2019-2020陕西师范大学附属中学分校数学中考模拟试题带答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
14.若一个数的平方等于 5,则这个数等于_____.
15.已知圆锥的底面圆半径为 3cm,高为 4cm,则圆锥的侧面积是________cm2.
16.如图,是将菱形 ABCD 以点 O 为中心按顺时针方向分别旋转 90°,180°,270°后形成的
图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为
0.1 海里,参考数据 2 ≈1.41, 3 ≈1.73)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】230000000= 2.3×108 ,故选 C.
2.A
解析:A 【解析】 【分析】 直接利用位似图形的性质结合相似比得出 AD 的长,进而得出△OAD∽△OBG,进而得出 AO 的长,即可得出答案. 【详解】
的学生人数,老师给每位学生的成绩加上了 5 分,加分之后,所有成绩及格的学生的平均
分变为 75 分,所有成绩不及格的学生的平均分变为 59 分,已知该班学生人数大于 15 人少
于 30 人,该班共有_____位学生.
20.已知 M、N 两点关于 y 轴对称,且点 M 在双曲线 y 1 上,点 N 在直线 y=﹣x+3 2x
上,设点 M 坐标为(a,b),则 y=﹣abx2+(a+b)x 的顶点坐标为
.ห้องสมุดไป่ตู้
三、解答题
21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市
民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其
他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图
∵正方形 ABCD 与正 方形 BEFG 是以原点 O 为位似中心的位似图形,且相似比为 1 , 3
∴ AD 1 , BG 3
∵BG=12, ∴AD=BC=4, ∵AD∥BG, ∴△OAD∽△OBG,
∴ OA 1 OB 3
∴ 0A 1 4 OA 3
解得:OA=2, ∴OB=6, ∴C 点坐标为:( 6,4),
和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角 是 °; (2)请补全条形统计图; (3)若甲、乙两人上班时从 A、B、C、D 四种交通工具中随机选择一种,则甲、乙两人恰 好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解. 22.在□ABCD,过点 D 作 DE⊥AB 于点 E,点 F 在边 CD 上,DF=BE,连接 AF,BF.
故选 A. 【点睛】 此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.
3.C
解析:C 【解析】 【分析】 从图中可得信息:体育场离文具店 1000m,所用时间是(45﹣30)分钟,可算出速度. 【详解】
解:从图中可知:体育场离文具店的距离是: 2.5 1.5 1km 1000m ,
6.A
解析:A 【解析】 分析:先根据平均数的定义确定出 x 的值,再根据方差公式进行计算即可求出答案.
详解:根据题意,得: 6 7 x 9 5 =2x 5
解得:x=3, 则这组数据为 6、7、3、9、5,其平均数是 6,
所以这组数据的方差为 1 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 5
A.4
B.3
C.2
D.1
7.阅读理解:已知两点 M (x1, y1) , N(x2, y2) ,则线段 MN 的中点 K x, y 的坐标公式
为: x x1 x2 , y y1 y2 .如图,已知点 O 为坐标原点,点 A3,0 , O 经过点
2
2
A ,点 B 为弦 PA 的中点.若点 Pa,b ,则有 a , b 满足等式: a2 b2 9.设
似图形,且相似比为 1 ,点 A,B,E 在 x 轴上,若正方形 BEFG 的边长为 12,则 C 点坐 3
标为( )
A.(6,4)
B. (6,2)
C.(4,4)
D.(8,4)
3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑
步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中 x 表示时
A.21.7 米
B.22.4 米
C.27.4 米
D.28.8 米
9.函数 y 2x 1 中的自变量 x 的取值范围是( )
A. x ≠ 1 2
B. x ≥1
C. x > 1 2
D. x ≥ 1 2
10.直线 y=﹣kx+k﹣3 与直线 y=kx 在同一坐标系中的大致图象可能是( )
A.
B.
C.
D.
Bm, n ,则 m , n 满足的等式是( )
A. m2 n2 9
B.
m 3 2 2
n 2
2
9
C. 2m 32 2n2 3
D. 2m 32 4n2 9
8.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端 B 出发,先沿水平方向向 右行走 20 米到达点 C,再经过一段坡度(或坡比)为 i=1:0.75、坡长为 10 米的斜坡 CD 到达点 D,然后再沿水平方向向右行走 40 米到达点 E(A,B,C,D,E 均在同一平面 内).在 E 处测得建筑物顶端 A 的仰角为 24°,则建筑物 AB 的高度约为(参考数据: sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
(1)等奖所占的百分比是________;三等奖的人数是________人; (2)据统计,在获得一等奖的学生中,男生与女生的人数比为1:1 ,学校计划选派 1 名男 生和 1 名女生参加市手抄报比赛,请求出所选 2 位同学恰是 1 名男生和 1 名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得 一等奖的人数不少于二等奖人数的 2 倍,那么至少选取多少人进行集训? 25.如图,一艘巡逻艇航行至海面 B 处时,得知正北方向上距 B 处 20 海里的 C 处有一渔 船发生故障,就立即指挥港口 A 处的救援艇前往 C 处营救.已知 C 处位于 A 处的北偏东 45°的方向上,港口 A 位于 B 的北偏西 30°的方向上.求 A、C 之间的距离.(结果精确到
解:①当 x=1 时,y=a+b+c=0,故本选项错误; ②当 x=﹣1 时,图象与 x 轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确; ③由抛物线的开口向下知 a<0,
∵对称轴为 1>x=﹣ >0,
∴2a+b<0, 故本选项正确;
④对称轴为 x=﹣ >0,
∴a、b 异号,即 b>0, ∴abc<0, 故本选项错误; ∴正确结论的序号为②③. 故选 B. 点评:二次函数 y=ax2+bx+c 系数符号的确定: (1)a 由抛物线开口方向确定:开口方向向上,则 a>0;否则 a<0; (2)b 由对称轴和 a 的符号确定:由对称轴公式 x=﹣b2a 判断符号; (3)c 由抛物线与 y 轴的交点确定:交点在 y 轴正半轴,则 c>0;否则 c<0; (4)当 x=1 时,可以确定 y=a+b+C 的值;当 x=﹣1 时,可以确定 y=a﹣b+c 的值.
