4多组分体系热力学
第4章 多组分热力学
前面所讨论的是:单组分单相(两相)系统或多 组分组成恒定的系统。 但常见系统绝大部分是:多组分变组成系统。因 此必须研究处理多组分系统。
多组分系统除了两个变量之外,还需确定各组分 的物质的量才能确定系统的状态。 多组分系统分为:单相、多相
本章主要讨论多组分单相系统。
1
第四章 多组分系统热力学
B
dA SdT pdV BdnB
B
•适用条件 W ' 0 ,单相系统
31
2.多组分单相系统的热力学公式
•广义定义
B
U nB
S ,V ,nC
H nB
S , p,nC
A nB
T ,V ,nC
G nB
T , p,nC
保持特征变量和除B以外其它组分不变,某热力
学函数随其物质的量 nB的变化率称为化学势。
2 偏摩尔量相对于某一组分而言,本身是强度量;
3 偏摩尔量与浓度有关,与系统的总量无关。
4 偏摩尔量 X B ( nX,B )下T ,标p,n必C 须是
。T , p, nC
15
2.偏摩尔量
•偏摩尔量的物理意义
•两种理解 1 在恒温恒压下,于极大量的某恒定组成的系统中加
入1mol组分B时所引起系统广度量X的改变量。
混合物的摩尔体积:
Vm
xB M B /
B
Vm xBVB
B
21
5.吉布斯—杜亥姆方程
X
X
dX
( T
) p,nB
dT
(
p
)T ,nB
dp
B
X BdnB
•恒温恒压多组分系统
dX X BdnB
B
物理化学:第4章_多组分系统热力学_
真实混合物:实曲线
Vm xBVB xCVC VB (VC VB)xC
当混合物组成改变时,两组 分偏摩尔体积随之改变,且二者 变化相互关联。
组成接近某纯组分,其偏摩 尔体积也接近该纯组分摩尔体积。
5. 吉布斯 − 杜亥姆方程
对广度量 X (T , p, nB, nC , nD ,) 求全微分:
dX
X T
p,nB
dT
X p
T ,nB
dp
B
X nB
dnB T , p,nC
恒温、恒压
另一方面,由加和公式
,恒温恒压下求导:
比较两式,得
或
或
吉布斯-杜亥姆方程--在一定温度压力下,当混合物
组成变化时,各组分偏摩尔量变化的相互依赖关系。
➢ 系统中各组分的偏摩尔量并非完全独立,而是相 互依存的。
➢ 例:固体溶解、过饱和溶液析出、…
组分B在α、β两相中迁移达平衡的条件:该组分
在两相中的化学势相等。
➢ 物质总是从其化学势高的相向化学势低的相迁移, 直至物质迁移达平衡时为止,此时系统中每个组分在 其所处的相中的化学势相等。
化学势 判据
② 化学平衡
<0:自发不可逆; =0:平衡、可逆
任一化学反应,假定系统已处于相平衡,
任一组分B在每个相中的化学势都相等: Bα B
B
B
整个系统中B组分物质的量的变化量: dnBα dnB
α
BdnB
B
化学平衡时
平衡条件:与化学反应达到平衡的方式无关。
§4.3 气体组分的化学势
1、纯理想气体的化学势 2、理想气体混合物中任一组分的化学势 3、纯真实气体的化学势 4、真实气体混合物中任一组分的化学势
第4章 多组分系统热力学
第四章多组分体系热力学一、选择题1. 在298K时,A和B两种气体单独溶解在某一溶剂中,均遵守亨利定律,亨利常数分别为kА和k B,且知kА> k B,则当A和B的平衡压力相同时,在一定量的该溶剂中所溶解的关系为( ) (A) A 的量大于 B 的量;(B) A 的量小于 B 的量;(C) A 的量等于 B 的量;(D) A 的量与 B 的量无法比较。
2. 在恒温抽空的玻璃罩中封入二杯液面相同的糖水 (A) 和纯水 (B)。
经历若干时间后,二杯液面的高度将是:( )(A) A 杯高于 B 杯; (B) A 杯等于 B 杯; (C) A 杯低于 B 杯;(D) 视温度而定。
