,所以根据勾股定理得OA=10.那么AE的长即可解答.解答:解:连接OA,交半圆O于E点,在Rt△OAB中,OB=6,AB=8,所以OA==10;又OE=OB=6,所以AE=OA﹣OE=4.因此选用的绳子应该不大于4m,故选A.点评:此题确定点到半圆的最短距离是难点.熟练运用勾股定理.2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,有一定的难度.3.一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C 处,看到灯塔在它的正南方向,则这艘船航行的速度为()A.18海里/小时B.海里/小时C.36海里/小时D.海里/小时考点:勾股定理的应用;方向角.专题:应用题.分析:首先画图,构造直角三角形,利用勾股定理求出船8时到10时航行的距离,再求速度即可解答.解答:解:如图在Rt△ABC中,∠ABC=90°﹣60°=30°,AB=72海里,故AC=36海里,BC==36海里,艘船航行的速度为36÷2=18海里/时.故选B.点评:本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.4.在直径为10m的圆柱形油槽内装入一些油后,截图如图所示,如果油面宽AB=8m,那么油的最大深度是()A.1m B.2m C.3m D.4m考点:勾股定理的应用;垂径定理的应用.分析:本题是已知圆的直径,弦长求油的最大深度其实就是弧AB的中点到弦AB的距离,可以转化为求弦心距的问题,利用垂径定理来解决.解答:解:过点O作OM⊥AB交AB与M,交弧AB于点E.连接OA.在Rt△OAM中:OA=5m,AM=AB=4m.根据勾股定理可得OM=3m,则油的最大深度ME为5﹣3=2m.故选B.点评:考查了勾股定理的应用和垂径定理的应用,圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题.5.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4C.2≤h≤4D.h=4考点:勾股定理的应用.分析:根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16﹣12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣12=4(cm);②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.故选B.点评:本题考查了矩形中勾股定理的运用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.二.解答题(共22小题)6.如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.(1)求港口A到海岛B的距离;(2)B岛建有一座灯塔,在离灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?考点:勾股定理的应用.专题:应用题.分析:(1)作BD⊥AE于D,构造两个直角三角形并用解直角三角形用BD表示出CD和AD,利用DA和DC 之间的关系列出方程求解.(2)分别求得两船看见灯塔的时间,然后比较即可.解答:解:(1)过点B作BD⊥AE于D在Rt△BCD中,∠BCD=60°,设CD=x,则BD=,BC=2x在Rt△ABD中,∠BAD=45°则AD=BD=,AB=BD=由AC+CD=AD得20+x=x解得:x=10+10故AB=30+10答:港口A到海岛B的距离为海里.(2)甲船看见灯塔所用时间:小时乙船看见灯塔所用时间:小时所以乙船先看见灯塔.点评:此题考查的知识点是勾股定理的应用,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答.7.有一艘渔轮在海上C处作业时,发生故障,立即向搜救中心发出救援信号,此时搜救中心的两艘救助轮救助一号和救助二号分别位于海上A处和B处,B在A的正东方向,且相距100里,测得地点C在A的南偏东60°,在B的南偏东30°方向上,如图所示,若救助一号和救助二号的速度分别为40里/小时和30里/小时,问搜救中心应派那艘救助轮才能尽早赶到C处救援?(≈1.7)考点:勾股定理的应用.分析:作CD⊥AB交AB延长线于D,根据勾股定理分别计算出AB和BC的长度,利用速度、时间、路程之间的关系求出各自的时间比较大小即可.解答:解:作CD⊥AB交AB延长线于D,由已知得:∠EAC=60°,∠FBC=30°,∴∠1=30°,∠2=90°﹣60°=30°,∵∠1+∠3=∠2,∴∠3=30°,∴∠1=∠3,∴AB=BC=100,在Rt△BDC中,BD=BC=50,∴DC==50,∵AD=AB+BD=150,∴在Rt△ACD中,AC==100,∴t1号==≈4.25,t2号==,∵<4.25,∴搜救中心应派2号艘救助轮才能尽早赶到C处救援.点评:本题考查了勾股定理的运用、等腰三角形的判定和性质以及速度、时间、路程之间的关系.8.