间, y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )
A.体育场离林茂家 2.5km B.体育场离文具店1km C.林茂从体育场出发到文具店的平均速度是 50m min D.林茂从文具店回家的平均速度是 60m min
4.如图,在热气球 C 处测得地面 A、B 两点的俯角分别为 30°、45°,热气球 C 的高度 CD 为 100 米,点 A、D、B 在同一直线上,则 AB 两点的距离是( )
A.200 米
B.200 3 米
C.220 3 米
D.100 ( 3 1) 米
5.已知二次函数 y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣
b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )
A.③④
B.②③
C.①④
D.①②③
6.如果一组数据 6、7、x、9、5 的平均数是 2x,那么这组数据的方差为( )
2019-2020 陕西师范大学附属中学分校数学中考模拟试题带答案
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量 折合粮食大约是 230000000 人一年的口粮,将 230000000 用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×107 2.如图,在平面直角坐标中,正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的位
∴AD= 2002 1002 =100 3 米, ∴AB=AD+BD=100+100 3 =100(1+ 3 )米,
故选 D. 【点睛】 本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形 并解直角三角形.
5.C
解析:C 【解析】 试题分析:由抛物线的开口方向判断 a 的符号,由抛物线与 y 轴的交点判断 c 的符号,然 后根据对称轴及抛物线与 x 轴交点情况进行推理,进而对所得结论进行判断.
所用时间是 45 30 15分钟,
∴体育场出发到文具店的平均速度 1000 200 m min 15 3
故选:C. 【点睛】 本题运用函数图象解决问题,看懂图象是解决问题的关键.
4.D
解析:D 【解析】 【分析】 在热气球 C 处测得地面 B 点的俯角分别为 45°,BD=CD=100 米,再在 Rt△ACD 中求出 AD 的长,据此即可求出 AB 的长. 【详解】 ∵在热气球 C 处测得地面 B 点的俯角分别为 45°, ∴BD=CD=100 米, ∵在热气球 C 处测得地面 A 点的俯角分别为 30°, ∴AC=2×100=200 米,
11.如图,矩形纸片 ABCD 中, AB 4 , BC 6 ,将 ABC 沿 AC 折叠,使点 B 落在 点 E 处, CE 交 AD 于点 F ,则 DF 的长等于( )
A. 3 5
B. 5 3
C. 7 3
D. 5 4
12.已知直线 m // n ,将一块含 30 角的直角三角板 ABC 按如图方式放置
(1)求证:四边形 BFDE 是矩形; (2)若 CF=3,BF=4,DF=5,求证:AF 平分∠DAB.
23.如图 1,在直角坐标系中,一次函数的图象 l 与 y 轴交于点 A(0 , 2),与一次函数 y =x﹣3 的图象 l 交于点 E(m ,﹣5).
(1)m=__________; (2)直线 l 与 x 轴交于点 B,直线 l 与 y 轴交于点 C,求四边形 OBEC 的面积; (3)如图 2,已知矩形 MNPQ,PQ=2,NP=1,M(a,1),矩形 MNPQ 的边 PQ 在 x 轴上平移,若矩形 MNPQ 与直线 l 或 l 有交点,直接写出 a 的取值范围 _____________________________ 24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报 比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制 成如右两幅统计图.请你根据图中所给信息解答意)

17.用一个圆心角为 180°,半径为 4 的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的
半径为_______.
18.正六边形的边长为 8cm,则它的面积为____cm2.
19.在一次班级数学测试中,65 分为及格分数线,全班的总平均分为 66 分,而所有成绩
及格的学生的平均分为 72 分,所有成绩不及格的学生的平均分为 58 分,为了减少不及格
( ABC 30 ),其中 A , B 两点分别落在直线 m , n 上,若 1 40 ,则 2 的度数
为( )
A.10 二、填空题
B. 20
C. 30
D. 40
13.如图, RtAOB 中, AOB 90 ,顶点 A , B 分别在反比例函数 y 1 x 0 与
x
y 5 x 0的图象上,则 tan BAO 的值为_____.
故选 A. 点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是 一组数据中各数据与它们的平均数的差的平方的平均数.
相关文档
最新文档