3. 在温度T时,纯液体A的饱和蒸气压为P A*,化学势为μA*,并且已知在P⊖压力下的凝固点为T f*,当A 中溶入少量与A不形成固态溶液的溶质而形成为稀溶液时,上述三物理量分别为P、μA、T f则( ) (A) P < P,μA*<μA ,T f*< T f(B) P A*> P A ,μA*<μA ,T f*< T f(C) P < P,μA*<μA ,T f*> T f(D) P A*> P A ,μA*>μA , T f*> T f4.已知在 373K 时液体A 的饱和蒸气压为66662Pa,液体B的饱和蒸气压为1.01325×105 Pa,设 A 和 B 构成理想液体混合物,则当A在溶液中的物质的量分数为0.5 时,气相 A 的物质的量分数应为:( )(A) 0.200 (B) 0.300 (C) 0.397 (D) 0.6035. 对于理想液体混合物,下列偏微商小于零的是:(A) [∂(△mix F m)/ ∂T]p(B) [∂(△mix S m)/ ∂T]p(C) [∂ (△mix G m)/T]/ ∂T]p(D) [∂ (△mix G m)/ ∂P]T6. 假设A、B 二组分混合可以形成理想液体混合物,则下列叙述中不正确的是:( )(A)A、B 分子之间的作用力很微弱;(B) A、B 都遵守拉乌尔定律;(C) 液体混合物的蒸气压介于A、B 的蒸气压之间;(D) 可以用重复蒸馏的方法使A、B 完全分离。
物理化学4 多组分体系热力学 1
几点说明
(1)偏摩尔量只对体系中某组分才具有的,对整体而 言无所谓偏摩尔量的概念; (2)只有体系的广度性质才有偏摩尔量(质量除外) ; (3)偏摩尔量本身是强度性质; (4)注意右下角标的条件; (5)任何偏摩尔量都是T、p、组成的函数; (6)纯物质的偏摩尔量就是摩尔量; (7)偏摩尔量可能是负值。 (8)偏摩尔量是1mol B对整体热力学性质的贡献量, 而不应该理解为它在混合体系中所具有的量。
分类
气态混合物:空气 混合物液态混合物:甲醇 + 乙醇 固态混合物:Cu + Ni 气态溶液:萘溶解于高压CO 2中 非电解质溶液:糖水 − − − 本章 溶液液态溶液 电解质溶液:盐水 - - -电化学 固态溶液:单体溶解于聚合物中 − − − 又称固溶体
§4-2 化学势 化学势μ μB
• 4-2-1 化学势定义 • 4-2-2 平衡判据与平衡条件 • 4-2-3 理想气体的化学势表达式
4-2-1 化学势定义
混合物或溶液中,组分B的偏摩尔吉布斯函数 GB在化学热力学中有特殊的重要性,又把它叫 做化学势,用符号μB表示。
∂G µ B = GB = ∂nB T , p ,nc≠B
dX = ∑ X B dnB
B =1 k
( 2)
• 可得Gibbs-Duhem方程:
∑ n dX
B B=1
k
B
=0
∑ x dX
B B=1
k
B
=0
Gibbs-Duhem方程的意义: (1) 某一偏摩尔量的变化可从其它偏摩尔量的变 化中求得。 (2) 对一个含有K个组分的均相体系,K个偏摩 尔量Xi中,只有 K-1个是独立的。
如果在溶液中不按比例地添加各组分,则溶液浓 度会发生改变,这时各组分的物质的量和偏摩尔量均 会改变。 根据集合公式
4 多组分系统热力学
( p p* H 2 O ) 0.40 (105.4 7.33) 0.40kPa 39.23kPa
p N2 p p * H 2 O p H 2 (105.4 7.33 39.23) kPa 58.84kPa
M H 2 2.0158, x H2 pH2 k x,H2 M N 2 28.0134 mH2 / M H 2 m H 2O / M H 2O m H 2 / M H 2 m N 2 / M N 2 mH 2 / M H 2 m H 2O / M H 2O
* p甲苯 y苯
p p
* 苯
* 甲苯
y苯 p y苯
* 苯
38.7 0.3 0.142 ; x甲苯 1 x苯 0.858 100 38.7 0.3 100 0.3