如图,要在高AC为2米,斜坡AB长8米的楼梯表面铺地毯,地毯的长度至少需要多少米?考点:勾股定理的应用.分析:根据题意,知还需要求出BC的长,根据勾股定理即可.解答:解:由勾股定理AB2=BC2+AC2,得BC===2,AC+BC=2+2(米).答:所需地毯的长度为(2+2)米.点评:能够运用数学知识解决生活中的实际问题.熟练运用勾股定理.9.如图,一块三角形铁皮,其中∠B=30°,∠C=45°,AC=12cm.求△ABC的面积.考点:勾股定理的应用;三角形的面积;含30度角的直角三角形;等腰直角三角形.分析:首先过A作AD⊥CB,根据∠C=45°,可以求出AD=DC,再利用勾股定理求出AD的长,再根据直角三角形的性质求出AB的长,利用勾股定理求出BD的长,最后根据三角形的面积公式可求出△ABC的面积.解答:解:过A作AD⊥CB,∵∠C=45°,∴∠DAC=45°,∴AD=DC,设AD=DC=x,则x2+x2=(12)2,解得:x=12,∵∠B=30°,∴AB=2AD=24,∴BD==12,∴CB=12+12,∴△ABC的面积=CB•AD=72+72.点评:此题主要考查了勾股定理的应用,以及直角三角形的性质,关键是熟练利用直角三角形的性质求出BD、AD的长.10.如图,一架长2.5米的梯子AB斜靠在竖直的墙AC上,这时B到墙AC的距离为0.7米.(1)若梯子的顶端A沿墙AC下滑0.9米至A1处,求点B向外移动的距离BB1的长;(2)若梯子从顶端A处沿墙AC下滑的距离是点B向外移动的距离的一半,试求梯子沿墙AC下滑的距离是多少米?考点:勾股定理的应用.分析:(1)根据题意可知∠C=90°,AB=2.5m,BC=0.7m,根据勾股定理可求出AC的长度,根据梯子顶端B沿墙下滑0.9m,可求出A1C的长度,梯子的长度不变,根据勾股定理可求出B1C的长度,进而求出BB1的长度.(2)可设点B向外移动的距离的一半为2x,则梯子从顶端A处沿墙AC下滑的距离是x,根据勾股定理建立方程,解方程即可.解答:解:(1)∵AB=2.5m,BC=O.7m,∴AC==2.4m∴A1C=AC﹣AA1=2.4﹣0.9=1.5m,∴B1C==2m,∴BB1=B1C﹣BC=0.5m;(2)梯子从顶端A处沿墙AC下滑的距离是x,则点B向外移动的距离的一半为2x,由勾股定理得:(2.4﹣x)2+(0.7+2x)2=2.52,解得:x=,答:梯子沿墙AC下滑的距离是米.点评:本题考查勾股定理的应用,在直角三角形里根据勾股定理,知道其中两边就可求出第三边,从而可求解.11.如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.考点:勾股定理的应用.分析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2,BC=a(米),AC=b(米),AD=x(米),根据两只猴子经过的路程一样可得10+a=x+b=15解方程组可以求x的值,即可计算树高=10+x.解答:解:Rt△ABC中,∠B=90°,设BC=a(米),AC=b(米),AD=x(米)则10+a=x+b=15(米).∴a=5(米),b=15﹣x(米)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得,x=2,即AD=2(米)∴AB=AD+DB=2+10=12(米)答:树高AB为12米.点评:本题考查了勾股定理在实际生活中的应用,本题中找到两只猴子行走路程相等的等量关系,并且正确地运用勾股定理求AD的值是解题的关键.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?考点:勾股定理的应用.分析:地毯的长是楼梯的竖直部分与水平部分的和,即AC与BC的和,在直角△ABC中,根据勾股定理即可求得BC的长,地毯的长与宽的积就是面积.解答:解:由勾股定理,AC===12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.点评:正确理解地毯的长度的计算是解题的关键.13.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.14.如图,某城市接到台风警报,在该市正南方向260km的B处有一台风中心,沿BC方向以15km/h的速度移动,已知城市A到BC的距离AD=100km.(1)台风中心经过多长时间从B移动到D点?(2)已知在距台风中心30km的圆形区域内都会受到不同程度的影响,若在点D的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?考点:勾股定理的应用.分析:(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解答:解:(1)在Rt△ABD中,根据勾股定理,得BD===240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD﹣DE=240﹣30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.点评:本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.15.“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街路上直道行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.考点:勾股定理的应用.专题:计算题.分析:由题意知,△ABC为直角三角形,且AB是斜边,已知AB,AC根据勾股定理可以求BC,根据BC的长度和时间可以求小汽车在BC路程中的速度,若速度大于70千米/时,则小汽车超速;若速度小于70千米/时,则小汽车没有超速.解答:解:由题意知,AB=130米,AC=50米,且在Rt△ABC中,AB是斜边,根据勾股定理AB2=BC2+AC2,可以求得:BC=120米=0.12千米,且6秒=时,所以速度为=72千米/时,故该小汽车超速.答:该小汽车超速了,平均速度大于70千米/时.点评:本题考查了勾股定理在实际生活中的应用,本题中准确的求出BC的长度,并计算小汽车的行驶速度是解题的关键.16.某工厂的大门如图所示,其中下方是高为2.3米、宽为2米的矩形,上方是半径为1米的半圆形.货车司机小王开着一辆高为3.0米,宽为1.6米的装满货物的卡车,能否进入如图所示的工厂大门?请说明你的理由.考点:勾股定理的应用.专题:应用题.分析:根据题中的已知条件可将BB′的长求出,和卡车的高进行比较,若门高低于卡车的高则不能通过否则能通过.解答:解:设BB′与矩形的宽的交点为C,∵AB=1米,AC=0.8米,∠ACB=90°,∴BC===0.6米,∵BB′=BC+CB′=2.3+0.6=2.9<3.0,∴不能通过.点评:考查了勾股定理的应用,本题的关键是建立数学模型,善于观察题目的信息是解题以及学好数学的关键.17.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成(图1:△ABC中,∠BAC=90°).请解答:(1)如图2,若以直角三角形的三边为边向外作等边三角形,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3.(2)如图3,若以直角三角形的三边为直径向外作半圆,则它们的面积S1、S2、S3之间的数量关系是S1+S2=S3,请说明理由.(3)如图4,在梯形ABCD中,AD∥BC,∠ABC+∠BCD=90°,BC=2AD,分别以AB、CD、AD为边向梯形外作正方形,其面积分别为S1、S2、S3,则S1、S2、S3之间的数量关系式为S1+S2=S3,请说明理由.考点:勾股定理的应用.专题:探究型.分析:(1)利用直角△ABC的边长就可以表示出等边三角形S1、S2、S3的大小,满足勾股定理.(2)利用直角△ABC的边长就可以表示出半圆S1、S2、S3的大小,满足勾股定理.解答:解:设直角三角形ABC的三边AB、CA、BC的长分别为a、b、c,则c2=a2+b2(1)S1+S2=S3,证明如下:∵S3=,S1=,S2=∴S1+S2==S3;(2)S1+S2=S3.证明如下:∵S3=,S1=,S2=∴S1+S2=+==S3;(3)过D点作DE∥AB,交BC于E,设梯形的边AB、DC、AD的长分别为a、b、c,可证EC=AD=c,DE=AB=a,∠EDC=180°﹣(∠DEC+∠BCD)=180°﹣(∠ABC+∠BCD)=90°,则c2=a2+b2∵S1=a2、S2=b2、S3=c2,表示,则S1+S2=S3.故答案为:S1+S2=S3;S1+S2=S3;S1+S2=S3.点评:考查了三角形、正方形、圆的面积的计算以及勾股定理的应用.18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?考点:勾股定理的应用.专题:计算题.分析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.解答:解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.。

初二下册数学 人教版八年级下数学《第17章勾股定理》专项训练含答案

初二下册数学 人教版八年级下数学《第17章勾股定理》专项训练含答案
名师点金:
第 17章 勾股定理 专项训练 专训 1.巧用勾股定理求最短路径的长
求最短距离的问题,第一种是通过计算比较解最短问题;第二种是平面图 形,将分散的条件通过几何变换(平移或轴对称)进行集中,然后借助勾股定理
解决;第三种是立体图形,将立体图形展开为平面图形,在平面图形中将路程
转化为两点间的距离,然后借助直角三角形利用勾股定理求出最短路程(距离)
(第 9 题)
类型 4 长方体中的最短问题 10.如图,长方体盒子的长、宽、高分别是 12 cm,8 cm,30 cm,在 AB的 中点 C 处有一滴蜜糖,一只小虫从 E 处沿盒子表面爬到 C 处去吃,求小虫爬行 的最短路程.