4-6 在 18℃,气体的压力为 101.325kPa 下,1dm3 的水中能 溶解 O20.045g,能溶解 N20.02g。现 1dm3 将被 202.65kPa 空气饱 和了的水溶液加热沸腾,赶出所溶解 O2 的和 N2,并干燥之,求此 干燥气体在 101.325kPa、18℃下的体积及组成。设空气为理想 气体混合物,其组成(体积百分数)为: (O 解: M
x 2 d 2 RTdx2 x1 d 1 x 2 d 2
x 1 d 1 RTdx 2 RTd (1 x1 ) RTdx1
d1 RTdx1 / x1
1
1
d 1 RT d ln x1
x1 1
x1
1 1 RT ln x1 1 ( pg ) RT ln( p1* / p ) RT ln x1 1 1 ( pg ) RT ln( p1 / p )
4-3多组分系统热力学-理想液态混合物与理想稀溶液
Physical Chemistry
物理化学(上册)
绪论 第一章 气体 第二章 热力学第一定律 第三章 热力学第二定律 第四章 多组分系统热力学 第五章 化学平衡 第六章 相平衡
第四章 多组分系统热力学
§4-!本章基本要求 §4-1多组分系统热力学概念 §4-2拉乌尔定律与亨利定律 §4-3偏摩尔量 §4-4化学势 §4-5理想液态混合物 §4-6理想稀溶液 §4-7活度活度系数 §4-8化学势小节 §4-$小结与学习指导
d* S*dT V *dp
B
B
B
mixG p
T
B
nBVB
B
nBVB* mixV
2. mixV 0 或 V mix m 0
mix p
G
T
(RT
nB ln xB )
B
p
T
0
§4-5理想液态混合物
四、理想液态混合物混合性质
dG B S B dT VB dp
dG * S * dT V *dp
B
B
6.
mixU mix H P mixV 0
mixU 0 或 mixU m 0
§4-5理想液态混合物
四、理想液态混合物混合性质
小结: 1. mixV=0 , mixU=0 , mixH=0 2. Q=0, W=0 3. mixS=-RnBlnB>0 (绝热 S>0)
mixA=RTnBlnB<0 (恒温恒容W =0 A<0) mixG=RTnBlnB<0 (恒温恒压W =0 G<0)
§4-6理想稀溶液
一、理想稀溶液定义 无限稀溶液,溶质的浓度趋于零的溶液。 对溶剂(A表示)用符合拉乌尔定律
物理化学第四版 第四章 多组分系统热力学2014.2
)
p,n
(
B
)
,V
(
G P
)T
,n(
B
)
k
dG SdT VdP BdnB
证毕
B 1
14
又 dA d(G PV ) dG pdV Vdp
将上式dG 代入,整理得:
k
dA sdT PdV BdnB ……..(3) B 1
同理可得出另二个热力学基本方程。
因 A=A(T,V,n1,n2…….nk)
B
B
B
........
n B
相平衡条件
有N 个组分,就有N 个这样的式子
19
例:在、 两相中均含有A和B两种物质,达到相平衡时,下列
各式正确的是(
)。
A、
A
B
B、
B
B
C、
A
B
D、
B
A
例:组分B从相扩散入相中,则以下说法正确的有( A、总是从浓度低的相扩散入浓度高的相 B、平衡时两相浓度相等 C、总是从化学势高的相移向低化学势低的相
dA
(
A T
)V
,n
(
B
)
dT
( A V
)T ,n(B)
dV
k B 1
(
A n(B)
)T
,V
,n
(
c,c
B)
dnB
将式(4)和式(3)比较
B
A ( nB
)T ,V ,n(c,cB)
同样可得出
B
U ( nB
)S ,V ,n(c,cB)
H ( nB
)S ,P.n(c,cB)
…..(4)
15
例 2: 下列偏导数中那些是偏摩尔量?那些是化学势?