(第 10题)
专训 2.巧用勾股定理解折叠问题 名师点金: 折叠图形的主要特征是折叠前后的两个图形绕着折线翻折能够完全重合, 解答折叠问题就是巧用轴对称及全等的性质解答折叠中的变化规律.利用勾股 定理解答折叠问题的一般步骤:(1)运用折叠图形的性质找出相等的线段或角; (2)在图形中找到一个直角三角形,然后设图形中某一线段的长为 x,将此直角 三角形的三边长用数或含有 x 的代数式表示出来;(3)利用勾股定理列方程求出 x;(4)进行相关计算解决问题. 巧用全等法求折叠中线段的长 1.(中考·泰安)如图①是一直角三角形纸片,∠A=30°,BC=4 cm,将其
. 用计算法求平面中最短问题 1.如图,学校有一块长方形花圃,有极少数人从 A 走到 B,为了避免拐角
C 走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假 设 2 步为 1 m),却踩伤了花草.
(第 1 题) 2.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往 从黄石 A 坐客车到武昌客运站 B,现在可以在黄石 A 坐“武黄城际列车”到武 汉青山站 C,再从青山站 C 坐市内公共汽车到武昌客运站 B.设 AB=80 km,BC= 20 km,∠ABC=120°.请你帮助小明解决以下问题: (1)求 A,C 之间的距离.(参考数据 21≈4.6) (2)若客车的平均速度是 60 km/h,市内的公共汽车的平均速度为 40 km/h, “武黄城际列车”的平均速度为 180 km/h,为了在最短时间内到达武昌客运站 ,小明应选择哪种乘车方案?请说明理由.(不计候车时间)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理 应用题一.解答题(共21小题)1.如图是一个边长为6的正方体木箱,点Q 在上底面的棱上,AQ=2,一只蚂蚁从P 点出发沿木箱表面爬行到点Q ,求蚂蚁爬行的最短路程. QPA2.如图,一只蚂蚁从长、宽都是3,高是8的长方体纸箱的点A 沿纸箱外表面爬到点B ,那么它所行的最短路线的长是多少?B A3.有一圆柱形油罐,如图所示,要从A 点环绕油罐建梯子到B 点,正好B 点在A 点的正上方,已知油罐的周长为12m ,高AB 为5m ,问:所建梯子最短需多少米? BA4.吴老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.图3图2图1A 1B 1C 1D 1D 1C 1B 1A 1D DB B AA C C CB A(1)如图(1)正方体的棱长为5cm ,一只蚂蚁欲从正方体底面上的点A 沿正方体表面爬到点C 1处;(2)如图(2)长方体底面是边长为5cm 的正方形,高为6cm ,一只蚂蚁欲从长方体底面上的点A 沿长方体表面爬到点C 1处;(3)如图(3)是底面周长为10cm ,高为5cm 的圆柱体,一只蚂蚁欲从圆柱体底面上的点A 沿圆柱体表面爬到点C 处.5.有一个如图示的长方体的透明玻璃鱼缸,假设其长AD=80cm ,高AB=60cm ,水深为AE=40cm ,在水面上紧贴内壁G 处有一鱼饵,G 在水面线EF 上,且EG=60cm ;一小虫想从鱼缸外的A 点沿壁爬进鱼缸内G 处吃鱼饵.(1)小动物应该走怎样的路线才使爬的路线最短呢?请你在图中画出它爬行的路线,并用箭头标注.(2)求小动物爬行的最短路线长?GFEBAC6.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?7.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是多少?8.如图,长方体的底面边长为4cm和宽为2cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长为多少cm?9.如图所示是一段楼梯,已知AC=5m,CD=7m,楼梯宽BD=5m,一只蚂蚁要从A点爬到B点,求蚂蚁爬行的最短路程.DB AC10.有一块直角三角形的绿地,量得两直角边BC 、AC 分别为6m ,8m ,现在要将绿地扩充成等腰三角形,且扩充部分是以AC 边为直角边的直角三角形,求扩充后等腰三角形绿地的面积.(图2,图3备用)C A B 图3C A图2图1B A C11.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?12.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)D13.细心观察图形,认真分析各式,然后解答问题.OA 22=2+1=2,1S ;OA32=12+2=3,S;2OA42=12+2=4,S…3(1)请用含有n(n是正整数)的等式表示上述变规律:OA n2=;S n=.(2)求出OA10的长.(3,计算说明他是第几个三角形?(4)求出S12+S22+S32+…+S102的值.14.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.15.老张家有一块草坪如图所示.家里想整理它,需要知道其面积.老张测量了草坪各边得知:AB=3米,BC=4米,AD=12米,CD=13米,且AB⊥CB.请你帮老张家计算一下这块草坪的面积.16.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.C60°30°DBA17.如图,受台风影响,一棵大树在高于地面5米处折断,大树顶部落在距离大树底部12米处的地面上,问这棵大树原来有多高?18.装修工人购买了一根装饰用的木条,乘电梯到小明家安装.如果电梯的长、宽、高分别是1.5m、1.5m,2.2m,那么放入电梯内的木条的最大长度大约是多少米?你能估计出装修工人买的木条最少是多少米吗?2.219.小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A 、B 两点,测量数据如图,其中矩形CDEF 表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A 、C 、D 、B 四点在同一直线上)问:(1)楼高多少米?(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.≈1.73≈1.41≈2.24)BA20.如图,某城市接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度移动,已知城市A 到BC 的距离AD=100km .(1)台风中心经过多长时间从B 移动到D 点?(2)已知在距台风中心30km 的圆形区域内都会受到不同程度的影响,若在点D 的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作? BA21.蚂蚁沿图中所示的折线由A 点爬到了D 点,蚂蚁一共爬行了多少厘米?(图中小方格的边长代表1厘米)勾股定理应用题解析一.解答题1.【解答】解:如图所示,∵PB=AB=6,AQ=2,∴BQ=6+2=8,∴PQ=10.答:蚂蚁爬行的最短路程是10.QA2.【解答】解:如图(1)所示:如图(2)所示:AB==10.10,∴最短路径为10.答:它所行的最短路线的长是10.8C CA B (2)(1)83333BA3.【解答】解:如图所示:∵AC=12m ,BC=5m ,∴AB=13m ,答:梯子最短需要13m .125C B A4.【解答】解:(1)如图,AC 1. C 1B 1A 1A(2)分两种情况:①如图,AC 1C 1B 1A 1DBA②如图,AC 1CB 1AB>,所以最短路程为.(3)若展开圆柱体,BC 为周长的一半,如图所示:DCB A∵底面周长为10cm ,∴AD=5cm,∴cm.可见最短路程的长为.5.【解答】解:(1)如图所示,AQ +QG 为最短路程.E FA 1D C BA(2)∵在直角△AEG 中,AE=40cm ,AA ′=120,∴A ′E=80cm ,又EG=60cm ,∴AQ +QG=A ′Q +QG=A ′G=100cm .∴最短路线长为100cm .6.【解答】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB=25(尺).答:葛藤长为25尺.7.【解答】解:三级台阶平面展开图为长方形,长为20dm ,宽为(2+3)×3dm , 则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为xdm ,由勾股定理得:x 2=202+[(2+3)×3]2=252,解得:x=25.答:蚂蚁沿着台阶面爬到B 点的最短路程是25dm .20233232B A8.【解答】解:如下图所示:Q P∵长方体的底面边长分别为2cm 和4cm ,高为5cm .