大学物理化学经典课件4-3-多组分体系热力学
本课程旨在帮助学生掌握多组分体系热力学的基本概念、原理和 方法,培养学生运用热力学原理分析复杂体系的能力,为后续的 科研和工程实践打下基础。
多组分体系热力学概述
定义与特点
多组分体系是指由两种或两种以上不同物质组成的体系。多 组分体系热力学主要研究这类体系的热力学性质及其变化规 律,包括相平衡、化学平衡、能量转换等内容。
溶液的理论来处理真实溶液的问题。
活度系数
活度系数是描述真实溶液与理想溶液差异程度的物理量,它与溶液中的离子强度、溶剂 化作用等因素有关。活度系数的引入使得我们可以更准确地描述真实溶液的性质和行为。
03
多组分体系的相平衡
相律与相图
相律
描述多组分体系相平衡的基本规律, 即体系自由度、组分数和相数之间的 关系。
理论联系实际
将所学理论知识与实际问题相结合,通过分析和 解决具体问题来加深对理论知识的理解。
多做习题
通过大量的习题练习,可以巩固所学知识,提高 分析问题和解决问题的能力。
领域前沿与展望
新理论和新方法
随着科学研究的不断深入,多组分体系热力学领域不断涌现出新的理论和方法 ,如非平衡态热力学、微观热力学等,为相关领域的发展提供了新的思路。
电镀
利用电解原理在某些金属表面镀 上一薄层其他金属或合金的过程, 多组分体系热力学对于控制镀层 质量和厚度具有重要意义。
电解
通过电流作用使物质发生化学变 化的过程,多组分体系热力学研 究有助于降低能耗和提高产率。
高分子溶液中的应用
高分子合成
通过控制反应条件,合成具有特定结构和性能的高分子化合物,多 组分体系热力学研究有助于优化合成路线和提高产率。
相图
用图形表示多组分体系在不同条件下 的相平衡关系,包括温度、压力、组 成等。
物理化学课件及考试习题 试卷 答案第4章 多组分系统热力学习题及答案
第三章多组分系统热力学一、填空题1、只有系统的____性质才具有偏摩尔量。
而偏摩尔量自身是系统的____性质。
偏摩尔量的值与系统中各组分的浓度____。
混合适物系统中各组分的同一偏摩尔量间具有两个重要的性质,分别是____与____。
2、如同温度是热传导的推动力一样,化学势是____传递的推动力。
在恒温恒压下多相平衡的条件是________________。
以焓表示的组分i的化学势可写成µi=____。
3、混合理想气体中任一组分B的化学势________;理想溶液中任一组分B的化学势________;稀溶液中溶剂A的化学势________。
4、由纯组分在恒温恒压下组成理想混合物时,△mix S=__0;△mix G__0;△mix H__0;△ix V__0。
5、理想溶液混合时,∆mix V ,∆mix S ,∆mix G ,∆mix H 。
6、比较水的化学势的大小(此处p=101.325kPa):(填>、< 或=)①μ(l,100℃,p)____μ(g,100℃,p)②μ(l,100℃,p)____μ(l,100℃,2p)③μ(g,100℃,p)____μ(g,100℃,2p)④μ(l,100℃,2p)____μ(g,100℃,2p)⑤μ(l,101℃,p)____μ(g,101℃,p)7、非理想溶液溶质的化学势表示式____,其标准态为____。
8、在一定的温度及压力下,某物质液汽两相达平衡,则两相的化学势μB(l)与μB(g)_____若维持压力不变,升高温度,则μB(l)和μB(g)都______;但μB(l)比μB(g)______。
9、理想溶液中任意组分B的化学势:μB=_______________。
10、298K、101.325kPa,有两瓶萘的苯溶液,第一瓶为2升,溶有0.5mol萘,第二瓶为1升,溶有0.25mol 萘,若以μ1和μ2表示两瓶中萘的化学势,则它们的关系为__________。
第4章 多组分系统热力学1
§4.2 化学势
1.化学势的定义 混合物(或溶液)中组分B的偏摩尔吉布斯函 数GB 定义为B的化学势,用μB表示。
定义为 G B GB nB T .P.nC
对于纯物质,其化学势就是它的摩尔吉布斯函数。
化学势是最重要的热力学函数,系统中的其它偏摩 尔量均可以通过化学势、它的偏导数或组合表示。
B
得到
dA B ( )dnB ( ) 0
B
自发 平衡
化学势判据
封闭系统恒温恒压,W’=0 ,由dGT,p≤0,
dG SdT Vdp B ( )dnB ( )
B
得到
dG B ( )dnB ( ) 0
B
<自发 =平衡
化学势判据
化学势在多相平衡中的应用
设系统有α和β两相,两相中均不仅一种物 质。在恒温恒压下若α 相中有dnB的 B物质 转移到β相,则 若上述转移是自发进行的,则有
相dnB ( )
相
相转移
dGT . p 0
即
B( ) B( )
dG 0
即
当系统达平衡时
B( ) B( )
μ
B(α )=μ B(β )
= …=μ
B(ρ )
如果有某物质在各相中的化学势不等,则根据 dGT,p<0为自发过程的原理,该物质必然要从化学 势较大的相向化学势较小的相转移。
化学势在化学平衡中的应用
参加反应的物质都有化学势,平衡条件为
dG vi i (产物) vi i (反应物) 0
B
dA SdT pdV B ( ) dnB ( )
物理化学 第四章 多组分系统热力学
AB
( nB
)T , p ,nC
G
GB
( nB
)T , p ,nC
注意:偏摩尔量的下脚标为:T,P,C(C≠ B)
使用偏摩尔量时应注意: 1.偏摩尔量的含义是:在等温、等压、保持B物质 以外的所有组分的物质的量不变的条件下,广度性 质X的随组分B的物质的量的变化率。
2.只有广度性质才有偏摩尔量,而偏摩尔量是强度 性质。
六、偏摩尔量之间的函数关系
对于组分B:VB、UB、HB、SB、AB、GB之间的关系:
HB= UB +PVB ,
AB= UB -TSB
GB = HB -TSB= UB +PVB -TSB UB =AB+PVB
(
GB P
)T
,nA
VB
(
GB T
)
P,nA
SB
( GB )
[T T
]P,nB
3.纯物质的偏摩尔量就是它的摩尔量。
4.任何偏摩尔量都是T,p和组成的函数。
偏摩尔量的集合公式
设一个均相体系由1、2、 、k个组分组成,则体 系任一广度量Z应是T,p及各组分物质的量的函数,即:
X X (T , p, n1, n2,, nk )
在等温、等压条件下:
X
X
dX
( n1
···········
dG= dG(α) + dG(β) +·········
恒T,p时 dG SdT Vdp
B
dnB
B
同理,有
dU TdS pdV B ( )dnB ( ) B
dH TdS Vdp B ( )dnB ( ) B
多组分体系热力学
各亨利常数之间的关系
5.各亨利常数之间的关系
在极稀溶液中,xB ≈ mB MA ≈ cB MA /ρ
3 偏摩尔量的测定与计算
数学分析法(计算法): NaBr水溶液的体积与溶液浓度的关系为 V = 1.0029 + 23.189 b + 2.197 b3/2 - 0.178 b2
图解法: 溶液中NaBr的偏摩尔体积为 VB =23.189 +3/2×2.197 b1/2- 2×0.178b 做出X~ nB变化曲线,在某点处曲线切线的斜率即为组分B在该组成下的偏摩尔量。
§4.0 前言
*
§4-0 前言
1 多组分系统分类
2 溶液组成的表示法
*
1 多组分系统分类
多组分系 统
单相系统
多相系统
混合物
溶 液
按聚集态分
按规律性分
按聚集态分
按规律性分
气态混合物
液态混合物
固态混合物
理想混合物
真实混合物
液态溶液
固态溶液
理想稀溶液
真实溶液
*
2 溶液组成的表示法
注意: 这四个偏导数中只有 是偏摩尔量,
*
3 多组分多相系统的热力学公式
01