∴PA=4+2+4+2=12(cm ),QA=5cm ,∴PQ=13cm .∴蚂蚁爬行的最短路径长为13cm .9.【解答】解:如图所示,∵AC=5m ,CD=7m ,BD=5m ,∴AB=13(cm ).答:蚂蚁爬行的最短路程是13cm .57D AB10.【解答】解:D BA AB图3AB图2图1在Rt△ABC中,∵∠ACB=90°,AC=8m,BC=6m,∴AB=10m,(1)如图1,当AB=AD时,CD=6m,则△ABD的面积为:12BD•AC=12×(6+6)×8=48(m2);(2)如图2,当AB=BD时,CD=4m,则△ABD的面积为:12BD•AC=12×(6+4)×8=40(m2);(3)如图3,当DA=DB时,设AD=x,则CD=x﹣6,则x2=(x﹣6)2+82,∴x=253,则△ABD的面积为:12BD•AC=12×253×8=1003(m2);答:扩充后等腰三角形绿地的面积是48m2或40m2或1003m2.11.【解答】解:(1)由题意得此时a=24米,c=25米,根据a2+b2=c2,∴可求b=7米;(2)不是.设滑动后梯子的底端到墙的距离为b米,得方程,b2+(24﹣4)2=252,解得b=15,所以梯子向后滑动了8米.综合得:如果梯子的顶端下滑了4米,那么梯子的底部在水平方向不是滑4米.cab12.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB=12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D 的位置,∴CD=13﹣0.5×10=8(米),∴(米),∴BD=AB ﹣AD=12(米), 答:船向岸边移动了(12)米.13.【解答】解:(1)结合已知数据,可得:OA n 2=n ;S n=(2)∵OA n 2=n ,∴OA 10(3,根据:S n=∴说明他是第20个三角形,…(4)S 12+S 22+S 32+…+S 102=12344104444+++⋯++=554.14.【解答】解:∵AD ∥BE ∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE ﹣∠CBE=180°﹣60°﹣30°=90°,在Rt △ABC 中,∴AC =200,∴A 、C 两点之间的距离为200km .15.【解答】解:连接AC ,∵AB ⊥BC ,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,∴草坪的面积等于=S △ABC +S △ACD =3×4÷2+5×12÷2=6+30=36(米2).16.【解答】解:(1)正确画出草图:EDA(2)过点C 作CE ⊥AD 于点E ,由题意得,AB=30m ,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,即可得AB=BC=30m ,设BE=x ,在Rt △BCE 中,可得x ,又∵BC 2=BE 2+CE 2,即900=x 2+3x 2,解得:x=15,即可得.答:小丽自家门前的小河的宽度为.17.【解答】解:根据勾股定理可知:折断的树高=13米,则这棵大树折断前的树高=13+5=18米.18.【解答】解:如图所示:由勾股定理得:AB2=1.52+1.52=4.5,∴BC≈3.05(米);即放入电梯内的木条的最大长度大约是3.05米,估计装修工人买的木条最少是1.5米.19.【解答】解:(1)设楼高为x米,则CF=DE=x米,∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴米,BD=x米,+x=150﹣10,解得x=701)(米),∴楼高701)米.(2)x=701)≈70(1.73﹣1)=70×0.73=51.1米<3×20米,∴我支持小华的观点,这楼不到20层.20.【解答】解:(1)在Rt△ABD中,根据勾股定理,得BD=240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD﹣DE=240﹣30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.21.【解答】解:分别求AB,BC,CD,AB=5cm,BC=13cm,CD=10cm,所以蚂蚁一共爬了5+13+10=28cm.故本题答案为28cm.。

相关文档
最新文档