对多组分多相系统来说,因组分B的物质的量的变化引起的某一广延量的变化等于各个相中该广延量的变化的加和。
02
对其中的α、β、γ…相,都可应用热力学关系式:
*
3 多组分多相系统的热力学公式
式中:
同理:
此四式适用于多组分多相的组成变化的系统或开放系统
在温度、压力及其它各组分物质的量均不变的条件下,由于组分B的微小变化所引起的系统广延量X的变化。
大学物理化学4-多组分体系热力学课后习题及答案
多组分体系热力学课后习题一、是非题下述各题中的说法是否正确?正确的在题后括号内画“√”,错的画“⨯”1. 二组分理想液态混合物的总蒸气压大于任一纯组分的蒸气压。
( )2. 理想混合气体中任意组分B 的逸度B ~p 就等于其分压力p B ~。
( )3.因为溶入了溶质,故溶液的凝固点一定低于纯溶剂的凝固点。
( ) 4.溶剂中溶入挥发性溶质,肯定会引起溶液的蒸气压升高。
( ) 5.理想溶液中的溶剂遵从亨利定律;溶质遵从拉乌尔定律。
( ) 6. 理想液态混合物与其蒸气达成气、液两相平衡时,气相总压力p 与液相组成x B 呈线性关系。
( )7. 如同理想气体一样,理想液态混合物中分子间没有相互作用力。
( )8. 一定温度下,微溶气体在水中的溶解度与其平衡气相分压成正比( )9. 化学势是一广度量。
( )10. 只有广度性质才有偏摩尔量( )11. )B C C,(,,B ≠⎪⎪⎭⎫⎝⎛∂∂n V S n U 是偏摩尔热力学能,不是化学势。
( ) 二、选择题选择正确答案的编号,填在各题题后的括号内1. 在α、β两相中都含有A 和B 两种物质,当达到相平衡时,下列三种情况, 正确的是:( )。
(A)ααμ=μB A ; (B) βαμ=μA A ; (C) βαμ=μB A 。
2. 理想液态混合物的混合性质是:( )。
(A)Δmix V =0,Δmix H =0,Δmix S >0,Δmix G <0;(B)Δmix V <0,Δmix H <0,Δmix S <0,Δmix G =0;(C)Δmix V >0,Δmix H >0,Δmix S =0,Δmix G =0;(D)Δmix V >0,Δmix H >0,Δmix S <0,Δmix G >0。
3. 稀溶液的凝固点T f 与纯溶剂的凝固点*f T 比较,T f <*fT 的条件是:( )。
(A )溶质必需是挥发性的;(B )析出的固相一定是固溶体;(C )析出的固相是纯溶剂;(D )析出的固相是纯溶质。
多组分体系热力学.ppt
常用的偏摩尔量:
XB
def
X nB
T , p,nC
U nBUB B
H nB HB B
A nB AB B
S nB SB B
G nBGB B
U
UB
( nB
)T , p,nC (CB )
偏摩尔热力学能
H
HB
( nB
)T ,
p,nC (CB)
A
AB
( nB
)T , p,nC (CB )
dp
B
nB
T , p,nC
dnB
偏摩尔量
X B def
X nB
T , p,nC
X
X
dX
T
p,nB
dT
p
T ,nB
dp
B
X BdnB
2、偏摩尔量的物理含义:
X B def
X nB
T , p,nC
偏摩尔量XB是在恒温、恒压及除组分B以外其余各 组分的物质的量均保持不变的条件下,系统广度量X随 组分B的物质的量的变化率
四、同一组分的各种偏摩尔量之间的关系 对单组分系统有:
H=U+pV A=U-TS G=H-TS
G S T p
对多组分系统有:
G p
T
V
HB=UB+pVB AB=UB-TSB GB=HB-TSB
GB T
p
SB
GB p
T
VB
§4.2 化学势
定义:
B
GB
( G nB
)T , p,nC (CB)
3、偏摩尔量的加和公式
X nB X B
B
多组分系统的广度量X为系统各组分的物质的量与其偏摩尔量 XB乘积的加和。
物理化学04多组分系统热力学
dG=dG( ) +dG()
当恒温恒压,W’=0 时
β相
dG() ()dn()
dG( ) ( )dn( )
dn( ) dn()
dX
X T
p,nB ,nc ,nD
X
dT
p
T ,nB ,nc ,nD
X
dp
nB
T , p,nc ,nD
dnB
X
X
nC
T , p,nB p,nB ,nc
dnD
2021/1/6
偏摩尔量XB的定义为: X B def
X ( nB )T , p,nc
2021/1/6
解:取1kg溶液
nH2O
mH2O M H2O
(1 0.12)1 18.015 103
mol
48.85mol
nAgNO3
mAgNO3 M AgNO3
0.12 1 169.89 103
mol
0.7064mol
xAgNO3
nAgNO3
n n AgNO3
H2O
0.01425
cAgNO3
2021/1/6
由题意:
VA 17.35cm3 / mol
VB 39.01cm3 / mol
由集合公式,混合后:
V nAVA nBVB {0.617.35 0.4 39.01}cm3 26.01cm3
混合前:
VA '
nAM A A
10.84cm3
VB'
nB M B B
16.19cm3
dA SdT pdV BdnB
dA
B
BdnB 0
自发 =平衡
B
(dT 0,dV 0, W ' 0)
第4章 多组分系统的热力学 第4节 化学势及其应用 第5节 混合气体中组元的化学势
l
O
g T
(
Gm
*
B
p
)T Vm
*
1 3
373.15K
1 2 3 4
16
4.5 混合气体中组元的化学势
纯理想气体的化学势
理想气相混合物中各组分的化学势
实际气体中组分的化学势
17
纯理想气体的化学势
只有一种理想气体,
G ( )T ( )T , p p p nB T
18
p (T , p) (T , p ) RT ln p
纯理想气体的化学势
p (T , p) (T , p ) RT ln p p i i ( g ) RT ln p
这是理想气体化学势的表达式。 μi(g)是温度为T,压力为标准压力时理想气体 i 的 化学势,这个状态就是气体的标准态。
22
气体中组分的化学势小结
纯理想气体
* p B B* B ( g ) RT ln p
pB 混合理想气体 B B ( g ) RT ln p
fB 混合实际气体 B B ( g ) RT ln p
作业2-3 简要论述多组分系统中的相平衡条件和化学反应平衡条件 作业2-4 理想气体混合物和实际气体混合气的化学势的区别和联系是什么
G ( )T , p n B G ( )T nB p T , p
V Vm nB T , p
(dG SdT Vdp)
p
dμ Vmdp p
p
p
RT dp p
p (T , p) (T , p ) RT ln p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多组分体系热力学
1、不挥发的溶质溶于溶剂中形成溶液之后将会引起 蒸汽压降低 。
2、“在1θp 下,有0.002mol 的气体溶解在1000g 水中,当在相同温度下压力增大为2θp 时,就有0.004mol 该气体溶于1000g 水中”描述这一实验规律的定律是 亨利(Henry )定律 。
4、稀溶液的凝固点降低公式f m ⋅中,m 所代表的是稀溶液中f T K Δ= 溶质的质量摩尔浓度 。
6、25℃时,0.01m 糖水的渗透压为π1,0.01m 食盐水的渗透压为π2,则 π1<π2 。
7、若要使CO 2在水中的溶解度为最大,应选择的条件是 低温高压 。
8、理想溶液的通性是: 000V H S G Δ=Δ=Δ>Δ<混合混合混合混合0 。
9、在讨论稀溶液的蒸汽压降低规律时,溶质必须是 非挥发性物质 。
11、25℃时A 和B 两种气体在某一溶剂中溶解的亨利系数分别为k A 和k B ,且知
k A >k B ,则当A 和B 压力相同时在该溶剂中所溶解的量是 A 的量<B 的量 。
10、对于A 和B 两种液体,在1θp 下,纯A 的沸点较纯的B 的沸点为高。
当A 和B 组成二元溶液时具有一恒沸混合物,则对于该恒沸混合物,其呈平衡的气相组成y 1与液相组成x 1之间 y 1=x 1 。
11、苯和甲苯能形成理想溶液,在20℃时,当1mol 苯和1mol 甲苯混合时,过程所对应的G Δ是 -3377J 。
23、在20℃时,将压力为θp 的1mol 气态NH 3溶解到大量组成为NH 3:H 2O=1:21的溶液中。
已知此溶液上NH 3的蒸气分压为27mmHg ,则该转移过程的为G Δ -8130J 。
26、0.005mol/kg 的硫酸钾水溶液其沸点较纯水的沸点升高了0.0073℃,已知水的质量摩尔凝固点降低常数K f 和沸点升高常数K b 分别为1.86及0.52,则该溶液的凝固点(以℃表示)为 0.00731.86C 0.52
−×° 。
27、在T 时,某纯液体的蒸气压为88mmHg ;当0.2mol 的一非挥发性溶质溶于0.8mol 的该液体中应形成溶液时,溶液的蒸气压为40mmHg 。
假设蒸气是理想的,则在该溶液中溶剂的活度系数是 0.568 。
28、A 和B 能形成理想溶液。
已知在100℃是纯液体A 的蒸气压为1000mmHg ,纯液体B 的蒸气压为500mmHg ,当A 和B 的二院溶液中A 的摩尔分数为0.5时,与溶液平衡的蒸气中A 的摩尔分数是 2/3 。
29、溶剂服从拉乌尔定律及溶质服从亨利定律的二元溶液是 稀溶液 。
26、常利用稀溶液的依数性来测定溶质的分子量,其中最常用来测定高分子溶质分子量的是 渗透压 。
27、已知环己烷、醋酸、萘、樟脑的摩尔凝固点降低常数K f 分别为6.5、16.60、
80.25及173,今有一未知物能在上述四种溶剂种溶解,欲测定该未知物的分子量,最适宜的溶剂是 樟脑 。
35、40℃时纯液体A 的饱和蒸气压是纯液体B 的21倍,且A 和B 能形成理想溶液。
若气相中A 和B 的物质的量分数(摩尔分数)相等,则液相中A 和B 的物质的量分数之比B A x x :应
该为 1:21 。
f (溶质饱和蒸气逸度) A B 1=m →B x
图1 36、由A 和B 组成二元溶液,
以稀溶液为参考物系,以质量摩尔浓度m 表示组
成时,溶质的标准态相当
于图1上 1点 。
39、在15℃时,纯水的蒸气压
为12.788mmHg 。
当1mol
的不挥发溶质溶解在
4.559mol 的水中形成溶
液时蒸气压4.474mmHg ,
则溶液中和纯水中水的
化学位之差θ11μμ−为-2515J 。
34、氯仿(1)和丙酮(2)形成的非理想溶液,在T 时测的总蒸气压为220.5mmHg ;
蒸气中丙酮的物质的量分数y 2=0.818,而该温度纯氯仿的饱和蒸气压为221.8mmHg ,则在溶液中氯仿的活度a 1为 0.181 。
44、人的血浆可视为稀溶液,其凝固点为-0.56℃;已知水的摩尔凝固点降低常数
K f 为1.86,则37℃时血浆的渗透压为 7.65θp 。
46、已知35℃时纯丙酮的饱和蒸气压为323mmHg ,当氯仿的物质的量分数为0.30
时,测得丙酮-氯仿二元溶液上丙酮的蒸气压为200.8mmHg ,则此溶液 对丙酮为负偏差 。
47、在298K 时,向甲苯的物质的量分数为0.6的苯-甲苯的1mol 理想溶液中加
入微分量的纯苯,则对每摩尔的苯来说其
2270/07.618/G J mol H S J K Δ=−Δ=Δ=⋅、、mol 48、在298K 时,将0.4mol 苯与0.6甲苯混合形成理想溶液,则对每摩尔溶液此
过程的1667/0 5.595/G J mol H S J K mol −Δ=Δ=⋅、、Δ=。